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Batter piles are widely used in geotechnical engineering when substantial lat-
eral resistance is needed or to avoid the interference with existing underground
constructions. Nevertheless, there is a lack of fast numerical tools for nonlin-
ear soil-structure interactions problems for this type of foundation. A novel
hypoplastic macroelement is proposed, able to reproduce the nonlinear response
of a single batter pile in sand under monotonic and cyclic static loadings.
The behavior of batter piles (15◦, 30◦, and 45◦) is first numerically investi-
gated using 3D finite element modeling and compared with the behavior of
vertical piles. It is shown that their response mainly depends on the pile incli-
nation and the loading direction. Then, starting from the macroelement for
single vertical piles in sand by Li et al (Acta Geotechnica, 11(2):373-390, 2016),
an extension is proposed to take into account the pile inclination introduc-
ing simple analytical equations in the expression describing the failure surface.
3D finite element numerical models are adopted to validate the macroelement
that is proven able to reproduce the nonlinear behavior in terms of global
quantities (forces-displacements) and to significantly reduce the necessary com-
putational time.
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List of symbols: 𝛽, pile inclination; 𝜆−a , 𝜆
+
a , scaling coefficients of Equations 1 and 2; 𝜆−𝓁 , 𝜆

+
𝓁 , scaling coefficient of Equation 3; 𝜆−m, 𝜆

+
m, scaling

coefficient of Equation 4; t, generalized load vector in the global coordinate system; t, generalized load vector in the local coordinate system; V ,
axial load in the global coordinate system; H, horizontal load in the global coordinate system; M, bending moment in the global coordinate system;
V, axial load in the local coordinate system; H, horizontal load in the local coordinate system; M, bending moment in the local coordinate system;
u, generalized displacement vector in the global coordinate system; u, generalized displacement vector in the local coordinate system; w, pile head
axial displacement in the global coordinate system; u, pile head horizontal displacement in the global coordinate system; 𝜃, pile head rotation; w,
pile head axial displacement in the local coordinate system; u, pile head horizontal displacement in the local coordinate system; 𝜃, pile head rotation;
, constitutive matrix; N, constitutive vector; Y(t), loading function; m, unit gradient of the loading surface; , tangent stiffness matrix in the
global coordinate system; , ̂, tangent stiffness matrices in the local coordinate system; D, pile diameter; H0, lateral resistance capacity of a single
vertical pile; H0𝛽 , lateral resistance capacity of a batter pile (inclination angle 𝛽) in the local coordinate system; M0, rotation resistance capacity of a
single vertical pile; M0𝛽 , rotation resistance capacity of a batter pile (inclination angle 𝛽) in the local coordinate system; Vt0, axial pull-out capacity of
a single vertical pile; Vt0𝛽 , axial pull-out capacity of single inclined pile (inclination angle 𝛽) in the local coordinate system; Vc0, axial bearing capacity
of a single vertical pile; Vc0𝛽 , axial bearing capacity of a single batter pile (inclination angle 𝛽) in the local coordinate system; 𝛼, coupling coefficient
for the failure surface
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1 INTRODUCTION

Batter piles (also called inclined piles or raked piles) are often used in geotechnical engineering, offshore engineering, and
bridge engineering to get a significant horizontal resistance and/or to avoid interferences with the existing underground
constructions. Although some design analysis methods are available,1-4 their nonlinear behavior is rarely addressed,
especially when cyclic or dynamic loadings are involved.

From 1972 to 1994, Meyerhof et al5-9 conducted important experimental campaigns to investigate the behavior and
bearing capacity of pile foundations and proposed capacity diagrams for both vertical and batter piles. Hanna and Afram10

studied experimentally the effect of pile inclination on the pull-out capacity of single batter piles in sand subjected to
axial loading. They found that it decreases slightly with increasing pile inclination. Similar conclusions were drawn from
the experimental work of Nazir and Nasr.11 Zhang et al12 performed centrifuge tests on single battered piles founded
in both medium-dense and loose sands considering 5 pile inclinations. The authors observed that the pile inclination
had significant effects in dense sands but minor effects in loose sands. Zhang et al13 stated that the lateral resistance of
individual batter piles is influenced by the pile inclination and the loading direction. Escoffier et al14 performed centrifuge
tests on inclined and vertical pile groups using static cyclic loadings and confirmed the higher horizontal stiffness provided
by the inclined pile group. This was also observed by Li15 and Li et al from dynamic sinusoidal16 and seismic17 centrifuge
test results. The authors stated that in certain cases, batter piles play a beneficial role on the seismic behavior of the pile
foundation system and that their performance depends not only on the characteristics of the earthquakes (frequency
content and amplitude) but also on the type of superstructures they support.

