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ABSTRACT

We develop a novel continuum description of lattice dynamics for a particle chain with
nearest neighbor interactions. Our continuum model interpolates discrete solutions and
allows one to deal adequately with singular and impact loadings. The resulting theory
is local in space and nonlocal in time. It is characterized by a nontrivial hereditary
structure which blends inertial and elastic forces. The proposed methodology can be
used to build continuum approximations for lattice dynamics which incorporate
Keywords: successively finer scales. It can also serve as a seamless interface between discrete

Lattice dynamics ) and continuum elasticity theories.
Quasi-continuum modeling

Nonlocal elasticity
Discrete to continuum
Multiscale modeling
Non-Newtonian inertia
Meta-materials

0. Introduction

The two most widely used theories of elastic deformation in crystalline materials are the atomic scale molecular
dynamics (MD) (Born and Huang, 1954) and the classical continuum (CC) thermo-elasticity (Landau et al., 1986).
Continuum elasticity is a scale free phenomenological theory representing a formal coarse grained approximation of
molecular dynamics. Recently, considerable efforts have been made to obtain the CC theory as a rigorous mathematical
limit of MD, however, the progress is still modest outside the well understood case of linear elasto-statics (Hays et al.,
1994; Curtin and Miller, 2003; Park et al., 2005; E and Li, 2005; Charlotte and Truskinovsky, 2008; Marian et al., 2010;
Tadmor and Miller, 2011). Despite the remaining difficulties, the classical theory shows validity over a remarkably broad
range of scales, from kilometers to micrometers, and allows one to use powerful analytical tools of differential calculus to
obtain relatively simple description of the phenomena involving large number of particles participating in complex
nonlinear interactions.

The continuum elasto-dynamics fails at the atomic scale where it misses micro-instabilities (Charlotte and
Truskinovsky, 2002; Friesecke and Theil, 2002), phonon gaps (Brillouin and Parodi, 1956; Vasseur et al., 2001), binary
oscillations (Deift and McLaughlin, 1998; Vasiliev et al., 2010), dispersive overshoot (Slepyan, 1972), dispersive energy
transport (Mielke, 2006; Macia, 2004), radiative damping (Atkinson and Cabrera, 1965; Truskinovsky and Vainchtein,
2005; Carpio and Bonilla, 2005) and lattice trapping (Slepyan, 1981, 2002; Truskinovsky and Vainchtein, 2005), to mention
just a few of the physical effects invisible in the CC model. Some general questions requiring a micro-scale analysis concern
the dissipative closure relations and the nature of the size effect. Lattice or, more generally, micro-structural or
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anti-continuum effects are becoming dominant as one tries to miniaturize engineering devices and optimize them through
the fine material selection. It is hardly an exaggeration to say that recent technological interest has been mostly focussed
on the scales where the CC theory fails (Massobrio et al., 2010).

To capture the micro-scale effects one can directly apply the lattice MD theory which is, however, analytically opaque
and can be viewed only as a numerical tool. More importantly, adequate MD simulations of crystalline materials are in
most cases still too time consuming to be handled by modern computers. It is therefore an important challenge to develop
a hybrid theory of dynamic crystal lattices which combines the advantages of the continuum description with the ability to
reproduce some micro-structural features, for instance the nontrivial dispersion relations (Collins, 1981; DiVincenzo,
1986; Kevrekidis et al., 2002; Arndt and Griebel, 2005; Tang et al., 2006; Askes et al., 2008; Andrianov et al., 2010). Among
many attempts to construct such quasi-continuum (QC) theories (continuum theories incorporating internal length
scales)! one can naturally distinguish two major approaches.

In the first group of theories, one extends the classical elasticity by introducing one or several nonclassical continuum-
based ingredients, such as internal variables (Mindlin, 1964; Kréner, 1968; Kunin, 1982), higher gradients (Toupin, 1962;
Krumshansl, 1965; Mindlin, 1965; Blanc et al., 2002; Sunyk and Steinmann, 2003), nonlocal interactions (Eringen, 1972;
Kunin, 1982; Rogula, 1982; Silling, 2000), etc., which are then considered operative everywhere in the domain of interest.
As one example, we can mention a static multi-field theory (Charlotte and Truskinovsky, 2008) allowing one to reduce the
discrete problem to a set of coupled second order partial differential equations. Another example is a dynamic multi-field
theory (II'iushina, 1969; Kunin, 1982; Vasiliev et al., 2010) introducing internal variables with nontrivial inertia. The
problem with this general approach is that the new continuum structures are accounted for not only where they are
essential, but also where the simpler CC theory could be used as well.

