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ABSTRACT 
In order to keep tabs on the position and motion of our body in 
space, nature has given us a fascinating and very ingenious 
organ, the inner ear. Each inner ear includes five biological 
sensors - three angular and two linear accelerometers - which 
provide the body with the ability to sense angular and linear 
motion of the head with respect to inertial space. The aim of 
this paper is to present a mechanical model of the semicircular 
canals - which behave as angular accelerometers – in a specific 
kinematic environment. This model, implemented in 
Matlab/Simulink, simulates the rotary chair testing, which is 
one of the usual tests carried out during a diagnosis of the 
vestibular system. This model also allows to simulate several 
head rotations, and at the same time to show the state – excited 
or inhibited – of each angular sensors. Therefore, the developed 
model can be used as a learning and demonstrating tool either in 
the medicine field to understand the behavior of the sensors 
during any kind of motion or in the aeronautical field to relate 
the inner ear functioning to some sensory illusions. In addition, 
the first results also show the influence of the non-orthogonality 
of the canals on the sensors stimulation. 
 
1. INTRODUCTION 
The vestibular apparatus is located in the inner ear and is 
vital for our dynamic equilibrium. It constitutes a three 
dimensional inertial-guidance system. Since the 1950s, 
the advent of aerospace flight with its new demands has 
accelerated the pace of vestibular research. Furthermore, 
a full understanding of the mechanics of a healthy inner 
ear may contribute to the diagnosis and treatment of the 
vestibular part in a diseased state. This is the reason 

several authors have studied the mechanics of the 
semicircular canals (SCC), which detect changes in 
angular acceleration. The first model regarding the canals 
was proposed by W. Steinhausen [1], and is known as the 
classical torsion pendulum system, which has been the 
benchmark for subsequent works (Groen [2], Van 
Egmond [3], Njeugna [4], Fernandez [5]). Since 
Steinhausen, several models based on the resolution of 
the fluid flow within the canals have been established 
(Oman [6], Rabbitt [7], Steer [8], Van Buskirk [9]). All 
these models lead to a transfer function between the 
output of each canal, i.e. the discharge of the afferent 
nerve fibers innervating the canals, and the angular 
acceleration of the head with respect to an inertial space.  

The scope of this paper is to present a numerical model 
of the SCC in a kinematic environment. This model 
simulates the rotary chair testing, one of the procedures 
usually performed by specialists during a diagnosis of the 
vestibular system, which will be explained in-depth later 
in this paper. In order to achieve this goal, the model 
follows different steps. First, it solves the equations of 
motion in each coordinate system. Second, it computes 
the angular velocity vectors, which are then projected on 
the perpendicular of each canal plane. Third, the state of 
each sensor is derived according to their transfer 
function. A three-dimensional animation is also 
developed to visualize the state of each sensor in real 
time. After the introduction of the anatomy and 
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physiology of the sensory system, the modeling of a 
single-canal is presented. The kinematics problem is then 
formulated in the coordinate system attached to the 
canals. Finally, some numerical tests are performed. 

2.ANATOMY AND PHYSIOLOGY OF THE 
SEMICIRCULAR CANALS 
The vestibular system, which is also known as the organ 
of equilibrium, is located within the temporal region of 
the skull (in the inner ear), and consists of two 
specialized types of sensory systems: the semicircular 
canals - which respond to angular acceleration, and two 
otolith organs - which primarily detect changes in linear 
acceleration and gravity (Roman [10], Sauvage  [11]).  
These sensory systems consist of fluid-coupled structures 
that induce a motion-sensitive signal on the vestibular 
nerve. This signal is then transmitted to the nervous 
central system where other afferent systems such as 
vision and proprioception also converge for spatial 
orientation, postural stability and gaze stabilization. 
Anatomically, the semicircular canals consist bilaterally 
of three sets of membranous ducts suspended in a fluid 
called perilymph, and are oriented in almost mutually 
orthogonal planes (Figure 1).  
 
 

 
Figure 1: Global visualization of the inner ear and zoom on the 
3 canals (angular sensors). 

 
The membranous structure is filled with another 
Newtonian incompressible fluid called endolymph (Steer 
[8]). Each canal contains a gelatinous membrane known 
as the cupula that completely seals the semicircular 
canals (Hillman [12]). Angular motion sensation relies on 
inertial forces, caused by head accelerations, to generate 
endolymph fluid flow within the toroidal semicircular 
canals. More precisely, when the head rotates, the 
endolymph in the canals lags behind due to its inertia and 
produces a force across the cupula, deflecting it in the 
opposite direction of head movement. This deflection 
causes a sensation of motion. At a constant rotation rate, 

the endolymph in the canals tends to catch up with the 
rotation of the head due to the viscosity, eliminating the 
relative movement. Eventually, as long as the rotation 
rate remains constant, the cupula returns to a vertical 
position due to its elastic properties, and the sensation of 
motion eventually ceases.   
Because of the imperfect orthogonality of the canals, they 
all can be stimulated by any rotation. However, it has 
been shown that each canal admits a specific direction of 
stimulation, which maximizes the excitation (Rabbitt 
[13]). 
 
3. MODELING 
3.1 Single-canal macromechanics 
Angular motion sensation relies on inertial forces, caused 
by head accelerations, to generate endolymph fluid flow 
within the toroidal semicircular canals. This fluid flow is 
described by the torsion pendulum model, which arises 
from the works of Steinhausen [1], Groen [2], and refined 
by Rabbit [7]. It describes the semicircular canals as a 
second-order overdamped system governed by: 

²

²

d Q dQ
m c kQ f

dt dt
+ + =                (1) 

where Q is the endolymph volume displacement. The 
term m represents the mass of the fluid contained in the 
canal, c describes the viscous damping appearing in the 
duct, and k defines the stiffness of the cupula, which 
behaves as a restoring spring against the direction of fluid 
displacement. f  is an inertial forcing term defined by: 

( ( ))f R s dsρ= Ω×∫ ɺɺ
�               (2) 

where Ωɺɺ  is the angular acceleration of the head, and 
( )R s  is the local position vector of a point located on the 

streamline of the canal. In this model, the membranous 
semicircular canal is considered as a rigid-walled 
structure as its stiffness is largely higher than the stiffness 
of the cupula. A Poisson ratio of 0.48, close to usual 
considered value for incompressible material, is widely 
accepted for the cupula. Therefore, the cupula volume 
displacement can be approximated by the endolymph 
volume displacement. 
Equation (1) is transformed to Laplace domain to obtain 
the transfer function Fscc(s) between the cupula volume 

displacement cQ  and the angular head velocity Ωɺ , so 

that: 

1 2

( / )
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As the system is highly overdamped, the two time 

constants are approximated by 
1

1 k

cτ
≈  and 

2

1 c

mτ
≈ . The 

values that we use in the present model directly depend 
on the morphology of the canal and the physical 
properties of both the fluid and the cupula. For humans, 
these values are: m=1070g.cm-4, c=179 kg.s-1.cm-4, 
k=13.3 kg.s-².cm-4, d=0.76 g.cm-1(Rabbitt [7]). 

3.2 Enhanced formulation of the kinematics problem 
This work is based on the research of Adenot [14] who 
developed a model devoted to the analysis of the Coriolis 
Cross-Coupling Stimulus that was restricted to head 
coordinate frame.  The objective of the present model is 
to simulate a real case of vestibular diagnosis carried out 
by a specialist, which takes into account the non-
orthogonal coordinate system attached to the SCC.  
Figure 2 illustrates the usual procedure. The patient is 
strapped into a rotating chair, and experiences a rotational 
motion around an Earth vertical axis. Due to the inertia of 
the endolymph, the cupula inside the canal perpendicular 
to the axis of rotation is deflected. A perception of 
rotation results. The patient can also be made to undergo 
several head rotations in order to stimulate others canals. 
 

 
Figure 2: (a) Visualization of the diagnosis procedure, (b) 

Different coordinate systems : R0: (O, 0X
�

, 0Y
�

, 0Z
�

) fixed 

orthogonal coordinate system ,R1: (O, 1X
�

, 1Y
�

, 1Z
�

) orthogonal 

coordinate system attached to the rotating chair, R2: 

(A, 2X
�

, 2Y
�

, 2Z
�

) orthogonal coordinate system attached to the 

head, R3: (B, 3X
�

, 3Y
�

, 3Z
�

) non-orthogonal coordinate system 

defined by the 3 perpendiculars of the semicircular canals, (c) 
effect of head rotation on the semicircular canals, the 
displacement of the cupula is plotted on figure 6 (a) or (b). 

In the present model, the canals are assumed totally 
uncoupled, i.e. no fluid flow interactions between them 
are considered. Hence, a canal is stimulated if the 
component of the rotation vector along the perpendicular 
of this canal is non null. 

The different coordinate frames are defined in Figure 
2b. The movement of the coordinate frame R1 relatively 
to R0 is merely a rotation around a vertical axis, so that 
the angular velocity is given by 1/0 0 1z zω δ δ= =

� � �ɺ ɺ . The head 

angular velocity with respect to R1 is given by 

2/1 2 2 2X Y Zω α β γ= + +
� � ��

ɺɺ ɺ , where α, β, γ are respectively the 

rotation angles around the axis 2X
�

, 2Y
�

 and 2Z
�

. In this 

study, head movements are separated into three non-
simultaneous distinct rotations. Each head rotation must 
be separated into two successive stages in order to 
simulate real movements: downward and upward 
rotation, rotation to the left and then to the right, or tilt 
toward both shoulders. Hence, three cases are considered: 

 

- case 1: rotation around 2Z
�

, so that 

2 /1 2 0Z Zω γ γ= =
� ��
ɺ ɺ , 

- case 2: rotation around 2Y
�

, so 

that 2 /1 2 0 0( sin ) ( cos )Y X Yω β β δ β δ= = − +
� � ��
ɺ ɺ ɺ , 

- case 3: rotation around 2X
�

, so that 

2 /1 2 0 0( cos ) ( sin )X X Yω α α δ α δ= = +
� � ��
ɺ ɺ ɺ . 

 
According to the law of velocity composition, absolute 
head angular velocity relative to the coordinate frame R0 
is defined by 2/0 2/1 1/0ω ω ω= +� � �

. Expressions of these two 

vectors are listed in table 1. The computed angular 
velocity vector is then applied to the transfer function of 
each canal to yield cupula displacements. 
 
 Rotation vector 2 / 0ω

�����

 

Case 1 
2 / 0 2

( )ω γ δ= +
��
ɺɺ Z  

Case 2 
2 / 0 2 2 2 0 0 0

sin cos sin cosω δ β β δ β β δ β δ δ= − + + = − + +
� � � � � ��

ɺ ɺ ɺ ɺ ɺ ɺX Y Z X Y Z  

Case 3 
0 0 02 / 0 2 2 2

cos sinsin cos α δ α δ δω α δ α δ α = + += + +
� � �

ɺɺ ɺ

� � ��
ɺ ɺɺ X Y ZX Y Z

 
Table 1: expressions of the rotation and velocity vectors in R2 
and R0. 
 
3.3 Simulink model 
The global functioning of the Simulink model is 
explained in Figure 3. The motions experienced by the 
subject, i.e both the rotational motion of the chair and the 
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potential head movements, are first implemented using a 
graphic user interface (GUI). Equations of motion are 
then solved using the aerospace blockset available in 
Matlab/Simulink [15]. Finally, the state of each sensor is 
derived in real time according to their transfer function. 
In addition, a 3D animation has been programmed to 
visualize the movements of the sensors, and more 
particularly the displacement of the cupulas (Figure 4). 
The parameters of the model are for instance the angular 
velocity of the chair, the magnitudes of the rotating 
movements of the head, six instants giving the starting 
signal of each head movement, the Euler angles defining 
the coordinate system attached to the canals, etc. 
 

 
Figure 3: schematic block diagram of the simulink model. 
 
The model takes into account a coordinate frame attached 
to the canals. Indeed, it is important to determine the 
components of the angular acceleration vectors in this 
specific coordinate system as it permits to know whether 
each canal is stimulated or inhibited. This coordinate 
frame is derived by using experimental Euler angles, 
which define the perpendicular of each canal plane 

, ,a l pe e e
� � �

(anterior, lateral and posterior respectively), i.e 

their orientation in a 3D space relatively to the head 
coordinate frame. These angles were determined by 
several authors and more recently by Della Santina [16]. 
They are summarized in table 2. 

 
 
Figure 4: 3D visualization of the semicircular canals and the 
cupulas. In the dynamic view, the 3 canals are rotating 
according to the head rotation. The static views allow to 
observe the cupulas motions in real time. A “positive” motion 
means that the sensor is excited while a “negative” motion 
means that the sensor is inhibited. 
 
These values clearly show that the canals do not define 
an orthogonal coordinate system. In physical sense that 
means if the head rotates around the perpendicular axis of 
one canal, not only this canal but the others will be 
stimulated. Thus, we can conclude that for any rotation of 
the head, all the angular sensors should provide a 
stimulus. The component of any vector is therefore 
defined in the coordinate system attached to the canals 
according to the transformation matrix: 

a a a a a

p p p p p

l l l l l

c c c s s

M M M M c s c c s

c s s c c
ϕ θ ψ

θ ψ θ ψ θ
ϕ ψ ϕ ψ ϕ
ϕ θ ϕ ϕ θ

− 
 = = − 
 − 

 

with cosc = , sins = . 
However it is important to note that each canal admits a 
specific direction of stimulation, which maximizes the 
excitation: the lateral, anterior and posterior canals 
primarily sense yaw, roll and pitch respectively. 
 

ae
�

 2.212aψ ≈  0.177θ ≈a  0aϕ =  

le
�

 2.336pψ ≈  0pθ =  0.274pϕ ≈ −  

pe
�

 0lψ =  0.331lθ ≈ −  0.038lϕ ≈  

 
Table 2: Euler angles in radian which define the perpendicular 
of each canal. 
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4. SIMULATION RESULTS 
4.1Rotation movement of the chair 
This simulation mimics the usual diagnosis procedure of 
the lateral semicircular canal. During this first experiment 
the patient is strapped into a rotating chair. His head is 
kept fixed relatively to the device, and tilted downward 
of about 25° to bring the lateral semircircular canal in the 
plane of rotation. A constant angular velocity of 

100 /sδ = °ɺ , for instance, is then applied to the chair. This 
motion starts at t0=1s and achieves its steady state in 1s. 
This simulation lasts 40 seconds. The volume 
displacement of the cupula is shown on Figure 5. If the 
canals are considered to be orthogonal, only the lateral 
canal is stimulated. At the beginning of the rotation, the 
endolymph within the lateral canals lags behind due to its 
inertia. Consequently, the cupula is deflected in the 
opposite direction of the head rotation (Figure 5a). This 
deflection causes a sensation of motion. The angular 
velocity of the chair being sustained at a constant angular 
rate, the endolymph in the lateral canal tends to catch up 
with the rotation of the head eliminating the relative 
movement. Therefore, the cupula returns to its rest 
position due to its elastic properties, and the sensation of 
motion ceases.   
Figure 5(a) and (b) show the influence of the non-
orthogonality of the canals. From those plots we observe 
a slight displacement of the anterior and posterior cupula 
that does not appear in the case of an orthogonal system. 
However, the lateral canal experiences the highest 
stimulation as its plane is quasi-perpendicular to the axis 
of rotation. The displacement of the lateral cupula 
generates a sensation of rotation, which lasts about thirty 
second according to the imposed angular velocity. 
 
4.2 Rotation movement of the chair and then of the head 
The motion of the chair is the same as above. In this case, 
the subject does a downward and upward head rotation at 
time t=10s and t=25s respectively. For simplicity 
purpose, we here consider head rotation of 90°, even 
though lower magnitude should rather be considered so 
as to represent physiological head motions. This kind of 
head motion - during a rotational motion of the chair at a 
constant rate - elicits the stimulation of the other canals. 
The displacements of the cupulas can be observed in 
Figure 5(c) and (d). During the first 10s, the movement of 
the cupulas is the same as the previous experiment. At 
time t=10s, the subject does a downward head rotation of 
90° from the previous head position. In the case of an 
orthogonal set of canals, this head motion brings the 
posterior canal into the plane of rotation. 

 
Figure 5: Displacement of the cupula of each canal due to: (a) 
and (b) rotational movement of the chair, (c) and (d) rotational 
movement of the chair and of the head. Graphics (a) and (c) 
correspond to an orthogonal coordinate system R3, whereas (b) 
and (d) correspond to a non-orthogonal coordinate system R3. 
The non-orthogonality of R3 entails a slight response of the 
verticals canals. This kind of response might be similar in the 
case of the existence of coupling terms between the canals due 
to fluid flow. 
 
Therefore the cupula of the posterior canal is in turn 
deflected whereas the cupula of the lateral canal bends in 
the opposite direction as the fluid keeps moving 
relatively to the wall of the lateral canal. At time t=25s, 
the reverse phenomenon is produced as the subject makes 
an upward head rotation of the same magnitude. 

It can be noticed that the succession of head movements, 
during a constant rotation of the body, creates erroneous 
motion sensations known in the aeronautics field as the 
Coriolis Effect.  For example, at t=10s the downward 
motion of the head engenders a positive displacement of 
the lateral cupula as the fluid within the canal is still in 
motion. This means that the subject has a sensation of 
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rotation opposite to the rotation of the chair. 
Simultaneously - the anterior and posterior canals being 
brought into the plane of rotation - a sensation of rotation 
in the yaw plane relative to the body results. The 
resulting coriolis illusion experienced is here one rolling 
and yawing to the right. 

 
CONCLUSION 
This model simulates one of the usual tests carried out 
during a diagnosis of the vestibular sensory system. In 
addition, several rotation movements of the head can also 
be taken into account in order to stimulate the vertical 
canals. The model computes equations of motion in the 
coordinate system attached to the semicircular canals, 
which underline the fact that all the canals are stimulated 
for any rotation. This model also allows getting a better 
understanding of different kinds of erroneous motion 
sensations, which can appear during combined rotation 
motions and might be very interesting in the aeronautical 
field.  
At this moment, the major limitation of this model is that 
it does not entirely represent the diagnosis procedure of 
the vestibular system. Currently, the way to explore the 
vestibular component of the inner ear is to record the 
vestibulo-ocular-reflex (VOR) during different kind of 
experiments including the rotary chair test. This reflex is 
directly linked to the stimulation of the vestibular 
sensors. By examining this ocular reflex relatively to the 
imposed rotational movements, the specialists are able to 
detect any vestibular deficiencies. A potential 
improvement could be to implement a model of the 
vestibulo-ocular-reflex (Zupan [17]) to provide 
theoretical eye movements, which would be then 
compared with clinical recordings. Another perspective 
would be to include in the model the functioning of the 
otolith organs, which sense linear accelerations. 
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