
HAL Id: hal-01853244
https://hal.science/hal-01853244v3

Preprint submitted on 27 Jul 2021 (v3), last revised 29 Nov 2022 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proximal boosting and variants
Erwan Fouillen, Claire Boyer, Maxime Sangnier

To cite this version:
Erwan Fouillen, Claire Boyer, Maxime Sangnier. Proximal boosting and variants. 2021. �hal-
01853244v3�

https://hal.science/hal-01853244v3
https://hal.archives-ouvertes.fr

Proximal boosting and variants

Erwan Fouillen, Claire Boyer, and Maxime Sangnier

Sorbonne Université, CNRS, LPSM, Paris, France

July 27, 2021

Abstract

Gradient boosting is a prediction method that iteratively combines weak learners to produce
a complex and accurate model. From an optimization point of view, the learning procedure of
gradient boosting mimics a gradient descent on a functional variable. This paper proposes to build
upon the proximal point algorithm, when the empirical risk to minimize is not differentiable, in
order to introduce a novel boosting approach, called proximal boosting. Besides being motivated
by non-differentiable optimization, the proposed algorithm benefits from algorithmic improvements
such as controlling the approximation error and Nesterov’s acceleration, in the same way as gradient
boosting [Grubb and Bagnell, 2011, Biau et al., 2018]. This leads to two variants, respectively
called residual proximal boosting and accelerated proximal boosting. Theoretical convergence is
proved for the first two procedures under different hypotheses on the empirical risk and advantages
of leveraging proximal methods for boosting are illustrated by numerical experiments on simulated
and real-world data. In particular, we exhibit a favorable comparison over gradient boosting
regarding convergence rate and prediction accuracy.

1 Introduction

Boosting is a celebrated machine learning technique, both in statistics and data science. In broad
outline, boosting combines simple models (called weak learners) to build a more complex and accurate
model. This assembly is performed iteratively, taking into account the performance of the model
built at the previous iteration. The way this information is considered leads to several variants of
boosting, the most famous of them being Adaboost [Freund and Schapire, 1997] and gradient boosting
[Friedman, 2001].

The reason of the success of boosting is twofold: i) from the statistical point of view, boosting
is an additive model with an iteratively growing complexity. It is thus possible to reduce the bias
of the risk while controlling its variance. This is a noticeable advantage over very complex models
such as nonparametric methods. ii) from the data science perspective, fitting a boosting model is
computationally cheap, making it possible to be used on large datasets. In contrast, it can quickly
achieve sufficiently complex models to be able to perform accurately on difficult learning task. As an
ultimate feature, the iterative process makes finding the frontier between under and overfitting quite
easy. In particular, gradient boosting combined with decision trees (often referred to as gradient tree
boosting) is currently regarded as one of the best off-the-shelf learning techniques in data challenges.

As explained by Biau et al. [2018], gradient boosting has its roots in Freund and Schapire’s work on
combining classifiers, which resulted in the Adaboost algorithm [Schapire, 1990, Freund, 1995, Freund
and Schapire, 1996, 1997]. Later, Friedman and colleagues developed a novel boosting procedure
inspired by the numerical optimization literature, and nicknamed gradient boosting [Friedman et al.,
2000, Friedman, 2001, 2002]. Such a connection of boosting between statistics and optimization was
already stated in several previous analyses by Breiman [Breiman, 1997, 1998, 1999, 2000, 2004] and
reviewed as functional optimization [Mason et al., 2000b,a, Meir and Rätsch, 2003, Bühlmann and

1

Hothorn, 2007]: boosting can be seen as an optimization procedure (similar to gradient descent),
aimed at minimizing an empirical risk over the set of linear combinations of weak learners. In this
respect, a few theoretical studies prove the convergence, from an optimization point of view, of boosting
procedures [Zhang, 2002, 2003, Wang et al., 2015] and particularly of gradient boosting [Temlyakov,
2012, Biau and Cadre, 2017]. Let us remark that rates of convergence of gradient boosting are known
for smooth and strongly convex risks [Rätsch et al., 2002, Grubb and Bagnell, 2011].

In gradient boosting (and variants), the number of weak learners controls the statistical complexity
of the final predictor but also the number of optimization steps performed in order to minimize the
empirical risk. While controlling the latter is a natural way to regularize the method and to enhance
its generalization properties, tuning the former makes it possible to stop the optimization algorithm
before convergence, which is known in many areas as early stopping. This technique can be seen as an
iterative regularization mechanism also used to prevent overfitting [Lin et al., 2016]. As a consequence,
besides its approximation capability, the statistical performance of gradient boosting deeply relies on
the algorithm employed.

That being said, one may wonder if gradient descent is really a good option. Following this direc-
tion, several alternatives have been proposed, such as replacing gradient descent by the Frank-Wolfe
algorithm [Wang et al., 2015], incorporating second order information [Chen and Guestrin, 2016], and
applying Nesterov’s acceleration [Biau et al., 2018]. While all these variants rely on differentiable loss
functions, Grubb and Bagnell [2011] discuss the limitations of boosting with gradient descent in the
non-differentiable setting, and tackle these issues by proposing two modified versions of (sub)gradient
boosting, consisting in reprojecting the error made when approximating the subgradients by weak
learners. The contribution of the work described here is to go a step forward by proposing a procedure
to efficiently learn boosted models with non-differentiable loss functions, that can benefit from advan-
tages of controlling the approximation error and accelerating the optimization procedure (respectively
like residual gradient boosting [Grubb and Bagnell, 2011] and accelerated gradient boosting [Biau
et al., 2018]).

To go into details, Section 2 reviews boosting with respect to the empirical risk minimization
principle and illustrates the flaw of the current learning procedure in a simple non-differentiable case:
least absolute deviations. Then, some backgrounds on non-smooth optimization are stated in Section 3
and we explain the main contribution of this paper: adapting the proximal point algorithm [Nesterov,
2004] to boosting. The proposed method is nicknamed proximal boosting and comes with two variants,
residual proximal boosting and accelerated proximal boosting inspired by the developments mentioned
above. A second contribution is to prove convergence rates (from an optimization perspective) of
proximal and residual proximal boosting under different hypotheses on the loss function (see Section 4).
Regarding accelerated proximal boosting, we empirically observe that it may diverge but always in the
overfitting regime, which is not harmful per se from a statistical point of view. Finally, the numerical
study described in Section 5 shines a light on advantages and limitations of the proposed boosting
procedures.

2 Problem and notation

Let X be an arbitrary input space and Y ⊆ R an output space. Given a pair of random variables
(X,Y) ∈ X × Y, supervised learning aims at explaining Y given X, thanks to a measurable function
f0 : X → R. In this context, f0(X) may represent several quantities, depending on the task at hand,
for which the most notable examples are the conditional expectation x ∈ X 7→ E[Y |X = x] and the
conditional quantiles of Y given X for regression, as well as the regression function x ∈ X 7→ P(Y =
1|X = x) for ±1-classification. Often, this target function f0 is a minimizer of the risk E(`(Y, f(X)))
over all measurable functions f , where ` : R × R → R is a suitable convex loss function (respectively
the square function and the pinball loss in the regression examples previously mentioned).

Since the distribution of (X,Y) is generally unknown, the minimization of the risk is out of reach.
One would rather deal with its empirical version instead. Let {(Xi, Yi)}1≤i≤n ⊆ X × Y be a training

2

Figure 1: Predicted values and training error of a boosting machine trained with a subgradient (top)
and a proximal-based method (bottom).

sample of pairs (Xi, Yi) independent and identically distributed according to the distribution of (X,Y),
FX the set of functions from X to R and F ⊆ FX a class of functions. In this work, we consider
estimating f0 by means of an additive model f? (that is f? =

∑T
t=0 wtgt, where T is an unknown

integer and (wt, gt)t ⊆ R × F is an unknown sequence of weights and weak learners) by solving the
following optimization problem:

minimize
f∈spanF

C(f), (P1)

where

C(f) =
1

n

n∑
i=1

`(Yi, f(Xi))

is the empirical risk and spanF = {
∑m
t=1 wtgt : w ∈ Rm, (g1, . . . , gm) ∈ Fm,m ∈ N} is the set of all

linear combinations of functions in F (N being the set of non-negative integers).
As a simple example, let us consider the regression model Y = sin(2πX) + ε, where X is uniformly

distributed on [0, 1] and ε is normally distributed and independent of X. We aim at solving:

minimize
f∈spanF

1

n

n∑
i=1

|Yi − f(Xi)|,

with F being the set of regression trees of depth less than 3.
Two boosting machines fT =

∑T
t=0 wtgt are learned (with T fixed to 300): a traditional one with

a subgradient-type method (Algorithm 1), and another with the proposed proximal-based procedure
(Algorithm 2). Fig. 1 depicts the prediction of fT (left) and the training error C(ft) = 1

n

∑n
i=1 |Yi −

ft(Xi)| along the iterations t (right, green curve).
In an optimization perspective, it appears clearly that the subgradient method fails to minimize

the empirical risk (prediction is far from the data and the training error attains a plateau at 2 ·
10−1) while the proximal-based procedure constantly improves the objective. The subgradient method
faces a flaw in convergence, in all likelihood due to non-differentiability of the absolute function | ·
|. This simple example illustrates, inside the boosting paradigm, a well-known fact in numerical

3

optimization: proximal-based algorithms prevails over subgradient techniques for non-differentiable
objective functions.

Beyond optimization, proximal boosting also outperforms gradient boosting from a statistical per-
spective since it achieves a lower test error (red curve in the right side of Fig. 1).