In the second, mostly numerical approach, one applies continuum thermo-elasticity everywhere outside some small
domains (usually around singularities) and uses discrete MD inside these domains (Ortiz et al., 1996; E and Huang, 2002;
E et al., 2006; Dobson et al., 2007; Lin, 2007; Braides and Truskinovsy, 2008). Despite notable successes in recent years the
existing methods of this type still generate errors which cannot be fully controlled (Curtin and Miller, 2003; Liu et al.,
2004; Park et al., 2005; E and Li, 2005; Tadmor and Miller, 2011). More importantly, the full microscopic resolution is often
excessive even in the small domains adjacent to lattice defects.

A synthesis of the two approaches can be achieved through the systematic development of a set of nested QC theories
that, on one side, resolve a succession of increasingly fine length and time scales and, on the other side, can be matched
with each other and with the CC theory. If the finest scale of the QC sequence represents an exact interpolation of the
discrete theory, such a gradual continualization can ensure a seamless link between the classical thermo-elasticity and the
MD theory. In this way one can formulate both limiting theories in the same framework and resolve the fine scale QC
equations on numerical meshes that are coarser than atomic scales.

As a step in this direction, we consider in this paper a prototypical setting and pose the problem of interpolating a
discrete Hamiltonian particle dynamics by a QC theory with hereditary (history dependent) elasticity and generalized
inertia. The advantage of working with a drastically simplified problem (a linear particle chain with nearest neighbor
interactions) is that we know the dynamic behavior of the discrete model in full detail. However, by omitting nonlinearity
we exclude from the picture such important effects as thermalization and heat propagation. Also, by insisting on exact
interpolation and avoiding coarse graining we exclude dissipation and focus exclusively on dispersion and nonlocality. We
therefore remain in the conservative QC framework where no information is getting lost in the process of transition from
discrete to continuum.

We begin by demonstrating that in the case of localized loadings the classical elasto-dynamics fails to reproduce several
basic features of the discrete dynamics and creates artificial singularities. To remedy these shortcomings in a QC
framework one needs to find a continuum representation of the discrete elasticity operator and a consistent continuum
interpretation of point forces and initial conditions.

The most well known approach to the interpolation problem is based on the idea of projecting the dynamics onto the
first Brillouin zone (e.g. Kunin, 1982; Rogula, 1982; Eringen, 1972; Rosenau, 2003). In this way one can achieve an
isomorphism between discrete and QC theories at the expense of making the elasticity operator nonlocal in space. The
main limitation of this approach is its inability to deal with point forces and, more generally, with forces whose Fourier
spectra are not band-limited to the first Brillouin zone. Despite this inconsistency, spatially nonlocal phenomenological
theories with localized forces have been widely used in numerical simulations and are often presented as a form of a
coarse grained MD (e.g. Seleson et al., 2009).

To deal with localized and impact loadings, we propose in this paper a fundamentally different way of building a QC
interpolation of discrete dynamics. Our approach was first developed in statics (Charlotte and Truskinovsky, 2008) where
we could handle interactions of arbitrary range that are known to generate an infinite sequence of internal length scales.
The main idea is to drop the requirement of maximum smoothness of the interpolation in order to preserve the spatially
local character of the resulting QC theory. The discreteness at the continuum level is represented in this approach by a set

! The term quasi-continuum was probably first introduced by Kunin in the 1960s who used it to describe a maximally smooth continuum
interpolation of a discrete model (see references to earlier papers in Kunin, 1982). The term was later used in Tadmor et al. (1996) as a general reference
to a wide variety of mixed discrete-continuum numerical codes.



of PDEs incorporating increasingly fine microcomponents of the displacement field. This allows one to deal with classical
sets of boundary conditions and make the QC theory fully compatible with continuum elasticity. The nonlocal model is
recovered in this framework if the microscopic components of the displacement field are eliminated by means of nonlocal
relations involving the associated Green’s functions.