Mroueh and Shahrour18 studied numerically the pull-out capacity of batter piles and Padrón et al19 the kinematic inter-
nal forces using a coupled boundary element–finite element (FE) method. Numerical studies on the dynamic/seismic
behavior of batter piles are also reported in previous studies.15,20-25 Results show that batter piles can have a beneficial or a
detrimental role (depending on the earthquake and the superstructure) for soil-structure dynamic interaction problems.
Zhang et al12 suggested modified p− y curves that take into account the pile inclination. Similar earlier works can also be
found in Awoshika and Reese26 and Kubo.27

For soil-structure interaction problems, nonlinear FE calculations are often computational demanding. An alterna-
tive numerical technique that provides fast and realistic estimations of the structural response when geotechnical issues
are involved is the macroelement approach. The approach was introduced by Nova and Montrasio28 to describe the
behavior of a shallow footing on frictional soil with a single isotropic-hardening elastoplastic constitutive equation,
formulated in terms of generalized resultant forces and displacements. Further developments of the macroelement
approach for shallow footings under monotonic loading conditions can be found in recent works.29-33 More recently,
macroelements for shallow foundations for cyclic/dynamic loadings were also developed.34-39 Further contributions
and specific engineering applications of the macroelement can be found in other works.40-49 A comparison between
elastoplastic and hypoplastic macroelement formulations for shallow foundations is given in Grange et al50 and Sal-
ciarini et al.51 Interesting case studies with macroelements are, among others, the nonlinear behavior of a viaduct
considering dynamic soil-structure interaction,45 the stability of the Pisa tower,52 and soil-structure interaction of Ghirlan-
dina bell tower53,54 in Italy. By macroelement, the foundation bearing capacity can be interpreted using 2D or 3D
interaction diagrams rather than the classical bearing capacity factors. The geometric nonlinearity effects could be incor-
porated in the model formulation following an approach similar to the one proposed by Pisanò et al55 for shallow
footings.

For pile modeling, Correia56,57 proposed a macroelement based on the plasticity theory. Li et al58 introduced the first
hypoplastic macroelement for single vertical piles in sand, inspired from the hypoplastic macroelement of Salciarini
and Tamagnini39 for shallow footings. In order to reproduce cyclic effects, these 2 hypoplastic macroelements adopt the
“intergranular strain” concept from Niemunis and Herle,59 referred as internal displacement in the macroelement context.

In this work, the hypoplastic macroelement for single vertical piles proposed by Li et al58 is extended to batter
piles submitted to monotonic and cyclic static loadings. First, the differences of the behavior of vertical and batter
piles, considering 3 different inclination angles, are highlighted by means of nonlinear 3D FE modeling. The pile
behavior in the local x − y plane is thoroughly investigated. The results of the numerical simulations clearly show
that the batter piles response depends on the inclination angle (or on the orientation of the loads applied on the
pile head). Analytical equations are proposed to approximate this behavior and to modify the failure surface of the
hypoplastic macroelement for vertical piles, expressed in the local coordinate system. The transformation from the local
to the global coordinate system is described, and 3D FE modeling results are shown to validate the macroelement
performance.
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FIGURE 1 A, Batter piles with different inclination angles 𝛽; B, Definition of global (x̄, 𝑦̄, z̄) and local (x, y, z) coordinate systems [Colour
figure can be viewed at wileyonlinelibrary.com]

2 BEHAVIOR OF A SINGLE BATTER PILE IN SAND

2.1 Geometrical configurations
The behavior of a single batter pile in sand is analyzed by means of a series of 3D nonlinear FE simulations, considering
3 different pile inclinations (𝛽 = 15◦, 30◦, and 45◦). Counterclockwise batter pile inclinations are assumed as positive, as
shown in Figure 1. A zero value of the inclination 𝛽 denotes a perfectly vertical pile.

As shown in Figure 1B, 2 different reference frames are introduced. The first is a global reference frame, with coordinates
(x̄, 𝑦̄, z̄); the second is a local reference frame, with coordinates (x, y, z). In the following, the 𝑦̄-axis is assumed as positive
downwards; the positive direction of the y-axis, parallel to the pile axis, is from the pile head to the pile tip.*

2.2 Three-dimensional FE model of a single batter pile
In Li et al,58,61 the authors have successfully made a series of nonlinear FE simulations to investigate the behavior of a
single vertical pile in dense sand (Fontainebleau sand NE34). The same modeling approach is adopted hereafter for a
single batter pile in Fontainebleau NE34 sand.

3D solid elements (C3D8R) are used to discretize both the soil and the pile with the ABAQUS software.62 The FE mesh
has 17,577 nodes, 15,131 elements, and a total of 52,731 degrees of freedom (DOFs). The average element edge size is about
300 mm. The pile has a length of 13 m, a diameter D = 0.72 m, and a slenderness ratio of 18. Its behavior is considered
linear elastic with a Young's modulus of 3.8282 × 104 MPa and a Poisson's ratio 0.3. The bending stiffness EpIp of the pile
section is equal to 5.05 × 108 N·m2. According to the classification introduced by Poulos and Davis,1 the pile can thus
be considered as flexible.61 The hypoplastic model proposed by von Wolffersdorff63 with the intergranular strain concept
of Niemunis and Herle59 is adopted to describe the behavior of dense Fontainebleau sand NE34 under monotonic and
cyclic loading conditions. The implementation (in UMAT format) of the von Wolffersdorff model for the FE software
Abaqus62 is available from the Soilmodels Project website.64 The void ratio of the dense Fontainebleau sand is assumed
0.577 with minimum and maximum values of 0.51 and 0.88, respectively. Other parameters are calibrated from triaxial
test results15,58; they are provided in Table 1.

The behavior at the interface between the pile and the soil is modeled using a classical Coulomb model where the
tangential frictional stress is proportional to the normal stress. The friction coefficient is taken as 𝜇 = tan(𝜙c) = 0.62, with
𝜙c = 31.6◦ the critical friction angle of the Fontainebleau sand. A penalty algorithm is adopted for the contact behavior.
Drained conditions are assumed, and therefore, pore pressures are not considered.

*Meyerhof et al5,6,60 define the pile battered in the direction shown in Figure 1A as a “positive” batter pile. Other researchers prefer calling this specific
configuration as “out” batter2 or “forward” batter.13 Accordingly, the opposite direction is called “negative,” “in” or “reverse” batter, respectively.
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TABLE 1 Material parameters of the von Wolffersdorff constitutive
model for the Fountainebleau sand NE34

Constant Description Value

𝜑 Critical state friction angle, deg 31.6
hs Granular hardness, MPa 4800
n Exponent of limiting void ratio curves (–) 0.29
ed0 Reference minimum void ratio (–) 0.37
ec0 Reference critical void ratio (–) 0.88
ei0 Reference maximum void ratio (–) 0.99
𝛼 Dependency of peak friction (–) 0.24
𝛽 Dependency of soil stiffness (–) 1.97
mR 5.0
mT 2.0
ruc Intergranular strain constants (–) 1.e-4
𝛽r 0.8
𝜒 6.0

FIGURE 2 Finite element discretization and boundary conditions adopted for a single batter pile with inclination 𝛽 = 15◦ [Colour figure
can be viewed at wileyonlinelibrary.com]

An elastic calculation is first performed to find the initial geo-stress field. For this calculation, the lateral earth pressure
is evaluated as K0 = 𝜈∕(1 − 𝜈), with 𝜈 = 0.25 the Poisson ratio. After this first step, the initial stress field is applied to the
FE model (“geostatic” ABAQUS procedure). The influence of the installation phase is neglected.

Figure 2 illustrates the FE discretization and the boundary conditions adopted in the simulations for a batter pile with
an inclination 𝛽 = 15◦. Because of symmetry with respect to the vertical plane containing the pile, only half of the problem
domain is discretized. Displacements are fixed in all directions at the base of the soil layer (rigid and perfectly rough
boundary). At the lateral boundaries (including the symmetry plane), the normal displacements are fixed.

2.3 Pull-out and bearing capacities
Numerical displacement-controlled pull-out tests (towards the negative direction of the local y axis) are performed to
quantify the pull-out capacity of the pile, using the asymptote-tangent geometrical method.65-67 As an example, Figure
3 shows the numerically calculated pull-out force as a function of the axial displacement at the pile head for a batter
pile with an inclination 𝛽 = 15◦ (in the local coordinate system). For this specific example, the pile pull-out capacity is
estimated equal to −4907.3 kN.

The results of the numerical simulations of axial compression and pull-out tests for vertical and batter piles (with
𝛽 = 15◦, 30◦, and 45◦) are shown in Figure 4 in terms of axial load vs normalized axial displacement curves (in the
local coordinate system). The values of compression and pull-out capacities for the different piles are summarized in
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FIGURE 3 Calculating the pull-out capacity of a batter pile (𝛽 = 15◦) with the asymptote-tangent method (local coordinate system)

FIGURE 4 Axial capacity: A, pull-out and bearing capacity of a vertical and batter piles (absolute values); B, zoom of pull-out region A
(local coordinate system)

TABLE 2 Axial pull-out and bearing capacities of piles for different inclination angles

𝜷 𝟎◦∗ 15◦ 30◦ 45◦

Vt0𝛽 , kN −5.010 × 103 −4.907 × 103 −4.890 × 103 −4.736 × 103

Vc0𝛽 , kN 2.590 × 104 2.280×104 1.940×104 1.430×104

Table 2. It can be seen that the pull-out capacity is decreasing with increasing pile inclination. This is in accordance with
experimental and numerical results found in the literature.5,10,11,15,18

Hanna and Afram10 proposed the following relation for the axial pull-out capacity Vt0𝛽 of batter piles, as a function of
the pull-out capacity of an identical vertical pile Vt0 and of pile inclination 𝛽 (in radians):

Vt0𝛽 = Vt0 cos(𝜆−a 𝛽) (1)

with 𝜆−a = 0.5. The results obtained from the pull-out simulations are compared with Equation 1 in Figure 5A. The
comparison shows a very good agreement between the FE results and the relation proposed by Hanna and Afram. From
this figure, it can be also observed that the decrease in pull-out capacity with increasing 𝛽 is relatively limited (less than
10%). This is due to the fact that the lateral shear strength at the soil-pile interface is not significantly affected by the pile
inclination, for the range of 𝛽 considered.

The computed values of the compression pile bearing capacity in Table 2 are also plotted as a function of the pile
inclination 𝛽 in Figure 5B. As for the pull-out capacity, the compression pile bearing capacity decreases with increasing
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FIGURE 5 Computed axial capacity of batter piles for different inclination angles: A, normalized pull-out capacity vs Equation 1; B,
normalized bearing capacity vs Equation 2 (local coordinate system)

FIGURE 6 Load vs normalized displacement curves of laterally loaded piles for different loading directions and inclination angles (local
coordinate system)

𝛽. This time, however, the effect is stronger, as a reduction of the order of more than 40% at 𝛽 = 45◦ is observed. This
behavior can be explained considering that—different from the lateral strength—the pile tip bearing capacity is strongly
affected by the inclination 𝛽 since (1) in batter piles, the inclination of the base of the pile with respect to the horizontal
axis is also equal to 𝛽, and this may reduce the tip bearing capacity, as in shallow footings; (2) as 𝛽 increases, the depth of
the pile tip decreases with cos 𝛽, reducing the stabilizing contribution of the lateral surcharge load.

Similar to Equation 1, we propose to interpolate the FE simulations compression pile bearing capacities for varying 𝛽 as

Vc0𝛽 = Vc0 cos(𝜆+a 𝛽), (2)

where 𝜆+a = 1.35; Vc0𝛽 is the bearing capacity of a single batter pile in sand inclined by an angle 𝛽, and Vc0 is the bearing
of the same pile standing vertically; see Figure 5B.

2.4 Lateral resistance
The numerical simulation results of lateral loading in both positive and negative x directions for vertical and batter piles
(with 𝛽 = 15◦, 30◦, and 45◦) are shown in Figure 6 as lateral load (absolute value) vs normalized lateral displacement
curves (in the local coordinate system). The lateral resistance for the different piles is summarized in Table 3.
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In can be seen in Figure 6 and Table 3 that the batter piles lateral resistance is greatly influenced by the pile inclination
and the loading direction. For any given inclination 𝛽 > 0, the lateral resistance of a pile submitted to a negative horizontal
force (H ≤ 0, reverse-battered) is larger than that of a forward-battered pile (H > 0). As suggested by Zhang et al,13 this can
be explained considering that in reverse-battered piles, the pile horizontal movement causes a positive Δ𝜎v in the soil in
front of the pile (Figure 7, soil element 2). This, in turns, produces a net increase in the pile lateral resistance, as compared
with a vertical pile. On the contrary, if the pile is forward-battered, the horizontal movement of the pile causes an upward
movement of the soil and thus a negative Δ𝜎v in the soil in front of the pile (Figure 7, soil element 3). Thus, the lateral
resistance is smaller than that of a vertical pile. This is in accordance with experimental results found in the literature.12

TABLE 3 Lateral resistance of batter piles for different loading directions
and inclination angles

𝛽 0◦∗ 15◦ 30◦ 45◦

H0𝛽 , kN, H > 0 0.56 × 104 0.50 × 104 0.40 × 104 0.32 × 104

H0𝛽 , kN, H ≤ 0 −0.56 × 104 −0.68 × 104 −0.88 × 104 −1.10 × 104

FIGURE 7 Pile inclination and loading direction effects on the stress state around the pile shaft (global (x̄, 𝑦̄, z̄) and local (x, y, z) coordinate
systems)

FIGURE 8 Computed normalized lateral resistance of batter piles for different inclination angles: comparison between FE results and
Equation 3 for (A) forward-battered piles (H > 0) and (B) reverse-battered piles (H ≤ 0)
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As for the pull-out and bearing capacities, the lateral resistances obtained in the FE simulations, as a function of the
inclination 𝛽 and the loading direction can be interpolated as

H0𝛽 =
{

H0 cos(𝜆+𝓁 𝛽) if H > 0;
H0{2 − cos(𝜆−𝓁 𝛽)} if H ≤ 0. (3)

Figure 8 shows that a good agreement can be obtained assuming the 2 scaling coefficients 𝜆+𝓁 = 1.3 and 𝜆−𝓁 = 2.0.

FIGURE 9 Overturning moment vs pile head rotation curves of laterally loaded piles for different loading directions and inclination angles

TABLE 4 Rotational resistance of batter piles for different loading directions and
inclination angles

𝜷 𝟎◦∗ 15◦ 30◦ 45◦

M0𝛽 , kN,M > 0 0.45 × 105 0.48 × 105 0.50 × 105 0.58 × 105

M0𝛽 , kN,M ≤ 0 −0.45 × 105 −0.42 × 105 −0.40 × 105 −0.38 × 105

FIGURE 10 Computed normalized lateral resistance of batter piles for different inclination angles: comparison between FE results and
Equation 4 for (A) forward-battered piles (M > 0) and (B) reverse-battered piles (M ≤ 0)
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2.5 Rotational resistance
The numerical simulation results in both positive and negative z directions for vertical and batter piles (with 𝛽 = 15◦, 30◦,
and 45◦) are shown in terms of bending moment (in absolute value) vs pile head rotation (in the local reference frame) in
Figure 9. The rotational resistances of the different piles are summarized in Table 4. Similar to the lateral resistance, pile
inclination and loading direction have a considerable influence on the rotational resistance.

As before, the FE rotational resistances for varying inclinations 𝛽 and loading directions can be interpolated as

M0𝛽 =
{

M0{2 − cos(𝜆+m𝛽)} if M > 0;
M0 cos(𝜆−m 𝛽) if M ≤ 0. (4)

Figure 10 shows that a good agreement can be obtained assuming the 2 scaling coefficients 𝜆+m = 1.0 and 𝜆−m = 0.8.
The results of the FE simulations interpolated by Equations 1 to 4 play a central role in the development of the

hypoplastic batter pile macroelement detailed in the following section.

3 HYPOPLASTIC MACROELEMENT FOR BATTER PILES

Based on the hypoplastic macroelement for single vertical piles in sand by Li et al58 and the results presented in Section
2, an extension is proposed hereafter to take into account the effects of pile inclination and loading direction on the pile
response. The macroelement introduced58 is inspired from the work of Salciarini and Tamagnini39 for shallow foundations
and adopts the “intergranular displacement” concept from Niemunis and Herle59 to provide the model with sufficient
memory of the previous loading history to accurately reproduce the soil-pile system behavior under cyclic loading.

In the following, the hypoplastic formulation of the macroelement for vertical piles is first briefly recalled. Then the
analytical equations proposed in Section 2 are introduced in the expression describing the failure surface, the transforma-
tion from the local to the global coordinate system is detailed, and finally, 3D FE simulations are used to test and validate
the macroelement's performance.

3.1 Macroelement constitutive equations
The hypoplastic macroelement constitutive equations are developed hereafter in the local (x, y) coordinate system. For
the particular case of 𝛽 = 0 (vertical pile), the local coordinate system coincides with the global coordinate system. As in
Li et al,58 the response of the soil-pile system is described with a “lumped” constitutive equation between the generalized
load vector t and the generalized displacement vector u, defined as

t ∶= {V , H, M∕D}T u ∶= {w, u, D𝜃}T , (5)

where V, H, and M are the axial force, transversal force, and bending moment at the pile head; w, u, and 𝜃 are the conju-
gated displacements and rotation; and D is the pile diameter, used here as a characteristic length scale to homogenize the
dimensions of the components of t and u.

The constitutive equation for a hypoplastic macroelement, written in rate—form to allow for nonlinear and irreversible
responses—has the following basic structure39,58:

ṫ = (t)u̇ + N(t)||u̇||, (6)

where the (3×3) matrix  and the (3×1) vector N are constitutive functions, possibly depending on the current load level
t. In Equation 6, the first term on the right-hand side represents the incrementally linear part of the constitutive equation.
The second term, nonlinear in u̇, is responsible for the incremental nonlinearity of the system response.68,69 After recasting
Equation 6 in a quasi-linear format, the hypoplastic equation reads

ṫ = (t, 𝜼) u̇, (7)

in which the tangent stiffness matrix  is given by

 = (t) + N(t)𝜼T 𝜼 ∶= u̇||u̇|| . (8)

It is worth noting that the tangent stiffness (t, 𝜼) varies continuously with the direction 𝜼 of the generalized velocity u̇.
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3.2 Definition of matrix L
The constitutive matrix  of Equation 6 is linked to the “pseudo-elastic” stiffness matrix 

e of the soil-pile system (under
load reversal at very small displacement levels) by the relation


e = mR ⇐⇒  = 1

mR


e = 1
mR

[ kvv 0 0
0 khh khm
0 khm kmm

]
, (9)

where kvv, khh, kmm, and khm are the axial, horizontal, rotational, and coupled horizontal-rotational stiffness coefficients
of the pile-soil system.

3.3 Definition of vector N
Following Niemunis,70 the constitutive vector N of Equation 6 can be recast in the following form:

N(t) = −Y (t)m(t), (10)

where m is a unit vector and the scalar function Y(t) ∈ (0, 1] is a suitable loading function. With the assumption of
Equation 10, the constitutive equation of the macroelement reads

ṫ = {u̇ − Y (t)m||u̇||}. (11)

The loading function Y(t), which controls the degree of nonlinearity of the system response, increases monotonically
with the distance of the current stress state t to the assumed ultimate failure surface of the soil-pile system:

F(t) = F(V , H, M∕D) = 0 (12)

in the generalized loading space.5,15,61,71-73

As in Li et al,58 the loading function is defined as follows. For each loading state t inside the failure surface, an image
state t∗ is defined on the failure surface by a simple projection from the origin of the loading space:

t∗ = 1
𝜉

t 𝜉 ∈ (0, 1]. (13)

The scalar multiplier 𝜉 is obtained by imposing the condition F(t∗) = 0. Taking 𝜉 as a suitable measure of the distance
of the current loading state from the failure surface, we adopt the following simple power law for the loading function Y:

Y (t) = 𝜉𝜅 (14)

with 𝜅 a material constant controlling the stiffness decay of the model response upon monotonic loading paths at constant
𝜼. It is worth noting that, for any 𝜉 = const. < 1, the equation

𝑓 (t) = F(t∕𝜉)|𝜉=const = 0 (15)

defines a “loading surface” in loading space, which is homothetic to the failure surface, but of smaller size, and contains
the current loading state t.

As far as the unit vector m, Li et al58 have shown that for states inside the failure surface, m can be taken as the unit
gradient of the loading function f (unit normal to the loading surface):

m = g g = 1||𝜕𝑓∕𝜕t|| 𝜕𝑓𝜕t
. (16)

The rationale for this choice is that, as the loading state approaches failure (ṫ → 𝟎 and Y → 1), m tends to the flow
direction of the current collapse mechanism and also to the unit normal to the failure surface (associative flow rule):

m →

(
u̇||u̇||

)
𝑓

= 𝜼𝑓 m → g𝑓 = 1||𝜕F∕𝜕t|| 𝜕F
𝜕t

, (17)
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which provides an associative flow rule at failure. In practice, although the failure locus defined by Equation 12 rep-
resents an attractor for the evolution Equation 11, the flow rule Equation 16 with f ≡ F does not guarantee that, for
complex loading conditions, the loading path will never cross the failure surface, reaching states with F > 0 (or Y > 1).
Therefore, to prevent the loading path to reach impossible states, the flow direction vector m in the close vicinity of the
failure surface is defined by

m = v||v|| v = [1 −s(Y , 𝜖)]g +s(Y , 𝜖)𝜼, (18)

where s is a smoothed Heaviside step function defined as

s(Y , 𝜖) =
⎧⎪⎨⎪⎩

0 for Y ≤ 1
1
2

[
1 − cos

(
Y−1
𝜖

𝜋
)]

for 1 < Y ≤ 1 + 𝜖

1 for Y > 1 + 𝜖,

(19)

with 𝜖 a small regularizing coefficient. According to Equation 18, the flow direction m equals gf on the failure surface,
while for states characterized by Y ≥ 1+𝜖, m is set equal to 𝜼, thus forcing ṫ ≃ 0—see Equation 11. A smooth interpolation
between these 2 limits is adopted in the region where Y ∈ (1, 1 + 𝜖). Experience indicates that in most circumstances, a
value of 𝜖 = 10−6 is adequate.

3.4 Extension to cyclic loading
The basic form of the hypoplastic constitutive Equations 6 or 11 is suitable for monotonic loading. The current loading
state being the only state variable, such formulation is however unable to keep memory of the previous loading history.
Such feature is nevertheless necessary to reproduce realistically the behavior of the pile-soil system under cyclic load-
ing. To overcome this limitation, following Salciarini and Tamagnini,39 an additional internal variable called “internal
displacement” 𝜹 is added to the set of the model state variables.

The internal displacement vector is equipped with the following evolution equation:

𝜹̇ = ̂(𝜹, 𝜼) u̇ ̂ =
{

 − 𝜌𝛽r𝜼𝛿𝜼
T
𝛿

if 𝜼𝛿 · 𝜼 > 0;
 if 𝜼𝛿 · 𝜼 ≤ 0. (20)

where  is the (3 × 3) identity matrix, the quantities

𝜼𝛿 ∶=
{

𝜹∕||𝜹|| (if ||𝜹|| > 0)
0 (if ||𝜹|| = 0) 𝜌 ∶= 1

R
||𝜹|| (21)

provide the direction of 𝜹 and a normalized measure of its magnitude, and 𝛽r and R are model constants. Equation 20
implies that, for sufficiently long monotonic displacement paths (𝜼 ≃ const, 𝜌 = 1), 𝜼𝛿 = 𝜼 and 𝜹̇ = 0, ie, 𝜹 is constant
and tangent to the displacement trajectory. Under a sharp change in the displacement path direction (𝜼 · 𝜼𝛿 < 0), 𝜹̇ = u̇
and the internal displacement changes its direction to adapt to the new loading path.

With the incorporation of the additional state variable, the constitutive equations of the macroelement takes the
format39,59

ṫ = ̂(t, 𝜹, 𝜼) u̇, (22)

where

̂ = [𝜌𝜒mT + (1 − 𝜌𝜒 )mR](t) + ̃(t, 𝜹, 𝜼), (23)

̃ =
{

𝜌𝜒 (1 − mT)(𝜼𝛿)𝜼T
𝛿
+ 𝜌𝜒N𝜼T

𝛿
(if 𝜼𝛿 · 𝜼 > 0)

𝜌𝜒 (mR − mT)(𝜼𝛿)𝜼T
𝛿

(if 𝜼𝛿 · 𝜼 ≤ 0), (24)

where 𝜒 , mT, and mR are model constants.
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3.5 Failure surface for batter piles
For the specific case of single vertical pile in sand (Fontainebleau sand NE34), Li et al58,61 proposed the following equation
for the failure surface (12), shown in Figure 11:

F(t) =
(

H
H0

)2

+
(

DM
DM0

)2

− 𝛼

(
H
H0

)(
DM
DM0

)
− 1 +

{
(V )

(
Vt0

Vc0

)2

+(−V)

}(
V

Vt0

)2

= 0, (25)

where the constants H0,M0,Vc0, and Vt0 represent the failure loads under pure horizontal, bending, axial compression,
and axial tension; 𝛼 is a model constant controlling the orientation of the failure surface in the H ∶ M∕D plane, and (x)
is the Heaviside step function, defined by

(x) =
{

1 if x > 0
0 if x ≤ 0 .

With this failure surface, the scalar multiplier 𝜉 providing the distance of the current loading state to the failure surface
has the closed form expression

𝜉 =

√(
H
H0

)2

+
(

DM
DM0

)2

− 𝛼

(
H
H0

)(
DM
DM0

)
+
(

V
V0

)2

, (26)

where V0 = Vc0 for V > 0 and V0 = Vt0 otherwise, while the loading surface defined by Equation 15 is given by

𝑓 (t) =
(

H
h0

)2

+
(

DM
Dm0

)2

− 𝛼

(
H
h0

)(
DM
Dm0

)
− 1 +

{
(V )

(
vt0

vc0

)2

+(−V)

}(
V
vt0

)2

= 0, (27)

where
h0 = 𝜉H0 ≤ H0 m0 = 𝜉M0 ≤ M0 vc0 = 𝜉Vc0 ≤ Vc0 vt0 = 𝜉Vt0 ≤ Vt0. (28)

When the loading surface moves towards the failure surface, plasticity develops. The unit gradient of the loading surface
m = g is shown in Figure 12.

As shown in Section 2, the pile inclination and the loading direction affect the axial, lateral, and bending batter pile
resistance. To take into account such effects in the failure and loading surfaces of the soil-pile system, Equations 25 and
27 are modified as follows:

F(t) =
(

H
H0𝛽

)2

+
(

DM
DM0𝛽

)2

− 𝛼

(
H

H0𝛽

)(
DM

DM0𝛽

)
− 1 +

{
(V )

(Vt0𝛽

Vc0𝛽

)2

+(−V)

}(
V

Vt0𝛽

)2

= 0, (29)

FIGURE 11 Failure surface of a single vertical pile in sand, Equation 25, after Li et al58,61 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 12 The unit gradient of the loading surface m, Equation 16 [Colour figure can be viewed at wileyonlinelibrary.com]

𝑓 (t) =
(

H
h0

)2

+
(

DM
Dm0

)2

− 𝛼

(
H
h0

)(
DM
Dm0

)
− 1 +

{
(V )

(
vt0

vc0

)2

+(−V)

}(
V
vt0

)2

= 0, (30)

where

h0 = 𝜉H0𝛽 ≤ H0𝛽 m0 = 𝜉M0𝛽 ≤ M0𝛽 vc0 = 𝜉Vc0𝛽 ≤ Vc0𝛽 vt0 = 𝜉Vt0𝛽 ≤ Vt0𝛽 (31)

and the quantities Vc0𝛽 , Vt0𝛽 , H0𝛽 , and M0𝛽 are provided by Equations 1 to 4 of Section 2.

3.6 From the local to the global reference frame
All equations in Sections 3.1 to 3.5 have been developed in the local reference frame, see Figure 1. For the implementation
of the macroelement in a general purpose FE software, it is however necessary to write them in the global reference frame.
This is done considering that the transformation of the generalized force and displacement vectors and of their rates to
the new reference frame are given by

t = t ṫ =  ṫ u = u u̇ = u̇ 𝜹 = 𝜹 𝜹̇ = 
̇
𝜹, (32)

where

 =

[ cos 𝛽 sin 𝛽 0
− sin 𝛽 cos 𝛽 0

0 0 1

]


−1 = 
T (33)

is the orthogonal transformation matrix and 𝛽 is the pile inclination angle. In the global reference frame, the macroele-
ment constitutive Equation 22 takes thus the following form:

ṫ = (t, 𝜹, 𝜼)u̇, where  = 
T
̂. (34)

The numerical validation of the novel hypoplastic macroelement for single batter piles in sand is presented in Section 4.

4 NUMERICAL VALIDATION

The hypoplastic macroelement for single batter piles in sand presented in Section 3 has been implemented in the FE
Matlab toolbox FedeasLab,74 using an explicit integration scheme with automatic error control.58,75,76 In the following, the
performance of the macroelement for a single batter pile is demonstrated comparing its response in a series of monotonic
and cyclic loading tests with 3D nonlinear FE simulations.
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TABLE 5 Hypoplastic macroelement constants adopted in the simulations, after Li et al58

Constant Values Description Group

H0 kN 0.56 × 104 Limit horizontal load
M0 kN·m 0.45 × 105 Limit bending moment
Vc0 kN 2.59 × 104 Axial bearing capacity (compr.)
Vt0 kN 0.50 × 104 Axial bearing capacity (tens.)
𝛼 (–) 1.50 H vs. (M∕D) coupling coefficient
𝜆+a (–) 1.35 Scaling coefficient for Vc0 Failure surface
𝜆−a (–) 0.50 Scaling coefficient for Vt0
𝜆+𝓁 (–) 1.30 Scaling coefficient for H0 > 0

𝜆−𝓁 (–) 2.00 Scaling coefficient for H0 ≤ 0

𝜆+m (–) 1.00 Scaling coefficient for M0 > 0
𝜆−m (–) 0.80 Scaling coefficient for M0 ≤ 0
kvv kN/m 1.45 × 105 Vertical stiffness
khh kN/m 2.39 × 105 Horizontal stiffness Pseudo–elastic stiffness
kmm kN/m 3.70 × 106 Rotational stiffness
khm kN/m 8.03 × 105 Coupled translation-rotation stiffness
𝜅 (–) 1.2 Loading function constant Stiffness degradation
mR (–) 5.0 Stiffness at load reversal point
mT (–) 2.0 Stiffness when neutral loading
R (–) 6.0 × 10−3 Range of linearity Cyclic behavior

2.0 × 10−2a (internal displacement)
𝛽r (–) 0.5 Rate of evolution of IS
𝜒 (–) 0.5 Transition of stiffness
𝛽 (◦) 0-45 Pile inclination Pile geometry

aValue adopted after cyclic loading simulations, obtained by trial and error. More advanced technique to
determine the parameters refers to Jin et al.77

FIGURE 13 Pile response to imposed axial displacement at fixed lateral displacement and rotation for different values of angle 𝛽; A, FE
simulation; B, macroelement predictions (local coordinate system)

The 3D nonlinear FE simulations adopt the von Wolffersdorff hypoplastic model63; details are provided in Section 2.
The macroelement constants are provided in Table 5, and the values of the scaling coefficients 𝜆±a , 𝜆±𝓁 , and 𝜆±m are given
in Section 2. With the only exception of the constant R, which has been finely tuned simulating cyclic loading tests, all the
other constants coincide with those adopted for the macroelement for the vertical pile, provided by Li et al.58 Therefore, the
macroelement results can be considered as “almost true, not calibrated” predictions of the corresponding FE simulations.
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4.1 Monotonic loading cases
Three monotonic loading cases are considered hereafter: (1) imposed axial displacement at fixed lateral displacement and
rotation, (2) imposed lateral displacement at fixed axial displacement and rotation, and (3) imposed rotation at fixed axial
and lateral displacements. For all load cases, simulations are performed considering different loading directions and pile
inclinations ranging from 0◦ (vertical pile) to 45◦.

Figures 13, 14, and 15 show the comparisons between FE and macroelement predictions for axial loading, lateral
loading, and bending, respectively, in terms of generalized load-displacement curves (in the local reference frame) for
different values of 𝛽 and loading directions.

The comparisons between the FE simulations and the macroelement predictions are very good for almost all loading
directions and pile inclinations. The most significant differences are the overestimation of the apparent horizontal stiff-
ness and the underestimation of the horizontal pile resistance in Figure 14, for positive lateral displacements and large
values of 𝛽.

Given the dramatic increase in the computational efficiency provided by the macroelement as compared with the 3D
nonlinear FE model, this result is quite encouraging. Furthermore, it implies that good predictions of the batter pile
response can be obtained from the knowledge of the mechanical response of an identical vertical pile, ie, most of the
material constants of the macroelement for batter piles are calibrated from data referring to the identical vertical pile.
The macroelement is definitely an innovative numerical tool then can be used in engineering offices, under certain
circumstances, for the design of vertical and batter piles.

FIGURE 14 Pile response to imposed lateral displacement at fixed axial displacement and rotation for different values of angle 𝛽; A, FE
simulation; B, macroelement predictions (local coordinate system)

FIGURE 15 Pile response to imposed rotation at fixed axial and lateral displacements for different values of angle 𝛽; A, FE simulation; B,
macroelement predictions (local coordinate system)
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4.2 Cyclic loading cases
A series of cyclic horizontal numerical loading tests are performed hereafter on piles with inclination angles ranging from
0◦ (vertical pile) to 45◦. The tests are performed under horizontal displacement control, at fixed vertical displacement,
with progressively increasing cyclic displacement amplitude.

FIGURE 16 Pile response to imposed horizontal cyclic displacements, 𝛽 = 0◦; A, FE simulation; B, macroelement predictions (global
coordinate system)

FIGURE 17 Pile response to imposed horizontal cyclic displacements, 𝛽 = 15◦; A, FE simulation; B, macroelement predictions (global
coordinate system)

FIGURE 18 Pile response to imposed horizontal cyclic displacements, 𝛽 = 30◦; A, FE simulation; B, macroelement predictions (global
coordinate system)
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FIGURE 19 Pile response to imposed horizontal cyclic displacements, 𝛽 = 45◦; A, FE simulation; B, macroelement predictions (global
coordinate system)

Figures 16-18, and 19 show the comparison between the FE and macroelement predictions for vertical and batter piles
with 𝛽 = 15◦, 30◦, and 45◦ in terms of horizontal load vs normalized horizontal displacement in the global reference
frame.

The results in Figures 16-18, and 19 indicate that, in general, the macroelement reproduces very well the 3D FE sim-
ulations. In particular, the comparison is very good for the vertical pile and the pile with 𝛽 = 15◦. For piles with more
important inclinations, comparison is still satisfactory. The macroelement is able to capture the progressive increase of the
hysteresis loops with increasing pile inclination 𝛽. Finally, the macroelement computational efficiency is even more sig-
nificant for cyclic than in monotonic loading cases: each simulation takes about 150 seconds (FedasLab74), while almost
48 hours are necessary for a 3D FE simulation performed with Abaqus Standard.62

5 CONCLUSIONS

In this paper, the hypoplastic macroelement model for single vertical piles in sand proposed by Li et al58 has been modified
to reproduce the response of single batter piles with inclinations as large as 45◦ . The extension to batter piles is incorpo-
rated by a modification of the ultimate failure locus and of the loading surfaces in the generalized loading space, taking
into account the variation of the ultimate failure loads in axial pull-out and compression, lateral loading, and bending
with the inclination angle 𝛽.

A striking feature of the novel batter pile macroelement is that a very good agreement can be achieved with nonlinear 3D
FE simulations, using the majority of the parameters of the macroelement for an identical vertical pile.58 The hypoplastic
macroelement for batter piles uses 6 additional scaling coefficients 𝜆±a , 𝜆±𝓁 , and 𝜆±m , determined by a series of preliminary
FE simulations. The fact that the value of 𝜆−a provided by our numerical study coincides with the one reported by Hanna
and Afram10 might suggest that the scaling coefficients are not affected by the pile length and diameter, as well as the soil
properties. However, further experimental and numerical investigations are necessary to clarify this point.

Last but not the least, the proposed macroelement is proven capable of reproducing the salient features of the soil-pile
system response with a similar level of accuracy as nonlinear 3D FE simulations but with a dramatic reduction of the com-
putational cost. This is particularly important for practical applications and design procedures in which the foundation is
subjected to a large number of cycles, such as performance-based earthquake design or offshore engineering applications.

Several shortcomings of the proposed macroelement should be also acknowledged. First of all, the current proposed
approach lies in the impossibility of describing rate-dependent effects originating from hydro-mechanical coupling (ie,
consolidation) in saturated soils, due to the “lumped” character of the constitutive equations of the macroelement. This
could be of importance in some particular circumstances, such as piled foundations in fine sands under seismic loading
conditions; see, eg, Martinelli and Tamagnini.78 Currently, the proposed macroelement is developed for a long flexible
batter pile embedded in dense sand (Fontainebleau sand NE34). The pile rigidity (related to the pile diameter, length,
sectional stiffness, and soil stiffness) and the pile section shape can influence the pile behavior. Furthermore, different soil
conditions (clays, multilayered deposits) and the interactions between piles can change the failure locus and the loading
surfaces. Further research studies are therefore needed to address these different points.
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