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Abstract In this paper, we focus on extending the subspace identification to the
class of linear periodically time-varying (LPTV) systems. The Lyapunov-Floquet
transformation is first applied to the system’s state-space model in order to get the
monodromy matrix (MM) and, thus, a necessary and sufficient condition for system
stability. Then, given two successive covariance-driven Hankel matrices, the MM
matrix is extracted by some calculus of a simultaneous singular value decomposition
(SVD) and a least square optimization. The method is illustrated by a simulation
application to the model of a hinged-blades helicopter.

1 INTRODUCTION

Over the last forty decades, subspace identification methods have enjoyed of some
popularity and numerous applications of these methods have emerged in civil en-
gineering, aeronautics and many other fields. The stochastic subspace identification
(SSI) consists in obtaining the modal parameters (natural frequencies, modal damp-
ing ratios and mode shapes) of a system subject to vibrations, by some geometric
manipulations and projections of data given by sensors’ measurements or input mea-
surements. There exist, then, two types of identification algorithms: output-only and
input-output algorithms. A comprehensive overview of different approaches of SSI
can be found in [3] Unfortunately, the most part of research interest has been given
to linear time-invariant (LTI) systems. In contrast, the literature on time-varying
(TV) case is not abundant.
The attempts to extend these methods to TV can be categorized into two main
classes, as outlined in [2]. The first class consists in identifying the considered
system recursively using adaptive algorithms which is appropriate only for slowly-
varying dynamics and when a priori information about the variation behavior is
available . Whereas, the second class suggests to find a set of output sequences
that have the same time-varying behavior [6], which makes it possible to apply a



classical time-invariant identification algorithm to these sequences. We suggest a
new algorithm of identification in this paper, with three main features: first the a
covariance-based method is proposed, which makes the computation non cumber-
some. Second, we combine the method proposed to the theory of Floquet that gives
a simple criterion for the stability of a periodic system. With the Lyapunov-Floquet
transformation, the state transition matrix is replaced by the monodromy matrix.
The third feature is to find out this monodromy matrix without any approximation
(not up to a matrix of similarity).
The paper is organized as follows: in Section 2, a typical SSI algorithm is presented.
Section 3 gives the essential elements of the Floquet theory. Then, Section 4 is de-
voted to the design of the new LPTV-extended method. Finally, in Section 5 the
efficiency of the method is tested on a numeric simulation of a model of a helicopter
with a hinged-blades rotor.

2 Covariance-driven Subspace Identification

In this section, we present a typical SSI algorithm [3]. Let consider the discrete-time
state space model of a given system:{

xk+1 = F xk + vk+1
yk = H xk +wk

(1)

where x ∈ Rn is the state vector, y ∈ Rr the output vector or the observation,
F ∈ Rn×n the state transition matrix and H ∈ Rr×n the observation matrix. The
vectors v and w are noises that are assumed to be white Gaussian and zero-mean.
We choose the parameters p and q, and we build the covariance-driven Hankel ma-
trix:

Hp+1,q =


R0 R1 · · · Rq−1
R1 R2 · · · Rq
...

...
...

...
Rp Rp+1 · · · Rp+q−1


The covariances of the output data write Ri = E(ykyT

k−i), where E is the expectation
operator.

Remark 1. : Ri can be approximated by R̂i =
1
N ∑

N
k=i+1 ykyT

k−i if N is the number
of output measurements we have (N � 1). Then, the estimated Hankel matrix:
Ĥp+1,q = Hank(R̂i) =

1
N ∑

N
k=q Yk

+Yk
−T

Where: Yk
+ = (yk · · ·yk+p)

T , Yk
− = (yk · · ·yk−q+1)

T



Let G=E(xkyk) be the correlation between the state and the observation. Op+1 =
H

HF
...

HF p

 and Cq =
[

G FG · · · FGq−1
]

are the (p+1)th order observability matrix

and the qth order controllability matrix.
The computation of the Ri’s leads to the decomposition:

Hp+1,q = Op+1Cq

Therefore, the observability matrix Op+1 can be obtained with a thin SVD of the
Hankel matrix Hp+1,q and its truncation at the desired model order n: Hp+1,q =[

U1 U2
][Σ1 0

0 Σ2

][
V1

T

V2
T

]
and:

Op+1 =U1Σ1
1
2

Where Σ1 contains the first n singular values.
The observation matrix H is extracted from the first r rows of the observability
matrix Op+1. The state transition matrix F is obtained from a least squares solution
of:

O↑p+1F = O↓p+1

Where:

O↑p+1 =


H

HF
...

HF p−1

 , O↓p+1 =


HF
HF2

...
HF p


We get the eigenstructure of the system (1) from the resolution of det(F− Iλ ) = 0
and Fφλ = λφλ , (λ , φλ ) denote the eigenvalues and the eigenvectors of the system.