In dynamics, which is the main focus of the present paper, we intentionally limit our description to a chain with nearest
neighbors (NN) interactions where the nontrivial internal length scales disappear. As a result, the spatial discreteness in
the NN theory can be adequately represented by a single displacement field. By using the Mittag-Leffler fractional
decomposition of Green’s function in the Fourier-Laplace space we construct a continuum description of the NN chain in
terms of a single field obtaining a theory which is local in space and nonlocal in time. The salient feature of the resulting
temporally nonlocal (TN) dynamic theory is that both inertial and elastic forces are nonlocal in time and are actually
hardly distinguishable which has been anticipated in Willis (1981, 1997) and Milton and Willis (2007). The main
advantage of such a theory is that it does not place any restrictions on the support of the applied loading and can handle
point impact loadings as naturally as the original discrete theory. It is also important that the proposed general
interpolation scheme can be used as the basis for constructing a sequence of successive approximations which are local in
both space and time. Expectedly, the memory/hereditary structure of the approximate inertial and elastic constitutive
relations becomes increasingly more complex as the order of approximation increases and finer time scales are taken into
consideration.

The paper is organized as follows. In Section 1 we introduce our prototypical discrete linear system and solve explicitly the
generic initial value problem. In particular, we consider a benchmark point impact test and discuss the peculiar oscillatory
structure of the ensuing discrete solution. We then show that the CC theory, formulated in Section 2, is unable to reproduce
some fundamental microscopic features of the energy distribution associated with this discrete solution. In Section 3 we
discuss the general principles of constructing QC interpolating models. We identify two equally important problems: the
approximation of the dynamic operator in the Fourier-Laplace space and choosing the regularized representation for point
forces. In Section 4 we review the previously known interpolation schemes leading to spatially nonlocal theories and show
that they are unable to deal with localized loadings. The new TN theory is developed in Section 5 where we show that it
reproduces adequately the discrete solution of a generic point impact problem which is the most difficult test for such a
theory. In Section 6 we discuss several ways of constructing spatially and temporally local approximations of the exact TN
theory characterized by progressively shorter memory, all the way to CC elasticity. The last section contains our conclusions.

1. Discrete model

Consider an unbounded particle chain shown in Fig. 1. Suppose that the mass of a single particle is pa where a is the
lattice length scale and p is the macroscopic mass density. For simplicity we assume that each particle interacts only with
its nearest neighbors through linear elastic springs with elasticity constant oca where « is the elastic modulus (NN chain).
The time dependent displacements of particles u(t) = {u,(t)} .z are assumed to be continuous and particle collisions are
excluded. We demand that the external forces af(t) = a{f,(t)}xcz have appropriated growth properties in space and time.
We also allow for the impact loadings defined by their impulses affoc f(f) dt.

The ensuing mechanical model is fully characterized by the elastic energy, the kinetic energy and the external work:

_ O [u® - (0]

Ee(u,t) = azi {f} , (1a)
kezZ

Ek(u,t) = GZ = [Deug(HP?, (1b)
keZ

Pifut)y=a) / fr(®D;u(8) dt, (10

kezZ
where the operator D, denotes appropriately generalized partial time derivative.
To make our discussion more transparent, we mostly focus on a problem with zero initial conditions
u(t)=0 fort<0 2)

and only briefly discuss the general initial value problem with the given (u(07),Du(07)). We also assume that f(t) = 0 for
t <0. To illustrate the difference between the discrete and the classical continuum (CC) theories we consider three tests: a
step load, an impact load and an initial displacement in a single point.

fk 1 k fk+l

bbb

Fig. 1. Mass spring chain with nearest neighbor (NN) interactions. Masses are subjected to time dependent external forces fi(t)



The dynamics of the NN chain is governed by the following classical system of equations (Brillouin and Parodi, 1956;
Maradudin et al., 1963)

o
pD7uy = a_z[uk+l + U1 —2U ]+ fy.- 3
Here
2 o 2c
Wy = a E: a “4)

is the characteristic frequency providing the time scale and ¢ = \/o./p is the macroscopic characteristic velocity.
To solve a generic problem for the linear system (3) one can use continuous Laplace (L) transform in time and a discrete
Fourier (DF) transform in space. The L transform is defined as follows:

