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Modeling impact on
aluminium sandwich
including velocity effects
in honeycomb core

Amélie Kolopp, Raquel A Alvarado,

Samuel Rivallant and Christophe Bouvet

Abstract

A numerical model has been developed on metallic sandwich structures as an armor for

aeronautical applications. Several combinations of AA5086-H111 aluminium skins and

aluminium honeycomb core have been studied, considering medium-velocity and high-

energy impacts. The aim is to establish links between the sandwich performances and

the material and geometrical parameters. An elasto-plastic, strain-rate dependent

behavior has been implemented to represent the skins and the core. The sandwich
model has been calibrated and validated from the experimental data. Dynamic effects, as

well as strong couplings between the skins and the core appear to have a significant

effect on the target performance.
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Introduction

Metallic sandwich structures are typically assembled with steel or aluminium thin

skins and a metallic lightweight core such as honeycomb or foam. They appear to

be potential armor architectures, providing a good bending rigidity without a sig-

nificant increase in structural weight. Therefore, they are currently used for

instance as protective solution for the rear bulkhead of planes or against under-

water shocks in naval applications [1,2]. These structures are also foreseen as a
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l’Aéronautique et de l’Espace), Toulouse Cedex, France1

Corresponding author:

Christophe Bouvet, ISAE / ICA, 8 av. Edouard Belin, Toulouse 31000, France.

Email: christophe.bouvet@isae.fr



potential evolution of the aircraft fuselage [3], combining the usual requirements

(aerodynamics, conductivity, EMI, etc.) with a protection against foreign object

impacts (ice or engine debris for instance).

In this paper, we focus on the impact behavior of metallic sandwich structures

composed of AA5086-H111 aluminium skins and aluminium honeycomb core. We

consider medium-velocity and high energy normal impacts with a hard spherical

projectile (120m/s, 1 kJ). This paper follows on from a previous experimental and

numerical impact study of AA5086-H111 aluminium plates alone [4]. The aim of

this paper is to characterize the behavior of the core and to associate its properties

with the sandwich impact performances. Thus, the study is conducted with the

given experimental conditions and skin configurations. We consider the results of

the aluminium skins alone as a reference case. This approach is original as the skins

are mainly studied in sandwich structures and no particular selection criteria are

proposed to choose a core and to improve its behavior. Moreover, a first analysis

of skins-core couplings is proposed in this study.

A numerical model of aluminium honeycomb has been developed. A multi-scale

approach has been chosen to link the local behavior of the cells in compression and

the global behavior of the honeycomb in the sandwich. The results showed that

strain rate effects in the core compression influence significantly the sandwich

behavior and they have been considered in the model to correctly fit the

experiments.

Several numerical and experimental impact studies on sandwich structures are

available in the literature. Amongst these, only a few deal with the comparison of

skins alone and sandwich structures. Goldsmith et al. [5] evaluated the impact

performance of AA5052 aluminium plates (0.79mm for each skin) and of sand-

wiches with the same skins. Two 19.5mm thick cores have been tested: hexagonal

cell honeycomb ¼-5052-0.002 and Flexcore honeycomb 5052/F40-0.0019

(HexcelÕ).2 The ballistic limit of the skins alone, the sandwich with hexagonal

and Flexcore cell reached respectively 108, 56 and 128m/s. The authors underline

that the skins play a major role in the target resistance and energy absorption.

However, the core properties seem also to influence the ballistic limit. In the same

way, Buitrago et al. [6] conducted impact tests and numerical simulations on sand-

wiches with composite facesheets and on separated skins alone (carbon fiber with

epoxy resin, 2mm thick). The core is 20-mm thick aluminium honeycomb. In the

range of 92–548m/s, the skins were identified as the main factor responsible for the

energy absorption: 46%, 41% and 13% for the front, the rear skin and the core

respectively. More globally, Abrate [7] noted that for sandwiches with composite

skins, the penetration resistance is mostly governed by the facing resistance and the

overall rigidity of the structure. In addition, several studies on underwater shocks

on metallic plates and sandwich panels underlined that the back deflection of the

skins alone is higher than for sandwiches [1,2].

Regarding the numerical modeling of honeycomb, two main approaches can be

found in the literature. Several authors consider the real geometry of the honey-

comb cell in the sandwich structures [1,2,6]. To simplify the modeling, others



represent the honeycomb by the behavior of a unit vertical edge [8–10], mostly in

low-velocity impact applications. Aminanda et al. studied the crushing mechanisms

of several honeycombs using different cell walls (Nomex, aluminium, and paper).

They showed that the load–displacement is mostly driven by the vertical edges, and

they represent the honeycomb as grid of non-linear springs. This representation

showed a good correlation with the experiments. Asadi et al. [10] modeled the

aluminium honeycomb by a vertical edge stabilized by three branches with sym-

metry conditions. This model fitted the experiments considering elasto-plastic

behavior of the walls without strain rate sensibility. However, several authors

investigated the strain rate effects on cellular materials crushing behavior [11–14]

for shock and armor applications. It appears that dynamic effects can be noticed

over a strain rate threshold, which depends on the tested structure. Under this

limit, the behavior is closed to the quasi-static, which can be attributed to the

negligible change in the material behavior or by micro-inertial effects [11,12].