3 Algorithms

There is an ambiguity in (P1), since it is a functional optimization problem but, in practice, we do
not necessarily have the mathematical tools to apply standard optimization procedures (in particular
concerning differentiation of C). For this reason, C is often regarded as a function from Rn to R,
considering that it depends on f only through the vector f(Xn

1) = (f(X1), . . . , f(Xn)) ∈ Rn. To
make this remark more precise, let, for all z ∈ Rn, D(z) = 1

n

∑n
i=1 `(Yi, zi). Then, for any f ∈ FX ,

C(f) = D(f(Xn
1)).

Having this remark in mind helps solving (P1), for instance considering that taking the gradient
of C with respect to f is roughly equivalent to differentiating C with respect to f(x) (for all observed
x ∈ {X1, . . . , Xn}), thus taking in fact the usual gradient of D. Doing so, the only requirement is
to match the vectors appearing in standard optimization procedures with functions from FX . In
particular, given a vectorial gradient ∇D(f(Xn

1)) (f ∈ FX), one has to find a function g ∈ FX that
correctly represents it, i.e. such that g(Xn

1) ≈ ∇D(f(Xn
1)). This principle is at the heart of functional

optimization methods such that the ones used in boosting [Mason et al., 2000b].
From now on, all necessary computations of C with respect to f can be forwarded to D. For

instance, if ` is differentiable with respect to its second argument, we can define, for all f ∈ FX , the
functional gradient of C as ∇n C(f) = ∇D(f(Xn

1)). On the contrary, if ` is not differentiable, we may

consider a subgradient of C at f , denoted ∇̃n C(f) and defined as any subgradient of D at f(Xn
1).

In the forthcoming sections, a common first order optimization algorithm is reviewed. Then, it is
explained how to build different procedures for solving (P1), according to the properties of the loss
function `.

3.1 Accelerated proximal gradient method

Let us assume for a while that we want to minimize the function g + h, where g : Rd → R is convex
and differentiable (with L-Lipschitz continuous gradient, L > 0), and h : Rd → R ∪ {+∞} is convex
and lower semi-continuous. Besides, let us define the proximal operator of h by:

proxh(x) = arg minu∈Rd h(u) +
1

2
‖u− x‖2`2 , ∀x ∈ Rd,

which is well defined by convexity and lower semi-continuity of h [Combettes and Wajs, 2005]. Then,
the iterative procedure defined by choosing any x0 = v0 ∈ Rd and by setting for all t ∈ N:{

xt+1 = proxγt+1h(vt − γt+1∇g(vt))

vt+1 = xt+1 + αt+1(xt+1 − xt)

where γt+1 ∈ (0, 2/L) and (αt)t will be made precise thereafter, is known to converge to a minimizer
of g+ h [Nesterov, 2004]. The rate of convergence depends on the choice of αt: if αt = 0 for all t ∈ N,
then the previous procedure leads to the well known proximal gradient method, which converges in
O(1/t). More formally, assuming that g+h has a minimizer x?, then (g+h)(xt)−(g+h)(x?) = O(1/t).
On the other hand, if one chooses the sequence (αt)t defined recursively by:

β0 = 0

βt+1 =
1+
√

1+4β2
t

2 , t ∈ N
αt+1 = βt−1

βt+1
, t ∈ N,

(1)

4

then the convergence becomes O(1/t2). This is in the spirit of the acknowledged acceleration proposed
by Nesterov [1983], and generalized to the composite setting by Beck and Teboulle [2009].

Depending on the properties of the objective function to minimize, the procedure described before
leads to two simple algorithms (coming with their acceleration):

• the gradient method (h = 0):
xt+1 = vt − γt+1∇g(vt),

minimizes a single function g as soon as it is convex and differentiable with Lipschitz-continuous
gradient;

• the proximal point algorithm (g = 0):

xt+1 = proxγt+1h(vt) = vt − γt+1

[
1

γt+1

(
vt − proxγt+1h(vt)

)]
, (2)

minimizes a single function h, which is only required to be convex and lower semi-continuous (in
that case, there is no restriction on the step size γt+1, except being positive).

Without acceleration (i.e. with αt = 0, for all t ∈ N), the proximal gradient method (as well as
its two special cases) has the asset to be a descent method: at each iteration, the objective function
monotonically decreases, meaning that (g + h)(xt+1) ≤ (g + h)(xt), with convergence rate at least
O(1/t) (this rate is increased to O(1/t2) with Nesterov’s acceleration). In particular, this is true
when minimizing a single convex and lower semi-continuous function h : Rd → R, even if it is not
differentiable, with the iteration derived from (2) with αt = 0:

xt+1 = xt − γt+1

[
1

γt+1

(
xt − proxγt+1h(xt)

)]
. (3)

This has to be put in contrast with the subgradient method:

xt+1 = xt − γt+1∇̃h(xt), (4)

where γt+1 > 0 and ∇̃h(xt) is any subgradient of h at xt. This procedure, which is very similar to the
gradient descent but replacing the gradient by any subgradient, has a convergence rate O(1/

√
t) in

the best case [Nesterov, 2004]. In addition, this rate is optimal, meaning that it cannot be improved
without extra assumptions on h [Nesterov, 2004, Theorem 3.2.1]. Consequently, there does not exist
an acceleration scheme for this class of objective functions.

This remark motivates the use of procedures different from the subgradient method when minimiz-
ing a non-differentiable function h, such as the proximal point algorithm (described in Equation (3)) or
the accelerated proximal point method (described in Equation (2)). This motivation is emphasized by
the fact that moving from subgradient to proximal point method only requires to replace the update
direction ∇̃h(xt) by 1

γt+1
(xt − proxγt+1h(xt)). This observation is the cornerstone of the algorithms

proposed in Section 3.3.

3.2 Gradient boosting

Let F0 be the set of constant functions on X and assume that F0 ⊆ F . Then, a simple procedure to
approximately solve (P1) is gradient boosting, described in Algorithm 1 [Mason et al., 2000a, Friedman,
2001]. It builds the requested additive model in an iterative fashion, by imitating a gradient method
(or subgradient method if ` is not differentiable with respect to its second argument). At each iteration
t, Algorithm 1 finds a function gt+1 that approximates the opposite of a subgradient of C (also called
pseudo-residuals) and adds it to the model ft with a positive weight wt+1 = γt+1. At the end of the

procedure, the proposed estimator of f0 is fT =
∑T
t=0 wtgt, with w0 = 1.

There are several manners to schedule the gradient steps γt+1, including being adaptively fixed
thanks to a line search. This is discussed in Section C.

5

Algorithm 1 Gradient boosting.

Input: γ1, . . . , γT > 0 (gradient steps).
1: Set f0 ∈ arg ming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −∇̃n C(ft) (pseudo-residuals).
4: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− r‖`2 .
5: Set ft+1 ← ft + γt+1gt+1. (update).
6: end for

Output: fT .

3.3 Boosting with non-differentiable loss functions

When the function ` is not differentiable with respect to its second argument, gradient boosting just
uses a subgradient ∇̃n C(ft) instead of the gradient ∇n C(ft). This is, of course, convenient but
as explained previously, far from leading to interesting convergence behaviors in practice. For this
reason, we propose a new procedure for non-differentiable loss functions `, which consists in adapting
the proximal point algorithm [Nesterov, 2004] to functional optimization.

For any f ∈ FX , let Proxλn C(f) = 1
λ (f(Xn

1)− proxλD(f(Xn
1))), where λ > 0 is a parameter.

The simple idea underlying the proposed algorithm, nicknamed proximal boosting, is that the only
difference between subgradient and proximal point methods are the update directions of the optimiza-
tion variable, which are respectively ∇̃n C(ft) and Proxλt+1

n C(ft), where λt+1 > 0 is a proximal step.

Thus, proximal boosting computes the pseudo-residuals based on Proxλt+1
n C(ft) instead of ∇̃n C(ft)

and leaves the rest unchanged, as described in Algorithm 2.

Algorithm 2 Proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 ∈ arg ming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ft) (pseudo-residuals).
4: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− r‖`2 .
5: Set ft+1 ← ft + λt+1gt+1.
6: end for

Output: fT .

We now introduce two alterations of Algorithm 2. As we will see in the next section, convergence of
Algorithm 2 may not be guaranteed with weak assumptions on the function C. For this reason, the first
variant of Algorithm 2, named residual proximal boosting and described in Algorithm 3, incorporates a
mechanism introduced by Grubb and Bagnell [2011] in order to control the approximation error made
at each iteration. In practice, it consists in augmenting the pseudo-residuals with the approximation
error ∆t of the previous iteration, which turns out to guarantee convergence in a quite general situation.

The second variant of Algorithm 2, named accelerated proximal boosting and described in Al-
gorithm 4, consists in incorporating Nesterov’s acceleration (as reviewed in Section 3.1) to proximal
boosting in order to speed up the convergence and to aggregate less weak learners. In practice, Algo-
rithm 4 is similar to Algorithm 2 but uses the auxiliary function ht instead of ft in order to compute
ft+1. This also results in an estimator fT =

∑T
t=0 wtgt returned by Algorithm 4, where the weights

(w0, . . . , wT) are now given by a recursive formula (see Appendix C).
The idea at the core of Algorithm 4 originates from Biau et al. [2018], which adapts Nesterov’s

acceleration to gradient boosting. Algorithm 4 goes a step further by providing an accelerated boost-
ing scheme for non-differentiable functions. Conceptually, Algorithm 4 seems more grounded than
applying accelerated gradient boosting [Biau et al., 2018] to non-differentiable loss functions since the
optimization theory predicts O(1/t2) convergence for the proximal point method but the inability for

6

Algorithm 3 Residual proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 ∈ arg ming∈F0

C(g), ∆0 ← 0 (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ft) (pseudo-residuals).
4: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− (r + ∆t)‖`2 .
5: Set ft+1 ← ft + λt+1gt+1.
6: Set ∆t+1 ← r + ∆t − gt+1(Xn

1).
7: end for

Output: fT .

the subgradient algorithm to be accelerated (see Section 3.1).