O 5y(@) = / F(be-iet dr, )
JO

where Im(w) < —w;, < 0 and the positive real number @, must be sufficiently large to ensure the existence of the integral.
For the DF transform we write

Y Zy)=a>y, e, ©
keZ

where 1 € K=[-n/a,n/a] and K represents the fundamental Brillouin’s interval in the lattice reciprocal space.
By applying to (3) first the L transform and then the DF transform we obtain

D(L,0)u(L,w) =f(1,m), @
where the complex function
D) = plw? sin®(1a/2)—w?] 8)

fully characterizes elastodynamic properties of the system.
The solution of the problem (7) defined for ¢t > 0 is given by the following inversion formulas:

—iwp 400 . .

u(t) = 21_n/ u(w)e'®t dw, Yo, > wy =0, (9a)
—iwy—o0

where

/e af ,(w)

Ny ide-pyia
uk(w)_pezz 37 e G0) di. (9b)

Notice that here and in what follows we imply that u,(t) = H(t)u,(t) where

def 0 1ft<0.
H“)_{1 ift>0

is Heaviside’s step function.
To compute the integrals (9a) and (9b) we must first analyze the characteristic equation

&(1,0)=0. (10)
If we partition the /-complex domain a~'C into simply connected strips UgezBg, with
By ={\=/r+il € C; |Ara—2qrn| <7, (Ara,2;a) € R?}, 11)

we can solve the characteristic equation (10) in each of these strips with respect to w. The roots form an infinite sequence
{Ak()}rez implicitly given by

2 2
_207 5@ 1@

2 — 2°
g s g

eilka -1

w
.

It will be convenient to arrange the different branches of the function {/,(w)};.z into doublets
Jag(w) =Jo(w)+2qn/a and Jaqi1(W) = —Aag(), (12a)

2 / 2
2a; —2i Y 1w> = _2 arcsin <ﬂ) (12b)
w2 Wy w? a Wy

The explicit relation (12b) is well-defined everywhere in w,C outside the branch-cuts

where we defined

Ao(w) = %l log <1 -

LN 00, — 4] U [04,00].
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Fig. 2. The dispersion relation A= Ao(w) with @ = w,+i0*. The arrows indicate the paths corresponding to increasing w, € w4R. Four branches at
; < —m, merge into two branches at \w,\ < w, which then split again into four branches at w, > w..

Then for each q € Z, the doublet (434,41_2¢) lays inside the strip By in (11). The first strip By contains the fundamental
Brillouin’s interval K =[—n/a,7/a). Inside this strip the characteristic equation has two complex roots: 4¢ and 4; = —4,.
One period of the dispersion relation A(w) with real frequencies w = w; € w.R is shown in Fig. 2.

We can now invert the discrete Fourier transform according to Eq. (9b) to obtain

ia el k—p|2oa

Ug(w) = Zza sin(Joa) Ty

where f,(®) is the Laplace image of the loading. Given the initial conditions (2) the inversion of the continuous Laplace
transform gives

NG )
(=3 / Gllk—pa iy (13)
peZ
where we introduced the continuum interpolation of the discrete Green’s function?
1 -—iwb+ooipazei(\s\/ln +mt)
CsD=57 ioyoo  200SIN(JoQ) do. a4
The expression (14) can also be rewritten as
(& +o0 @—|s|/t+ —
. = H(t) _, 2/ sin(w,t—|s|/¢-) dwr—z/ e cos(wrt—|s|m/a) do, b,
wr 17@ wr @71
_aH(®) | (™9 sin(wst sin(2ra/2))cos(Ars) . o e~ilsl sin(wyt cosh(4;a/2))
Toon {/0 Wy sin(A,a/2) dAr—51n(|s\7I/a)/0 wy cosh(4;a/2) i (13

2 More precisely, the discrete (causal) Green’s function is [pa]~' G(s,t) as the loading is defined as af.



where we defined two characteristic length scales ¢, (w)

4 o5 1(1.29 _

@)= cos (1 2 U)i) € [0,m] for w € [—wy,wy], (16a)
a 2w 2|o| |w?