Radford et al. [13] and Elnasri [14] studied the dynamic effects occurring in the

metallic honeycomb during compression. Radford conducted compression tests

varying the initial velocity (using Hopkinson bars with 50m/s of initial velocity).

The experiments showed a significant load increase with the impact velocity. The

authors attributed this tendency to several possible mechanisms: strain rate effects

in the wall materials, dynamic buckling behavior (higher buckling modes activated

in dynamic compression) and propagation of a plastic wave before the onset of

buckling.

The experimental impact set-up, target description and impact results of sand-

wich targets are given in section ‘‘Experimental impact tests’’. Then, the honey-

comb modeling is described in section ‘‘Sandwich model description’’. The

numerical results of aluminium sandwich panels subjected to impacts are compared

with the experiments and an analysis is addressed in section ‘‘Numerical results and

model validation’’. In the final section, concluding remarks are given.

Experimental impact tests

Experimental set-up

Impact tests have been conducted using a gas gun. In this paper, we focus on

normal and centered impacts of rigid projectiles (see Figure 13 ). A rigid spherical

projectile of 30mm diameter and of 127 g is launched at an average velocity of

120m/s. The tested sandwich configurations are square targets of 200 to 400mm

side. The targets are simply supported at the rear by a square rigid frame of 170mm

side, regardless of the sample size. This boundary condition has been chosen to be

more representative of a real structure (600mm side panels) compared to clamping

along four edges, and to simplify the associated numerical model. Note that in the

present application, the tested armors are considered as non-structural protections,

which are placed before the working structure with a 50mm gap. Therefore, a back

deflection of the target inferior to this gap is allowed. In this paper, we define the



critical speed as the velocity for which the target partially fails without reaching the

structure perforation (rupture of the front or the rear skin only for example).

During the impact test, the projectile position is measured with a high-speed

camera (camera 1 in Figure 1) located perpendicularly to the trajectory. A second

camera is also used to obtain qualitative data on the front skin damage during the

impact. The recording frame of the camera is set to 75 pictures/ms. This value is a

compromise between the available picture size (256� 64 pixels) and the number of

measuring points (from 30 to 75 points during the projectile velocity decrease). The

measurement errors are mainly attributed to the picture blur and differences in

lighting. However, they remain inferior to �5m/s in the measure of initial and

residual velocity. A post-processing program is used to detect the projectile during

the impact (thanks to the painted shank at the rear of the spherical nose) and to

calculate the instantaneous velocity. The impact duration typically comprised

between 0.4 and 1ms, depending on the tested case (target perforation or projectile

rebound).

The damage and deformation of sandwich samples are observed after impact.

Both skins are painted following a speckle pattern and their deformed shapes are

measured by 3D digital image correlation using Vic3D software. The horizontal

line through the maximum indentation point (impact location) is averaged to

obtain a one-quarter profile as shown in Figure 4.

Sandwich targets description

Sandwich targets have been assembled using two AA5086-H111 aluminium sheets

as front and rear skins (1 or 2mm thick). The core is 20mm thick aluminium

Rigid 

frame 

Spherical 

nose  

Ø 30 mm 

Painted 

shank 

Sandwich targets  

(200 - 400 mm side) 

Camera 1 viewing angle  

Camera 2 

viewing angle 

Square aperture 

170 mm side 

Simple 

support 

Figure 1. Impact test set-up: boundary conditions and instrumentation.



honeycomb with hexagonal cells as described in Figure 7(b) (reference ACG-3/8,

57 kg/m3). The skins and the core are assembled using an adhesive film (ReduxÕ

609-300, 300 g/m2).

A previous impact study was conducted on AA5086-H111 aluminium plates

alone under the same conditions [4]. The results showed that two 2mm thick

plates of 200mm side were not perforated. However, a critical speed of 122.6m/s

has been observed for another configuration composed by respectively 2 and 1mm

thick front and rear skin of 400mm side. After the impact, only the rear skin failed,

although the front skin remained undamaged.

This study aims to evaluate the core influence by studying comparable sandwich

and skins configurations. Therefore, two sandwich configurations have been

assembled and studied, based on the skin impact results (see Table 1):

. Group A: targets of 200mm side (reference case Aref). The sandwich structures

are assembled using 2mm thick AA5086-H111 aluminium plates. Two similar

targets have been tested and are identified as A1 and A2 in this paper.

. Group B: targets of 300mm side. The sandwich structures are assembled using

2mm thick AA5086-H11 aluminium plate as front skin and 1mm thick plate as

rear skin. One sandwich has been tested and is identified as B1. The associated

reference case Bref is 400mm side as it has been shown in [4] that the results are

not influenced by boundary effects from 300mm side.

Experimental results and analysis

Impact test results are given in Table 1. Thicknesses and rupture indicators asso-

ciated with the front and the rear skins are given by tF/tR and RF/RR. The rupture

indicators are associated with ‘‘Y’’ in case of rupture and ‘‘N’’ otherwise. The

dimension L corresponds to the target size. The absorbed energy Eabs is the differ-

ence between the initial kinetic energy Eini (calculated from the initial velocity Vini)

and the residual energy (calculated from the residual velocity Vres). Note that Vres

has negative values in case of projectile rebound and positive values if the target

Table 1. Impact samples and test results.