3 Floquet Theory

The theory of Floquet is a mathematical theory of ordinary differential equations
(ODEs). Introduced in 1883, it is the first complete theory for the class of periodi-
cally time-varying systems. In this section, we briefly review some of its essential
elements that are related to our study. More details can be found in [1].
Let consider the periodic differential system:

ẋ(t) = A(t)x(t) (2)

Where x ∈Rn is the state vector. The state transition matrix A ∈Rn×n is continuous
in time (or at least, piecewise continuous) and periodic, of period T > 0. If an initial



condition x(t0) = x0 is fixed, a solution of (2) is guaranteed to exist.
Let Φ(t) be the matrix whose n columns are n linearly independent solutions of (2),
Φ(t) is known as the Fondumental Transition Matrix (FTM). It has the properties
below:

Φ̇(t) = A(t)Φ(t), Φ(t +T ) = Φ(t)Φ(T ),∀t

3.1 Stability Analysis

The value of the fundemantal matrix at t = T , Q = Φ(T ) is called the Monodromy
Matrix.
Let R = 1

T log(Q). According to Floquet’s theory, the dynamical system (2) is stable
if and only if the eigenvalues of R are negative or, similarly, if the norm of the
eigenvalues of Q is less than one.

3.2 Floquet Transformation

The Floquet transformation, also called the Lyapunov-Floquet transformation, gives
an underlying autonomous system (a system with a constant state transition matrix)
that is equivalent to the initial periodic system i.e: the transformation is invertible.
If we make the change of variable x(t) = Φ(t)e−Rtz(t), the theory insures that:

ż(t) = Rz(t) (3)

Now if the equation of observation of the considered system is: y(t) = Cx(t), the
equivalent equation for the new variable z is:

ẏ(t) =Cx(t) =CΦ(t)e−Rtz(t) (4)

Remark 2. : It is easy to demonstrate that Φ(t +T )e−R(t+T ) = Φ(t)e−Rt using the
fact that R = 1

T log(Φ(T )). Therefore, any periodic system can be transformed into
an equivalent autonomous system with an equivalent periodic matrix of observation.



4 Subspace Identification for LPTV

We have presented above, a subspace method for time-invariant systems. In this sec-
tion, we suggest an extension of this method to the linear periodically time-varying
case. Let consider the periodic state-space system, of a period T :

{
ẋ(t) = A(t)x(t)
y(t) = Cx(t) (5)

As outlined in Section 3, an equivalent representation can be given by the Floquet’s
transformation: {

ż(t) = Rz(t)
y(t) = CΦ(t)e−Rtz(t) (6)

Sampling at rate 1
τ

(τ > 0) yields the discrete time model below:{
zk+1 = F zk + vk+1

yk = Hk zk +wk
, zk = z(kτ) (7)

The discrete state transition and observation matrices are: F = eτR and Hk =
CΦ(kτ)e−Rkτ . The output and the state are corrupted by the noises v and w assumed
to be white Gaussian and zero means.
If µ is an eigenvalue of the continuous system R, the correspondent eigenvalue λ of
F is such that: λ = eτµ . According to the theory of Floquet, the continuous system is
stable when the eigenvalues µ are negative. Therefore, the discrete system is stable
when λ < 1 (or, if λ is complex, its real part is under 1). The discrete observation
matrix Hk is periodic of period Td = bT

τ
c+1 (b c denotes the floor operator).

We build the instantaneous product Yk
+Yk

−T :

Yk
+Yk

−T =


Hk

Hk+1F
...

Hk+pF p

 [ zkyT
k Fzk−1yT

k−1 · · ·

· · · Fzk−q+1yT
k−q+1]

Following the lines of [4], the ensembles
(

zk zk+Td zk+2Td zk+3Td · · ·
)

and(
yk yk+Td yk+2Td yk+3Td · · ·

)
are time-invariant series. If we have, for example, NTd

output measurements (N� 1), the output-input covariance of the k-th invariant en-
semble can be estimated by G(k) = E(zkyT

k ) =
1
N ∑

N−1
i=0 zk+iTd yT

k+iTd
.

A Hankel matrix is formed from these cross-products, at sample k:



H
(k)

p+1,q = ∑
N−1
i=0 Yk+iTd

+Yk+iTd
−T

= ∑
N−1
i=0


Hk+iTd

Hk+1+iTd F
...

Hk+p+iTd F p

[zk+iTd yT
k+iTd

· · · Fq−1zk−q+1+iTd yT
k−q+1+iTd

]
(8)

We know that the matrix of observation H is periodic. Then Hk+iTd = Hk, ∀i > 0.
Using this property, the matrix of Hankel writes:

H
(k)

p+1,q =


Hk

Hk+1F
...