@ = n { 2 -1 o —wi —1| >0 for @ € W.R\[—wy,w,]. (16b)

The discrete Green’s function associated with Cauchy’s problem (3), (2) solves the following equation:
pr G(ka,t)— (% [G(ka+a,t)+ G(ka—a,t)—2G(ka,t)] = pdy 00 + (1), 17)
and the solution of this equation can be written explicitly as

-, Sin(,t)cos (ke t o
Gika,ty = 20 (#) dor =H(O) [ Jadod) di. (18)
JO

W Jo 2
a)mllf%é

Here dy, denotes Kronecker’s symbol, 6, (t) = DH(t) is the “causal” Dirac’s delta function (Schwartz, 1966) and

~T/a
Ja(wyb) = %/ cos(wyt sin(A-a)—Arna) di, (19)
0

is Bessel's function of the first type with integral order n e Z (Abramowitz and Stegun, 1972). To study velocity
distribution we would also need the time derivative of G(ka,t) given by

DG(ka,t) = H(t)] 55 (@x1).

The behavior of the function G(s,t) > 0 is illustrated in Fig. 3(a). The asymptotic analysis based on the steepest-descend
method shows that if either w.t — oo (with [s| /aw,t fixed) or |s|/a— oo (with aw,t/|s| fixed), the function G(s,t) approaches
the CC limit shown in Fig. 3(b)

Ge(s,t) = wy 'H(t—|s]| /c). (20)

The time dependence of the functions G(ka,t) and D;G(ka,t) at discrete points s=ka € aZ is illustrated in Fig. 4.

Impact test: When applied loads change sufficiently slow in space and time one can expect that the discrete nature of
the chain does not play an important role and one can safely use the CC elasto-dynamics. The problems arise when the
loading is localized at a length scale comparable to a or at a time scale comparable to w;!. To illustrate the mechanism of
failure of the CC theory it is instructive to consider a singular discrete loading imitating point impact:

af (t) =Poxo0 + (t—to). (21)

The parameter p prescribes the impulse of force applied at time t = tg.

The knowledge of the response of the system to impact loading is of fundamental importance in both experimental and
theoretical characterization of linear discrete systems because it allows one to fully identify the corresponding Green’s
functions. Indeed, the spectral representation of (21) can be written as f(1,w)=p and if we solve the corresponding

a b

.G

Fig. 3. Green's functions G(s,t) for the discrete model (a) and Gc(s,t) for the CC model (b).
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Fig. 5. Particle motions generated by a localized impact loading. (a) Discrete model. (b) CC model. Trajectories are colored according to the magnitude of
the ratio 2pcu(t)/p = w+G(ka,t) in (a) and 2pcuc(ka,t)/p = w4Gc(ka,t) = H(t—to—|s| /c) (see Section 2) in (b). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

discrete problem with zero initial data we obtain

5
t) = G(ka,t—tg)——. 22
ug(t) = G(ka,t—to) oa (22)
To illustrate this result we show in Fig. 5(a) the particle trajectories at t > 0. One can distinguish two macro-domains.
One, in a shape of a cone, shows oscillations, while the complementary domain is essentially oscillations free. The
oscillations spread from the transition zone into the cone shaped domain where they eventually decay as the particles
approach their classical macroscopic positions (see Fig. 6(a) and Section 2)
uc(s,t)=H(t7tof|s\/c)£. (23)
2pc

It is instructive to trace the evolution of the microscopic boundaries of the oscillation-generating fronts. To this end we can
either trace the points |s| = ¢ (t—to) where the oscillations-induced overshoot reaches its maximal value or the points
|s| = ¢c_(t—to) where the displacements first reach their long time asymptotic limit p/(pw.a) given by the CC theory (see
Section 2). These two functions are illustrated in Fig. 6(b); notice that both fronts are always behind the classical Stokes’
rays |s| = c(t—to). The increasing separation of the two discrete fronts is an indication of the dispersion-induced spreading