ID/scheme L [mm] tF/tR [mm] Vini [m/s] Eini [ J ] Vres [m/s] Eabs [ J ]/% Eini RF/RR ti [ms] Imax [mm]

Aref 200 2/2 126.2 1018 ÿ9.3 1011/99.3 N/N 0.92 31.6

A1 200 2/2 122.5 953 ÿ6.3 949/99.5 Y/N 0.79 24.2

A2 200 2/2 125.3 996 24.0 955/95.9 Y/Y 0.89 /

Bref 400 2/1 122.6 954 ÿ21.5 925/96.9 N/Y 0.76 30.6

B1 300 2/1 117.9 883 62.2 638/72.2 Y/Y 0.59 /



is perforated. The impact duration ti represents the duration from the beginning of

the projectile-target contact until the end of the contact in case of projectile

rebound or target perforation. The indentation Imax is defined as the maximal

out-of-plane displacement of the back skin after impact (taking the support as

the reference). Note that this value is not defined in case of target perforation.

Note that the two similar cases A1 and A2 differ due to the experimental dis-

persion on initial velocities (respectively at 122.5 and 125.3m/s for A1 and A2). The

critical speed of metallic sandwich structures reaches 122.5m/s, as the A1 config-

uration partially failed without perforation (rupture of the front skin only, as

shown in Figure 2(a) and (b)). However, the same sandwich impacted at a slightly

higher impact velocity A2 is totally perforated (Figure 2(c)). The study of these two

cases will be useful to calibrate the numerical model that will be constructed after-

wards, since two different results have been found for two velocities that are very

close to each other.

Several damage mechanisms can be identified from the sandwich samples obser-

vation after impact (Figure 2). Case A1 shows a circular rupture zone of 16mm

(a)

(b)

(c)

Figure 2. A1 target: (a) front view; (b) side view, 45� cut and (c) A2 target, side view, 45�.



diameter on the front skin. Secondary cracks propagate from the initial rupture

which leads to a petal rupture shape (see Figure 2(a)). This shape is typically

associated with the damage modes of ductile metallic plates [15]. In comparison,

the sandwich A2 is completely perforated and a central circular part of 18mm

radius is detached from the rest of the skin (Figure 2(c)). In both cases, we can

notice high deformations of the honeycomb in the impact vicinity, mainly

deformed in out-of-plane compression (local crushing) and shear. In addition,

the honeycomb is torn near the interface between the core and the rear skin near

the impact location (seen in Figures 2(b) and(c) and 3). The remaining upper part

of the core is highly crushed and gathers near the front skin failure.

One-quarter deformation profiles after impact can be seen in Figure 4 for A1 and

Aref cases. The upper curve represents the front of the first skin, and the lower one

is the back of the rear skin. Note that the rupture of the front skin in the A1 sample,

visible in Figure 2(b) is indicated by a dotted line in Figure 4. The reference case is

significantly more indented than the sandwich (+30% than the sandwich case).

However, this gap has to be nuanced considering the dispersion in initial velocities

(126.2 and 122.5m/s, respectively).

These results show that the core presence tends to modify the critical zones in

the skins, from the rear skins for plates alone to the front skin in sandwich con-

figurations. At the same time, it decreases significantly target resistance against

Figure 3. Zoom of the A1 profile after impact: location of honeycomb crushing and shear

bands.



perforation and the energy absorbed by the target (see Table 1). In return, the

residual indentation of sandwich structures is reduced compared to plates alone.

The experimental data available are not sufficient to elaborate impact scenario

which could explain these differences. However, a possible interpretation can be

advanced, considering that the core presence can lead to skins decoupled reactions

due to the initial gap between them. The decoupling can be partial or total depend-

ing on the core thickness and properties (Figure 5(b) and (c)). This phenomenon is

susceptible to initiate premature rupture of the front skin (Figure 5(c)) and thus a

significant decrease in the total energy absorbed by the structure, compared to

plates alone (Figure 5(a)). However, this hypothesis can be evaluated through

numerical impact analysis.

In order to understand the low impact resistance of the sandwich targets (in

comparison with the skins alone) and to identify the main mechanisms occurring

during the impact (possible de-coupling effects, etc.), a numerical model of alumin-

ium sandwich has been implemented. The model description and results are given

in the next sections.

Sandwich model description

The aluminium sandwich model has been built taking into account the tested con-

figurations and the boundary conditions described in the previous section. The

numerical simulations are carried out using the commercial finite element software

ABAQUS 6.9-2/Explicit. The material model applied to the AA5086-H111 plates

will be taken from a previous study [4]. Therefore, we focus in this paper on the

modeling of the honeycomb.

In order to validate the numerical results, the following points will be studied:

rupture prediction (presence of failed elements, location and rupture shape),

Figure 4. Residual profiles of A1 and Aref cases.



evolution of the projectile velocity and displacement and deformed target profiles

after impact.

Skins modeling

The material constitutive law of the AA5086-H111 plates has been implemented in

a user-defined subroutine VUMAT. Simplified flow stress (equation (1)) and rup-

ture models (equation (2)) based on the Johnson-Cook formulation have been used

(justifications in [4]).

