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Abstract 

New biomedical advances at cellular level give the 

possibility to develop more and more accurate 

computational models of cells. Moreover, the 

increasing power of graphical processor units allows 

the simulation of millions of interacting virtual cells. 

This paper summarizes efforts made to create 

multicellular simulators, their attended benefits and 

their inevitable drawbacks. In particular, it presents 

the new software SimCells that simulate the 

dynamics of multicellular systems using a graphically 

programmable multiagent system. A fully functional 

example of the tumoral and blood vessel co-

development is also detailed. 

Introduction 

The biomedical field at cellular scale is a very active 
field of research, dealing with data from simple 
molecules up to entire organisms. It works both on 
the fundamental comprehension of the living and on 
the design of treatments against complex diseases. 
Although numerous entities are in interaction at 
very different scales and inside heterogeneous 
environment in cellular systems, many data coming 
from biological experiments can be integrated in 
computational systems to explain how the real 
system works. The creation of such systems is made 
through a long and difficult process entailing 
interdisciplinary knowledge, computer science and 
mathematical skills, rigor and creativity. It also 
demands high computational power which can be 
found in massively parallel processors. 
Creativity is a hard and fragile dynamic process, 
especially during the development of models on 
complex living systems which usually are non-linear 
and counter-intuitive. Advanced software can 
contribute to this creativity by giving intuitive and 
computational tools. Graphical designing tools 

enable researchers to focus on their models instead 
of how they implement it. Computational tools 
resolve the models and verify their validity. 
Moreover, they can organize huge amount of data 
inside formal paradigms which can be easily 
understood and shared. 
The modelling and simulation of cellular systems, 
both at molecular level and at multicellular scale has 
already been initiated in the early ages of computers 
with the works of Alan Turing on the chemical basis 
of morphogenesis and those of John Von Neumann 
on cellular automata. Moreover, computer aided 
design has been used since the 1950's in numerous 
fields of science and technology like mathematics, 
molecular modelling, car or plane design. Although 
computer scientists have been interested in 
modelling multicellular systems, this field has 
encountered many difficulties both theoretical, due 
to partial cell comprehension, and practical, with the 
limitation of computational power. 
Despite the development of many fundamental 
algorithms and programs for the modelling of 
multicellular systems, most of them have been 
limited to prototypes and dedicated to specific 
problems. 
This work presents the recent efforts to develop 
fully integrated software, that help biologists to 
create models of multicellular systems. An attention 
is given to systems with many interacting entities 
capable of self-assembly. 
This paper begins with some objectives, expected 
benefits and the inevitable drawbacks of such 
software. Then the contemporary contexts of 
cellular biology, computer science and 
computational biology are presented. Next, different 
algorithmic approaches are shown. Afterwards, two 
advanced software are described. Finally, a SimCells 
simulation of the angiogenesis process is detailed. 
 
Objectives 



The comprehension of living cell is still incomplete 
and computational approaches can participate in 
their study. This help can be divided into four short 
term and two long term objectives. 
 
Short-term objectives 

1. simulation of complex cellular systems to improve 
the understanding and control of those systems 
2. formalization of knowledge which can reduce 
ambiguities inside biological models 
3. integration of diverse scientific knowledge to 
improve the realism of models 
4. dissemination of knowledge which could 
accelerate the rhythm of discoveries by sharing 
models and simulations 
5. the training of students in biology, enabling them 
to deal with complex systems. 
 
Long-term objectives 

1. computer aided design of tissues and organs for 
medical applications to contribute on their 
replacement or restoration 
2. computer aided design of tissues and organisms 
for industrial applications to create materials, 
systems or computers based on multicellular 
systems 1. 
These objectives lead to benefits that irrigate 
science and technology even before their 
completion. 
They are briefly described in the following section. 
 
Benefits 

The study of multicellular systems using computers 
is interesting both scientifically and technically and it 
can also have important implications in society. 
 
Scientifically, it serves the comprehension of 
fundamental mechanisms governing cells, from 
single-cell behaviors to embryogenesis of a whole 
organism, including tissue formation and organs 
morphogenesis. 
 
Technically, it requires enhancement of 
computational models, from algorithms to graphical 
user interface. In return, it can improve the field of 
computer science. 
 
As regards the implications in society, computation 
of multicellular systems could help medical 
researchers to discover new medical treatments. It 

could also be used, in some cases, as an alternative 
to animal testing both for research and teaching. 
 
Moreover, the creation of computational models 
imitating multicellular systems involves many areas 
of science such as biology and medicine, computer 
science and computational biology, physics and 
complex systems, mathematics and pedagogy and 
may lead to think how to reorganize scientific fields 
by encouraging interdisciplinary that induces 
discoveries. 
 
Despite these benefits, it is necessary to clarify the 
limits of this approach in order not to over-estimate 
its potential. 
 
Drawbacks, limitations and difficulties 

Modelling and simulation of multicellular systems 
have to deal with many problems. Some are shown 
below. 
 
Modelling problems 

Any model contains approximations, bias and gaps 
that inevitably denatures the real system. 
For example, a model contains what is known on a 
real system but not what is unknown2: in fine, in-
vivo or in-vitro experiments could be necessary. 
Even what is supposed to be known must be 
carefully questioned because data coming from 
experiments are of various kinds, have different 
experimental conditions and possess margin of 
error. A model is only valid under certain conditions. 
It generally has limited predictive capabilities, 
especially with non-linear systems. Furthermore, a 
biological system can be described by two or more 
different models. Living systems are non-optimal, so 
their models cannot be discriminated by simply 
using the principle of parsimony. 
 
Models can contain false or obsolete knowledge and 
can slow down the discoveries by propagating non-
relevant data, mechanisms and behaviors. 
Creating a computational model of multicellular 
systems requires either a modeler to have an 
interdisciplinary expertise or specialists to work 
closely together. In both cases, the time needed for 
the construction of the model is greatly increased. 
A model can be difficult to use because it has no 
simple algebraic solution, it does not fit any existing 
computational approaches or because it demands 



too much computation time. More problems related 
to simulation are described in the next section. 
 
Simulation problems 

Multicellular systems are intrinsically multiscale. 
Spatial scales start from the size of water molecules, 
3 x 10-10 meter up to the size of Sequoia trees that 
can nearly reach 102 meters [1]. Between a molecule 
of water and a giant sequoia, there are about 12 
orders of magnitude which cannot be simulated yet 
and probably not for a while. 
In terms of time, the same problem occurs. The time 
of a water molecule to reorganize with its 
neighborhood molecules is about 10-12 second and 
the oldest living tree is close to 5 x 103 years old [2], 
which corresponds to 15 orders of magnitude. 
Again, this cannot be simulated using today's 
computers. 
During a simulation, calculation approximations are 
possible, especially when working with floating-
point numbers because of truncation. 
A simulation is based on an implementation of a 
model and it does not always reflect accurately the 
model itself. Topology and geometry of 
computational objects and environments strongly 
affect simulation results. For example, a cell can be 
modelled as a solid sphere in a continuous 
environment or as a cube with integer coordinates 
and size inside a 3D matrix. An underestimated 
problem concerns the use of advanced software that 
may reduce the critical mind of those who use them. 
It should be remembered that models and 
simulations are only approximations of the real 
system, especially for students. 
Nevertheless, benefits are more important than 
drawbacks and computational models and 
simulations contribute to the construction of 
knowledge in a broad sense. 
 
Properties and control of cells 

Living cells are usually seen as the structural and 
functional basic unit of life. Encyclopaedia Britannica 
defines the cell as the basic membrane-bound unit 
that contains the fundamental molecules of life and 
of which all living things are composed [3]. All 
known living organisms, in their huge diversity 1, are 
made of cells, from unicellular organisms to humans 
2. Since their discovery by Robert Hooke in the 
middle of the 17th century 3, they have been one of 
the most studied scientific objects. Cells have 
numerous forms 4, functions 5, behaviors 6, 

interactions 7 and organizations 8 but are based on 
very similar structures and mechanisms 9. In terms 
of evolution, the first cell is dated 3.5 billion years 
old [4]. Multicellular systems are more recent and 
the oldest one known is 2.1 billion-year-old [5]. 
 
A multicellular system is made of interacting cells 
that can express numerous shapes and functions. 
Furthermore, many scales can be observed, starting 
from tissues that involve several cells, to organs 
which realize essential functionalities, up-to whole 
organisms that constitute societies and ecosystems. 
Every known life kingdom possesses multicellular 
structures: animal cells (for instance caenorhabditis 
elegans), plant cells (oak), bacteria (Nostoc for 
example), fungal cells (Penicillium), protista (without 
specialized tissues like algae Seaweeds) or archaea 
(see Methanosarcina acetivorans for instance). Most 
of them also can perform cellular recognition, a key 
mechanism that enables the distinction between self 
and non-self, even on primitive organisms like 
Porifera [6] [7]. 
When studying such living structures, many 
properties can be observed that are biological, 
mechanical, chemical, thermodynamic, 
morphological, etc. Therefore, multicellular systems 
can be modelled with many different theories or 
approaches. Each of them corresponds to a specific 
point of view on real multicellular systems which 
are, by now, too complex to be fully understandable 
with a single approach. 
Numerous and fundamental advances in the 
understanding and control of cells have been made 
recently, both at molecular and cellular levels. In 
2002, Sydney Brenner, H. Robert Horvitz and John E. 
Sulston obtained the Nobel Prize for their work on 
genetic regulation of organ development and 
programmed cell death, describing seminal 
mechanisms occurring during organism 
development. Another important work, made in 
2006, involves Shinya Yamanaka's team who has 
artificially generated a pluripotent stem cell from an 
adult somatic cell. Qualitative and quantitative 
improvements have been made to this work since 
this date. About two years later, in 2008, Doris 
Taylor and her research team built the first beating 
bioartificial heart using a tissue scaffold from a rat 
heart and heart cells from newborn rats. More 
recently, in 2010, Thomas Vierbuchen et al. were 
able to directly convert fibroblasts into functional 
neurons, without passing through the stage of stem 



cell. Also, in 2010, Craig Venter and his team created 
a bacterial cell controlled by a chemically 
synthesized genome, that although controversial, is 
paving the way for the construction of artificial 
organisms. In 2011, Mototsugu Eiraku et al. showed 
that embryonic stem cells derived into retinal 
epithelium self-organize to spontaneously form 
hemispherical epithelial vesicles corresponding to 
the optic cup. Besides the fact that such researches 
lead to a better understanding of cells, they also 
enable the creation of tissues and organs able to 
replace those of patients from their own cells, 
avoiding immune rejection and replacing cells that 
normally do not easily regenerate by themselves like 
neurons, retina or cardiac cells. The engineering of 
tissues and organs is still in its infancy 10, but the 
examples we have at our disposal show that they 
are about to revolutionize medicine and probably 
many other areas. 
A key point we can extract from works in biology is 
that some mechanisms governing multicellular 
structures are based on rules that can be written in 
the form of algorithm. Moreover, these 
mechanisms, though often based on microscopic 
stochastic phenomena, are reproducible, giving 
them a strong macroscopic determinism. Given 
these data, we see that algorithms can be developed 
to reproduce and therefore to explore some of 
these phenomena using computers. This is 
facilitated by recent advances in multicore 
processors whose computing power overcomes the 
limitations due to stagnating clock frequencies of 
processors. Recent advances in quantum computing 
suggest that it could be possible to drastically 
improve the speed of some algorithms [8]. 
Finally, let us note the importance of philosophy and 
epistemology at the border of biology and 
computation. These includes the works of Maturana 
and Varela [9] on the autopoietic principle, or those 
of Jean-Jacques Kupiec with its ontophylogenetics 
theory [10] which gave useful formalisms to deal 
with multicellular systems. 
 
Computer science context 

Since the beginning of computers in the 1940s, 
scientists have tried to reproduce living cells in 
computers. One of the first try has been made by 
John von Neumann with the concept of cellular 
automata 11. This has been completed by the 
reaction-diffusion approach introduced by Alan 
Turing in 1952. Although computer power was 

limited at that time, the concepts and their results 
launched new scientific fields like artificial life and 
computational biology. This led to many 
developments, more and more precise, following 
the fast evolution of computing power. 
Two of the most interesting research areas for our 
work is the multiagent approach [11] where multiple 
interacting agents evolve in virtual environments 
and where different models can be executed inside 
a same simulation. The second interesting approach 
is called artificial life [12]. It aims to imitate living 
things, and furthermore to explore life-as-it-might-
be. 
Advances in software architecture, algorithms and 
graphical user interface are also important in a 
context of interdisciplinary researches. A software 
should be flexible enough to integrate new ideas 
and new data that are not initially foreseen, and it 
should be usable by a large spectrum of persons, 
from end-user to expert in software development. 
Another important point is the modelling of 
multiscale problems which are legion in biology. 
Despite the difficulties of simulating these systems, 
several works have been made. For example, Jean-
Louis Deneubourg in 1989 focused on examples 
where microscopic pheromones guide the collective 
behaviors of agents [13]. The multiagent 
architecture of Jacques Ferber showed agents made 
of agents [14]. Generally, multiscale simulations 
necessitate powerful processors when the number 
of entities is high. 
Today, the power of computers continues to grow 
exponentially even though clock speed of 
microprocessors has stabilized below 5 GHz 12. The 
means chosen to overcome this limitation is the use 
of multicore microprocessors. The first multicore 
processor called POWER4, was made in 2001 by 
IBM. 13 The first general public multicore processor 
was the Intel Pentium D in 2005 just followed by the 
AMD Athlon 64 x2 in 2006 14. Today, the graphics 
cards have the highest computing power through 
their massively parallel architecture. They are 
programmable thanks to general purpose language 
close the C language like Cuda [15] or OpenCL [16]. 
The third point is the interactions between human 
and computer. The maturity of multi-touch, three-
dimensional screens, virtual or modified reality and 
the recent development of screens with tactile 
sensations, such as friction or roughness, improve 
the immersion in virtual environments and can help 
user to create multicellular simulations. 



These advances in computer sciences and 
technologies, are largely used to develop models in 
the field of computational biology. 
 
Modeling and computational biology context 

Computational biology is a vast interdisciplinary field 
of science where mathematical and algorithmic 
approaches are applied to biology. 
If we focus around the cellular scales, we can see 
that many scientific approaches can be applied to 
model biological properties, interactions or 
mechanisms. These approaches can be chemistry, 
thermodynamics, classic or quantum mechanics, 
statistic or individual based modelling, genetic or 
epigenetic, etc. 
There also exists numerous ways to represent 
cellular systems. Any biological object can be 
modelled as a single and simple entity or as a 
complex dynamical multi-entity and self-assembled 
system. 
Furthermore, their environment can be omitted, 
viewed as static or modelled as a dynamic system. 
To model cellular systems, there are two principal 
methods. The first focuses on individual biological 
objects like molecules or organels and isolate them. 
This method is called reductionism, for which a 
complex system is divided into simpler sub-systems 
or objects. The second method does the opposite by 
putting together individual biological objects. This 
method is called integrative biology, where simple 
sub-systems or objects are combined to explain the 
functioning of a bigger system. 
An important difficulty is the development of 
theories able to integrate these scattered data. This 
development has already begun inside the 
integrative computational biology field, also called 
system biology. For Denis Noble, "Systems biology is 
about putting together rather than taking apart, 
integration rather than reduction. It requires that 
we develop ways of thinking about integration that 
are as rigorous as our reductionist programs, but 
different. It means changing our philosophy, in the 
full sense of the term". 
The best tool we got to work on the complex is, by 
far, the human brain. However, when the quantity 
of data is important, when the diversity of 
behaviors, properties, structures, parameters and 
scales become overwhelming, the help of computer 
can be decisive. This computational assistance can 
apply both when the data are scattered, to gather 
them in a comprehensive way, or when the theories 

are well established, to explore their potential and 
make predictions. 
The computer has become what Jol de Rosnay called 
in 1975 a macroscop, a tool to investigate the 
infinitely complex, by analogy with the microscope 
that explores the infinitely small and the telescope 
which observes the infinitely large [17]. 
We briefly see in the next section that each scale of 
modelling has its own methods, theories, tools and 
objectives, making the development of multiscale 
computational models difficult. 
 