(delocalization) of the strain singularities.
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To better understand the energy distribution in the discrete solution one can compute the work of the loading device
(1c) with the force distribution (21)
2
Pr(f,u,t) = pH(t—to)Deuo(ty ) = H(t— fo)— (24
Notice that at (s,t)=(0,0) the displacement field is continuous while the velocity field suffers a discontinuity. The
instantaneous work (24) of the impact loading (21) is transformed into micro-oscillations. By a slight abuse of terminology
one can say that the impact results in propagation of two “hot” rays; to render the thermodynamic language fully
adequate we need sufficiently strong nonlinearity ensuring the equipartition of energy in the sense of Fermi-Pasta-Ulam
system (e.g. Efendiev and Truskinovsky, 2010 and reference therein).
As another illustration, consider a spatially localized step loading in the form

af ¢ (t) = WPy oH(t—to). (25)
In this case the solution of the dynamic problem can be written as
@)
() = *p [AG.O-AG o)l (26)
where we introduced the anti-derivative of Green’s function from (14) which can be written in the form
ot A —iwp 400 (1 _ alotyails| iy
As.t) = / G(s.b) di = / A= 1o 27)
0 2Ty —iwp—oc0 (2 1_%
[OF
This expression can be further simplified as
[on SiIl @t cos 400 Is| /e r
A(s,t) = 4H(t) / () ( ) dw,—sm(\s\n/u)/ w dw, (28a)
Tooen1g et
n/a +00 a—4ils|
_ 2aH(t) / sin®(wxt sm(Ara/Z)/Z)cos(irs) di,—sin(|s|7/a) / e sin (w*tzcosh()»,a/Z)/Z) i\ (28b)
T Jo w2 sin 2(Aa/2) . w? cosh”(4;a/2)
In Fig. 7 we show the resulting displacement field and compare it with the limiting CC solution
u(s.) ~ ue(s.t) = 2P (292)

0 AC(Svt_tO)v
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where

e s ct—s| (. Is|
Acs.t) = /0 Ge(s,f) di = {t—?} Ge(s.) = w—*cH(t—?) (29b)
One can see that despite the less singular loading in this case, the deviation from the classical theory is considerable
around the time of the impact and remains finite in the long time limit near the propagating deformation fronts (Figs. 7
and 8).

Nonzero initial conditions: In order to complete the analysis of the discrete model, it is necessary to consider the problem
with nonzero initial conditions. Suppose that at t =0 we know the displacements u(0~) and the velocities D;u(07).
We also assume that u(0™)=u(0") as required by our assumption of continuity. Following Schwartz (1966, 1983), we
reinterpret the nonzero initial conditions in terms of localized inertial forces

paD*u(t) = pa[Du(07)5 4 (H+u(07)Ded 4 (1) 30)
The generalized equations incorporating these initial conditions can be rewritten in the form
o
pDF[H u] = o2 Hltiesa + g1 =2 ]+ f+ pDF U 3D

The additional singular loading (30) is required to move the chain instantaneously from a rest state to the configuration
with the given initial displacement and velocity (Roddier, 1971). Notice that the inertial loading pabfu(t) in (30) involves



a dipole term D; . (t) whose impulse is equal to zero so that
t
/ paD?u(t) di =H(t)paDu(0™)

but which nevertheless contributes to the instantaneous external work
Pr(pDiuu,t) =H(t)pay " [Dett(07)Dett (0™ )~ (07)D7 e (0F)]. (32)

kez
In spectral space the generalized dynamic problem (31) can be written as
DL, U(A,) =f(A,0)+pDAul,w), (33a)
where
D2u(L,w) = iwu(2,0)+1(4,07) (33b)

and u(4,0) and 11(4,07) denote the DF transforms of the initial displacements and velocities.
In real space the solution of the resulting Cauchy’s problem can be written as (Kunin, 1982; Maradudin et al., 1963;
Wolf, 1979)

ot + e ~

uk(t)=2[ / G(ka—pa,t—t) j% dt +up(0)D;G(ka—pa,t) +11,(07)G(ka—pa,t) |, (34)
peZ 0

where we introduced

G(s,t) = G(s,t)—G(s,—t) = sign(t)G(s,

t)). (35)

One can see that if in a system without body forces a single particle is given an initial velocity, the resulting motion is the
same as in the case of localized impact loading.

Suppose for instance that we prescribe the initial velocity D:u(0™) = ¥y o, which means that ’Dfuk(t) = Dt (07)0 4 (0).
The ensuing displacement field can be written as u(t)=7G(ka,t). The computation of the instantaneous work
gives P (pDruu,t) = pav?H(t) which could be also obtained from (21) and (24) by the change of variables p = pav and
letting to =0.

If, instead, a single particle is given an initial displacement, it first oscillates but then comes back to its reference
position. More precisely, consider the problem with 11;,(07) =0 and u;(0™) = Udo. The solution takes the form

ui(t) = uD;G(ka,t), (36)

where the function Dt&(s,t) is illustrated in Fig. 9(a).
The function

Ko(s/a) = D:G(s,0™) 37)
is shown in Fig. 9(b). The corresponding particle trajectories are shown in Fig. 8(a); the displacement field is also
illustrated in Fig. 12. The instantaneous work (32) can be computed explicitly Pr(pb?u.u.t) = (2pc2T? Ja)H(t).

An interesting prediction of the discrete theory for a particle chain with massless springs is that localized initial
disturbances (kinematic or dynamic) propagate with infinite velocity, which means that every mass point in the infinite
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Fig. 9. The function D;G(s,t) (a) its zero time limit ko(n) = D;G(na,0™) (b).



lattice feels the disturbance instantaneously (Wolf, 1979). Indeed, consider the initial data and the impact loading of the
form

le(O) = Hék,pv Dtuk(oi) = vak.pv afk(t) = 554— (t)ék.p- (38)
Then the general solution (34) can be written as

u(t) = uD,G(ka—pa,t)+ <% H(t)+i> 6(ka—pa.t). 39)

By using (18) one can show that
up(0)=udy,, Deug(0") =@/ (pa)+V)dyp,
Dug(0™") = (3 /Ul p 1+ p 1 =28kl etC.

One can see that the higher the order of the derivative, the larger is the number of particles affected by the impact. In this
sense the concept of a sharp deformation front which is common in continuum models can be viewed in the discrete
theory only as an approximation.

2. (lassical continuum theory

The most well-known continuum approximation of the discrete dynamics is provided by the CC elasto-dynamics which
replaces the lattice model by its formal long wave and low frequency approximation. In the derivation of this theory one
assumes |Za| <1 and makes a crucial assumption that the kinematic field u(s,t) is sufficiently smooth which naturally
places restrictions on the loading field f{s,t). The main outcome of the formal long wave expansion is the replacement of
the discrete spectral operator @(4,w) by the first term of its Taylor expansion around 2 =0

DL(h,0) = 0 —pw?* = a[i*— )5 ()], (40a)
where

e p_ o _ 20

Jy@)= w\/;— = o (40b)
For the limiting model one can again define the elastic energy, the kinetic energy and the external work:

gituet) =5 [ IDa(s.0F ds “1a)

S = [ Dawsof ds (41b)

ot 00 . . .
Pf U, t) = / / f(s,t)DEuC(s,t) ds dt. (41c)

The dynamic equation in the CC theory is a well known wave equation
pDuc(s,t)—oD2uc(s,t) = f(5,t). 42)

Here the operator D represents appropriately generalized partial space derivative.
To solve the continuum problem (42) we need to introduce the Integral Fourier (IF) transform and its inverse

ys) Syt = /_ y(s)e " dz, (43a)
N [T i
y(i)ay(S)—E 1 coy(i)e ds. (43b)

By applying first the L transform and then the IF transform, we obtain the following algebraic equation:

Dl (,0ul(2,0) =f"(4,0). (44)
After inverting the IF transform we obtain
1/~ ffom)

uc(s,w) =5

5 dJ. 45
27 ) oo @Z(ﬂv.w)e “5)

Finally, by inverting the L transform we obtain the real space solution

B 1 f-iop+oo o B t poo . Af(§,f) A
u&@—iglmwom@wk do= [ [~ Gus—s.-01C) as . (46)



Recall that here we again imply that H(t)u.(s,t) = uc(s,t) which means in particular that uc(s,07) =0 and D;u.(s,07) =0. In
(46) we introduced

ipa —iwy + 00 aifot + s 261 a
Gs,t:—/ ——— dw= — H(t—|s| /o), 47
=4 o @) 5¢ Is|/c) (47)
which is Green’s function of the classical continuum elasticity describing D’Alembert’s solution (see Fig. 3(b)). It solves
Cauchy’s problem for

PDZGe(s,0)—aDEGe(s,t) = pad(s)d (1) (48)

with the initial conditions G(s,t) =0 for t < 0. Here 6(s) = Df |s|/2 is the “acausal” