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3Sorbonne Université, CNRS, LIP6, Paris, France

January 22, 2020

Abstract

Gradient boosting is a prediction method that iteratively combines weak learners to produce
a complex and accurate model. From an optimization point of view, the learning procedure of
gradient boosting mimics a gradient descent on a functional variable. This paper proposes to
build upon the proximal point algorithm when the empirical risk to minimize is not differentiable
to introduce a novel boosting approach, called proximal boosting. Besides being motivated by
non-differentiable optimization, the proposed algorithm benefits from Nesterov’s acceleration in
the same way as gradient boosting [Biau et al., 2018]. This leads to a variant, called accelerated
proximal boosting. Advantages of leveraging proximal methods for boosting are illustrated by
numerical experiments on simulated and real-world data. In particular, we exhibit a favorable
comparison over gradient boosting regarding convergence rate and prediction accuracy.

1 Introduction

Boosting is a celebrated machine learning technique, both in statistics and data science. In broad
outline, boosting combines simple models (called weak learners) to build a more complex and accurate
model. This assembly is performed iteratively, taking into account the performance of the model
built at the previous iteration. The way this information is considered leads to several variants of
boosting, the most famous of them being Adaboost [Freund and Schapire, 1997] and gradient boosting
[Friedman, 2001].

The reason of the success of boosting is twofold: i) from the statistical point of view, boosting is an
additive model with an iteratively growing complexity. In this sense, boosting lies between ensemble
methods (which aggregate weak learners) and strong models (such as nonparametric ones). In practice,
it combines the best of both worlds by reducing the variance and the bias of the risk; ii) from the data
science perspective, boosting is a model, the fitting of which is computationally cheap. In contrast, it
can quickly achieve highly complex models, thus it is able to perform accurately on difficult learning
task. As an ultimate feature, the iterative process makes finding the frontier between under and
overfitting quite easy. In particular, gradient boosting combined with decision trees (often referred to
as gradient tree boosting) is currently regarded as one of the best off-the-shelf learning techniques in
data challenges.

As explained by Biau et al. [2018], gradient boosting has its roots in Freund and Schapire’s work on
combining classifiers, which resulted in the Adaboost algorithm [Schapire, 1990, Freund, 1995, Freund
and Schapire, 1996, 1997]. Later, Friedman and colleagues developed a novel boosting procedure
inspired by the numerical optimization literature, and nicknamed gradient boosting [Friedman et al.,
2000, Friedman, 2001, 2002]. Such a connection of boosting between statistics and optimization was
already stated in several previous analyses by Breiman [Breiman, 1997, 1998, 1999, 2000, 2004] and
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reviewed as functional optimization [Mason et al., 2000b,a, Meir and Rätsch, 2003, Bühlmann and
Hothorn, 2007]: boosting can be seen as an optimization procedure (similar to gradient descent),
aimed at minimizing an empirical risk over the set of linear combinations of weak learners. In this
respect, a few theoretical studies prove the convergence, from an optimization point of view, of boosting
procedures [Zhang, 2002, 2003, Wang et al., 2015] and particularly of gradient boosting [Temlyakov,
2012, Biau and Cadre, 2017]. Let us remark that rates of convergence of gradient boosting are known
for strongly convex and strongly smooth risks [Rätsch et al., 2002, Grubb and Bagnell, 2011].

It is quite surprising that in gradient boosting (and variants), the number of weak learners controls
both the number of optimization steps performed in order to minimize the empirical risk and the
statistical complexity of the final predictor. The former feature, consisting in stopping the optimization
algorithm before convergence by choosing adequately the number of iterations, is known, in many areas,
as early stopping. It can be seen as an iterative regularization mechanism used to prevent overfitting
[Lin et al., 2016]. As a consequence, besides the numerical learning procedure of gradient boosting, its
statistical performance deeply relies on the algorithm employed. Especially as early stopping operates
jointly with another regularization mechanism: the control of the model complexity.

That being said, one may wonder if gradient descent is really a good option. Following this direc-
tion, several alternatives have been proposed, such as replacing gradient descent by the Frank-Wolfe
algorithm [Wang et al., 2015], incorporating second order information [Chen and Guestrin, 2016], and
applying Nesterov’s acceleration [Biau et al., 2018]. While all these variants rely on differentiable loss
functions, Grubb and Bagnell [2011] discuss the limitations of boosting with gradient descent in the
non-differentiable setting, and tackle these issues by proposing two modified versions of (sub)gradient
boosting based on projections of accumulated (sub)gradients on the set of weak learners. The contri-
bution of the work described here is to go a step forward by proposing a procedure to efficiently learn
boosted models with non-differentiable loss functions, and with a potential acceleration feature (such
as accelerated gradient boosting [Biau et al., 2018]).

To go into details, Section 2 reviews boosting with respect to the empirical risk minimization prin-
ciple and illustrates the flaw of the current learning procedure in a simple non-differentiable case: least
absolute deviations. Then, some backgrounds on non-smooth optimization are stated in Section 3 and
we explain the main contribution of this paper: adapting the proximal point algorithm [Nesterov, 2004]
(and its acceleration) to boosting. The proposed method is nicknamed proximal boosting (respectively
accelerated proximal boosting). A second contribution is the derivation of the weights of weak learn-
ers for accelerated descents (including accelerated gradient boosting [Biau et al., 2018]). While we
empirically observe that accelerated boosting may diverge, Section 4 addresses convergence of non-
accelerated proximal boosting: theoretical convergence guarantees are stated (based on the work by
Rockafellar [1976]) and a convergence rate is established in a restrictive but representative setting.
Finally, the numerical study described in Section 5 shines a light on advantages and limitations of the
proposed boosting procedures.

2 Problem and notation

Let X be an arbitrary input space and Y ⊆ R an output space. Given a pair of random variables
(X,Y ) ∈ X × Y, supervised learning aims at explaining Y given X, thanks to a function f0 : X → R.
In this context, f0(X) may represent several quantities, depending on the task at hand, for which the
most notable examples are the conditional expectation x ∈ X 7→ E(Y |X = x) and the conditional
quantiles of Y given X for regression, as well as the regression function x ∈ X 7→ P(Y = 1|X = x)
for ±1-classification. Often, this target function f0 is minimizer of the risk E(`(Y, f(X))) over all
integrable functions f , where ` : R×R→ R is a suitable convex loss function (respectively the square
function and the pinball loss in the regression examples previously mentioned).

Since the distribution of (X,Y ) is generally unknown, the minimization of the risk is out of reach.
One would rather deal with its empirical version instead. Let {(Xi, Yi)}1≤i≤n ⊆ X × Y be a training
sample of pairs (Xi, Yi) independent and identically distributed according to the distribution of (X,Y )
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and F ⊆ L2(µX) a class of functions integrable for the distribution µX of X. In this work, we consider

estimating f0 by means of an additive model f? (that is f? =
∑T
t=0 wtgt, where T is an unknown

integer and (wt, gt)t ⊆ R × F is an unknown sequence of weights and weak learners) by solving the
following optimization problem:

minimize
f∈spanF

C(f), (P1)

where

C(f) = En(`(Y, f(X))) =
1

n

n∑
i=1

`(Yi, f(Xi))

is the empirical risk and spanF = {
∑m
t=1 wtgt : w ∈ Rm, (f1, . . . , fm) ∈ Fm,m ∈ N} is the set of all

linear combinations of functions in F (N being the set of non-negative integers).

Figure 1: Predicted values and training error of a boosting machine trained with a subgradient (top)
and a proximal-based method (bottom).

As a simple example, let us consider the regression model Y = sin(2πX) + ε, where X is uniformly
distributed on [0, 1] and ε is normally distributed and independent of X. We aim at solving:

minimize
f∈spanF

En(|Y − f(X)|),

with F being the set of regression trees of depth less than 3.
Two boosting machines fT =

∑T
t=0 wtgt are learned (with T fixed to 300): a traditional one with a

subgradient-type method, and another with the proposed proximal-based procedure. Figure 1 depicts
the prediction of fT (left) and the training error C(ft) = En(|Y −ft(X)|) along the iterations t (right).

In an optimization perspective, it appears clearly that the subgradient method fails to minimize
the empirical risk (prediction is far from the data and the training error is stuck fare above 10−2)
while the proximal-based procedure constantly improves the objective. The subgradient method faces
a flaw in convergence, in all likelihood due to non-differentiability of the absolute function | · |. This
simple example illustrates, inside the boosting paradigm, a well-known fact in numerical optimization:
proximal-based algorithms prevails over subgradient techniques.
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3 Algorithm

There is an ambiguity in (P1), since it is a functional optimization problem but, in practice, we do
not necessarily have the mathematical tools to apply standard optimization procedures (in particular
concerning differentiation of C). For this reason, C is often regarded as a function from Rn to R,
considering that it depends on f only through (f(Xi))1≤i≤n. To make this remark more precise, let,
for all z ∈ Rn, D(z) = 1

n

∑n
i=1 `(Yi, zi). Then, it is enough to remark that for any f ∈ L2(µX),

C(f) = D(f(Xn
1 )), where f(Xn

1 ) = (f(X1), . . . , f(Xn)) ∈ Rn is the vector of f computed on the
training sample.

Having this remark in mind helps solving (P1), for instance considering that taking the gradient
of C with respect to f is roughly equivalent to differentiating C with respect to f(x) (for all observed
x ∈ {X1, . . . , Xn}), thus taking in fact the usual gradient of D. Doing so, the only requirement is to
juggle functions appearing in Problem (P1) and their vectorial twins coming from the optimization
procedure. In particular, given a vectorial gradient ∇D(f(Xn

1 )) (f ∈  L2(µX)), one has to find a
function g ∈  L2(µX) that correctly represents it, i.e. such that g(Xn

1 ) ≈ ∇D(f(Xn
1 )). This principle

is at the heart of functional optimization methods such that the ones used in boosting [Mason et al.,
2000b].

From now on, all necessary computations of C with respect to f , can be forwarded to D. For
instance, if ` is differentiable with respect to its second argument, we can define, for all f ∈ L2(µX),
the functional gradient of C as ∇n C(f) = ∇D(f(Xn

1 )). On the contrary, if ` is not differentiable, we

may consider a subgradient of C at f , denoted ∇̃n C(f) and defined as any subgradient of D at f(Xn
1 ).

In the forthcoming sections, a common first order optimization algorithm is reviewed. Then, it is
explained how to build different procedures for solving (P1), according to the properties of the loss
function `.

3.1 Accelerated proximal gradient method

Let us assume for a while that we want to minimize the function g + h, where g : Rd → R is convex
and differentiable (with L-Lipschitz continuous gradient, L > 0), and h : Rd → R ∪ {+∞} is convex
and lower semi-continuous. Besides, let us define the proximal operator of h by:

proxh(x) = arg minu∈Rd h(u) +
1

2
‖u− x‖2`2 , ∀x ∈ Rd.

For any point x ∈ Rd, proxh(x) is well defined by convexity and low semi-continuity of h [Combettes
and Wajs, 2005]. Then, the iterative procedure defined by choosing any x0 = v0 ∈ Rd and by setting
for all t ∈ N: {

xt+1 = proxγh(vt − γ∇g(vt))

vt+1 = xt+1 + αt+1(xt+1 − xt)

where γ ∈ (0, 1/L] and (αt)t will be made precise thereafter, is known to converge to a minimizer of
g+h [Nesterov, 2004]. The rate of convergence depends on the choice of αt: if αt = 0 for all t ∈ N, then
the previous procedure leads to the well known proximal gradient method, which converges in O(1/t).
More formally, assuming that g + h has a minimizer x?, then (g + h)(xt)− (g + h)(x?) = O(1/t). On
the other hand, if one chooses the sequence (αt)t defined recursively by:

β0 = 0

βt+1 =
1+
√

1+4β2
t

2 , t ∈ N
αt+1 = βt−1

βt+1
, t ∈ N,

(1)

then the convergence becomes O(1/t2). This is in the spirit of the acknowledged acceleration proposed
by Nesterov [1983], and generalized to the composite setting by Beck and Teboulle [2009].

Depending on the properties of the objective function to minimize, the procedure described before
leads to two simple algorithms (coming with their acceleration):
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• the gradient method (h = 0):
xt+1 = vt − γ∇g(vt),

minimizes a single function g as soon as it is convex and differentiable with Lipschitz-continuous
gradient;

• the proximal point algorithm (g = 0):

xt+1 = proxγh(vt) = vt − γ
[

1

γ

(
vt − proxγh(vt)

)]
, (2)

minimizes a single function h, which is only required to be convex and lower semi-continuous (in
that case, there is no restriction on the step size γ, except being positive). Let us remark that,
using the recursive update of vt, xt+1 can also be expressed by:

xt+1 = xt + αt(xt − xt−1) + γ

[
1

γ

(
proxγh(vt)− vt

)]
, (3)

which will be useful for designing the proposed algorithm.

Without acceleration (i.e. with αt = 0, for all t ∈ N), the proximal gradient method (as well as
its two special cases) has the asset to be a descent method: at each iteration, the objective function
monotonically decreases, meaning that (g + h)(xt+1) ≤ (g + h)(xt), with convergence rate at least
O(1/t) (O(1/t2) with Nesterov’s acceleration). In particular, this is true when minimizing a single
convex and lower semi-continuous function h : Rd → R, even if it is not differentiable.

This has to be put in contrast with the subgradient method:

xt+1 = xt − γt∇̃h(xt), (4)

where γt > 0 and ∇̃h(xt) is any subgradient of h at xt. This procedure, which is very similar to the
gradient descent but replacing the gradient by any subgradient, has a convergence rate O(1/

√
t) in

the best case (that is, when γt is well chosen) [Nesterov, 2004]. In addition, this rate is optimal for
this optimization procedure: it cannot be improved without extra assumptions on h [Nesterov, 2004,
Theorem 3.2.1]. This means that there does not exist an acceleration scheme for this approach.

This remark motivates the use of procedures different from the subgradient method when mini-
mizing a non-differentiable function h, such as the proximal point algorithm described in Equation 2.
This motivation is emphasized by the fact that moving from subgradient to proximal point method
only requires to replace the update direction ∇̃h(xt) by 1

γ (xt−proxγh(xt)) (see Equations (4) and (2),

keeping in mind that vt = xt in the non-accelerated setting). This observation is the cornerstone of
the algorithm proposed in Section 3.3.

3.2 Gradient boosting

Let F0 be the set of constant functions on X and assume that F0 ⊆ F . Also, for any f ∈ L2(µX),

let us denote ‖f‖µn =
√

En(f(X)2) =
√

1
n

∑n
i=1 f(Xi)2. Then, a simple procedure to approximately

solve (P1) is gradient boosting, described in Algorithm 1 [Mason et al., 2000a, Friedman, 2001]. It
builds the requested additive model in an iterative fashion, by imitating a gradient (or subgradient if `
is not differentiable with repect to its second argument) method. At each iteration t, Algorithm 1 finds
a function gt+1 that approximates the opposite of a subgradient of C (also called pseudo-residuals)
and adds it to the model ft with a weight wt+1 = νγt+1, where ν ∈ (0, 1] is a shrinkage coefficient
(also called learning rate) and γt+1 ∈ R is the optimal step given the direction gt+1. At the end of the

procedure, the proposed estimator of f0 is fT =
∑T
t=0 wtgt, with w0 = 1.

Algorithm 1 requires a number of iterations T , which acts on two regularization mechanisms. The
first one is statistical (T controls the complexity of the subspace in which fT lies) and the second
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Algorithm 1 Gradient boosting.

Input: ν ∈ (0, 1] (shrinkage coefficient).
1: Set f0 = g0 ∈ arg ming∈F0

C(g) (initialization).
2: for t = 0 to T − 1 do
3: Compute r ← −∇̃n C(ft) (pseudo-residuals).
4: Compute

gt+1 ∈ arg maxg∈F,‖g‖µn≤1
〈g(Xn

1 ), r〉`2 (correlation)

or
gt+1 ∈ arg ming∈F ‖g(Xn

1 )− r‖`2 . (least squares)

5: Compute
γt+1 ∈ arg minγ∈R C(ft + γgt+1)

6: Set ft+1 = ft + νγt+1gt+1. (update).
7: end for

Output: fT .

one is numerical (T controls the precision to which the empirical risk C is minimized). The shrinkage
coefficient ν tunes the balance between these two regularization mechanisms.

Algorithm 1 has two variants according to the way the subgradient of C is approximated (respec-
tively by correlation or by least squares). The first one closely relates to AdaBoost [Mason et al.,
2000a] while the second one is officially known as gradient boosting [Friedman, 2001].

Let us remark that the line search (Line 5 of Algorithm 1) simply scales the weak learner gt by
a constant factor. However, when the class F is a set of regression trees, gt is a piecewise constant
function. In this case, it is common to perform a line search sequentially for each leaf of the decision
tree [Friedman, 2001] (called a multiple line search). As a consequence, each level of the piecewise
constant function gt is scaled with its own factor.

3.3 Boosting with non-differentiable loss functions

When the function ` is not differentiable with respect to its second argument, gradient boosting just
uses a subgradient ∇̃n C(ft) instead of the gradient ∇n C(ft). This is, of course, convenient but as
explained previously, far from leading to interesting convergence properties. For this reason, we propose
a new procedure for non-differentiable loss functions `, which consists in adapting the proximal point
algorithm [Nesterov, 2004] to functional optimization.

For any f ∈ L2(µX), let ψλC(f) = 1
λ (f(Xn

1 )− proxλD(f(Xn
1 ))), where λ > 0 is a parameter. The

simple idea underlying the proposed algorithm, nicknamed (accelerated) proximal boosting, is that the
only difference between subgradient and proximal point methods are the update directions of the op-
timization variable, which are respectively ∇̃n C(ft) and ψλC(ft). Thus, proximal boosting computes

the pseudo-residuals based on ψλC(ft) instead of ∇̃n C(ft). In addition, this iterative procedure can
be sped up by applying Nesterov’s acceleration, reviewed in Section 3.1.

The accelerated proximal boosting procedure is described in Algorithm 2. It is very similar to
Algorithm 1, except that the pseudo-residuals are now given by a proximal operator instead of a
subgradient, and that Nesterov’s acceleration is available.

Following the acceleration scheme, after approximating the direction of optimization r ∈ Rn by
gt+1, the iterate update (Line 11 in Algorithm 2) becomes (see Equation (3)):

ft+1 = ft + αt(ft − ft−1) + νγt+1gt+1.

Moreover, we have to maintain the vectorial twin xt+1 = ft+1(Xn
1 ) of ft+1 as well as an auxiliary
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variable vt ∈ Rn.
Similarly to regular gradient boosting (Algorithm 1), the estimator returned at the end of Al-

gorithm 2 can be written fT =
∑T
t=0 wtgt, where the weights (w0, . . . , wT ) are now slightly more

complicated (this is explained in the next section).

Algorithm 2 Accelerated proximal boosting.

Input: ν ∈ (0, 1] (shrinkage coefficient), λ > 0 (proximal step).
1: Set g0 ∈ arg ming∈F0

C(g) (initialization).
2: x0 ← g0(Xn

1 ) ∈ Rn (predictions).
3: v0 = x0 (interpolated point).

4: (w
(0)
0 , . . . , w

(0)
T )← (1, 0, . . . , 0) (weights of weak learners).

5: for t = 0 to T − 1 do
6: Compute r ← 1

λ (proxλD(vt)− vt) (pseudo-residuals).
7: Compute

gt+1 ∈ arg maxg∈F,‖g‖µn≤1
〈g(Xn

1 ), r〉`2 (correlation)

or
gt+1 ∈ arg ming∈F ‖g(Xn

1 )− r‖`2 . (least squares)

8: Compute
γt+1 ∈ arg minγ∈R C(ft + γgt+1).

9: Set xt+1 ← vt + νγt+1gt+1(Xn
1 ) (which corresponds to xt+1 = ft+1(Xn

1 )).
10: Set vt+1 ← xt+1 + αt+1(xt+1 − xt).
11: Set ft+1 ← ft + αt(ft − ft−1) + νγt+1gt+1 (which corresponds to updating weights

(w
(t+1)
0 , . . . , w

(t+1)
t+1 ) according to Equation (5)).

12: end for
Output: fT =

∑T
t=0 w

(T )
t gt.

Let us remark that the idea of applying Nesterov’s acceleration to boosting originally appeared in
[Biau et al., 2018] for a gradient-type procedure. Even though Biau et al. [2018] did not suggest to apply
such an acceleration scheme when ` is not differentiable, this idea appears natural. However, this is
not entirely relevant since it contradicts the optimization theory (see Section 3.1): subgradient method
cannot be accelerated. This flaw clearly motivates using proximal-based methods for non-differentiable
boosting, as proposed in Algorithm 2.

3.4 Weights with Nesterov’s acceleration

As an additive model, it is of interest to express fT with respect to the base learners (g0, . . . , gT ) and

their weights: fT =
∑T
t=0 wtgt. On the first hand, in the non-accelerated case (αt = 0 for all t ∈ N),

the update rule of Algorithm 1 is simply ft+1 = ft + νγt+1gt+1. Therefore the weights are defined by
w0 = 1 and wt = νγt for all positive integers t.

On the other hand, when Nesterov’s acceleration is on ((αt)t∈N is defined by Equation (1)), the
update rule becomes (see Line 11 in Algorithm 2):

ft+1 = (1 + αt)ft − αtft−1 + νγt+1gt+1,

which makes the final weights a bit more complicated to obtain. Property 1 (proved in Appendix A)
gives the closed-form expression of the weights of fT in this case.
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Property 1. The weights of fT are:
w0 = 1

w1 = νγ1

wt =
(

1 +
∑T−1
j=t

∏j
k=t αk

)
νγt,∀t ∈ {2, . . . , T − 1}

wT = νγT .

In addition, Property 2 (proved in Appendix A) provides a recursive update for implementing
Algorithm 2. Let us remark that, Property 2 is also valid for accelerated gradient boosting as proposed
by Biau et al. [2018]. This paves the way of efficient implementations of both accelerated gradient and
proximal boosting.

Property 2. Let us denote, for each iteration t ∈ {1, . . . , T − 1}, ft =
∑t
j=0 w

(t)
j gj the expansion of

ft. Then, the weights can be updated according to the following recursion:

w
(0)
0 = 1

w
(0)
1 = νγ1

w
(1)
1 = νγ1

w
(t+1)
j = (w

(t)
j − w

(t−1)
j )(1 + αt) + w

(t−1)
j ,∀j ∈ {1, . . . , t}

w
(t+1)
t+1 = νγt+1.

(5)

4 Convergence results

This section is dedicated to the theoretical convergence of the proximal boosting algorithm, presented
in Algorithm 2, in its non-accelerated version. Thus, we assume, in the whole section, that the (αt)t’s
are set to zero, which implies in particular that vt = xt at each iteration. The study of the accelerated
version will not be covered in this paper and is left as future work.

A preliminary result on the convergence of the proximal boosting technique can be easily derived
upon previous work by Rockafellar: it requires the control of the error introduced by considering
an approximated direction of optimization instead of the true proximal step, and could be stated as
follows.

Theorem 3 ([Rockafellar, 1976, Theorem 1]). Let (ft)t be any sequence generated by Algorithm 2 and
define for any iteration t:

εt+1 = ‖gt+1(Xn
1 )− (−ψλC(ft))‖`2 .

Suppose that {xt}t is bounded and that

+∞∑
t=0

εt < +∞. (6)

Then,
lim
t→∞

C(ft) = inf
f∈spanF

C(f).

Theorem 3 states that as soon as the approximation errors (εt)t converge to 0 quicker than 1/t,
then the sequence (C(ft))t converges to a minimum of C. However, with a better control of the
approximation errors (εt)t, a rate of convergence can be derived. This is the role of the result we
provide now. It is based on assumptions similar to the theoretical analysis of gradient boosting
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available in Grubb and Bagnell [2011]. In particular, the analysis relies on two critical properties of
the objective functional C.

A functional C, which admits gradients ∇n C, is said L-strongly smooth (for some L > 0) if for all
f, f ′ ∈ L2(µX):

C(f ′) ≤ C(f) + 〈∇n C(f), f ′ − f〉µn +
L

2
‖f ′ − f‖2µn ,

and κ-strongly convex (for some κ > 0) if

C(f ′) ≥ C(f) + 〈∇n C(f), f ′ − f〉µn +
κ

2
‖f ′ − f‖2µn ,

where 〈f, f ′〉µn = Eµn
(f(X)f ′(X)) = 1

n

∑n
i=1 f(Xi)f

′(Xi). Let us remark that such properties are
directly inherited from the loss function `.

A convergence rate for proximal boosting can be derived from these two properties. It is stated
hereafter and proved based on a result presented in Appendix B.

Theorem 4. Assume that C is L-smooth and κ-strongly convex for some L > 0 and κ > 0. Let (ft)t
be any sequence generated by Algorithm 2 and assume that there exists ζ ∈ (0, 1] such that for any
iteration t:

‖gt+1(Xn
1 )− (−ψλC(ft))‖2`2 ≤ (1− ζ2) ‖ψλC(ft)‖2`2 . (7)

Let f? ∈ arg minf∈spanF C(f) (well defined by strong convexity and linearity of spanF), and choose

λ = ζ2

8L . Then,

C(fT )− C(f?) ≤
(

1− ζ2κ

9L

)T
(C(f0)− C(f?)) .

Proof. Given that ∀f ∈ L2(µX) : C(f) = D(f(Xn
1 )), strongly smoothness and convexity assumptions

directly translate to the function x 7→ nD(x) with the same parameters. Thus, the previous result is
a straightforward application of Theorem 5 applied to the function x 7→ nD(x).

Theorem 4 states that proximal boosting has a linear convergence rate under strongly smoothness
and convexity assumptions. This result is similar to the one obtained for gradient boosting in Grubb
and Bagnell [2011] and is indeed based on the same assumptions. In particular, the way of controlling
the approximation error is common in the boosting literature: when Equation (7) is verified, the set
of weak learners F is said to have edge ζ.

We admit that strongly smoothness and convexity are restrictive assumptions for an algorithm
designed for non-differentiable loss functions. However, they seem necessary to control the impact of
the approximation error on the convergence. In addition, Section 5 will show that linear convergence (as
stated by Theorem 4) is always observed in practical cases (even though the loss is not differentiable).

5 Numerical analysis

In Section 3, proximal boosting (Algorithm 2) has been introduced in a fairly general way. However,
following the success of gradient boosting, the empirical results presented in this section only relate to
a least squares approximation of the pseudo-residuals, with decision trees (implemented in Scikit-learn
[Pedregosa et al., 2011]) of depth at most 3 as base learners (class F) and a multiple line search.

In the whole section, the four methods involved in the numerical comparison are nicknamed:

Gradient (slow) : gradient boosting [Friedman, 2001];

Gradient (fast) : accelerated gradient boosting [Biau et al., 2018];

Proximal (slow) : Algorithm 2 without acceleration (αt = 0, for all t ∈ N);

Proximal (fast) : Algorithm 2 with Nesterov’s acceleration (αt defined by Equation (1)).
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5.1 Impact of parameters on algorithm behaviors

This section aims at numerically illustrating, based on synthetic data, the performance of our proximal
boosting algorithm and at highlighting the benefits of coupling Nesterov’s acceleration scheme with
proximal boosting. For this purpose, two synthetic models are studied (see description below), both
coming from [Biau et al., 2016, 2018]. The other models considered in [Biau et al., 2018] have also
been studied but results are not reported because they are very similar to the two models we focus on.

Regression : n = 800, d = 100, Y = − sin(2X1) +X2
2 +X3 − exp(−X4) + Z0,0.5.

Classification : n = 1500, d = 50, Y = 21X1+X3
4+X9+sin(X12X18)+Z0,0.1>0.38 − 1, where 1 is the

indicator function.

The first model covers an additive regression problem, while the second covers a binary classification
task with covariate interactions. In both cases, we consider an input random variable X ∈ Rd, the
covariate of which, denoted (xj)1≤j≤d, are normally distributed with zero mean and covariance matrix
Σ =

(
2−|i−j|

)
1≤i,j≤d (this is the correlated design). We present, in Appendix C, a variant of this

framework based on covariates uniformly distributed over (−1, 1)d (the uncorrelated design) and for
which the numerical results are identical. Moreover, in these synthetic models of regression and
classification, an additive and independent noise (normally distributed with mean µ ∈ R and variance
σ2) is embodied by the random variable Zµ,σ2 .

Four different losses are considered (see Table 1 for a brief description): least squares and least
absolute deviations for regression; exponential (with β = 1) and hinge for classification. Computations
for the corresponding (sub)gradients and proximal operators are detailed in Appendix D. On that
occasion, it can be remarked that the direction of descent ψλC(ft) of proximal boosting applied with

the least squares loss is the same as that of gradient boosting, ∇̃n C(ft), up to a constant factor (see
Appendix D). In other words, proximal and gradient boosting are exactly equivalent.

In addition, note that we also considered other kind of losses such as the pinball loss for regression
and the logistic loss for classification (see Table 1). Nevertheless, since the numerical behaviors are
respectively very close to the least absolute deviations and exponential cases, the results are not
reported.

Loss Parameter `(y, y′) Type
least squares - (y − y′)2/2 regression
least absolute deviations - |y − y′| regression
pinball τ ∈ (0, 1) max(τ(y − y′), (τ − 1)(y − y′)) regression
exponential β > 0 exp(−βyy′) classification
logistic - log2(1 + exp(−yy′)) classification
hinge - max(0, 1− yy′) classification

Table 1: Loss functions.

In the following numerical experiments, the random sample generated based on each model is
divided into a training set (50%) to fit the method and a validation set (50%). The performance of
the methods are appraised through several curves representing the training and validation losses along
the T = 5000 iterations with which the algorithms are run.

5.1.1 Maximal tree depth

As a first numerical experiment, we aim at illustrating Theorem 4 for two classes F of weak learners:
regression trees with maximal depth 3 (in blue in Figure 2) and 15 (in red in Figure 2). This last class
of weak learners is supposed to make almost no error in approximating the directions of descent, thus
leading to quasi-standard optimization algorithms.
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To complete this analysis, we also study the behavior of an algorithm described in Grubb and
Bagnell [2011] (referred to as GB’s residual). The variant of gradient boosting proposed by Grubb
and Bagnell has been designed to handle non-differentiable losses with a convergence in O(

√
t). At

each iteration, it considers a negative subgradient completed by the error produced at the previous
iteration by the tree approximating the direction of descent.

Since Theorem 4 does not address Nesterov’s acceleration (and Grubb and Bagnell’s method may
not necessarily be accelerated), it is the same for the numerical experiment of this section. In addition,
parameters λ and ν are set to standard values: λ = 1, ν = 10−2, which does not hurt the generality of
the forthcoming interpretations.

Figure 2: Training losses for two values of maximal depth (3 in blue, 15 in red) and Grubb and
Bagnell’s residual (dashed lines) – number of iterations on the horizontal axis.

Let us analyze the top panels of Figure 2: for differentiable losses (least squares and exponential),
gradient and proximal descents behave exactly the same (curves with and without the symbol P are
mixed up). Moreover, as theoretically analyzed in Theorem 4, the rate of convergence of proximal
boosting is linear with a slope that increases with the capacity of the class of weak learners. As we
can see, this result is similar to what is known for gradient boosting [Grubb and Bagnell, 2011].

Let us note that Grubb and Bagnell’s residual (the dotted lines in Figure 2) does not seem to help
convergence neither with a large class of weak learners (in red, the residual is in fact always almost
null), nor with a restricted class (in blue).

It is interesting to observe that even though the last two losses (least absolute deviations and hinge)
do not satisfy the hypotheses of Theorem 4, the convergence of proximal boosting is still almost linear
with a slope increasing with the capacity of the class of weak learners. On the contrary, gradient
boosting behaves very badly compared to our proposed algorithm, particularly for the hinge loss.
In this case, Grubb and Bagnell’s residual improves the convergence, which comes close to proximal
boosting for sufficiently powerful decision trees.

Keeping in mind the behavior of Grubb and Bagnell’s residual for gradient boosting (and that it
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may not necessarily be accelerated), we leave it behind us for the rest of the numerical convergence
analysis and we will get it back when studying the generalization ability.

5.1.2 Learning rate

This subsection tackles the impact of the learning rate parameter ν ∈ (0, 1] on the relative performances
of both proximal and accelerated proximal methods. Throughout, the proximal step λ is fixed to 1.
The convergence rates for ν ∈ {10−4, 10−3, 10−2, 10−1} are illustrated in the case of the regression
model (least squares and least absolute deviations losses) and in the case of the classification model
(exponential and hinge losses) in Figure 3. The numerical results depicted on these two figures are
analyzed in the next paragraphs.

Both without and with Nesterov’s acceleration, the convergence rate highly depends on the learning
rate ν. As one might expect, a higher learning rate leads to a faster convergence.

Besides, the convergence rate is deeply improved by Nesterov’s acceleration, even though, acceler-
ated boosting may suffer from divergence, particularly for high values of ν. This is not a real defect
since, in practice, divergence occurs in the overfitting regime (after that the minimum validation loss
is achieved, as represented by crosses in Figure 3).

Let us remark that oscillations, appearing for accelerated boosting in Figure 3, are not surprising
because (contrarily to what its name seems to indicate) Nesterov’s accelerated gradient descent is not
a descent method, even though it converges faster than standard gradient descent.

Figure 3: Training losses of proximal boosting (solid line) and its accelerated version (dashed line) for
several values of ν – number of iterations on the horizontal axis. For each curve, the iteration where
the minimum validation loss is achieved is represented by a cross.

5.1.3 Proximal step

After studying the behavior of (accelerated) proximal boosting with respect to the learning rate ν, we
now fix ν = 10−2 (which is a representative value) and study the effect of the proximal step λ > 0.
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In addition (and without loss of generality with respect to the value of the learning rate), standard
gradient and accelerated gradient boosting are added to the comparison (still with ν = 10−2).

The convergence rates for λ ∈ {10−2, 10−1, . . . , 102} are illustrated in Figure 4 both for the regres-
sion and the classification models. The numerical results are analyzed in the forthcoming paragraphs.

Differentiability The effect of the proximal step λ is very different according to the nature of the
loss. On the first hand, for differentiable losses, λ has almost no effect on the convergence trend, as well
exemplified by the exponential loss (remember that for the least squares losses, proximal boosting is
equivalent to gradient boosting, so λ has exactly no effect all the curves are mixed up). This holds true
both for regular and accelerated proximal boosting and, in this case, numerical results are similar to
that of (accelerated) gradient boosting. A direct consequence is that there seems to have no particular
advantage in favor of proximal boosting, compared to gradient boosting.

On the other hand, for non-differentiable losses (least absolute deviations and hinge), first, the
proximal step has a clear impact on the convergence rate: the bigger λ, the faster the convergence
of the training loss. Second, for an adequate value of λ, (accelerated) proximal boosting clearly
outperforms (accelerated) gradient boosting. In this situation (when using non-differentiable losses),
proximal boosting is really advantageous compared to gradient boosting.

Convergence Similarly to what has been observed previously, Nesterov’s acceleration always im-
proves the convergence rate of the training and the validation errors. However, it is important to
remark that divergence of accelerated proximal boosting occurs independently of the value of λ. This
behavior seems to be only related to the learning rate ν. Again, divergence of accelerated proximal
and gradient boosting is not a drawback since it always occurs in the overfitting regime.

Figure 4: Training losses of proximal boosting (solid line) and its accelerated version (dashed line) for
several values of λ – number of iterations on the horizontal axis. For each curve, the iteration where
the minimum validation loss is achieved is represented by a cross.
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5.1.4 Generalization ability

The goal of this section is to illustrate the generalization ability of the various estimators. For this
purpose, we present an optimistic estimator of the generalization ability, computed on the synthetic
datasets as the minimal validation error with respect to parameters ν, λ and the maximal depth
of decision trees varying in {10−4, 10−3, 10−2, 10−1}, {10−2, 10−1, . . . , 102} and {1, 3, 5} respectively.
Table 2 reports the average (and standard deviations) of this minimal validation error over 20 replica-
tions of the synthetic datasets. The method nicknamed Gradient (GB) refers to Grubb and Bagnell’s
residual.

Slow Fast
Loss Method Depth T ν λ Error Depth T ν λ Error
Least squares Gradient 1 5290 3e-02 - 0.64 (0.24) 1 384 1e-02 - 0.72 (0.26)

Gradient (GB) 1 4794 6e-02 - 0.64 (0.23)
Proximal 1 4496 5e-02 3 0.64 (0.24) 1 370 1e-02 2 0.71 (0.26)

Least absolute Gradient 1 7926 1e-01 - 0.84 (0.05) 2 390 3e-02 - 0.93 (0.06)
deviations Gradient (GB) 1 8936 1e-01 - 0.85 (0.07)

Proximal 1 3147 6e-02 4 0.77 (0.05) 1 240 3e-02 6 0.84 (0.05)
Exponential Gradient 1 636 9e-02 - 0.45 (0.03) 1 450 2e-02 - 0.45 (0.03)

Gradient (GB) 3 2020 2e-02 - 0.46 (0.03)
Proximal 1 325 1e-01 6e-01 0.44 (0.03) 1 396 3e-02 4e-01 0.45 (0.03)

Hinge Gradient 3 589 9e-02 - 0.32 (0.03) 2 231 4e-02 - 0.30 (0.03)
Gradient (GB) 3 137 1e-01 - 0.36 (0.02)
Proximal 2 2342 7e-02 1 0.32 (0.02) 2 453 1e-02 4 0.29 (0.03)

Table 2: Generalization ability: average minimal validation errors (with standard deviations) and
associated parameters. For each block, boldface values are smallest errors.

Globally, we observe that generalization is enhanced by tree stumps rather than by deeper decisions
trees. Moreover, proximal boosting and its accelerated version do not help for the least squares loss, as
their average validation errors are similar or greater than vanilla gradient boosting (Table 2, see also
Table 4 for the uncorrelated design). However, proximal boosting definitely improves generalization
for the three other losses (particularly for least absolute deviations), compared to gradient boosting
and Grubb and Bagnell’s modification.

Last but not least, accelerated proximal boosting generally provides competitive models but with
very few weak learners, as exemplified by the least absolute deviations and hinge losses in Table 2. In
addition, let us remark that accelerated proximal boosting always outperforms accelerated gradient
boosting [Biau et al., 2018].

5.1.5 Intermediate conclusion

To conclude, the convergence rate of proximal boosting, as well as its generalization ability, depend
both on the shrinkage coefficient ν and the proximal step λ (the latter is important mainly for non-
differentiable losses).

Moreover, with accelerated boosting, the size of the best boosting model is impacted by ν but not
clearly by λ. This is also true for the potential divergence of the training loss, which, again, is not a
defect since it always occurs in the overfitting regime.

All in all, the learning rate ν and the proximal step λ have a noticeable impact on the behavior of
(accelerated) proximal boosting. Consequently, these parameters have to be carefully tuned.

As an additional piece of conclusion, Nesterov’s acceleration always provides far smaller boosting
models (compared to without acceleration) with a comparable generalization ability and even a clear
improvement when using the hinge loss.
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Eventually, compared to (accelerated) gradient boosting, (accelerated) proximal boosting always
prevails (regarding convergence and generalization) for non-differentiable losses and offers similar per-
formances for differentiable losses.

5.2 Comparison in real-world cases

This section aims at assessing, on real-world datasets, the generalization ability and the size of the
final model for the proposed approaches (see Section 3.3) in comparison to known variants. Intuitively,
Algorithm 2 is supposed to behave better than gradient-type boosting when the loss function ` is
not differentiable. Benefits are expected on the generalization ability (proximal methods are able to
minimize C(f), with f ∈ spanF , as much as one wants) and on the number of iterations (or weak
learners) necessary for producing accurate predictions (weak learners (gt)t are more likely to minimize
C if they are based on proximal methods).

Comparison is based on four datasets (available on the UCI Machine Learning repository), for
which the characteristics are described in Table 3. The first two are univariate regression datasets,
while the three others relate to binary classification problems. In both situations, the sample is
split into a training set (50%), a validation set (25%) and a test set (25%). The parameters of the
methods (number of weak classifiers T ∈ [1, 2000], maximal depth of decision trees varying in [1, 3, 5],
learning rate ν ∈ {10−4, 10−3, 10−2, 10−1} and proximal step λ ∈ {10−3, 10−2, . . . , 102}) are selected
as minimizers of the loss computed on the validation set for models fitted on the training set. Then,
models are refitted on the training and the validation sets with selected parameters. Finally, the
generalization ability of the methods are estimated by computing the loss (and the misclassification
rate for classification models) on the test set. These quantities are reported through statistics computed
on 20 random splits of the datasets.

Dataset n d Type
crime 1994 101 regression
wine 1599 11 regression
adult 30162 13 classification
advertisements 2359 1558 classification
spam 4601 57 classification

Table 3: Real-world datasets.

The losses considered in these experiments are least squares, least absolute deviations and pinball
(with τ = 0.9) for the regression problems, as well as exponential (with β = 1) and hinge for the
classification tasks (see Table 1 for a quick definition and Appendix D for the details). Since random
forests [Breiman, 2001] and extreme gradient boosting [Chen and Guestrin, 2016] are competitive ag-
gregating methods designed for least squares regression and classification, they have also been included
in the numerical analysis as benchmarks. The parameters of random forests (except the number of
trees fixed to 2000 since the more, the better) and extreme gradient boosting (nicknamed XGBoost
and parameterized with the exponential loss for classification) are selected in accordance with the
evaluation procedure described above.

5.2.1 Regression problems

Test losses for the least squares (left), least absolute deviations (middle) and pinball (right) losses are
described in Figure 5, along with the number of weak learners selected in Figure 6. First of all, let us
remark that the numbers of weak learners (alternatively referred to as model sizes) can be compared
across methods since for a given pair task/dataset, the maximal depth tree selected is roughly the
same for all methods (as exemplified in Figure 12).

Regarding the least squares setting, let us remind that gradient and proximal boosting boil down
to be the same method. We observe that they achieve a precision comparable to extreme gradient
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boosting and better than that of random forests. Moreover, accelerated versions of boosting methods
do not produce more accurate models than vanilla boosting but with much less weak learners (which
is a great advantage, already observed in Biau et al. [2018]). A possible explanation concerning the
lower precision of accelerated boosting is that convergence is so fast, that tuning parameters becomes
very tricky.

Looking now at least absolute deviations and pinball losses, we observe that proximal boosting
achieves a better precision than gradient boosting (particularly for the pinball loss) with equally sized
or smaller final models.

In comparison to Grubb and Bagnell’s method, proximal boosting achieves comparable precisions
on the three tasks but with final models that tend to be smaller.

Figure 5: Losses on the test datasets for the least squares (left), least absolute deviations (middle) and
pinball (right) losses.

Figure 6: Selected number of weak learners for the least squares (left), least absolute deviations
(middle) and pinball (right) losses.

For the two non-differentiable loss functions considered here (least absolute deviations and pinball
losses), the good performances of subgradient-based boosting could be explained by the following rea-
son: in this numerical experiment, we are interested in the test loss, which does not require minimizing
the training loss entirely. Thus, even though subgradient techniques may not converge, the decrease
of the empirical loss may be sufficient for achieving good generalization performances.

5.2.2 Classification problems

Losses (left) and misclassification rates (right) computed on the test dataset are depicted in Figure 7
for exponential (top) and hinge (bottom) losses. Figure 8 shows that the selected number of weak
learners for both losses.
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One can observe that for the exponential loss, gradient and proximal boosting achieve comparable
errors and misclassification rates but outperform random forests and extreme gradient boosting. In
comparison, Grubb and Bagnell’s method performs sometimes slightly better than proximal boosting,
but the size of its final model (as well as that of gradient boosting, extreme gradient boosting and
random forests) is always bigger than than of proximal boosting.

For the non-differentiable hinge loss, proximal boosting, accompanied by Grubb and Bagnell’s
method, clearly outperform gradient-based techniques, concerning both the loss value and the mis-
classification rate. This is in agreement with what was expected. In addition, as already observed
in the synthetic numerical experiment, this is a situation where Nesterov’s acceleration improves the
performance of gradient and proximal boosting models, accelerated proximal boosting being the more
accurate.

Figure 7: Losses (left) and misclassification rates (right) on the test datasets for the exponential (top)
and hinge (bottom) losses.
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Figure 8: Selected number of weak learners for the exponential (left) and the hinge (right) losses.

6 Conclusion

This paper has introduced a novel boosting algorithm, along with an accelerated variant, which have
appeal for non-differentiable loss functions `. The main idea is to use a proximal-based direction of
optimization, which can be coupled with Nesterov’s acceleration (as already introduced to boosting
by Biau et al. [2018]). A theoretical study of the proposed algorithm demonstrates convergence from
an optimization point of view and derives recursive formulas to implement efficiently the accelerated
variant.

Numerical experiments on synthetic data show a significant impact of the newly introduced pa-
rameter λ, but also improvements on regular gradient boosting for adequate values of λ. Moreover, in
real-world situations, the proposed proximal boosting algorithm achieves comparable or better accura-
cies than (extreme) gradient boosting, Grubb and Bagnell’s generalized boosting and random forests,
depending on the loss employed and the dataset. Overall, proximal boosting tends to use less weak
learners than competitors.

Regarding the accelerated variant, accuracy can be a little damaged but final boosting models gain
by a dramatically reduced size. Moreover, accelerated proximal boosting may be the most performant
model in some situation, such as building a classifier with the hinge loss.

We believe that the connection between boosting and functional optimization can be much more
investigated. In particular, advances in optimization theory can spread to boosting, like the recently
revisited Frank-Wolfe algorithm impacted boosting [Jaggi, 2013, Wang et al., 2015]. This may also
hold true for non-differentiable and non-convex optimization (see for instance [Ochs et al., 2014]).
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P. Bühlmann and T. Hothorn. Boosting Algorithms: Regularization, Prediction and Model Fitting.
Statistical Science, 22(4):477–505, 2007.

T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794,
New York, NY, USA, 2016. ACM.

P. Combettes and V. Wajs. Signal Recovery by Proximal Forward-Backward Splitting. Multiscale
Modeling & Simulation, 4(4):1168–1200, 2005.

Y. Freund. Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2):
256–285, 1995.

Y. Freund and R.E. Schapire. Experiments with a New Boosting Algorithm. In Proceedings of
the Thirteenth International Conference on International Conference on Machine Learning, San
Francisco, CA, USA, 1996.

Y. Freund and R.E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Ap-
plication to Boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

J. Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4):367–378,
February 2002.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting
(with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2):337–407, 2000.

A. Grubb and J.A. Bagnell. Generalized Boosting Algorithms for Convex Optimization. In Proceedings
of The 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011.

M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In Proceedings of
The 30th International Conference on Machine Learning, pages 427–435, Atlanta, GA, USA, 2013.

J. Lin, L. Rosasco, and D.-X. Zhou. Iterative Regularization for Learning with Convex Loss Functions.
Journal of Machine Learning Research, 17(77):1–38, 2016.

19



L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Boosting Algorithms as Gradient Descent. In S.A.
Solla, T.K. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems, pages
512–518. MIT Press, 2000a.

L. Mason, J. Baxter, P.L. Bartlett, and M. Frean. Functional gradient techniques for combining
hypotheses. In A.J. Smola, P.L. Bartlett, B. Shölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 221–246. The MIT Press, 2000b.
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A Derivation of boosting weights

When Nesterov’s acceleration is on ((αt)t∈N is defined by Equation (1)), the update rule becomes (see
Line 11 in Algorithm 2):

ft′+1 = (1 + αt′)ft′ − αt′ft′−1 + νγt′+1gt′+1,
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for all positive integers t′ ≤ T−1. Let us denote, for each iteration t′ ∈ {1, . . . , T−1}, ft′ =
∑t′

t=0 w
(t′)
t gt

the expansion of ft′ . Then

ft′+1 =

t′−1∑
t=0

(
(1 + αt′)w

(t′)
t − αt′w(t′−1)

t

)
gt + (1 + αt′)w

(t′)
t′ gt′ + νγt′+1gt′+1.

First, we see that the weights of gt′ and gt′+1 in the expansion of ft′+1 are respectively:{
w

(t′+1)
t′ = (1 + αt′)w

(t′)
t′

w
(t′+1)
t′+1 = νγt′+1.

Second, for each t ∈ {0, . . . , t′ − 1}, the weight of gt in the expansion of ft′+1 is defined by:

w
(t′+1)
t = (1 + αt′)w

(t′)
t − αt′w(t′−1)

t .

Therefore, considering that weights take value 0 before being defined, i.e. w
(t−1)
t = 0, we have:

w
(t′+1)
t − w(t′)

t = αt′(w
(t′)
t − w(t′−1)

t ) =

 t′∏
k=t

αk

 (w
(t)
t − w

(t−1)
t ) =

 t′∏
k=t

αk

w
(t)
t .

It follows that:

w
(t′+1)
t = w

(t′)
t +

 t′∏
k=t

αk

w
(t)
t = w

(t)
t +

t′∑
j=t

(
j∏
k=t

αk

)
w

(t)
t =

1 +

t′∑
j=t

j∏
k=t

αk

w
(t)
t .

Then, for k ≤ 1, one has αk = 0, so w
(t′+1)
0 = w

(0)
0 = 1 and w

(t′+1)
1 = w

(1)
1 = νγ1. Now, remarking

that, for all t ≥ 2, w
(t)
t = νγt, we can conclude that the weights of fT are:

w0 = 1

w1 = νγ1

wt =
(

1 +
∑T−1
j=t

∏j
k=t αk

)
νγt,∀t ∈ {2, . . . , T − 1}

wT = νγT .

In a computational perspective, it may be efficient to update the weights, at each iteration t,
according to the following recursion:

w
(0)
0 = 1

w
(0)
1 = νγ1

w
(1)
1 = νγ1

w
(t+1)
j = (w

(t)
j − w

(t−1)
j )(1 + αt) + w

(t−1)
j ,∀j ∈ {1, . . . , t}

w
(t+1)
t+1 = νγt+1.

(8)

B Analysis of the approximated proximal point method

Let us consider the optimization problem

minimize
x∈Rn

F (x), (P2)

where F : Rn → R is:
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(C) convex and differentiable;

(SM) L-strongly smooth (for some L > 0): ∀x, x′ ∈ Rn:

F (x′) ≤ F (x) + 〈∇F (x), x′ − x〉`2 +
L

2
‖x′ − x‖2`2 ;

(SC) κ-strongly convex (for some κ > 0): ∀x, x′ ∈ Rn:

F (x′) ≥ F (x) + 〈∇F (x), x′ − x〉`2 +
κ

2
‖x′ − x‖2`2 .

For an operator P : Rn → Rn, we consider the approximated proximal point method, described
in Algorithm 3. It is similar to the proximal point iteration but makes use of a modified direction of
update (P (gt) instead of gt). In particular, let us remark that when P (x) = x, Algorithm 3 recovers
the original proximal point method.

Algorithm 3 Approximated proximal point method.

Input: λ > 0 (proximal step), P : Rn → Rn (approximation operator).
1: Set x0 ∈ Rn (initialization).
2: for t = 0 to T − 1 do
3: gt ← 1

λ (xt − proxλF (xt)).
4: Set xt+1 = xt − λP (gt).
5: end for

Output: xT .

Linear convergence of Algorithm 3 under the edge property (Assumption (9)) is stated in Theorem 5.

Theorem 5. Let F : Rn → R be a function satisfying Assumptions (C), (SM) and (SC) and P :
Rn → Rn be any operator. Let (xt)t be a sequence generated by Algorithm 3 and assume that there
exists ζ ∈ (0, 1] such that for any iteration t:

‖gt − P (gt)‖2`2 ≤ (1− ζ2) ‖gt‖2`2 . (9)

Let {x?} ∈ arg minx∈Rn F (x) (well defined by strong convexity), and choose λ = ζ2

8L . Then,

F (xT )− F (x?) ≤
(

1− ζ2κ

9L

)T
(F (x0)− F (x?)) .

Proof. First of all, let us remark that:

1. Assumptions (C) and (SM) imply L-Lipschitz continuity of ∇F [Nesterov, 2004, Theorem 2.1.5]:

∀x, x′ ∈ Rn : ‖∇F (x)−∇F (x′)‖`2 ≤ L ‖x− x
′‖`2 ; (10)

2. Assumptions (C) and (SC) lead to the upper bound [Nesterov, 2004, Theorem 2.1.10]:

∀x ∈ Rn : 2κ (F (x)− F (x?)) ≤ ‖∇F (x)‖`2 . (11)
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From Assumption (SM) and by the update rule for xt+1 in Algorithm 3:

F (xt+1) ≤ F (xt) + 〈∇F (xt),−λP (gt)〉+
Lλ2

2
‖P (gt)‖2`2

≤ F (xt)− λ〈gt, P (gt)〉 − λ〈∇F (xt)− gt, P (gt)〉+
Lλ2

2
‖P (gt)‖2`2 . (12)

Now, from Assumption (9):

−λ〈gt, P (gt)〉 =
λ

2

(
‖gt − P (gt)‖2`2 − ‖gt‖

2
`2
− ‖P (gt)‖2`2

)
≤ λ

2

[
(1− ζ2) ‖gt‖2`2 − ‖gt‖

2
`2
− ‖P (gt)‖2`2

]
= −λζ

2

2
‖gt‖2`2 −

λ

2
‖P (gt)‖2`2 . (13)

Besides, given that, by definition of the proximal operator, gt = ∇F (proxλF (xt)), one has:

‖∇F (xt)− gt‖`2 = ‖∇F (xt)−∇F (proxλF (xt))‖`2
≤ L ‖xt − proxλF (xt)‖`2 (using Equation (10))

≤ λL ‖gt‖`2 (definition of gt). (14)

So,

−λ〈∇F (xt)− gt, P (gt)〉 ≤ λ ‖∇F (xt)− gt‖`2 ‖P (gt)‖`2 (Cauchy-Schwarz)

≤ λ2L ‖gt‖`2 ‖P (gt)‖`2 (Equation (14))

≤ 2λ2L ‖gt‖2`2 (‖P (gt)‖`2 ≤ 2 ‖gt‖`2 by Assumption (9)).

(15)

Combining Equations (12), (13) and (15):

F (xt+1) ≤ F (xt)−
λζ2

2
‖gt‖2`2 −

λ

2
‖P (gt)‖2`2 + 2λ2L ‖gt‖2`2 +

Lλ2

2
‖P (gt)‖2`2

= F (xt)− λ
(
ζ2

2
− 2λL

)
‖gt‖2`2 −

λ

2
(1− Lλ) ‖P (gt)‖2`2 .

Now, choosing λ = ζ2

8L , one has −λ2 (1− Lλ) ‖P (gt)‖2`2 ≤ 0 and
(
ζ2

2 − 2λL
)

= 1
2 , leading to:

F (xt+1) ≤ F (xt)−
ζ4

16L
‖gt‖2`2 . (16)

Let us remark that, by Equation (11):

2κ (F (xt)− F (x?)) ≤ ‖∇F (xt)‖`2
≤ ‖∇F (xt)− gt‖`2 + ‖gt‖`2
≤ (1 + λL) ‖gt‖`2 (Equation (14))

≤
(

1 +
ζ2

8

)
‖gt‖`2

(
λ =

ζ2

8L

)
,

that is,

‖gt‖`2 ≥
16κ

8 + ζ2
(F (xt)− F (x?)) .
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So, from Equation (16),

F (xt+1)− F (x?) ≤ F (xt)− F (x?)− ζ4

16L
‖gt‖2`2

≤
(

1− ζ4

16L

16κ

8 + ζ2

)
(F (xt)− F (x?))

=

(
1− κ

L

ζ4

8 + ζ2

)
(F (xt)− F (x?))

≤
(

1− κ

L

ζ2

9

)
(F (xt)− F (x?))

(
∀x ∈ [0, 1],

x2

8 + x
≥ x2

9

)
≤
(

1− ζ2κ

9L

)t+1

(F (x0)− F (x?)) (by induction).

C Additional numerical results

C.1 Uncorrelated synthetic dataset

This section provides the numerical results for a variant of the regression and classification models
used in Section 5.

Regression : n = 800, d = 100, Y = − sin(2X1) +X2
2 +X3 − exp(−X4) + Z0,0.5.

Classification : n = 1500, d = 50, Y = 21X1+X3
4+X9+sin(X12X18)+Z0,0.1>0.38 − 1.

In both cases, we consider an input random variable X ∈ Rd, the covariate of which, denoted
(xj)1≤j≤d, are uniformly distributed over (−1, 1)d (uncorrelated design) and the random variable Zµ,σ2

represents an additive and independent noise normally distributed with mean µ ∈ R and variance σ2.
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Figure 9: Training losses for two values of maximal depth (3 in blue, 15 in red) and Grubb and
Bagnell’s residual (dashed lines) – number of iterations on the horizontal axis.

Figure 10: Training losses of proximal boosting (solid line) and its accelerated version (dashed line) for
several values of ν – number of iterations on the horizontal axis. For each curve, the iteration where
the minimum validation loss is achieved is represented by a cross.
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Figure 11: Training losses of proximal boosting (solid line) and its accelerated version (dashed line) for
several values of λ – number of iterations on the horizontal axis. For each curve, the iteration where
the minimum validation loss is achieved is represented by a cross.

Slow Fast
Loss Method Depth T ν λ Error Depth T ν λ Error
Least squares Gradient 1 503 8e-02 - 0.31 (0.02) 1 405 2e-02 - 0.31 (0.02)

Gradient (GB) 3 2399 1e-02 - 0.33 (0.03)
Proximal 1 503 8e-02 5e-01 0.31 (0.02) 1 405 2e-02 1e-01 0.31 (0.02)

Least absolute Gradient 1 1501 8e-02 - 0.65 (0.03) 1 179 5e-02 - 0.64 (0.02)
deviations Gradient (GB) 2 3011 8e-02 - 0.69 (0.03)

Proximal 1 510 8e-02 6 0.63 (0.02) 1 284 2e-02 7 0.63 (0.02)
Exponential Gradient 1 237 1e-01 - 0.54 (0.04) 1 346 2e-02 - 0.55 (0.04)

Gradient (GB) 3 1972 2e-02 - 0.56 (0.04)
Proximal 1 233 1e-01 7e-01 0.54 (0.04) 1 425 4e-02 9e-01 0.54 (0.04)

Hinge Gradient 3 681 7e-02 - 0.39 (0.04) 1 433 3e-02 - 0.37 (0.03)
Gradient (GB) 3 95 1e-01 - 0.41 (0.03)
Proximal 2 1362 5e-02 5e-02 0.37 (0.03) 2 305 3e-02 2 0.35 (0.03)

Table 4: Generalization ability: average minimal validation errors (with standard deviations) and
associated parameters. For each block, boldface values are smallest errors.

C.2 Real-world datasets

This part completes Section 5.2 by providing the average value of the maximal depth selected for base
learners.
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Figure 12: Selected value of maximal depth for the least squares (top left), least absolute deviations
(top middle) and pinball (top right), exponential (bottom left) and hinge (bottom right) losses.

D Implementation details

As explained previously, given a loss function ` : R × R → R, gradient and proximal boosting aim at
minimizing the risk functional

C(f) =
1

n

n∑
i=1

`(Yi, F (Xi)) = D(f(Xn
1 ))

for f ∈ spanF (where F is a class of weak learners f : Rd → R), thereby measuring the cost incurred
by predicting f(Xi) when the answer is Yi.

In the forthcoming subsections, implementation details are given for six popular losses: least
squares, least absolute deviations and pinball losses (regression), as well as exponential, logistic and
hinge losses (binary classification). In this latter case, the predicted label of a point x ∈ Rd is given
by +1 if f(x) ≥ 0 and −1 otherwise.

For each loss, we lay out the following information:

Definition: the mapping of the loss function ` : (y, y′) ∈ R2 7→ `(y, y′).

Initial estimator: the constant function f0 ∈ arg minf∈F0
C(f).

Line search: the optimal step size γt+1 ∈ arg minγ∈R C(ft + γgt).

(Sub)gradient: the direction of optimization to follow at the iterate ft.

Proximal operator: for all z ∈ Rn, proxλnD(z) = arg minu∈Rd λnD(u) + 1
2 ‖u− z‖

2
`2

.
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First, for the exponential and the logistic loss, the line search and the proximal operator have no
closed-form solution, but are known to be roots of some equations. In that case, we perform one or
several steps of the Newton-Raphson method to obtain an approximation of the desired quantity.

Second, when using decision trees as base learners, its common to perform a line search for each
leaf of the tree gt. In that case, the line search may take a simpler form than the one given below.

D.1 Least squares

Definition: `(y, y′) = (y − y′)2/2.

Initial estimator: f0 = 1
n

∑n
i=1 Yi.

Line search: γt+1 =

{∑n
i=1(Yi−ft(Xi))gt+1(Xi)∑n

i=1 gt+1(Xi)2
if
∑n
i=1 gt+1(Xi)

2 > 0

0 otherwise.

Gradient: ∇n C(ft) = ((ft(Xi)− Yi)/n)1≤i≤n.

Proximal operator: proxλnD(z) = ((λYi + zi)/(1 + λ))1≤i≤n.

D.2 Least absolute deviations

Definition: `(y, y′) = |y − y′|.

Initial estimator: f0 is the empirical median of the sample {y1, . . . , yn}.

Line search: γt+1 = arg min
γ∈{0}∪

{
Yi−ft(Xi)
gt+1(Xi)

:gt+1(Xi) 6=0
} C(ft + γgt).

Subradient: ∇̃n C(ft) = ((sign(ft(Xi)− Yi))/n)1≤i≤n, where for all x ∈ R, sign(x) =


−1 if x < 0

1 if x > 0

0 otherwise.

Proximal operator: proxλnD(z) =
(

max
(

0, 1− λ
|zi−Yi|

)
(zi − Yi) + Yi

)
1≤i≤n

.

D.3 Pinball

Definition: `(y, y′) = max(τ(y − y′), (τ − 1)(y − y′)), τ ∈ (0, 1).

Initial estimator: f0 is the τ -quantile of the sample {y1, . . . , yn}.

Line search: γt+1 = arg min
γ∈{0}∪

{
Yi−ft(Xi)
gt+1(Xi)

:gt+1(Xi) 6=0
} C(ft + γgt).

Subradient: ∇̃n C(ft) =




(τ − 1)/n if Yi − ft(Xi) < 0

τ/n if Yi − ft(Xi) > 0

0 otherwise


1≤i≤n

.

Proximal operator: proxλnD(z) =



zi + λτ if Yi − zi > λτ

zi + λ(τ − 1) if Yi − zi < λ(τ − 1)

Yi otherwise


1≤i≤n

.
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D.4 Exponential loss

Definition: `(y, y′) = exp(−βyy′), β > 0.

Initial estimator: f0 =
log( p

n−p )
2β , where p =

∑
1≤i≤n
Yi=1

1.

Line search: no closed-form solution.

Gradient: ∇n C(ft) =
(
−βYie−Yift(Xi)

n

)
1≤i≤n

.

Proximal operator: no closed-form solution.

D.5 Logistic loss

Definition: `(y, y′) = log2(1 + exp(−yy′)).

Initial estimator: f0 = log
(

p
n−p

)
, where p =

∑
1≤i≤n
Yi=1

1.

Line search: no closed-form solution.

Gradient: ∇n C(ft) =
(

−Yie−Yift(Xi)
n log2(1+e

−Yift(Xi))

)
1≤i≤n

.

Proximal operator: no closed-form solution.

D.6 Hinge loss

Definition: `(y, y′) = max(0, 1− yy′).

Initial estimator: f0 = sign (
∑n
i=1 Yi).

Line search: γt+1 = arg min
γ∈{0}∪

{
1−Yift(Xi)
Yigt+1(Xi)

:gt+1(Xi)6=0
} C(ft + γgt).

Subgradient: ∇̃n C(ft) =

({
−Yi/n if Yift(Xi) < 1

0 otherwise

)
1≤i≤n

.

Proximal operator: proxλnD(z) =



zi + λYi if Yizi < 1− λ
zi if Yizi > 1

Yi otherwise


1≤i≤n

.
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