� ¼ Aþ Bpn ð1Þ

Critical zone - biaxial tension and 

out-of-plane shear [4] 

(b) Partial skins de-coupling 

No front skin rupture before the contact  

(a) Skins coupling 

Front skin rupture 

Skins in contact 

Rupture of the bond  

Support 

Support 

Support 

(c) Skins de-coupling 

Front skin rupture occurring before the contact  

Symmetry 

axis

Local cell buckling  

Core rupture zone 

Figure 5. Identification of possible impact scenario in sandwich structures: (a) skins alone; (b)

partial decoupling; (c) total decoupling.



"f ¼ "
f
1=3 exp

T ��ÿ1
3ð Þð1þ _pÞV ð2Þ

The flow stress � depends on the equivalent plastic strain p and on material

parameters A, B and n. In the rupture model, the rupture strain "f is calculated

taken into account the triaxiality ratio �* (mean hydrostatic stress divided by the

von Mises equivalent stress) and the strain rate sensibility effects. In the equation

(2), _p is the plastic strain rate and the parameters V, T and "
f
1=3 (rupture strain in

quasi-static loading) depend on the material properties. The parameter values used

in this study (calibration conducted in [4]) are synthesized in Table 2.

Material failure is represented by the element deletion, which is controlled

through the failure criterion F defined below [4]:

F ¼ t

0

d"P

"f
dt ð3Þ

The quantity d"P represents the increment of equivalent plastic strain and "f is the

rupture strain calculated from equation (2). The failure criterion represents the

accumulation of plastic strain in the element and is comprised between zero and

one (element deletion).

Geometry, mesh and boundary conditions of the sandwich model

Due to the core orthotropic behavior, the numerical problem can be reduced to

1/4th of the real structure, with corresponding symmetry conditions (Figure 6).

Analytic surfaces are defined in order to model the rigid frame acting as a simple

support at the rear of the sandwich. The impactor is modeled as a spherical rigid

analytic surface of 30mm diameter (see justification in [4]) representing the fourth

of the weight of the real projectile. An initial velocity is imposed (the same as the

experimental measure).

Note that the contacts between the structure and the rigid surfaces are friction-

less and allow the separation of the two components. As for the bond between the

skins and core, a perfect bond condition is imposed (node tie condition).

As far as the mesh is concerned, linear brick elements with reduced integration

are used in the plates and the core. The skin mesh is subdivided into four sub-

regions, being more refined at the impact zone. In-plane mesh dimensions are

comprised between approximately 0.2mm side near the impact location and

Table 2. Material parameters used in the AA5086-H111 aluminium plates model.

A (MPa) B (MPa) n "
f
1=3 T V

143 562 0.6 0.299 ÿ0.483 0.086



3mm side near the edges. Eight elements per millimeter are used along the thick-

ness direction of the plate (justification in [4]).

In the plane direction, the core mesh does not need the same refinement, since

the deformation is governed by the plates during the impact. One element per

thickness is used for the honeycomb mesh (see justification in Section ‘‘From

Mesoscopic to Macroscopic Scale’’). This meshing choice has been proved to cor-

rectly estimate the effects observed during experimental tests.

As an indication, the impact model of 200mm side sandwich has about 70,000

elements and needs about 21 CPU hours to model an impact of 1ms duration. The

model of 300mm side target considered 170,000 elements and needs about 34 CPU

hours in the same conditions.

Honeycomb modeling

The honeycomb material properties have been implemented on the model using a

VUMAT subroutine on ABAQUS/Explicit. The out-of-plane compression behav-

ior will be described apart in the next section due to its complexity. The following

hypotheses are considered for the honeycomb behavior in the other directions:

1. Couplings: shear and compression behaviors appear to be interdependent when

considering multi-axial loading of the honeycomb. There is a competition

between out-of-plane crushing (compression mode) and cell rotation (shear

mode) [16]. In the sandwich, the most strongly affected zone is located at the

vicinity of impact. However, when the rupture of the adhesive bond occurs in

this zone (Figure 2(b) and (c)), the shear mode disappears. Therefore, the shear

and compressive coupling behavior of honeycomb is neglected and each direc-

tion is considered separately.

2. Out-of-plane traction behavior:4 supposed linear elastic and brittle to represent

the adhesive film behavior and to consider the potential rupture of the bond

between the skins and core. The law parameters are defined from quasi-static

tests and are synthesized in Table 3.

Figure 6. Geometric model of aluminium sandwich and boundary conditions.



3. Transverse shear behavior: perfect plastic law hypothesis. The values of stress

plateau �xz and �yz as well as the corresponding shear moduli are taken from the

constructor data sheet [17]. A limit value of out-of-plane strain has been defined

to initiate the element deletion in the model. This criterion aims to take into

account the skins-core bond rupture and the local honeycomb rupture shown in

the experiments (see Figures 2(b) and (c) and 3).

4. In-plane behavior:5 supposed elastic linear and negligible considering the other

directions (low arbitrary values chosen).

The material values used in the model are shown in Table 3.

Honeycomb characterization in quasi-static compression. The out-of-plane quasi-static

compression behavior is characterized by three successive phases [18,19] described

in Figure 7(a): initial stage of elastic deformation until a peak limit is reached,

followed by a ‘‘plateau value’’ of the stress corresponding to the buckling and

crushing of the cell wall; the third step is the densification phase characterized by

an increase of the compression stress.