Algorithm 4 Accelerated proximal boosting.

Input: λ1, . . . , λT > 0 (proximal steps).
1: Set f0 = h0 ∈ arg ming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −Proxλt+1

n C(ht) (pseudo-residuals).
4: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− r‖`2 .
5: Set ft+1 ← ht + λt+1gt+1.
6: Set ht+1 ← ft+1 + αt+1(ft+1 − ft).
7: end for

Output: fT .

4 Convergence results

This section is dedicated to the theoretical convergence of proximal boosting (presented in Algorithm 2)
and residual proximal boosting (Algorithm 3). Algorithm 4 is not addressed here for it will be seen
that it may diverge sometimes (even though it is not a real flaw in practice since divergence occurs in
the overfitting regime).

A preliminary result on the convergence of the proximal boosting technique can be easily derived
upon previous work by Rockafellar [1976]: it requires to control the error introduced by considering
an approximated direction of optimization instead of the true proximal step, and could be stated as
follows in the case of Algorithm 2.

Theorem 1 ([Rockafellar, 1976, Theorem 1]). Let (ft)t be any sequence generated by Algorithm 2 and
define for any iteration t:

εt+1 =
∥∥∥gt+1(Xn

1) + Proxλt+1
n C(ft)

∥∥∥
`2
.

Suppose that {f(Xn
1)t}t is bounded and that

+∞∑
t=0

εt < +∞. (5)

Then,
lim
t→∞

C(ft) = inf
f∈spanF

C(f).

7

Theorem 1 states that as soon as the approximation errors (εt)t converge to 0 quicker than 1/t,
then the sequence (C(ft))t converges to a minimum of C. However, with a better control of the
approximation errors (εt)t, a rate of convergence can be derived for Algorithm 2. This is the role of
the following assumption, which is common in the boosting literature to characterize the approximation
capacity of the class F [Grubb and Bagnell, 2011]:

(A) there exists ζ ∈ (0, 1] such that:

∀r ∈ Rn, ∃g ∈ F : ‖g(Xn
1)− r‖2`2 ≤ (1− ζ2) ‖r‖2`2 .

A set of weak learners F satisfying Assumption (A) is said to have edge ζ.
Now, we provide a convergence result for Algorithm 2, based on assumptions similar to that coming

up in the theoretical analysis of gradient boosting proposed by [Grubb and Bagnell, 2011]: a functional
C of the form C(f) = D(f(Xn

1)), for all f ∈ FX , is said L-smooth (for some L > 0) if D is differentiable
and for all x, x′ ∈ Rn,

D(x′) ≤ D(x) + 〈∇D(x), x′ − x〉`2 +
L

2
‖x′ − x‖2`2 ,

and κ-strongly convex (for some κ > 0) if

D(x′) ≥ D(x) + 〈∇D(x), x′ − x〉`2 +
κ

2
‖x′ − x‖2`2 .

A convergence rate for proximal boosting can be derived from these two critical properties. It is
stated hereafter and proved based on a result presented in Appendix A.

Theorem 2. Assume that (A) is granted, C is L-smooth and κ-strongly convex for some L > 0
and κ > 0. Let (ft)t be any sequence generated by Algorithm 2 and assume that there exists f? ∈
arg minf∈spanF C(f). Then, choosing λt = ζ2

8L leads to:

C(fT)− C(f?) ≤
(

1− ζ4κ

21L

)T
(C(f0)− C(f?)) .

Proof. Given that ∀f ∈ FX : C(f) = D(f(Xn
1)), this is a straightforward application of Theorem 4 to

the function D.

Theorem 2 states that proximal boosting has a linear convergence rate under smoothness and
strong convexity assumptions. This result is similar to that obtained for gradient boosting [Grubb and
Bagnell, 2011] and is indeed based on the same assumptions.

Admittedly, these two assumptions are restrictive for an algorithm designed for non-differentiable
loss functions. However, our analysis revealed that they seem necessary to control the impact of
the approximation error on the convergence. Consequently, proving convergence for proximal boosting
under weaker assumptions on the objective function C (see thereafter) requires to modify Algorithm 2.
This is the role of Algorithm 3, which incorporates a mechanism introduced by Grubb and Bagnell
[2011], aimed at preventing the approximation error from diverging (as in Equation (5)).

A functional C of the form C(f) = D(f(Xn
1)), for all f ∈ FX , is said to be G-Lipschitz continuous

(for some G > 0) if for all x, x′ ∈ Rn,

|D(x)−D(x′)| ≤ G ‖x− x′‖`2 .

A convergence rate for residual proximal boosting (Algorithm 3) can be derived from this property, as
stated in Theorem 3 (which is based on a result presented in Appendix A).

8

Theorem 3. Assume that (A) is granted, C is convex and G-Lipschitz continuous for some G > 0.
Let (ft)t be any sequence generated by Algorithm 3 and fbest ∈ arg min1≤t≤T C(ft). Assume that there
exists f? ∈ arg minf∈spanF C(f) and that ‖ft(Xn

1)‖`2 ≤ R and ‖f?(Xn
1)‖`2 ≤ R for some R > 0 and

all t. Then, choosing λt = 1√
t

leads to:

C(fbest)− C(f?) ≤ 2R2

√
T

+
40G2

ζ4
√
T

+
2G2

ζ4T
3
2

.

Proof. Given that ∀f ∈ FX : C(f) = D(f(Xn
1)), this is a straightforward application of Theorem 6 to

the function D.

Theorem 3 states that the best aggregation returned by residual proximal boosting has sublinear
convergence rate, more precisely O(1/

√
t), under Lipschitz continuity assumption. This is perfectly

similar to residual subgradient boosting, as introduced by Grubb and Bagnell [2011]. It may be disap-
pointing to obtain similar rates while Algorithm 3 is expected to better handle the non-differentiability
of the objective function by using the proximal operator instead of any subgradient. However, the ap-
proximation made by a weak learner introduces an error that boils down to be similar to that made
in residual subgradient boosting [Grubb and Bagnell, 2011].

In practice, Section 5 will show that linear convergence (as stated by Theorem 2) is often observed
in numerical applications, even though the loss function is not differentiable.

5 Numerical analysis

In Section 3, proximal boosting algorithms have been introduced in a fairly general way. However,
the empirical results presented in this section are based on an implementation (See Algorithm 5)
incorporating some modifications that have made the success of gradient boosting.

Algorithm 5 Meta-algorithm for proximal boosting.

Input: ν ∈ (0, 1] (shrinkage coefficient), λ > 0 (proximal step).
1: Set f−1 = f0 ∈ arg ming∈F0

C(g), ∆0 ← 0 (initialization).
2: for t = 0 to T − 1 do
3: Compute pseudo-residuals r ∈ Rn (depending on λ).
4: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− (r + ∆t)‖`2 .
5: Set {

∆t+1 ← r + ∆t − gt+1(Xn
1) for residual boosting,

∆t+1 ← 0 otherwise.

6: Compute γt+1 ∈ arg minγ∈R C(ft + γgt+1).
7: Set {

ft+1 ← ft + αt(ft − ft−1) + νγt+1gt+1 for accelerated boosting,

ft+1 ← ft + νγt+1gt+1 otherwise.

8: end for
Output: fT .

First of all, the proximal step is fixed to some value λ > 0: λt = λ, and the update rule (let us take
proximal boosting as an example) ft+1 ← ft + λt+1gt+1 is replaced by ft+1 ← ft + νγt+1gt+1, where

γt+1 ∈ arg minγ∈R C(ft + γgt+1).

In other words, the step size is tuned by a shrinkage coefficient (or learning rate) ν ∈ (0, 1] and a line
search producing the largest decrease of the objective function.

9

The learning rate is known to be a key element of boosting machines in order to obtain a good
generalization performance. To understand that fact, let us remark that the number of iterations
T acts on two regularization mechanisms. The first one is statistical (T controls the complexity of
the subspace in which fT lies) and the second one is numerical (T controls the precision to which
the empirical risk C is minimized). The shrinkage coefficient ν tunes the balance between these two
regularization mechanisms.

Besides the learning rate, the step size is controlled by a line search, that simply scales the weak
learner gt+1 by a constant factor. Actually, as the class of weak learners F is in practice a set of
regression trees (implemented in Scikit-learn [Pedregosa et al., 2011]), a multiple line search is used,
as proposed by Friedman [2001]: a line search is performed sequentially for each leaf of the decision
tree, such that each level of the piecewise constant function gt+1 is scaled with its own factor.

At last, for a more detailed description of accelerated proximal (or gradient) boosting, the reader
can find in Appendix C a concrete algorithm incorporating a recursive formula to compute the weights
of weak learners. This paves the way of efficient implementations of both accelerated proximal and
gradient boosting, as done in the Python package optboosing1.

5.1 Behavior of proximal boosting

Based on synthetic data, this section aims at numerically illustrating the performance of proximal
boosting compared to gradient boosting For this purpose, two synthetic models are studied, both
coming from Biau et al. [2016, 2018]:

Regression : n = 800, d = 100, Y = − sin(2X(1)) +X(2)2 +X(3) − exp(−X(4)) + Z0.5.

Classification : n = 1500, d = 50, Y = 21X(1)+X(4)3+X(9)+sin(X(12)X(18))+Z0.1>0.38 − 1, where 1 is the
indicator function.

The first model covers an additive regression problem, while the second covers a binary classification
task with covariate interactions. In both cases, we consider an input random variable X ∈ Rd, the
covariate of which, denoted (X(j))1≤j≤d, are normally distributed with zero mean and covariance
matrix Σ =

(
2−|i−j|

)
1≤i,j≤d. Moreover, in these synthetic models of regression and classification, an

additive and independent noise is embodied by the random variable Zσ2 , following a normal distribution
with zero mean and variance σ2.

Four different losses are considered (see Table 1 for a brief description): least squares and least
absolute deviations for regression; exponential (with β = 1) and hinge for classification. Computations
for the corresponding (sub)gradients and proximal operators are detailed in Appendix B. On that
occasion, it can be remarked that the direction of descent Proxλn C(ft) of proximal boosting applied

with the least squares loss is the same as that of gradient boosting, ∇̃n C(ft), up to a constant factor
(see Appendix B). In other words, proximal and gradient boosting are exactly equivalent.

In addition, note that we also considered other kind of losses such as the pinball loss for regression
and the logistic loss for classification (see Table 1). Nevertheless, since the numerical behaviors are
respectively very close to the least absolute deviations and exponential cases, the results are not
reported.

In the following numerical experiments, the random sample generated based on each model is
divided into a training set (50%) to fit the method and a test set (50%). The performance of the
methods are appraised through several curves representing the training and test losses along the T =
1000 iterations of boosting.

5.1.1 Convergence

As a first numerical experiment, we aim at illustrating the convergence of proximal boosting (see
Section 4) for two classes F of weak learners: regression trees with maximal depth 3 (in blue in Fig. 2)

1https://github.com/msangnier/optboosting

10

https://github.com/msangnier/optboosting

Loss Parameter `(y, y′) Type
least squares - (y − y′)2/2 regression
least absolute deviations - |y − y′| regression
pinball τ ∈ (0, 1) max(τ(y − y′), (τ − 1)(y − y′)) regression
exponential β > 0 exp(−βyy′) classification
logistic - log2(1 + exp(−yy′)) classification
hinge - max(0, 1− yy′) classification

Table 1: Loss functions.

and 15 (in red in Fig. 2). This last class of weak learners is supposed to make almost no error in
approximating the directions of descent, thus leading to quasi-standard optimization algorithms.

For the purpose of the analysis, parameters λ and ν are set to standard values: λ = 1, ν = 5 ·10−2,
which does not hurt the generality of the forthcoming interpretations. Moreover, gradient boosting
and its variant proposed by Grubb and Bagnell [2011] are included as references. At last, accelerated
proximal boosting is left out since convergence is guaranteed neither theoretically, nor numerically (see
the next section).

Let us analyze the top panels of Fig. 2: for differentiable losses (least squares and exponential),
proximal and gradient descents behave exactly the same (curves with and without the symbol P are
mixed up). Moreover, as theoretically analyzed in Theorem 2, the rate of convergence of proximal
boosting is linear with a slope that increases with the capacity of the class of weak learners (even
though the exponential loss is not strongly convex). These observations are in line with convergence
results of gradient boosting [Grubb and Bagnell, 2011].

Still for differentiable losses, the use of Grubb and Bagnell’s residual (the dotted lines in Fig. 2)
does not seem to help convergence neither with a large class of weak learners (in red, the residual is
in fact always almost null), nor with a restricted class (in blue).

Concerning non-differentiable losses (least absolute deviations and hinge on the bottom panels of
Fig. 2), proximal boosting converges faster than gradient boosting, which does not seem to converge
for the hinge loss. In addition, it is noticeable to observe that convergence of proximal boosting seems
almost linear while the empirical risk violates the assumptions of smoothness required for Theorem 2.

For non-differentiable losses, the use of Grubb and Bagnell’s residual helps gradient boosting to
converge. Yet, we remark that residual proximal boosting behaves similarly to proximal boosting
(curves are mixed up).

Keeping in mind that proximal boosting is distinguished from gradient boosting for non-differentiable
losses, we carry on the study only with least absolute deviations and hinge losses.

5.1.2 Proximal step

We aim at illustrating the impact of the proximal step λ intervening in proximal boosting as a new
parameter. For this purpose, Fig. 3 depicts the trend of training (top) and test (bottom) losses of
proximal boosting for λ ∈ {10−2, 10−1, . . . , 102} (see the different colors) and decision trees of maximal
depth 3 as weak learners. Compared algorithms include proximal (Algorithm 2), residual proximal
(Algorithm 3) and accelerated proximal (Algorithm 4) boosting, as well as their gradient counterparts
(in black, independent of λ).

Fig. 3 shines a light of the tie between the proximal step and the convergence rate: the bigger λ, the
faster the convergence of the training and test losses. As a consequence (see the top panel), proximal
boosting prevails over gradient boosting from an optimization perspective because it converges faster
for sufficiently large λ. Regarding the training loss, the advantage of Grubb and Bagnell’s residual is
not clear since proximal boosting offers similar convergence rates for large values of λ.

However, the use of Nesterov’s acceleration is obvious: it speeds up the decrease of the training
and test losses, and thus it makes it possible to build accurate models with very few weak learners.

11

Figure 2: Training losses for two values of maximal depth (3 in blue, 15 in red) vs number of iterations
on the horizontal axis.

12

Figure 3: Training (top) and test (bottom) losses of proximal boosting algorithms for several values
of the proximal step λ vs number of iterations on the horizontal axis.

13

Nevertheless, it suffers from instabilities leading to divergence. As observed, this is not a real flaw
from the statistical perspective since it always occurs in the overfitting regime.

Comparing test losses, accelerated proximal boosting seems to rarely produce very accurate models
(but still better than accelerated gradient boosting). We guess that acceleration makes accelerated
boosting very sensitive and dependent on a fine tuning procedure. Yet, proximal and residual proximal
boosting often provide the more accurate models and are quite stable with respect to the parameters
from our experience.

From all points of view, using a proximal direction of descent is a real advantage over subgradient.
Besides, from a global perspective, proximal boosting helps to build more accurate models than gradient
boosting.

5.2 Generalization in real world cases

This section aims at comparing the generalization ability of the proposed boosting estimators with
respect to variants of gradient boosting, as well as extreme gradient boosting (XGBoost) [Chen and
Guestrin, 2016] and random forests [Breiman, 2001]. The last two methods are introduced in the
numerical comparison only as benchmarks. Indeed, random forests aggregate weak learners but with
equal weights, and XGBoost is a boosting method based on second order optimization. From a
strict optimization point of view, second order optimization is not applicable to non-differentiable loss
functions, nevertheless, given the liberty taken with Nesterov’s acceleration, XGBoost is applied as a
black box for minimizing the empirical loss.

Comparison is based on nine datasets (available on the UCI Machine Learning repository), the
characteristics of which are described in Table 2. The first six are univariate regression datasets, while
the three others relate to binary classification problems. In both situations, the sample is split into
a training set (50%), a validation set (25%) and a test set (25%). The parameters of the methods
(number of weak classifiers T ∈ [1, 1000], maximal depth of decision trees varying in [1, 3, 5], learning
rate ν ∈ {5 · 10−2, 10−1, 3 · 10−1, 5 · 10−1, 1} and proximal step λ ∈ {10−3, 10−2, . . . , 102} for boosting,
completed with the L2 penalty for XGBoost and the maximal number of features for random forests)
are selected as minimizers of the loss computed on the validation set for models fitted on the training
set. Then, models are refitted on the training and the validation sets with selected parameters. Finally,
the generalization ability of the methods is estimated by computing the loss (and the misclassification
rate for classification models) on the test set. These quantities are reported through statistics computed
on 20 random splits of the datasets.

Dataset n d Type
whitewine 4898 11 regression
redwine 1599 11 regression
BostonHousing 506 13 regression
crabs 200 4 regression
engel 235 1 regression
sniffer 125 4 regression
adult 30162 13 classification
advertisements 2359 1558 classification
spam 4601 57 classification

Table 2: Real-world datasets (n: sample size, d: number of attributes).

The losses considered in these experiments are least squares, least absolute deviations and pinball
(with τ = 0.9) for the regression problems, as well as exponential (with β = 1) and hinge for the
classification tasks (see Table 1 for a quick definition and Appendix B for the details). Since random
forests are not explicitly designed for minimizing theses losses, only the least squares test loss and the
classification error are reported.

14

5.2.1 Regression problems

Test losses for the least squares (top), least absolute deviations (middle) and pinball (bottom) losses
are described in Fig. 4. ∆ Test loss refers to the increment of the loss from that of gradient boosting.

Regarding the least squares setting, let us remind that gradient and proximal boosting boil down
to be the same method (the directions of descent are exactly the same). We observe that they achieve
a performance comparable to extreme gradient boosting and better than that of random forests.
Moreover, even though residual boosting was not designed for differentiable losses, it provides the
most accurate models for 3 datasets over 6. At last, accelerated versions of boosting methods do not
produce more accurate models than vanilla boosting but with about 90% less weak learners (which is
a great advantage, already observed in Biau et al. [2018]). A possible explanation concerning the lower
perfomance of accelerated boosting is that convergence is so fast, that tuning parameters becomes very
tricky.

Looking now at least absolute deviations and pinball losses, we observe that proximal boosting
always achieves better predictions than gradient boosting. In addition, in the bulk of the situations,
the most accurate method is either proximal or residual proximal boosting. This confirms our intuition
concerning the need for optimization techniques suited for non-differentiable loss functions.

5.2.2 Classification problems

Losses and misclassification rates computed on the test datasets are depicted respectively in Fig. 5 and
in Fig. 6 for the exponential (top) and the hinge (bottom) losses. Besides ∆ Test loss/error, referring
to the increment of the loss or misclassification rate from that of gradient boosting, Hinge-Exponential
in Fig. 6 represents the increment of the misclassification rate of hinge loss-based boosting from that
obtained with the exponential loss.