Hk+pF p

[∑N−1
i=0 zk+iTd yT

k+iTd

· · · Fq−1
∑

N−1
i=0 zk−q+1+iTd yT

k−q+1+iTd

]

=


Hk

Hk+1F
...

Hk+pF p

[G(k) · · ·

· · · Fq−1G(k−q+1)
]

As in the time-invariant case, the matrix of Hankel H
(k)

p+1,q can be decomposed in a
product of two matrices:

H
(k)

p+1,q = O
(k)
p+1C

(k)
q (9)

Where:

O
(k)
p+1 =


Hk

Hk+1F
...

Hk+pF p

 and C
(k)
q =

[
G(k) · · · Fq−1G(k−q+1)

]
The observability matrix

Ok
p+1 can be obtained as in Section 2 via an SVD of H

(k)
p+1,q and its truncation at the

desired model order n. The observation matrix Hk, at k, is obtained from the first r
rows of O

(k)
p+1.

The extraction of the transition matrix from one observability matrix is no longer
possible. In order to get F , we have to compute two successive matrices of Hankel.
At (k+1), H

(k+1)
p+1,q writes:



H
(k+1)

p+1,q =


Hk+1

Hk+2F
...

Hk+p+1F p

[G(k+1) · · ·

· · · Fq−1G(k−q+2)
]

Now if we have the two successive observability matrices O
(k)
p+1 and O

(k+1)
p+1 , the

transition matrix F is -as in Section 2- the Moore-Penrose (least square) solution of:

O↑
(k+1)
p+1 F = O↓

(k)
p+1 (10)

Where:

O
(k)
p+1 ↓=


Hk+1F
Hk+2F2

...
Hk+p+1F p

 ,O(k+1)
p+1 ↑=


Hk+1

Hk+2F
...

Hk+p+1F p−1



Remark 3. : Notice that the range space of O
(k)
p+1 and O

(k+1)
p+1 must be in the same

basis. In fact, the left part of the singular value decomposition gives the observ-
ability matrix up to some similarity matrix i.e for example: in the time-invariant
case, Op+1 = TU1Σ1

1
2 where T is a unitary matrix (we have omitted this discus-

sion until now, for simplicity). This matrix will be simplified by its inverse, with the
Moore-Penrose resolution. And the obtained F corresponds, then, to the real transi-
tion matrix with no similarity.

In the case of time-variant systems, if the two successive SVD are done sepa-
rately, we will have two different similarity matrices Tk and Tk+1. When it comes to
the least square resolution, no simplification will be possible:

F = (O↑
(k+1)
p+1 )

†
T−1

k+1TkO
↓(k)

p+1 (11)

The symbol † denotes the Moore-Penrose pseudo-inverse.
None of the similarity matrices Tk or Tk+1 is known. A solution for this is to force
an SVD in the same basis for the two successive Matrices of Hankel:[

H
(k)

p+1,q

H
(k+1)

p+1,q

]
=

[
U1,k U2,k

U1,k+1 U2,k+1

][
Σ1,k 0

0 Σ2,k

]
V T

k,k+1 (12)

The size of covariance-driven matrices of Hankel is (p+ 1)r× qr. Therefore, the
complexity of the SVD does not depend on N, and the computation is not cumber-
some.
The range spaces of the observability matrices, up to the same similarity matrix, are



O
(k)
p+1 =U1,kΣ1,k

1
2 , O

(k+1)
p+1 =U1,k+1Σ1,k

1
2 (13)

Once F and Hk are computed, the modal structure of the system (7) are obtained
from the resolution of det(F− Iλ ) = 0, Fφλ = λφλ and ϕλ = Hkφλ .

Algorithm: To sum up, here are the steps of the suggested LPTV identification
method:

• NTd output-measurements are available. We set the data in ensembles of time-
invariant series

(
yk yk+Td yk+2Td yk+3Td · · ·

)
for each sample k

• we compute, at k and (k+1), the two successive matrices of Hankel H
(k)

p+1,q and

H
(k+1)

p+1,q using the formula (8)
• we make a simultaneous singular value decomposition of those two matrices as

in (12)
• we compute the range spaces of the observability matrices, at k and (k+1), as in

(13)
• we resolve the equation (10) using the Moore-Penrose pseudo-inverse
• Hk is obtained as the first r rows of O

(k)
p+1

• given F and Hk, we compute the eigenstructure of the system

5 Application

In this section, we give an illustrative example in order to test the new suggested
identification algorithm. The system we study herein is a helicopter with a hinged-
blades rotor. The chosen modeling is the modeling for the analysis of the ground
resonance phenomenon. We present the dynamical equations of motion that de-
scribe this phenomenon, and develop the linear periodically time-varying mechani-
cal model in a similar way as described in [5], but adding damping to the structure
this time.