- Molecular scale (from 10-9 to 10-8 m) 

A molecule can be seen either as a whole or made of 
atoms. It can be modelled by using quantum 
mechanics or Newtonian theories. At this scale, a 
classical method is the computation of molecular 
binding, also called molecular docking where the 
best-fit location and orientation of a ligand that 
binds a protein is calculated. This method principally 
aims at the rational design of drugs [18]. Overviews 
of docking methods can be seen in [19] and [20]. 
Software to compute docking have also been 
developed like Arguslab [21] or AutoDock [22]. 
 
- Macromolecular scale (from 10-8 to 10-6 m) 

A macromolecule can be modelled either using 
interacting molecules or as a single entity. A 
common objective consists in the computation of 
protein folding to determine the tertiary structure 
(3-dimensional structure) of a protein using its 
primary sequence of amino acids. An overview of 
simulations can be seen in [23]. We can quote some 
software like Folding at home [24] made to 
understand protein folding, misfolding and related 
diseases, using personal computers across the 
world. Another software called ProteinShop was 
developed for an interactive protein manipulation 
[25]. 
Another example at molecular scale deals with the 
simulation of lipid membrane. Some methods can be 
seen in [26] and, as for software, we have GROMACS 
for example, which is able to treat hundreds to 
millions of particles [27]. A more macroscopic model 
has been made to reproduce the behavior of the 
inner mitochondrial membrane [28]. 
 
- Cell scale (from 10-7 to 10-5 m) 

At the cellular scale, like the previous levels studied 
above, a cell can be seen as a single irreducible unit 
or as a system made of interacting parts. At this 



scale level, an important research concerns the cell 
metabolism. It can be simulated by using very 
different methods from the ones seen just before. 
One of the first work was published in 1964 on 
metabolic control mechanisms [29]. At this scale, 
biological regulatory network like genetic regulatory 
network can be applied to model gene interactions 
and to help biologists to understand and predict 
emergent cellular behaviors [30] [31]. 
Software with advanced graphical user interface 
have been produced like GEPASI [32] which works 
on biochemical systems, or like Virtual Cell [33] 
which treats two or three dimensional biochemical 
problems or finally, like E-Cell [34] that enables 
precise whole cell simulations with activation or 
knock-out of genes. 
 
- Multicellular scale (from 10-6 to 10-3 m) 

We move up now to the scale of several interacting 
cells which is our main subject of interest. A 
multicellular tissue, organ or organism can be 
abstracted thanks to interacting single cell models or 
thanks to more global tissue models. Several 
computational approaches can be used to model 
and simulate multicellular systems. The more 
common are briefly presented below. 
 
Algorithmic approaches 

Reaction-diffusion 

A seminal research started with the work of Alan 
Turing on the Chemical Basis of Morphogenesis in 
1952 which gave birth to the reaction-diffusion field 
of science. This field was improved by many 
researchers like Hanz Meinhardt and J. D. Murray. 
Although this approach focuses on molecular 
mechanisms, its scale of observation is close to 10�6 
m. It consists in a macroscopic model of interacting 
and moving molecules and is particularly relevant 
and useful for the multicellular scale. 
The next section describes one of the first integrated 
software developed to simulate multicellular 
system. This software, called CompuCell3, is based 
on the Cellular Potts Model for modelling cells and 
uses a reaction-diffusion system to model 
molecules. 
 
Ising system 

One of the first system that can reproduce self-
organized system and which can be easily simulated 
with a computer is the Ising model, solved in 1925 

by Ernst Ising [35]. It consists in a mathematical 
model of ferromagnetism with discrete variables, 
called spins, which are located in a lattice and 
interact with their nearest neighbors. It reproduces 
phase-transition occurring in real substances. 
 
Cellular Potts Model 

An evolution of the Ising and Pott systems is the 
Cellular Pott's Model (CPM). It was created in 1992 
by James Glazier and Francois Graner [36]. It enables 
the simulation of multicellular systems by taking into 
account surface and volume energies for each cell 
and contact energy between cells. 
It is used in many ways today, for example to 
simulate embryogenesis [37], morphogenesis [38] or 
angiogenesis [39]. 
 
Cellular automata 

A classic approach is the cellular automaton, which 
was designed in the 1940s by John von Neumann 
and Stanislaw Ulam [40]. It was initially used to 
study self-reproducible systems. In this approach, a 
cell is represented by a value located in a matrix. It 
was used to create a simple but expressive system 
called the Game of Life in the middle of the 1960's 
by John Conway where simple local rules, leading 
the birth or death of cells, enables complex 
emerging behaviors [41]. This approach is also 
interesting to reproduce many different physical 
systems [42]. However, programming complex 
biological systems with this paradigm is not easy 
because the design of rules are not intuitive. The 
multiagent approach is more relevant in an 
interdisciplinary context. 
 
Multiagent systems (MAS) and Individual Based 
Modelling (IBM) 

An Individual Based Modelling 19 is required when 
each entity has to be distinguished from others. It is 
also useful when there are too few entities so that 
they cannot be summarized by a continuous value. 
Moreover, it is interesting when local behaviors are 
known whereas the global behavior is not. 
furthermore, this modelling is appropriate when the 
bottom-up emergent properties are preferred to 
more directive top-down approaches. 
Many examples have been developed in MAS. For 
instance, they were used in 1990 to simulate 
immune responses thanks to the work of Philip E. 
Seiden and Franco Celada [43]. This individual based 



approach can also be combined with global 
approaches like in the simulation of the earliest 
stages of embryogenesis in a multicellular organism 
or brain [44] or for the simulation of the 
angiogenesis in cancer development made in 2005 
by A. Stéphanou, S.R. McDougall, A.R.A. Anderson 
and M.A.J. Chaplain [45]. 
 
Mass-spring systems 

A cell membrane can be seen as a mass-spring 
system [46], eventually combined with a multiagent 
systems to improve the expressivity of simulations 
[47]. Such approach has also been developed by 
Szymon Stoma et al. to simulate a plant 
morphogenesis thanks to a mass-spring system [48]. 
 
Voronoi diagram 

When simulating numerous interacting cells using a 
mass-spring system, the computation of interacting 
cell is essential. It can be done by calculating a 
Delaunay-Voronoi tessellation, as used in the 
embryomorphic model developed by R. Doursat 
[49]. 
 
Other approaches 

Fleisher made a model and a simulator where cells 
can bind and are able to secrete chemoattractants 
and chemorepellents to generate patterns of virtual 
proto-organisms [50]. Laforge et al. developed an 
approach based on an equilibrium between the 
auto-stabilization of stochastic gene expression and 
the interdependence of cells for proliferation to 
model embryogenesis and cancer [51]. Another 
model of morphogenesis in cellular systems is 
related to the study of the cell reorganization during 
in-vitro wound healing [52]. 
Other approaches are currently developed and can 
be seen in the book [53]. 
 
Software examples 

To complete this paper, this section deals with two 
fully integrated software designed to reproduce 
multicellular systems. 
 
CompuCell3D (see figure 1) 

- Description 

CompuCell3D is a free open-source software based 
on the Cellular Potts Model where cells are 
modelled thanks to several matrix sites that 

represent their surface and volume. In this 
approach, cells also interact with each other thanks 
to adhering properties and chemical signals. The 
software enables the simulation of cellular and 
multicellular systems using parallel devices. 
 
- Key features 

This software uses an original approach, invented by 
their authors in 1992, which is relevant for the 
simulation of many different multicellular systems 
from cell sorting to organism morphogenesis. This 
system can also be connected with other matrix-
based systems like fluid mechanics based on Navier-
Stoke to achieve simulations involving, for example, 
blood coagulation or blood circulation. 
 
- Computational model 

In this approach, a molecule is a simple value in a 
matrix. A cell, which is more detailed than a 
molecule, is a dynamic set of matrix sites. A 
membrane is simply defined as cell site borders in 
contact with other cell sites belonging to other cells. 
We can notice that many cellular behaviors are 
simulated like migration, division, differentiation 
and apoptosis. 
 
- Biological scale 

The usual scales go from 1 micrometer square (or 
cube when in 3D) for a cell site to 1 millimeter 
square (or cube) for a whole simulation. 
 
- Computational method 

The shape and the size of a cell depend on its target 
surface and volume. Annex developments have been 
done, like one enabling the design of a target shape 
for each cell type [54]. We can note that about 30 
plugins can be added to the simulator like 
Chemotaxis, Mitosis or Secretion. 
 
- Graphical user interface 

The graphical user interface enables the user to 
manage the execution of simulations, view the 
evolution of the system and see the cellular types 
used. The XML file describing a simulation must be 
made outside the interface. 
 
- Programming language 

Two approaches are possible. The first is the use of 
an XML file to describe a simulation. The second 
one, which is more powerful, is the use of the 



Python language to explicit models and simulations. 
Developers can create their own plugins using the C 
language. 
 
- Documentation 

The web site of Compucell3D offers a useful quick 
start guide, including tutorials and exercises. Two 
detailed documents are also dedicated to bio-

modelers. The first explains the general objectives, 
the theoretical and algorithmic point of view and 
contains advanced examples made with 
Compucell3D. The second describes how to use 
Python to develop models and simulations. 
Moreover, a paper explaining how to create plugins 
in C language is downloadable for developers.

 

 
Figure 1: Graphical user interface of the integrated software CompuCell3D. 

 
SimCells (see Figure 2) 

- Description 

SimCells is a free software based on a multiagent 
system where deformable and interacting cells 
are modelled inside matrices. The user can 
create different kind of multicellular systems by 
using a simple graphical language. 
 
- Key features 

This software uses an original approach, 
developed for multicore devices. All steps of 
modeling are graphically made thanks to an 
advanced graphical user interface, letting non-
developers to create their own simulations. 
 
- Computational model 

Like for CompuCell3D, many cellular behaviors 
can be simulated like migration, chemotaxis, 

division, differentiation, apoptosis, membrane 
deformation and adhesion. 
 
- Biological scale 

SimCells uses a multiscale approach with cells, 
bricks, molecules and fields. 
 
- Computational method 

It uses recent Graphical Processor Unit (GPU). 
The number of simulated cells depends on the 
power of the graphical processor unit (GPU) 
used. It can be about one million with a 
premium GPU in 2018. 
 
- Graphical user interface 

The graphical user interface enables the user to 
manage the execution of simulations, view the 
evolution of the system, create cells, design the 
initial state, view and export simulation results. 
 



- Programming language 

The creation of cellular behaviors is made by a 
graphical language under the form of Conditions 
Then Actions. Each entity (a cell, brick or 
molecule) carries its own behaviors. The number 
of entities is not limited, and they can be 
explicitly named (like Lymphocyte, Antigen, etc). 

 
- Documentation 

The web site of SimCells gives a user guide 
explaining the different entities specificities, how 
to program them and how to export results and 
video.

 

 
Figure 2: Graphical user interface of the advanced software SimCells. 

 
Timeline of multicellular simulation 

This section presents a brief history of software 
built to simulate multicellular systems. A time 
line of different models and approaches is 
shown on the table 1. It covers the period from 

1965 up to now. A third time line focuses on 
advanced software made to simulate 
multicellular systems. It can be seen on the table 
2. 

 



 
Table 1.1: brief history of computational systems for multi-cellular simulation a b c. 

 



 
Table 1.2: brief history of computational systems for multi-cellular simulation a. 

 

 
Table 2: advanced software for multi-cellular simulation a. 

 
SimCells example 

The growth of a cancerous tumor and its blood 

vessel network is a multicellular self-regulated 

mechanism. Its comprehension is complex 

because it involves a feedback loop: the tumor is 

guiding the angiogenesis, and at the same time, 

the blood vessels supply the cancerous cells with 

nutriments and oxygen. 



A way of studying the dynamics of this system 

consists in building a computational multiagent 

simulation that can i) exhibit fundamental 

processes occurring over time, ii) make forecasts 

on how the tumor could evolve in the future and 

iii) give clues about how to control the tumor 

development. 

A multiagent simulation, based on the software 

SimCells, is described hereafter. 

Virtual agents’ description 

The simulation is made of three principal agents: 

cancerous cells, blood vessel and tip cells (see 

figure 3). Moreover, three diffusing fields are 

required: the supply field, (field 3) generated by 

the blood vessel, the vascular growth field (field 

1) generated by cancerous cells and the matter 

consumption field (field 2) generated by the 

growing blood vessels. 

Two other agents are used to reproduce inert 

tissue that can be found close to tumors: bones 

and healthy tissue. 

 

Figure 3: main agents of the simulation. 

- Cancerous cells 

They have two states: starvation, when they are 

too far from a blood vessel and dividing when 

they are supplied by blood vessels. 

- Blood vessels 

A blood vessel agent has two states: stabilized, 

when mature and not evolving anymore and 

growing when developing towards the tumor. 

Stabilized vessels have 2 behaviors: 

Supply: at each simulation time step, each blood 

vessel agent produces a diffusing field 3 (supply 

field). 

 

Angiogenesis: at each time step, on a probability 

of 0.01 and when the field 1 (vascular growth 

field) is greater than a threshold and when the 

field 2 (matter consumption field) is lower than 

another threshold, then the stabilized blood 

vessel become a growing blood vessel. 

 

Growing vessels have 4 behaviors: 

Stabilization / Progression: 

 

Supply: 

 

Stabilization: 

 

Matter consumption: 

 

- Tip cells 

Their main behavior consists in orienting 

towards the positive gradient of the vascular 

growth field: 

 

Simulation results 

A 2D simulation is performed in a 1024x512 

matrix. The initial state contains a single vertical 

blood vessel and a tiny round tumor with about 

50 cancerous cells. The figure 4 shows the early 

stages of angiogenesis. At about 7000 simulation 

steps, the tumor reaches a bone (see figure 5). 

The simulation ended after 27000 simulation 

steps (see figure 6). At this time, all the available 

space is occupied by the tumor and its blood 



vessel network, showing the robustness of this 

co-developing system. 

 

Figure 4: simulation after 1950 simulation steps. 

The main blood vessel (on the right), has new 

developing branches (from left to right). 

 

Figure 5: simulation at 6930 steps. The tumor 

continues to grow, inducing the co-development 

of the blood vessel network. Round gray agents, 

on the left, represent bones. Grey cells, at the 

upper-left and bottom-right, represent inert 

tissues compressed by cancerous cells. 

 

Figure 6: final simulation state at 27030 steps. All 

available space is occupied by dividing cancerous 

cells and stabilized blood vessels. 

The simulation can also be executed in a 3D 

environment of size 126x126x126, but the size of 

the environment must be reduced (see Figure 5) 

due to memory size of the graphical card. The 

early stage of the simulation is shown on the 

figure 7. 

 

Figure 7: same simulation in a 3D environment. 

Conclusion 

The biomedical field at cellular scale and computer 
science are independently and together in deep 
change, opening new ways in the control of the living 
at the cellular scale. 
In this context, computer aided design of large and 
dynamic multicellular tissues becomes possible. 
Computer scientists and biologists can cooperate in a 
complex interdisciplinary field thanks to advanced 
software, sharing common formal computing 
languages. 



The software, like SimCells, use specific graphical 
interfaces to exploit computational models in a 
simple way, keeping creativity of the user at a high 
level. 
The simulation of numerous interacting cells can use 
multicore devices to drastically decrease the 
computational time. 
Interdisciplinary in science, although hard to 
implement, is a requirement for the development of 
multicellular simulators. More scientists and 
engineers at the interface of different sciences should 
be formed to be the spearhead of these new 
advances.  
More generally, it will help to support biology and 
medicine towards more predictive, quantitative and 
individualized levels. 
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