Regarding both indicators (loss in Fig. 5 and error in Fig. 6), four methods share the winners’
podium: proximal boosting (blue), residual proximal boosting (green), residual gradient boosting
(brown) and XGBoost (pink). For the hinge loss, proximal or residual proximal boosting are always
better than gradient and residual gradient boosting. Moreover, accelerated proximal boosting (orange)
gives sometimes better loss and accuracy than gradient and accelerated gradient boosting (purple).
This also comes with less weak learners (even though the comparison is made arduous since maximal
depth and learning rate are cross-validated). Both observations confirm the interest of proximal-based
boosting for non-differentiable losses.

Very surprisingly, the method performing the best with the hinge loss is XGBoost, while it was not
originally designed for non-differentiable losses. It may be explained by advanced optimization tricks
included in the last version of the toolbox, offering now the hinge loss as a possible boosting loss. The
bottom panel of Fig. 6 shows that, overall using a hinge loss instead of an exponential loss is rarely a
big advantage, except to obtain a marginal gain in accuracy with XGBoost on the last two datasets.

6 Conclusion

This paper has introduced a novel boosting algorithm, nicknamed proximal boosting, along with two
variants (residual and accelerated proximal boosting), which have appeal for non-differentiable loss
functions `. The main idea is to use a proximal-based direction of optimization, which can be coupled
with a mechanism of error compensation or Nesterov’s acceleration, as already introduced to boosting
respectively by Grubb and Bagnell [2011] and Biau et al. [2018]. A theoretical study demonstrates
convergence of proximal and residual proximal boosting from an optimization point of view (under
different hypotheses on the loss function). As for accelerated gradient boosting, accelerated proximal
boosting is observed to diverge but always in the overfitting regime, which is not harmful from a
statistical perspective.

Numerical experiments on synthetic data confirm the theoretical convergence results and show a
significant impact of the newly introduced parameter λ. Correctly tuned, this parameter provides a

15

Figure 4: Losses on test datasets for the least squares (top), least absolute deviations (middle) and
pinball (bottom) losses. ∆ Test loss refers to the increment of the loss from that of gradient boosting.
The methods proposed in this article are in blue, orange and green.

16

Figure 5: Losses on test datasets for the exponential (top) and hinge (bottom) losses. ∆ Test loss
refers to the increment of the loss from that of gradient boosting. The methods proposed in this article
are in blue, orange and green.

17

Figure 6: Misclassification rates on test datasets for the exponential (top) and hinge (bottom) losses. ∆
Test error and Hinge-Exponential refer to the increment of the misclassification rate respectively from
that of gradient boosting and from that obtained with the exponential loss. The methods proposed in
this article are in blue, orange and green.

18

noticeable improvement of proximal-based boosting over gradient-based boosting for non-differentiable
loss function, from both the optimization and the statistical points of view. Moreover, in real-world
situations, proximal or residual proximal boosting often achieve the best test loss for regression and
are competitive with residual gradient boosting and XGBoost for classification. On the other hand,
similarly to the algorithm introduced in [Biau et al., 2018], accelerated proximal boosting seems quite
tricky to tune in order to obtain good generalization results but this is the price to pay for small-sized
boosting models.

We believe that the connection between boosting and functional optimization can be much more
investigated. In particular, advances in optimization theory can spread to boosting, like the recently
revisited Frank-Wolfe algorithm impacted boosting [Jaggi, 2013, Wang et al., 2015]. This may also
hold true for non-differentiable and non-convex optimization (see for instance [Ochs et al., 2014]).

Acknowledgement

The authors are thankful to Gérard Biau and Jalal Fadili for enlightening discussions. They are
also indebted to the Associate Editor and the reviewers for suggesting efforts on the theoretical and
numerical sides of the paper.

References

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

G. Biau and B. Cadre. Optimization by gradient boosting. arXiv:1707.05023 [cs, math, stat], 2017.

G. Biau, A. Fischer, B. Guedj, and J.D. Malley. COBRA: A combined regression strategy. Journal of
Multivariate Analysis, 146:18–28, 2016.

G. Biau, B. Cadre, and L. Rouvière. Accelerated Gradient Boosting. arXiv:1803.02042 [cs, stat], 2018.

L. Breiman. Arcing the Edge. Technical Report 486, Statistics Department, University of California,
Berkeley, 1997.

L. Breiman. Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics,
26(3):801–849, 1998.

L. Breiman. Prediction Games and Arcing Algorithms. Neural Computation, 11(7):1493–1517, 1999.

L. Breiman. Some Infinite Theory for Predictor Ensembles. Technical Report 577, Statistics Depart-
ment, University of California, Berkeley, 2000.

L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman. Population theory for boosting ensembles. The Annals of Statistics, 32(1):1–11, 2004.

P. Bühlmann and T. Hothorn. Boosting Algorithms: Regularization, Prediction and Model Fitting.
Statistical Science, 22(4):477–505, 2007.

T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794,
New York, NY, USA, 2016. ACM.

P. Combettes and V. Wajs. Signal Recovery by Proximal Forward-Backward Splitting. Multiscale
Modeling & Simulation, 4(4):1168–1200, 2005.

19

Y. Freund. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2):
256–285, 1995.

Y. Freund and R.E. Schapire. Experiments with a New Boosting Algorithm. In Proceedings of
the Thirteenth International Conference on International Conference on Machine Learning, San
Francisco, CA, USA, 1996.

Y. Freund and R.E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Ap-
plication to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

J. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):367–378,
February 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting
(with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):337–407, 2000.

A. Grubb and J.A. Bagnell. Generalized Boosting Algorithms for Convex Optimization. In Proceedings
of The 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011.

M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In Proceedings of
The 30th International Conference on Machine Learning, pages 427–435, Atlanta, GA, USA, 2013.

J. Lin, L. Rosasco, and D.-X. Zhou. Iterative Regularization for Learning with Convex Loss Functions.
Journal of Machine Learning Research, 17(77):1–38, 2016.

L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Boosting Algorithms as Gradient Descent. In S.A.
Solla, T.K. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems, pages
512–518. MIT Press, 2000a.

L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for combining
hypotheses. In A.J. Smola, P.L. Bartlett, B. Shölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 221–246. The MIT Press, 2000b.

R. Meir and G. Rätsch. An Introduction to Boosting and Leveraging. In Advanced Lectures on
Machine Learning, Lecture Notes in Computer Science, pages 118–183. Springer, Berlin, Heidelberg,
2003.

Y. Nesterov. A method of solving a convex programming problem with convergence rate 0(1/k2).
Soviet Mathematics Doklady, 27, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, 2004.

P. Ochs, Y. Chen, T. Brox, and T. Pock. iPiano: Inertial Proximal Algorithm for Nonconvex Opti-
mization. SIAM Journal on Imaging Sciences, 2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control
and optimization, 14(5):877–898, 1976.

20

G. Rätsch, S. Mika, and M.K. Warmuth. On the Convergence of Leveraging. In T.G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, pages
487–494. MIT Press, 2002.

R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

V.N. Temlyakov. Greedy expansions in convex optimization. In Proceedings of the Steklov Institute
of Mathematics, 2012.

C. Wang, Y. Wang, W. E, and R. Schapire. Functional Frank-Wolfe Boosting for General Loss Func-
tions. arXiv:1510.02558 [cs, stat], 2015.

T. Zhang. A General Greedy Approximation Algorithm with Applications. In T.G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 1065–1072. MIT Press, 2002.

T. Zhang. Sequential greedy approximation for certain convex optimization problems. IEEE
Transactions on Information Theory, 49(3):682–691, March 2003.

A Analysis of the approximated proximal point method

A.1 Setting

Let us consider the optimization problem

minimize
x∈Rn

F (x), (P2)

where F : Rn → R is convex.
For an operator P : Rn → Rn, we consider the approximated proximal point method, described in

Algorithm 6, as well as the approximated point method with accumulation, described in Algorithm 7.
Both are similar to the proximal point iteration but makes use of a modified direction of update (P (gt)
or P (gt + ∆t) instead of gt). In particular, let us remark that when P (x) = x, Algorithms 6 and 7
recover the original proximal point method.

Algorithm 6 Approximated proximal point method.

Input: T (number of iterations), λ0, . . . , λT−1 > 0 (proximal steps), P : Rn → Rn (approximation
operator).

1: Set x0 ∈ Rn (initialization).
2: for t = 0 to T − 1 do
3: gt ← 1

λt

(
xt − proxλtF (xt)

)
.

4: xt+1 ← xt − λtP (gt).
5: end for

Output: xT .

The forthcoming sections prove convergence of Algorithm 6 for strongly convex functions with
Lipschitz continuous gradient (linear rate exhibited in Theorem 4) and of Algorithm 7 for Lipschitz-
continuous functions (sublinear rate exhibited in Theorem 6). To be more formal, the following as-
sumptions will be used:

(SM) F is L-smooth (for some L > 0): F is differentiable and

∀x, x′ ∈ Rn, F (x′) ≤ F (x) + 〈∇F (x), x′ − x〉`2 +
L

2
‖x′ − x‖2`2 .

21

Algorithm 7 Approximated proximal point method with accumulation.

Input: T (number of iterations), λ0, . . . , λT−1 > 0 (proximal steps), P : Rn → Rn (approximation
operator).

1: Set x0 ∈ Rn and ∆0 = 0 (initialization).
2: for t = 0 to T − 1 do
3: gt ← 1

λt

(
xt − proxλtF (xt)

)
.

4: xt+1 ← xt − λtP (gt + ∆t).
5: ∆t+1 = gt + ∆t − P (gt + ∆t).
6: end for

Output: xT .

(SC) F is κ-strongly convex (for some κ > 0):

∀x, x′ ∈ Rn,∀η ∈ ∂F (x), F (x′) ≥ F (x) + 〈η, x′ − x〉`2 +
κ

2
‖x′ − x‖2`2 .

(L) F is G-Lipschitz continuous (for some G > 0):

∀x ∈ Rn,∀η ∈ ∂F (x), ‖η‖`2 ≤ G.

In any case, it is assumed that:

(E) there exists ζ ∈ (0, 1] such that for all g ∈ Rn, ‖g − P (g)‖2`2 ≤ (1− ζ2) ‖g‖2`2 .

Assumption (E) is often referred to as the edge property and is quite standard in the literature
[Grubb and Bagnell, 2011]. It measures the error of the approximated operator P on the directions of
descent gt.

A.2 Strongly convex function with smooth gradient

Theorem 4. Let (xt)t be a sequence generated by Algorithm 6. Assume that Assumptions (E), (SM)

and (SC) hold. Let {x?} = arg minx∈Rn F (x) (well defined by strong convexity), and choose λt = ζ2

8L .
Then,

F (xT)− F (x?) ≤
(

1− ζ4κ

21L

)T
(F (x0)− F (x?)) .

Proof. First of all, let us remark that:

1. Assumption (SM) implies L-Lipschitz continuity of ∇F [Nesterov, 2004, Theorem 2.1.5]:

∀x, x′ ∈ Rn, ‖∇F (x)−∇F (x′)‖`2 ≤ L ‖x− x
′‖`2 ; (6)

2. Assumption (SC) lead to the upper bound [Nesterov, 2004, Theorem 2.1.10]:

∀x ∈ Rn, 2κ (F (x)− F (x?)) ≤ ‖∇F (x)‖2`2 . (7)

Then, from Assumption (SM) and by the update rule for xt+1 in Algorithm 6:

F (xt+1) ≤ F (xt) + 〈∇F (xt),−λtP (gt)〉+
Lλ2t

2
‖P (gt)‖2`2

= F (xt)− λt〈gt, P (gt)〉 − λt〈∇F (xt)− gt, P (gt)〉+
Lλ2t

2
‖P (gt)‖2`2 . (8)

22

Now, from Assumption (E):

−λt〈gt, P (gt)〉 =
λt
2

(
‖gt − P (gt)‖2`2 − ‖gt‖

2
`2
− ‖P (gt)‖2`2

)
≤ λt

2

[
(1− ζ2) ‖gt‖2`2 − ‖gt‖

2
`2
− ‖P (gt)‖2`2

]
= −λtζ

2

2
‖gt‖2`2 −

λt
2
‖P (gt)‖2`2 . (9)

Besides, given that, by definition of the proximal operator, gt = ∇F (proxλtF (xt)), one has:

‖∇F (xt)− gt‖`2 =
∥∥∇F (xt)−∇F

(
proxλtF (xt)

)∥∥
`2

≤ L
∥∥xt − proxλtF (xt)

∥∥
`2

(Equation (6))

≤ λtL ‖gt‖`2 (definition of gt). (10)

So,

−λt〈∇F (xt)− gt, P (gt)〉 ≤ λt ‖∇F (xt)− gt‖`2 ‖P (gt)‖`2 (Cauchy-Schwarz)

≤ λ2tL ‖gt‖`2 ‖P (gt)‖`2 (Equation (10))

≤ 2λ2tL ‖gt‖
2
`2
, (11)

since ‖P (gt)‖`2 ≤ 2 ‖gt‖`2 , by Assumption (E).
Combining Equations (8), (9) and (11):

F (xt+1) ≤ F (xt)−
λtζ

2

2
‖gt‖2`2 −

λt
2
‖P (gt)‖2`2 + 2λ2tL ‖gt‖

2
`2

+
Lλ2t

2
‖P (gt)‖2`2

= F (xt)− λt
(
ζ2

2
− 2λtL

)
‖gt‖2`2 −

λt
2

(1− Lλt) ‖P (gt)‖2`2 .

Now, choosing λt = ζ2

8L , one has λt

(
ζ2

2 − 2λtL
)

= ζ4

32L and −λt

2 (1− Lλt) ‖P (gt)‖2`2 ≤ 0, leading to:

F (xt+1) ≤ F (xt)−
ζ4

32L
‖gt‖2`2 . (12)

Let us remark that, by Equation (7):

2κ (F (xt)− F (x?)) ≤ ‖∇F (xt)‖2`2
≤
(
‖∇F (xt)− gt‖`2 + ‖gt‖`2

)2
≤ (1 + λtL)2 ‖gt‖2`2 (Equation (10))

≤
(

1 +
ζ2

8

)2

‖gt‖2`2

(
λt =

ζ2

8L

)
,

that is,

‖gt‖2`2 ≥
128κ

(8 + ζ2)2
(F (xt)− F (x?)) .

23

So, from Equation (12),

F (xt+1)− F (x?) ≤ F (xt)− F (x?)− ζ4

32L
‖gt‖2`2

≤
(

1− ζ4

32L

128κ

(8 + ζ2)2

)
(F (xt)− F (x?))

=

(
1− 4ζ4

(8 + ζ2)2
κ

L

)
(F (xt)− F (x?))

≤
(

1− ζ4

21

κ

L

)
(F (xt)− F (x?))

(
∀x ∈ [0, 1],

4x2

(8 + x)2
≥ x2

21

)
≤
(

1− ζ4κ

21L

)t+1

(F (x0)− F (x?)) (by induction).

A.3 Lipschitz continuous convex function

Lemma 5. Let (xt)t be a sequence generated by Algorithm 7. Assume that Assumptions (E), (SC)
and (L) hold and that there exists x? ∈ arg minx∈Rn F (x). Then,

min
1≤t≤T

F (xt)− F (x?) ≤ 1

2T

(
1

λ0
− κ
)
‖x0 − x?‖2`2 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2

+
1

T

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

+ 〈∆t+1, P (gt + ∆t)〉`2 +G ‖gt − P (gt + ∆t)‖`2
)

+
λT−1
2T

‖∆T ‖2`2 .

In addition, the result still holds if κ = 0.

Lemma 5. For any non-negative integer t < T , let yt+1 = xt − λtgt = proxλtF (xt). By construction,
gt ∈ ∂F (yt+1), so

F (x?) ≥ F (yt+1) + 〈gt, x? − yt+1〉`2 +
κ

2
‖yt+1 − x?‖2`2

= F (yt+1) + 〈gt, x? − (xt − λtgt)〉`2 +
κ

2
‖(xt − λtgt)− x?‖2`2

= F (yt+1) + 〈gt, x? − xt〉`2 + λt ‖gt‖2`2 +
κ

2
‖xt − x?‖2`2 +

κλ2t
2
‖gt‖2`2 − κλt 〈gt, xt − x

?〉`2

= F (yt+1) + 〈P (gt + ∆t), x
? − xt〉`2 +

(
λt +

κλ2t
2

)
‖gt‖2`2 +

κ

2
‖xt − x?‖2`2

− κλt 〈gt, xt − x?〉`2 + 〈gt − P (gt + ∆t), x
? − xt〉`2 . (13)

Now, let us analyze the potential ‖xt+1 − x?‖2`2 :

‖xt+1 − x?‖2`2 = ‖xt − λtP (gt + ∆t)− x?‖2`2
= ‖xt − x?‖2`2 + λ2t ‖P (gt + ∆t)‖2`2 − 2λt 〈P (gt + ∆t), xt − x?〉`2 .

Thus,

〈P (gt + ∆t), xt − x?〉`2 =
1

2λt

(
‖xt − x?‖2`2 − ‖xt+1 − x?‖2`2

)
+
λt
2
‖P (gt + ∆t)‖2`2 . (14)

24

Combining Equation (13) and Equation (14), we obtain:

F (yt+1)− F (x?) ≤ 〈P (gt + ∆t), xt − x?〉`2 −
(
λt +

κλ2t
2

)
‖gt‖2`2 −

κ

2
‖xt − x?‖2`2

+ κλt 〈gt, xt − x?〉`2 + 〈gt − P (gt + ∆t), xt − x?〉`2

≤ 1

2λt

(
‖xt − x?‖2`2 − ‖xt+1 − x?‖2`2

)
− κ

2
‖xt − x?‖2`2

+
λt
2
‖P (gt + ∆t)‖2`2 −

(
λt +

κλ2t
2

)
‖gt‖2`2

+ κλt 〈gt, xt − x?〉`2 + 〈gt − P (gt + ∆t), xt − x?〉`2 . (15)

Now, remark that:

T−1∑
t=0

((
1

λt
− κ
)
‖xt − x?‖2`2 −

1

λt
‖xt+1 − x?‖2`2

)

=

(
1

λ0
− κ
)
‖x0 − x?‖2`2 +

T−1∑
t=1

(
1

λt
− κ
)
‖xt − x?‖2`2 −

T−2∑
t=0

1

λt
‖xt+1 − x?‖2`2

− 1

λT−1
‖xT − x?‖2`2

=

(
1

λ0
− κ
)
‖x0 − x?‖2`2 +

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2 −

1

λT−1
‖xT − x?‖2`2 , (16)

and

T−1∑
t=0

〈gt − P (gt + ∆t), xt − x?〉`2

=

T−1∑
t=0

〈gt + ∆t − P (gt + ∆t), xt+1 + λtP (gt + ∆t)− x?〉`2 −
T−1∑
t=0

〈∆t, xt − x?〉`2

=

T−1∑
t=0

〈∆t+1, xt+1 − x?〉`2 −
T−1∑
t=0

〈∆t, xt − x?〉`2 +

T−1∑
t=0

λt 〈∆t+1, P (gt + ∆t)〉`2

= 〈∆T , xT − x?〉`2 − 〈∆0, x0 − x?〉`2 +

T−1∑
t=0

λt 〈∆t+1, P (gt + ∆t)〉`2

= 〈∆T , xT − x?〉`2 +

T−1∑
t=0

λt 〈∆t+1, P (gt + ∆t)〉`2 , (17)

since ∆0 = 0.

