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Extension of Subspace Identification to LPTV Systems: Application to Helicopters

In this paper, we focus on extending the subspace identification to the class of linear periodically time-varying (LPTV) systems. The Lyapunov-Floquet transformation is first applied to the system's state-space model in order to get the monodromy matrix (MM) and, thus, a necessary and sufficient condition for system stability. Then, given two successive covariance-driven Hankel matrices, the MM matrix is extracted by some calculus of a simultaneous singular value decomposition (SVD) and a least square optimization. The method is illustrated by a simulation application to the model of a hinged-blades helicopter.

INTRODUCTION

Over the last forty decades, subspace identification methods have enjoyed of some popularity and numerous applications of these methods have emerged in civil engineering, aeronautics and many other fields. The stochastic subspace identification (SSI) consists in obtaining the modal parameters (natural frequencies, modal damping ratios and mode shapes) of a system subject to vibrations, by some geometric manipulations and projections of data given by sensors' measurements or input measurements. There exist, then, two types of identification algorithms: output-only and input-output algorithms. A comprehensive overview of different approaches of SSI can be found in [START_REF] Ljung | System Identification: Theory for the User[END_REF] Unfortunately, the most part of research interest has been given to linear time-invariant (LTI) systems. In contrast, the literature on time-varying (TV) case is not abundant. The attempts to extend these methods to TV can be categorized into two main classes, as outlined in [START_REF] Liu | Identification of linear time-varying systems[END_REF]. The first class consists in identifying the considered system recursively using adaptive algorithms which is appropriate only for slowlyvarying dynamics and when a priori information about the variation behavior is available . Whereas, the second class suggests to find a set of output sequences that have the same time-varying behavior [START_REF] Verhaegen | A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems[END_REF], which makes it possible to apply a classical time-invariant identification algorithm to these sequences. We suggest a new algorithm of identification in this paper, with three main features: first the a covariance-based method is proposed, which makes the computation non cumbersome. Second, we combine the method proposed to the theory of Floquet that gives a simple criterion for the stability of a periodic system. With the Lyapunov-Floquet transformation, the state transition matrix is replaced by the monodromy matrix. The third feature is to find out this monodromy matrix without any approximation (not up to a matrix of similarity). The paper is organized as follows: in Section 2, a typical SSI algorithm is presented. Section 3 gives the essential elements of the Floquet theory. Then, Section 4 is devoted to the design of the new LPTV-extended method. Finally, in Section 5 the efficiency of the method is tested on a numeric simulation of a model of a helicopter with a hinged-blades rotor.

Covariance-driven Subspace Identification

In this section, we present a typical SSI algorithm [START_REF] Ljung | System Identification: Theory for the User[END_REF]. Let consider the discrete-time state space model of a given system:

x k+1 = F x k + v k+1 y k = H x k + w k (1) 
where x ∈ R n is the state vector, y ∈ R r the output vector or the observation, F ∈ R n×n the state transition matrix and H ∈ R r×n the observation matrix. The vectors v and w are noises that are assumed to be white Gaussian and zero-mean. We choose the parameters p and q, and we build the covariance-driven Hankel matrix:

H p+1,q =      R 0 R 1 • • • R q-1 R 1 R 2 • • • R q . . . . . . . . . . . . R p R p+1 • • • R p+q-1     
The covariances of the output data write R i = E(y k y T k-i ), where E is the expectation operator. Remark 1. : R i can be approximated by Ri = 1 N ∑ N k=i+1 y k y T k-i if N is the number of output measurements we have (N 1). Then, the estimated Hankel matrix:

Ĥp+1,q = Hank( Ri ) = 1 N ∑ N k=q Y k + Y k -T
Where:

Y k + = (y k • • • y k+p ) T , Y k -= (y k • • • y k-q+1 ) T
Let G = E(x k y k ) be the correlation between the state and the observation.

O p+1 =      H HF . . . HF p     
and C q = G FG • • • FG q-1 are the (p + 1)th order observability matrix and the qth order controllability matrix. The computation of the R i 's leads to the decomposition:

H p+1,q = O p+1 C q
Therefore, the observability matrix O p+1 can be obtained with a thin SVD of the Hankel matrix H p+1,q and its truncation at the desired model order n:

H p+1,q = U 1 U 2 Σ 1 0 0 Σ 2 V 1 T V 2 
T and:

O p+1 = U 1 Σ 1 1 2
Where Σ 1 contains the first n singular values.

The observation matrix H is extracted from the first r rows of the observability matrix O p+1 . The state transition matrix F is obtained from a least squares solution of:

O ↑ p+1 F = O ↓ p+1
Where:

O ↑ p+1 =      H HF . . . HF p-1      , O ↓ p+1 =      HF HF 2 . . . HF p     
We get the eigenstructure of the system (1) from the resolution of det(F -Iλ ) = 0 and Fφ λ = λ φ λ , (λ , φ λ ) denote the eigenvalues and the eigenvectors of the system.

Floquet Theory

The theory of Floquet is a mathematical theory of ordinary differential equations (ODEs). Introduced in 1883, it is the first complete theory for the class of periodically time-varying systems. In this section, we briefly review some of its essential elements that are related to our study. More details can be found in [START_REF] Dacunha | A unified floquet theory for discrete, continuous, and hybrid periodic linear systems[END_REF].

Let consider the periodic differential system:

ẋ(t) = A(t)x(t) (2) 
Where x ∈ R n is the state vector. The state transition matrix A ∈ R n×n is continuous in time (or at least, piecewise continuous) and periodic, of period T > 0. If an initial condition x(t 0 ) = x 0 is fixed, a solution of ( 2) is guaranteed to exist. Let Φ(t) be the matrix whose n columns are n linearly independent solutions of (2), Φ(t) is known as the Fondumental Transition Matrix (FTM). It has the properties below:

Φ(t) = A(t)Φ(t), Φ(t + T ) = Φ(t)Φ(T ), ∀t

Stability Analysis

The value of the fundemantal matrix at

t = T , Q = Φ(T ) is called the Monodromy Matrix. Let R = 1 T log(Q).
According to Floquet's theory, the dynamical system ( 2) is stable if and only if the eigenvalues of R are negative or, similarly, if the norm of the eigenvalues of Q is less than one.

Floquet Transformation

The Floquet transformation, also called the Lyapunov-Floquet transformation, gives an underlying autonomous system (a system with a constant state transition matrix) that is equivalent to the initial periodic system i.e: the transformation is invertible. If we make the change of variable x(t) = Φ(t)e -Rt z(t), the theory insures that:

ż(t) = Rz(t) (3) 
Now if the equation of observation of the considered system is: y(t) = Cx(t), the equivalent equation for the new variable z is:

ẏ(t) = Cx(t) = CΦ(t)e -Rt z(t) (4) 
Remark 2. : It is easy to demonstrate that Φ(t + T )e -R(t+T ) = Φ(t)e -Rt using the fact that R = 1 T log(Φ(T )). Therefore, any periodic system can be transformed into an equivalent autonomous system with an equivalent periodic matrix of observation.

We have presented above, a subspace method for time-invariant systems. In this section, we suggest an extension of this method to the linear periodically time-varying case. Let consider the periodic state-space system, of a period T :

ẋ(t) = A(t)x(t) y(t) = Cx(t) (5) 
As outlined in Section 3, an equivalent representation can be given by the Floquet's transformation:

ż(t) = Rz(t) y(t) = CΦ(t)e -Rt z(t) (6) 
Sampling at rate 1 τ (τ > 0) yields the discrete time model below:

z k+1 = F z k + v k+1 y k = H k z k + w k , z k = z(kτ) (7) 
The discrete state transition and observation matrices are: F = e τR and H k = CΦ(kτ)e -Rkτ . The output and the state are corrupted by the noises v and w assumed to be white Gaussian and zero means. If µ is an eigenvalue of the continuous system R, the correspondent eigenvalue λ of F is such that: λ = e τ µ . According to the theory of Floquet, the continuous system is stable when the eigenvalues µ are negative. Therefore, the discrete system is stable when λ < 1 (or, if λ is complex, its real part is under 1). The discrete observation matrix H k is periodic of period T d = T τ + 1 ( denotes the floor operator). We build the instantaneous product

Y k + Y k -T : Y k + Y k -T =      H k H k+1 F . . . H k+p F p      [ z k y T k Fz k-1 y T k-1 • • • • • • Fz k-q+1 y T k-q+1 ]
Following the lines of [START_REF] Park | Canonical forms on discrete linear periodically time-varying systems and a control application[END_REF], the ensembles z k z k+T d z k+2T d z k+3T 

G (k) = E(z k y T k ) = 1 N ∑ N-1 i=0 z k+iT d y T k+iT d .
A Hankel matrix is formed from these cross-products, at sample k:

H (k) p+1,q = ∑ N-1 i=0 Y k+iT d + Y k+iT d -T = ∑ N-1 i=0      H k+iT d H k+1+iT d F . . . H k+p+iT d F p      z k+iT d y T k+iT d • • • F q-1 z k-q+1+iT d y T k-q+1+iT d (8) 
We know that the matrix of observation H is periodic. Then

H k+iT d = H k , ∀i > 0.
Using this property, the matrix of Hankel writes:

H (k) p+1,q =      H k H k+1 F . . . H k+p F p      ∑ N-1 i=0 z k+iT d y T k+iT d • • • F q-1 ∑ N-1 i=0 z k-q+1+iT d y T k-q+1+iT d =      H k H k+1 F . . . H k+p F p      G (k) • • • • • • F q-1 G (k-q+1)
As in the time-invariant case, the matrix of Hankel H

p+1,q can be decomposed in a product of two matrices:

H (k) p+1,q = O (k) p+1 C (k) q (9)
Where:

O (k) p+1 =      H k H k+1 F . . . H k+p F p      and C (k) q = G (k) • • • F q-1 G (k-q+1)
The observability matrix O k p+1 can be obtained as in Section 2 via an SVD of H (k) p+1,q and its truncation at the desired model order n. The observation matrix H k , at k, is obtained from the first r rows of

O (k) p+1 .
The extraction of the transition matrix from one observability matrix is no longer possible. In order to get F, we have to compute two successive matrices of Hankel. At (k + 1), H (k+1) p+1,q writes:

H (k+1) p+1,q =      H k+1 H k+2 F . . . H k+p+1 F p      G (k+1) • • • • • • F q-1 G (k-q+2)
Now if we have the two successive observability matrices O p+1 , the transition matrix F is -as in Section 2-the Moore-Penrose (least square) solution of:

O ↑ (k+1) p+1 F = O ↓ (k) p+1 (10) 
Where:

O (k) p+1 ↓=      H k+1 F H k+2 F 2 . . . H k+p+1 F p      , O (k+1) p+1 ↑=      H k+1 H k+2 F . . . H k+p+1 F p-1      Remark 3. : Notice that the range space of O (k) p+1 and O (k+1)
p+1 must be in the same basis. In fact, the left part of the singular value decomposition gives the observability matrix up to some similarity matrix i.e for example: in the time-invariant case,

O p+1 = TU 1 Σ 1 1 2
where T is a unitary matrix (we have omitted this discussion until now, for simplicity). This matrix will be simplified by its inverse, with the Moore-Penrose resolution. And the obtained F corresponds, then, to the real transition matrix with no similarity.

In the case of time-variant systems, if the two successive SVD are done separately, we will have two different similarity matrices T k and T k+1 . When it comes to the least square resolution, no simplification will be possible:

F = (O ↑ (k+1) p+1 ) † T -1 k+1 T k O ↓ (k) p+1 (11) 
The symbol † denotes the Moore-Penrose pseudo-inverse. None of the similarity matrices T k or T k+1 is known. A solution for this is to force an SVD in the same basis for the two successive Matrices of Hankel:

H (k) p+1,q H (k+1) p+1,q = U 1,k U 2,k U 1,k+1 U 2,k+1 Σ 1,k 0 0 Σ 2,k V T k,k+1 (12) 
The size of covariance-driven matrices of Hankel is (p + 1)r × qr. Therefore, the complexity of the SVD does not depend on N, and the computation is not cumbersome.

The range spaces of the observability matrices, up to the same similarity matrix, are

O (k) p+1 = U 1,k Σ 1,k 1 2 , O (k+1) 
p+1 = U 1,k+1 Σ 1,k 1 2 (13) 
Once F and H k are computed, the modal structure of the system (7) are obtained from the resolution of det(F -Iλ ) = 0, Fφ λ = λ φ λ and ϕ λ = H k φ λ .

Algorithm: To sum up, here are the steps of the suggested LPTV identification method:

• NT d output-measurements are available. We set the data in ensembles of timeinvariant series y k y k+T d y k+2T d y k+3T d • • • for each sample k

• we compute, at k and (k + 1), the two successive matrices of Hankel H

p+1,q and H (k+1) p+1,q using the formula (8)

• we make a simultaneous singular value decomposition of those two matrices as in (12) • we compute the range spaces of the observability matrices, at k and (k + 1), as in (13) • we resolve the equation (10) using the Moore-Penrose pseudo-inverse

• H k is obtained as the first r rows of O (k) p+1
• given F and H k , we compute the eigenstructure of the system

Application

In this section, we give an illustrative example in order to test the new suggested identification algorithm. The system we study herein is a helicopter with a hingedblades rotor. The chosen modeling is the modeling for the analysis of the ground resonance phenomenon. We present the dynamical equations of motion that describe this phenomenon, and develop the linear periodically time-varying mechanical model in a similar way as described in [START_REF] Sanches | Instability zones identification in multiblade rotor dynamics[END_REF], but adding damping to the structure this time. The helicopter's fuselage is considered to be a rigid body with mass M, attached to a flexible LG (landing gear) which is modeled by two springs K x and K y , and two viscous dampers C x and C y as illustrated in Fig. 1. The rotor spinning with a velocity ω, is articulated and the offset between the MR (main rotor) and each articulation is noted a. The blades are modeled by a concentrated mass m at a distance b of the articulation point. Torque stiffness and a viscous damping K β and C β are present into each articulation. The moment of inertia around the articulation point is I z . The degrees of freedom are the lateral displacements of the fuselage x and y, and the out-of-phase angles β k=1•••N b , with N b the number of blades.

Let Z = x y β 1 • • • β N b
T . A linear model for the considered system under free vibrations is defined by:

M (t) Z (t) + C (t) Ż (t) + K (t)Z (t) = 0 (14) 
Where:

M (t) =        (M + Nm) 0 -mbsin(ωt) 0 (M + Nm) mbcos(ωt) -mbsin(ωt) mbcos(ωt) (mb 2 + I z ) -mbsin(ωt + α) mbcos(ωt + α) 0 . . . . . . . . . -mbsin(ωt + α) • • • -mbsin(ωt + (N -1)α) mbcos(ωt + α) • • • mbcos(ωt + (N -1)α) (mb 2 + I z ) • • • 0 . . . . . . . . .      C (t) =        C x 0 -2mbωcos(ωt) 0 C y -2mbωsin(ωt) 0 0 C β 0 0 0 . . . . . . . . . -2mbωcos(ωt + α) • • • -2mbωcos(ωt + (N -1)α) -2mbωsin(ωt + α) • • • -2mbωsin(ωt + (N -1)α) 0 • • • 0 . . . . . . . . .      and 
K (t) =        K x 0 mbω 2 sin(ωt) 0 K y -mbω 2 cos(ωt) 0 0 K β 0 0 0 0 . . . . . . . . . mbω 2 sin(ωt + α) • • • mbω 2 sin(ωt + (N -1)α) -mbω 2 cos(ωt + α) • • • -mbω 2 cos(ωt + (N -1)α) 0 • • • 0 . . . . . . . . .     
The system can be written as in [START_REF] Dacunha | A unified floquet theory for discrete, continuous, and hybrid periodic linear systems[END_REF], with x = Z T Ż T T and

A(t) = 0 I -M (t) -1 K (t) -M (t) -1 D(t) , A(t) = A(t + 2π ω ). It is periodic of pe- riod T = 2π ω .
The numerical values used for the application are reported in Fig. 2. The helicopter model is simulated for ω = 4rad.s -1 . To get precise results, the subspace identification should be processed on very large dataset (to overcome the problem of bias due to the noise i.e 1 N ∑ k v k ≈ 0 and 1 N ∑ k w k ≈ 0). A total of N = 80000 data points are generated, with a sampling frequency of 50Hz. The order of the system is known and is equal to n = 12. The identification algorithm is applied to the data as explained in Section 4. The summary of the identified eigenvalues, and the difference between them and the real values, are given in Fig. 3. The differences in the obtained real part (damping ratios) are less than 0.1 %. For the imaginary part (frequencies), the differences are larger, but still not significant considering the large uncertainty on the estimates. The identification is more accurate when N is larger.

Structural variable Value

m 31.9Kg M 2902.9Kg K β 200N/m K x 3200N/m K y 3200N/m C β 15Ns/m C x 300Ns/m C y 300Ns/m a 0.2m b 2.5m I z 259Kg/m 2
The most important variable the real part of the eigenvalues, because it is the criterion for deciding whether the system is stable or not. Therefore, the suggested method of identification is sufficiently accurate for the purpose of stability analysis.

Identified mode

Real mode damping frequency damping frequency 0.9974 0.0766 0.9998 0.0200 0.9974 -0.0766 0.9998 -0.0200 0.9989 0.0702 0.9998 0.0214 0.9989 -0.0702 0.9998 -0.0214 0.9995 0.0556 0.9994 0.0359 0.9995 -0.0556 0.9994 -0.0359 0.9985 0.0130 0.9995 0.0330 0.9985 -0.0130 0.9995 -0.0330 0.9971 0.0310 0.9994 0.0335 0.9971 -0.0310 0.9994 -0.0335 0.9999 0.0471 0.9994 0.0335 0.9999 -0.0471 0.9994 -0.0335 Fig. 3 Identified modes vs. real modes

Conclusion

The problem of identification for linear periodically time-varying is addressed. An extension of the covariance-driven SSI algorithm is proposed and tested with simulation data. Future works encompasses a generalization of the subspace detection methods to the same class of systems.
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Fig. 1

 1 Fig. 1 Mechanical model of a helicopter with 3 blades

Fig. 2

 2 Fig. 2 Structural properties for hinged-blades helicopter with 4 blades

  • • • and y k y k+T d y k+2T d y k+3T d • • • are time-invariant series. If we have, for example, NT d output measurements (N 1), the output-input covariance of the k-th invariant ensemble can be estimated by