Fig. 1 Mechanical model of a helicopter with 3 blades



The helicopter’s fuselage is considered to be a rigid body with mass M, attached to
a flexible LG (landing gear) which is modeled by two springs Kx and Ky, and two
viscous dampers Cx and Cy as illustrated in Fig. 1. The rotor spinning with a velocity
ω , is articulated and the offset between the MR (main rotor) and each articulation
is noted a. The blades are modeled by a concentrated mass m at a distance b of the
articulation point. Torque stiffness and a viscous damping Kβ and Cβ are present
into each articulation. The moment of inertia around the articulation point is Iz. The
degrees of freedom are the lateral displacements of the fuselage x and y, and the
out-of-phase angles βk=1···Nb , with Nb the number of blades.

Let Z =
[

x y β1 · · · βNb

]T . A linear model for the considered system under free
vibrations is defined by:

M (t)Z̈ (t)+C (t)Ż (t)+K (t)Z (t) = 0 (14)

Where:

M (t) =


(M+Nm) 0 −mbsin(ωt)

0 (M+Nm) mbcos(ωt)
−mbsin(ωt) mbcos(ωt) (mb2 + Iz)
−mbsin(ωt +α) mbcos(ωt +α) 0

...
...

...
−mbsin(ωt +α) · · · −mbsin(ωt +(N−1)α)
mbcos(ωt +α) · · · mbcos(ωt +(N−1)α)

(mb2 + Iz) · · · 0
...

...
...



C (t) =


Cx 0 −2mbωcos(ωt)
0 Cy −2mbωsin(ωt)
0 0 Cβ

0 0 0
...

...
...

−2mbωcos(ωt +α) · · · −2mbωcos(ωt +(N−1)α)
−2mbωsin(ωt +α) · · · −2mbωsin(ωt +(N−1)α)

0 · · · 0
...

...
...


and



K (t) =


Kx 0 mbω2sin(ωt)
0 Ky −mbω2cos(ωt)
0 0 Kβ0
0 0 0
...

...
...

mbω2sin(ωt +α) · · · mbω2sin(ωt +(N−1)α)
−mbω2cos(ωt +α) · · · −mbω2cos(ωt +(N−1)α)

0 · · · 0
...

...
...


The system can be written as in (1), with x =

[
Z T Ż T

]T and

A(t) =
[

0 I

−M (t)−1K (t) −M (t)−1D(t)

]
, A(t) = A(t + 2π

ω
). It is periodic of pe-

riod T = 2π

ω
.

The numerical values used for the application are reported in Fig. 2.

Structural variable Value
m 31.9Kg
M 2902.9Kg
Kβ 200N/m
Kx 3200N/m
Ky 3200N/m
Cβ 15Ns/m
Cx 300Ns/m
Cy 300Ns/m
a 0.2m
b 2.5m
Iz 259Kg/m2

Fig. 2 Structural properties for hinged-blades helicopter with 4 blades

The helicopter model is simulated for ω = 4rad.s−1. To get precise results, the
subspace identification should be processed on very large dataset (to overcome
the problem of bias due to the noise i.e 1

N ∑k vk ≈ 0 and 1
N ∑k wk ≈ 0). A total of

N = 80000 data points are generated, with a sampling frequency of 50Hz. The or-
der of the system is known and is equal to n = 12.
The identification algorithm is applied to the data as explained in Section 4. The
summary of the identified eigenvalues, and the difference between them and the
real values, are given in Fig. 3. The differences in the obtained real part (damping
ratios) are less than 0.1 %. For the imaginary part (frequencies), the differences are
larger, but still not significant considering the large uncertainty on the estimates.
The identification is more accurate when N is larger.



The most important variable the real part of the eigenvalues, because it is the cri-
terion for deciding whether the system is stable or not. Therefore, the suggested
method of identification is sufficiently accurate for the purpose of stability analysis.

Identified mode Real mode
damping frequency damping frequency
0.9974 0.0766 0.9998 0.0200
0.9974 -0.0766 0.9998 -0.0200
0.9989 0.0702 0.9998 0.0214
0.9989 -0.0702 0.9998 -0.0214
0.9995 0.0556 0.9994 0.0359
0.9995 -0.0556 0.9994 -0.0359
0.9985 0.0130 0.9995 0.0330
0.9985 -0.0130 0.9995 -0.0330
0.9971 0.0310 0.9994 0.0335
0.9971 -0.0310 0.9994 -0.0335
0.9999 0.0471 0.9994 0.0335
0.9999 -0.0471 0.9994 -0.0335

Fig. 3 Identified modes vs. real modes

6 Conclusion

The problem of identification for linear periodically time-varying is addressed. An
extension of the covariance-driven SSI algorithm is proposed and tested with sim-
ulation data. Future works encompasses a generalization of the subspace detection
methods to the same class of systems.
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