25

Then, by summation of Equation (15) and using Equation (16),

T−1∑
t=0

(F (yt+1)− F (x?)) ≤ 1

2

T−1∑
t=0

((
1

λt
− κ
)
‖xt − x?‖2`2 −

1

λt
‖xt+1 − x?‖2`2

)

+

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

)

+

T−1∑
t=0

〈gt − P (gt + ∆t), xt − x?〉`2

=

(
1

2λ0
− κ

2

)
‖x0 − x?‖2`2 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2

+

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

)

+

T−1∑
t=0

〈gt − P (gt + ∆t), xt − x?〉`2 −
1

2λT−1
‖xT − x?‖2`2 .

Now, using Equation (17),

T−1∑
t=0

(F (yt+1)− F (x?)) ≤
(

1

2λ0
− κ

2

)
‖x0 − x?‖2`2 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2

+

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

+ 〈∆t+1, P (gt + ∆t)〉`2
)

+ 〈∆T , xT − x?〉`2 −
1

2λT−1
‖xT − x?‖2`2

≤
(

1

2λ0
− κ

2

)
‖x0 − x?‖2`2 +

1

2

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2

+

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

+ 〈∆t+1, P (gt + ∆t)〉`2
)

+
λT−1

2
‖∆T ‖2`2 ,

where the last line comes from bx− ax2 ≤ b2

4a for any a > 0 and b ∈ R.

26

To conclude,

min
1≤t≤T

F (xt)− F (x?) ≤ 1

T

T−1∑
t=0

(F (yt+1)− F (x?)) +
1

T

T−1∑
t=0

(F (xt+1)− F (yt+1))

≤ 1

T

T−1∑
t=0

(F (yt+1)− F (x?)) +
1

T

T−1∑
t=0

G ‖(xt − λtP (gt + ∆t))− (xt − λtgt)‖`2

≤ 1

2T

(
1

λ0
− κ
)
‖x0 − x?‖2`2 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1
− κ
)
‖xt − x?‖2`2

+
1

T

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 −

(
1 +

κλt
2

)
‖gt‖2`2 + κ 〈gt, xt − x?〉`2

+ 〈∆t+1, P (gt + ∆t)〉`2 +G ‖gt − P (gt + ∆t)‖`2
)

+
λT−1
2T

‖∆T ‖2`2 .

Theorem 6. Let (xt)t be a sequence generated by Algorithm 6. Assume that Assumptions (E) and
(L) hold. Assume also that there exists x? ∈ arg minx∈Rn F (x) and that ‖xt‖`2 ≤ R and ‖x?‖`2 ≤ R

(for some R > 0 and all t). Then, choosing λt = 1√
t+1

leads to:

min
1≤t≤T

F (xt)− F (x?) ≤ 2R2

√
T

+
2G2

ζ4
√
T

(
20 +

1

T

)
.

Proof. By Lemma 5 with κ = 0 and λt = 1√
t+1

, we have:

min
1≤t≤T

F (xt)− F (x?) ≤ 1

2λ0T
‖x0 − x?‖2`2 +

1

2T

T−1∑
t=1

(
1

λt
− 1

λt−1

)
‖xt − x?‖2`2

+
1

T

T−1∑
t=0

λt

(
1

2
‖P (gt + ∆t)‖2`2 − ‖gt‖

2
`2

+ 〈∆t+1, P (gt + ∆t)〉`2 +G ‖gt − P (gt + ∆t)‖`2
)

+
λT−1
2T

‖∆T ‖2`2

≤ 1

2T

T−1∑
t=0

(√
t+ 1−

√
t
)
‖xt − x?‖2`2

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2
‖P (gt + ∆t)‖2`2 + 〈∆t+1, P (gt + ∆t)〉`2

+ G ‖gt − P (gt + ∆t)‖`2
)

+
1

2T
3
2

‖∆T ‖2`2

≤ 2R2

√
T

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2
‖P (gt + ∆t)‖2`2 + 〈∆t+1, P (gt + ∆t)〉`2

+ G ‖gt − P (gt + ∆t)‖`2
)

+
1

2T
3
2

‖∆T ‖2`2 .

27

Now, since gt ∈ ∂F (yt+1), ‖gt‖`2 ≤ G. In addition, since ∆0 = 0, by Assumption (E),

‖∆T+1‖`2 ≤
√

1− ζ2 ‖gT + ∆T ‖`2
≤
√

1− ζ2 ‖gT ‖`2 +
√

1− ζ2 ‖∆T ‖`2

≤
T∑
t=0

√
1− ζ2

T+1−t
‖gt‖`2

≤ G
T+1∑
t=1

√
1− ζ2

t

≤
√

1− ζ2

1−
√

1− ζ2
G

≤ 2

ζ2
G,

since 1

1−
√

1−ζ2
≤ 2

ζ2 . Moreover,

‖P (gt + ∆t)‖`2 ≤ ‖P (gt + ∆t)− (gt + ∆t)‖`2 + ‖gt + ∆t‖`2
≤ (
√

1− ζ2 + 1) ‖gt + ∆t‖`2

≤ (
√

1− ζ2 + 1)G+ (
√

1− ζ2 + 1)

√
1− ζ2

1−
√

1− ζ2
G

≤ (1− (1− ζ2)) + (
√

1− ζ2 + 1)
√

1− ζ2

1−
√

1− ζ2
G

≤ ζ2 + (1− ζ2) +
√

1− ζ2

1−
√

1− ζ2
G

≤ 1 +
√

1− ζ2

1−
√

1− ζ2
G

≤ 4

ζ2
G.

At last,

‖gt − P (gt + ∆t)‖`2 ≤ ‖gt + ∆t − P (gt + ∆t)‖`2 + ‖∆t‖`2
≤
√

1− ζ2 ‖gt + ∆t‖`2 + ‖∆t‖`2
≤
√

1− ζ2 ‖gt‖`2 + (
√

1− ζ2 + 1) ‖∆t‖`2

≤
√

1− ζ2G+ (
√

1− ζ2 + 1)

√
1− ζ2

1−
√

1− ζ2
G

≤ (
√

1− ζ2 − (1− ζ2)) + (1− ζ2 +
√

1− ζ2)

1−
√

1− ζ2
G

≤ 2
√

1− ζ2

1−
√

1− ζ2
G

≤ 4

ζ2
G.

28

To conclude,

min
1≤t≤T

F (xt)− F (x?) ≤ 2R2

√
T

+
1

T

T−1∑
t=0

1√
t+ 1

(
1

2

(
4

ζ2
G

)2

+
2

ζ2
G

4

ζ2
G+

4

ζ2
G2

)
+

1

2T
3
2

4

ζ4
G2

≤ 2R2

√
T

+
2G2

ζ4
√
T

(
20 +

1

T

)
,

where we have used that
∑T−1
t=0

1√
t+1
≤ 2
√
T and 1

ζ2 ≤
1
ζ4 .

B Implementation details

As explained previously, given a loss function ` : R × R → R, gradient and proximal boosting aim at
minimizing the risk functional

C(f) =
1

n

n∑
i=1

`(Yi, F (Xi)) = D(f(Xn
1))

for f ∈ spanF (where F is a class of weak learners f : Rd → R), thereby measuring the cost incurred
by predicting f(Xi) when the answer is Yi.

In the forthcoming subsections, implementation details are given for six popular losses: least
squares, least absolute deviations and pinball losses (regression), as well as exponential, logistic and
hinge losses (binary classification). In this latter case, the predicted label of a point x ∈ Rd is given
by +1 if f(x) ≥ 0 and −1 otherwise.

For each loss, we lay out the following information:

Definition: the mapping of the loss function ` : (y, y′) ∈ R2 7→ `(y, y′).

Initial estimator: the constant function f0 ∈ arg minf∈F0
C(f).

Line search: the optimal step size γt+1 ∈ arg minγ∈R C(ft + γgt).

(Sub)gradient: the direction of optimization to follow at the iterate ft.

Proximal operator: for all z ∈ Rn, proxλnD(z) = arg minu∈Rd λnD(u) + 1
2 ‖u− z‖

2
`2

.

First, for the exponential and the logistic loss, the line search and the proximal operator have no
closed-form solution, but are known to be roots of some equations. In that case, we perform one or
several steps of the Newton-Raphson method to obtain an approximation of the desired quantity.

Second, when using decision trees as base learners, its common to perform a line search for each
leaf of the tree gt. In that case, the line search may take a simpler form than the one given below.

B.1 Least squares

Definition: `(y, y′) = (y − y′)2/2.

Initial estimator: f0 = 1
n

∑n
i=1 Yi.

Line search: γt+1 =

{∑n
i=1(Yi−ft(Xi))gt+1(Xi)∑n

i=1 gt+1(Xi)2
if
∑n
i=1 gt+1(Xi)

2 > 0

0 otherwise.

Gradient: ∇n C(ft) = ((ft(Xi)− Yi)/n)1≤i≤n.

Proximal operator: proxλnD(z) = ((λYi + zi)/(1 + λ))1≤i≤n.