Compression tests have been carried out with sandwich structures (aluminium

honeycomb and skins) of 100mm squared side, (which is representative of the

honeycomb behavior in terms of number of cells). The presence of skins is neces-

sary to stabilize the sample during the compression and to recreate the correct

boundary conditions on the honeycomb–skins interface. The compression speed

reaches 3mm/min (see Figure 7).

Force and displacement captors are used to plot the true stress–strain curve, and

the three phases described in Figure 7(a) can be identified in Figure 7(b). This

behavior has been modeled with the analytical expression (3), where p is the cumu-

lated out-of-plane plastic strain.

� ¼
C1

coshð�1pÞ
þ �0 þ C2 e�2p ÿ 1ð Þ ð4Þ

Each term in equation (4) describes one of the three stages of the out-of-plane

compression behavior of honeycomb. The first term corresponds to the peak value

and the strain decrease. The stress plateau is represented by a constant �0. The last

term represents the densification phase. Both experimental and analytical curves

Table 3. Mechanical properties of aluminium honeycomb used in the material model.

Compression Out-of-plane shear In-plane

Ez (GPa) �z (MPa) Gxz (GPa) �xz (MPa) Gyz (GPa) �yz (MPa) Ex , Ey ,Gxy (GPa)

0.6 1.28 0.28 1.45 0.14 0.9 0.001



are shown in Figure 6 after the identification of the five parameters of the analytical

model C1,�1, �0,C2,�2.

Numerical results and discussions. A first model of honeycomb sandwich has been

built, considering the hypotheses and values given in the previous section. The

A1 and A2 sandwich cases have been considered (see section ‘‘Sandwich Targets

Description’’) and compared to experimental results. The simulations did not fit the

experimental results, particularly in terms of rupture prediction. Indeed, in the A1

case, only the front skin failed, and the target A2 was totally perforated, whereas

the model predicted no skin rupture in both cases.

(b)

(a)

Figure 7. (a) Theoretical compression curve and (b) Experimental and analytical curves in

quasi-static compression.



The strain rate effects occurring during the honeycomb compression have been

identified as a potential explanation of these experimental and numerical discre-

pancies. Indeed, several studies in the literature underline dynamic effects in honey-

comb compression behavior [14,13]. The authors observe a significant increase of

the peak and plateau stress when increasing the strain rate over a threshold value

(depending on the core). This increase can reach more than 20% of the quasi-static

value [14]. This effect can be attributed to the propagation of a plastic shock wave

[14], and/or material strain rate effects, and/or modification of the buckling modes

of honeycomb during compression [13]. However, the origin of this dynamic effect

is not still completely understood and validated because of lack of experimental

tests that validate the given hypotheses.

In order to evaluate the influence of dynamic effects occurring in the core on the

sandwich impact behavior, the strain rate effects are further studied. For this, a

numerical model of honeycomb has been built at a mesoscopic scale, i.e. at the scale

of a single honeycomb cell. This cell has been subjected to compression under

several velocities. This intermediate study will be used to characterize the dynamic

honeycomb behavior up to 120m/s.

Honeycomb mesomodel with strain rate effects

Mesomodel description. The unit cell of the honeycomb considered is an assem-

bly of 3003 aluminium wall. The mesomodel takes into consideration the plastic

flow and the strain rate sensitivity of this alloy. A Cowper-Sydmonds model has

been chosen to model aluminium wall (see equation (5)).

� ¼ Aþ B"p
nÿ �

1þ
_"p

D

� �1
q

ð5Þ

The material parameters A, B, n (quasi-static behavior), D and q (dynamic

contribution) have been taken from [20] (study on strain rate effects on the flow

stress of 3003 grade in tensile tests): respective values of 150MPa, 62.5MPa, 1, 30

and 3.5.

The cell geometry and boundary conditions are shown in Figure 8. The

cell dimensions are measured from the samples and an average value is indicated

in Figure 8(b). Note that the cells are not exactly hexagonal-shaped as the

angles between the double wall and single wall reach 130� instead of 120�. In

the numerical model, the entire cell is created by rotating one unit branch. The

modeling of only one unitary branch is enough to reproduce correctly the

quasi-static compression behavior of honeycomb [10]. Nevertheless, the symmetry

conditions imposed to construct the complete cell influence the buckling behavior

and the strain–stress curves present significant oscillations when only one unit

branch is modeled. Therefore, we focus on the behavior of a complete cell in

this paper.



The double wall in the ribbon direction is taken into account in the model,

without considering the influence of the glue. Plate elements are used considering

a sufficient mesh refinement to represent the buckling modes and the local crushing

observed in reality (square elements of around 0.25mm side). The unit cell is

situated between an upper rigid surface with an imposed velocity and a lower

rigid fixed surface. Several compression velocities are tested: 0.12, 1.2, 60 and

120m/s.

Mesoscopic model results. Figure 9 gives several views of the unit cell for a given

upper rigid surface displacement (1.8, 5 and 10mm). Two velocity cases are con-

sidered: 12 and 120m/s. The cumulative plastic strain is plotted with a filter so as to

differentiate the elastic (zero value) and the plastic zones. The 12m/s case shows

plastic zones and onset of local crushing localized in the upper part of the cell,

(a)

(b)

Figure 8. (a) Geometry and boundary conditions of mesoscopic model and (b) Cell geometry.



while the lower zone remains elastic (Figure 9(a)). On the contrary, for higher

velocities (from 60m/s but clearly visible at 120m/s), the whole wall height reaches

the plastic zone before the onset of buckling (Figure 9(b)). It is also observed that

higher order buckling modes are activated at 120m/s, as mentioned in [13].

The literature evokes three different mechanisms potentially driven by the strain

rate:

. Plastic wave propagation: aluminium honeycomb reaches plastic domain by

means of a plastic wave through thickness prior to the appearance of buckling

[14].

. Material strain rate sensitivity: stress flow of the aluminium increases with strain

rate.

. Structure effect: modification of buckling modes with the compression velocity

The stress–strain curves obtained from the cell compression at different velocities

are given in Figure 10(b). Both quasi-static experimental and analytical curves are

added from Figure 7(b) as reference. No significant velocity effect is observed

below 12m/s in Figure 10(b). However, from 60m/s, an important increase of

the peak and plateau value is visible, without modifying significantly the global

Figure 9. Views of a unit honeycomb cell during compression: (a) 12m/s and (b) 120m/s.



evolution of the curve (the three steps of the compression remain visible). The stress

peak and plateau values are synthesized in Table 4.

A fit of the numerical curves given in Figure 10(b) can be obtained by identifying

a set of parameters which depends of the compression velocity. As only the peak

and plateau values evolve with the compression velocity, the corresponding par-

ameters C1,�1, �0 are renamed with an asterisk to indicate their evolution with the

velocity vi. The theoretical law obtained is presented in equations (6) and (7). The

fit of the numerical result obtained for 120m/s is given as example in Figure 10(a).

� ¼
C�

1

cosh ��
1p

ÿ �þ ��
0 þ C2 e�2p ÿ 1ð Þ ð6Þ

��
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1 ¼

v0:8
i

4
þ 1:7

��
1 ¼

1
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8

>

<

>

:
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An estimation of the energy dissipated in the cell can be calculated from the

curves of Figure 10(b). The energy has been calculated taking into account the peak

Figure 10. Stress-strain curves obtained from honeycomb compression: (a) Experimental and

analytical curves; (b) Experimental quasi-static and numerical curves for several velocities.

Table 4. Stress values and volume energy dissipated in a cell for several velocities.

Compression velocity [m/s] 1.2 12 60 120

Peak value [MPa] 6.7 8 14.4 21.6

Plateau value [MPa] 0.9 0.9 1.7 2.5

Compression energy per volume of a unit cell [mJ/mm3] 7.3 8.1 13.5 22.6



phase (elastic deformation of the cell and collapse of the wall) and until "¼ÿ2 for

all the honeycomb cells. This energy per volume of a honeycomb cell is shown in

Table 4. The energy absorbed in a unit cell is significantly higher when increasing

the velocity (factor of 3 between quasi-static value and 120m/s). This indicates that

the honeycomb performance (energy per unit weight) is improving with the com-

pression velocity, which is a priori not consistent with the low performance of

sandwich structures compared to plates alone. Thus, further investigations, par-

ticularly at the macroscopic scale, have to be conducted.

From mesoscopic to macroscopic scale. The mesoscopic model depends on the com-

pression velocity of the core through the parameters ��
0, C

�
1, et �

�
1 in equation (6).

This velocity is approximated by an equivalent macroscopic velocity (defined in

equation (8)), which depends naturally on the initial core height h0.

vi ¼ e"z � _"z � h0 ð8Þ

The "z and _"z parameters represent respectively the strain and strain rate in the Z

direction. The definition of a characteristic length (h0 in this model) is often used in

gradient-dependent constitutive models [21–23]. It allows defining a mesh-size inde-

pendent modeling in the macroscopic model. Therefore, a unique element can be

defined through the core thickness (Figures 6 and 13), which represents an average

in the thickness of the cells compression behavior. This approach allows the elem-

ent deletion along the entire core height, which represents correctly the rupture of

the skins-core adhesive bond observed experimentally (Figure 13).

Figure 11. Velocity evolution of experimental cases and associated numerical models.



Figure 12. Mapping of the rupture criterion F in the skins for A1 targets impacted respect-

ively at 120 and 130m/s; Projectile displacement after: (a) 0.15ms; (b) 0.23ms; (c) 0.3ms and

(d) 1.5ms.

(a)

(b)

(c)

(d)

Figure 13. A1 profiles: (a) Experiment at 122.5m/s; (b) Model after 1.5ms at 120m/s; A2

profiles: (c) Experiment at 125.3m/s and (d) Model after 1.5ms at 127m/s.



Note that the sandwich geometry, mesh, and boundary conditions are the same

than those described in section ‘‘Geometry, mesh and boundary conditions of the

sandwich model’’.

Numerical results and model validation

The numerical results of sandwich structures are synthesized in Table 5. The experi-

mental data described in Section ‘‘Experimental impact tests’’ are reminded as

comparison. Several points are studied to validate the model: rupture prediction

and projectile velocity evolution, residual target profiles and energy absorbed in the

structure.

Rupture prediction and projectile velocity evolution

These two points are directly linked and are thus treated together (see Table 5 and

Figure 11). It can be seen in Table 5 that numerical results at 122.5 and 125.3m/s

do not fit the corresponding experimental cases. Indeed, in the A1 case, the model

predicts the target rupture whereas only the first skin is perforated in the reality.

However, the residual velocity values are close (ÿ6.3 and ÿ7.8m/s respectively for

the measure and the model). In the A2 case, the model predicts correctly the target

rupture, but the residual velocities differ significantly (24 and ÿ6.9m/s respectively

for the measure and the model). Note also that the numerical cases tested at 122.5

and 125.3m/s show quite similar results. They predict the onset of rupture of both

skins without reaching the target perforation (projectile rebound). A circular cap is

formed under the projectile and detached from the rest of the skins (Imax not given

for these cases). This implies that the model prediction is not accurate enough to

foresee the transition from partial to total rupture observed experimentally. It may

be due to modeling hypotheses (rupture by element deletion does not take into

account the real failure propagation, necking is not considered in the material law,

Table 5. Experimental and model results of impact test on aluminium sandwich.

ID/scheme Vini [m/s] Eini [J] RF/RR Vres [m/s] Eabs/% Eini [J] Imax [mm]

Case A1 Experiments 122.5 953 Y/N ÿ6.3 949/99.5 24.2

Model results 122.5 953 Y/Y ÿ7.8 946/99.3 –

120 914 Y/N ÿ10.3 911/99.6 18.2

Case A2 Experiments 125.3 996 Y/Y 24.0 955/95.9 –

Model results 125.3 996 Y/Y ÿ6.9 701/70.4 –

127 1024 Y/Y 2.8 1023/100 –

130 1073 Y/Y 21.0 1045/97 –

Case B1 Experiments 117.9 883 Y/Y 62.2 638/72.2 –

Model results 117.9 883 Y/Y 59.6 657/74.4 –



the numerical damage is symmetric due to the representation of a quarter of the

target, etc.) or to experimental inaccuracies. However, a good correlation can be

observed between the experimental A1 results and the numerical case at 120m/s.

In the same way, the model at 130m/s correctly fits the experimental A2 case tested

at 125.3m/s. Thus, a confidence interval can be defined from �4% of initial

velocity (or �8% in initial kinetic energy) where the rupture and residual velocity

predictions are close to the experimental results.

The projectile velocity curves from experiments and simulations are compared in

Figure 11. They are useful to identify impact stages and the onset of rupture.

Markers are added to indicate the onset of rupture of the skins according to the

numerical simulations.

Three main steps can be identified [4]. A sharp drop in the projectile velocity can

be observed in both experimental and numerical curves. This is associated with a

local indentation of the front skin and the core. Note that this step remains quite

similar in all the tested cases, until approximately 0.2ms impact duration. Then a

slope transition occurs as the projectile deceleration decreases. It is typically asso-

ciated with a global move of the target with structure bending in skin configur-

ations [4]. In sandwich structures, this mechanism is coupled with the front skin

rupture which decreases the target resistance. Note that the curves differ from this

point, probably because of the discrepancies in the onset of rupture for each case.

Thus, a slight delay in the onset of rupture is likely to influence significantly

the target perforation and the velocity evolution. This point is also illustrated in

Figure 12. The third step corresponds to the end of impact, characterized by a

constant velocity value (positive if the target is perforated and negative in case of

projectile rebound).

As noticed previously, the experimental case A1 (122.5m/s) correctly fits the

simulation at 120m/s. In the same way, the case A2 (125.3m/s) is close to the

simulation at 130m/s. The model predicts the front skin rupture from 0.22ms

impact duration at 130m/s. The rupture is delayed in the model at 120m/s as

the rupture appears from 0.28ms impact duration. Note also that the case B1

(300mm side target) shows a good correlation between the experimental results

and the model for the same initial velocity. The three-step curves are clearly

marked by two inflexion points which represent successively the rupture of the

front and the rear skin.

Several numerical views of 120 and 130m/s cases are added in Figures 12 and 13

to complete the analysis. Figure 12 gives a local mapping of the rupture criterion

near the impact point. The front and back skins are represented without the core to

simplify the visualization. Note that for each skin, the front and rear faces are

visible to visualize accurately the critical zones location.

The discrepancies in the onset of rupture at 120 and 130m/s are illustrated in

Figure 12(b). Indeed, the front skin rupture occurs before the skins contact at

130m/s. This can be identified as a total decoupling case, as represented in

Figure 5(c). On the contrary, the A1 case at 120m/s corresponds to the partial

decoupling case described in Figure 5(b) (see Figure 11(c)), as the front skin rupture



appears after the contact. Note that the formation of a circular rupture at the rear

of the front skin propagates through the thickness to the front face. In a second

step, secondary cracks occur and petals are formed under the projectile as shown in

the targets after impact. However, the real rupture shapes cannot be represented by

the model due to the imposed model symmetries.

Residual target profile

The numerical and experimental deformed shapes are given in Figure 13. The

rupture of respectively the front skin and both skins can be observed for cases

A1 and A2. It is initiated first in the front skin, where a rupture crown is formed and

the center is separated from the rest of the skin. Then, if the projectile has enough

kinetic energy, the rupture is transmitted to the back skin. The honeycomb cells

located under the projectile are compressed and removed from the impact zone. In

the model, this effect is well represented by the element deletion condition in shear.

Energy absorption repartition

The energy of the global model is divided into several parts: elastic, plastic, kinetic,

artificial, and viscosity. The kinetic energy is maximal at the onset of impact and

decreases with the projectile braking. At the same time, the contributions of the

elastic and plastic dissipation increase. The energies absorbed through viscosity and

artificial effects (meshing stabilization to avoid element distortion) are checked to

ensure that these contributions remain negligible in comparison with the total

energy of the model.

The repartition of energy absorption is useful to understand the role of each part

of the sandwich. This repartition is given in Table 6 for the front skin, the core and

the rear skin in several cases. The energy is mainly absorbed through plasticity. The

remaining kinetic energy Eres corresponds to the kinetic energy of the target and the

projectile at the end of the calculation (the calculation is stopped at the beginning

of the projectile rebound for time saving reasons). This residual energy is negligible

compared to the initial kinetic energy of the projectile: between 0.2% and 4% for

sandwich at 120 and 130m/s, respectively.

The dissipated energy repartitions are compared in Table 6 for sandwich struc-

tures impacted at 120 and 130m/s and for the reference case Aref (values from [4]).

Table 6. Numerical energy repartition for A targets and the associated reference case.

ID/scheme Vini [m/s] Eini [J] RF/RR Efront [J]/% Eini Ecore [J]/% Eini Eback [J]/% Eini Eres [J]/% Eini

Aref 126.2 1011 N/N 493.5/49 – 494/49 23/2

Anum 120 914 Y/N 439/48 271/30 202/22 2.2/0.2

130 1073 Y/Y 422/39 270/25 342/32 40/4



The sandwich impacted at 120m/s shows roughly the same front skin absorption

as the reference case (about 49% of Eini). The back skin, however, absorbs less

energy (22% of Eini compared to 49% for Aref). This is due to the fact that the core

dissipates part of the energy absorbed by the rear skin in the plates alone. However,

at 130m/s, both skins absorb less energy than in skins alone and are perforated.

This is due to the core presence, which tends to localize the stress in the skins,

inducing their premature rupture. At 130m/s, the energy absorbed respectively in

the front and rear skin decreased up to 39% and 32%, probably because of the

earlier onset of rupture.

In sandwich structures, the core absorbs part of the impact energy, which

induces a proportional decrease of the energy dissipated in the rear skin. On the

other hand, it localizes the stresses in the skin, due to the increasing of the peak and

plateau values of the honeycomb under compression. This speeds up the moment

of rupture of the front skin, which leads to the perforation of the sandwich. In

principle, honeycomb shows good performances under impact, but when

assembled in a sandwich structure, these performances are compromised due to

these strong couplings between the core and the skins.

In conclusion, it can be mentioned that the results obtained from the numerical

analysis were found to be in good agreement with the experimental results in terms

of rupture prediction. The model predicts the initiation and localization of the

rupture with a precision higher than �8% in terms of impact velocity and kin-

etic energy. The sandwich model case B1 is also tested and compared with the

experimental results. It is found that the model has good accuracy in measuring

projectile velocity evolution and rupture prediction. The sandwich model is then

validated.

Conclusion

Experimental impact tests at 120m/s have been conducted on several aluminium

honeycomb sandwich targets, varying the velocity and target dimensions. A numer-

ical analysis has been conducted using the finite element code ABAQUS/Explicit.

Modified versions of the Johnson-Cook flow stress and rupture models have been

implemented to represent the skins.

Numerical results underline significant strain rate effects in the honeycomb com-

pression behavior. The numerical model does not predict the target rupture with-

out considering these effects, while the experimentally associated cases are partially

or totally perforated.

Therefore, a specific study on the dynamic compressive response of the honey-

comb has been performed. A mesoscopic model has been defined to study the

behavior of a single honeycomb cell at several compression velocities. The dynam-

ical effects have been then implemented in the global sandwich model. Results

obtained from the numerical analysis were found to be in reasonable agreement

with the experimental results in terms of rupture prediction, and residual deform-

ation profiles.



The behavior and performances of sandwich structures have been compared

with the results of aluminium skins alone. The main aspects that can be drawn

as a conclusion are:

1. The honeycomb core addition modifies the impact behavior in terms of resist-

ance against perforation and maximal indentation. Regarding the first criterion,

the core presence decreases the resistance under impact of the sandwich (as

shown in Table 1 and Figure 5). Indeed, the skins–core interactions are signifi-

cant as the core isolates the skins and the rupture occurs separately and earlier

than in skins alone. However, the core addition increases the target flexural

stiffness and decreases the maximum indentation (+30% back deflection in

the plates alone).

2. The compression velocity has great influence on the compression behavior of

honeycomb (ratio of 3 for the peak and plateau stresses between the quasi-static

loading and 120m/s). These dynamic effects in honeycomb decrease the sand-

wich performances. By localizing the stress in the front skin, they bring forward

the rupture of the front skin, and thus the target perforation. These mechanisms

provide new prospects related to the core properties and optimization. They

suggest that the sandwich impact performance may be improved by the use of

honeycombs without strain-rate dependencies or with low peak and plateau

stresses.
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