29

B.2 Least absolute deviations

Definition: `(y, y′) = |y − y′|.

Initial estimator: f0 is the empirical median of the sample {y1, . . . , yn}.

Line search: γt+1 = arg min
γ∈{0}∪

{
Yi−ft(Xi)

gt+1(Xi)
:gt+1(Xi) 6=0

} C(ft + γgt).

Subradient: ∇̃n C(ft) = ((sign(ft(Xi)− Yi))/n)1≤i≤n, where for all x ∈ R, sign(x) =


−1 if x < 0

1 if x > 0

0 otherwise.

Proximal operator: proxλnD(z) =
(

max
(

0, 1− λ
|zi−Yi|

)
(zi − Yi) + Yi

)
1≤i≤n

.

B.3 Pinball

Definition: `(y, y′) = max(τ(y − y′), (τ − 1)(y − y′)), τ ∈ (0, 1).

Initial estimator: f0 is the τ -quantile of the sample {y1, . . . , yn}.

Line search: γt+1 = arg min
γ∈{0}∪

{
Yi−ft(Xi)

gt+1(Xi)
:gt+1(Xi) 6=0

} C(ft + γgt).

Subradient: ∇̃n C(ft) =




(τ − 1)/n if Yi − ft(Xi) < 0

τ/n if Yi − ft(Xi) > 0

0 otherwise


1≤i≤n

.

Proximal operator: proxλnD(z) =



zi + λτ if Yi − zi > λτ

zi + λ(τ − 1) if Yi − zi < λ(τ − 1)

Yi otherwise


1≤i≤n

.

B.4 Exponential loss

Definition: `(y, y′) = exp(−βyy′), β > 0.

Initial estimator: f0 =
log(p

n−p)
2β , where p =

∑
1≤i≤n
Yi=1

1.

Line search: no closed-form solution.

Gradient: ∇n C(ft) =
(
−βYie

−Yift(Xi)

n

)
1≤i≤n

.

Proximal operator: no closed-form solution.

B.5 Logistic loss

Definition: `(y, y′) = log2(1 + exp(−yy′)).

Initial estimator: f0 = log
(

p
n−p

)
, where p =

∑
1≤i≤n
Yi=1

1.

Line search: no closed-form solution.

Gradient: ∇n C(ft) =
(

−Yie
−Yift(Xi)

n log2(1+e
−Yift(Xi))

)
1≤i≤n

.

Proximal operator: no closed-form solution.

30

B.6 Hinge loss

Definition: `(y, y′) = max(0, 1− yy′).

Initial estimator: f0 = sign (
∑n
i=1 Yi).

Line search: γt+1 = arg min
γ∈{0}∪

{
1−Yift(Xi)

Yigt+1(Xi)
:gt+1(Xi)6=0

} C(ft + γgt).

Subgradient: ∇̃n C(ft) =

({
−Yi/n if Yift(Xi) < 1

0 otherwise

)
1≤i≤n

.

Proximal operator: proxλnD(z) =



zi + λYi if Yizi < 1− λ
zi if Yizi > 1

Yi otherwise


1≤i≤n

.

C Accelerated proximal boosting in practice

Algorithm 8 describes a practical version of accelerated proximal boosting (Algorithm 4). In accordance
with the practice, the proximal steps are chosen adaptively by a line search ((Line 8 of Algorithm 8))
and a shrinkage coefficient is introduced. As described in Algorithm 8, the line search is only aimed at
scaling the weak learner gt+1 by a constant factor. However, when the class F is a set of regression trees,
gt+1 is a piecewise constant function. In this case, it is common to perform a line search sequentially
for each leaf of the decision tree [Friedman, 2001] (called a multiple line search). As a consequence,
each level of the piecewise constant function gt+1 is scaled with its own factor.

Moreover, Algorithm 8 requires a number of iterations T , which acts on two regularization mecha-
nisms. The first one is statistical (T controls the complexity of the subspace in which fT lies) and the
second one is numerical (T controls the precision to which the empirical risk C is minimized). The
shrinkage coefficient ν tunes the balance between these two regularization mechanisms.

Algorithm 8 Accelerated proximal boosting in practice.

Input: ν ∈ (0, 1] (shrinkage coefficient), λ > 0 (proximal step).
1: Set g0 ∈ arg ming∈F0

C(g) (initialization).
2: x0 ← g0(Xn

1) ∈ Rn (predictions).
3: v0 = x0 (interpolated point).

4: (w
(0)
0 , . . . , w

(0)
T)← (1, 0, . . . , 0) (weights of weak learners).

5: for t = 0 to T − 1 do
6: Compute r ← 1

λ (proxλD(vt)− vt) (see Appendix B).
7: Compute gt+1 ∈ arg ming∈F ‖g(Xn

1)− r‖`2 .
8: Compute γt+1 ∈ arg minγ∈R C(ft + γgt+1) (see Appendix B).
9: Set xt+1 ← vt + νγt+1gt+1(Xn

1) (which corresponds to xt+1 = ft+1(Xn
1)).

10: Set vt+1 ← xt+1 + αt+1(xt+1 − xt).
11: Update weights (w

(t+1)
0 , . . . , w

(t+1)
t+1) according to Property 8.

12: end for
Output: fT =

∑T
t=0 w

(T)
t gt.

In addition, as an additive model, it is of interest to express fT with respect to the base learners
(g0, . . . , gT) and their weights wt: fT =

∑T
t=0 wtgt. Thus, the weights of the final model have to be

tracked despite the recursive update of ft+1 (Lines 11 in Algorithm 4 and 9 in Algorithm 8):

ft+1 = ft + αt(ft − ft−1) + νγt+1gt+1.

Property 7 gives the closed-form expression of the weights of fT in this case.

31

Property 7. The weights of fT are:
w0 = 1

w1 = νγ1

wt =
(

1 +
∑T−1
j=t

∏j
k=t αk

)
νγt,∀t ∈ {2, . . . , T − 1}

wT = νγT .

Proof. The update rule in Line 11 in Algorithm 4 is:

ft′+1 = (1 + αt′)ft′ − αt′ft′−1 + νγt′+1gt′+1,

for all positive integers t′ ≤ T−1. Let us denote, for each iteration t′ ∈ {1, . . . , T−1}, ft′ =
∑t′

t=0 w
(t′)
t gt

the expansion of ft′ . Then

ft′+1 =

t′−1∑
t=0

(
(1 + αt′)w

(t′)
t − αt′w(t′−1)

t

)
gt + (1 + αt′)w

(t′)
t′ gt′ + νγt′+1gt′+1.

First, we see that the weights of gt′ and gt′+1 in the expansion of ft′+1 are respectively:{
w

(t′+1)
t′ = (1 + αt′)w

(t′)
t′

w
(t′+1)
t′+1 = νγt′+1.

Second, for each t ∈ {0, . . . , t′ − 1}, the weight of gt in the expansion of ft′+1 is defined by:

w
(t′+1)
t = (1 + αt′)w

(t′)
t − αt′w(t′−1)

t .

Therefore, considering that weights take value 0 before being defined, i.e. w
(t−1)
t = 0, we have:

w
(t′+1)
t − w(t′)

t = αt′(w
(t′)
t − w(t′−1)

t) =

 t′∏
k=t

αk

 (w
(t)
t − w

(t−1)
t) =

 t′∏
k=t

αk

w
(t)
t .

It follows that:

w
(t′+1)
t = w

(t′)
t +

 t′∏
k=t

αk

w
(t)
t = w

(t)
t +

t′∑
j=t

(
j∏
k=t

αk

)
w

(t)
t =

1 +

t′∑
j=t

j∏
k=t

αk

w
(t)
t .

Then, for k ≤ 1, one has αk = 0, so w
(t′+1)
0 = w

(0)
0 = 1 and w

(t′+1)
1 = w

(1)
1 = νγ1. Now, remarking

that, for all t ≥ 2, w
(t)
t = νγt, we can conclude that the weights of fT are:

w0 = 1

w1 = νγ1

wt =
(

1 +
∑T−1
j=t

∏j
k=t αk

)
νγt, ∀t ∈ {2, . . . , T − 1}

wT = νγT .

In addition, Property 8 provides a recursive update suitable for implementing Algorithm 8. Let
us remark that, Property 8 is also valid for accelerated gradient boosting as proposed by Biau et al.
[2018]. This paves the way of efficient implementations of both accelerated gradient and proximal
boosting, as done in the Python package optboosing2.

2https://github.com/msangnier/optboosting

32

https://github.com/msangnier/optboosting

Property 8. Let us denote, for each iteration t ∈ {1, . . . , T − 1}, ft =
∑t
j=0 w

(t)
j gj the expansion of

ft. Then, the weights can be updated according to the following recursion:

w
(0)
0 = 1

w
(0)
1 = νγ1

w
(1)
1 = νγ1

w
(t+1)
j = (w

(t)
j − w

(t−1)
j)(1 + αt) + w

(t−1)
j ,∀j ∈ {1, . . . , t}

w
(t+1)
t+1 = νγt+1.

(18)

Proof. See proof of Property 7.

33

	Introduction
	Problem and notation
	Algorithms
	Accelerated proximal gradient method
	Gradient boosting
	Boosting with non-differentiable loss functions

	Convergence results
	Numerical analysis
	Behavior of proximal boosting
	Convergence
	Proximal step

	Generalization in real world cases
	Regression problems
	Classification problems

	Conclusion
	Analysis of the approximated proximal point method
	Setting
	Strongly convex function with smooth gradient
	Lipschitz continuous convex function

	Implementation details
	Least squares
	Least absolute deviations
	Pinball
	Exponential loss
	Logistic loss
	Hinge loss

	Accelerated proximal boosting in practice

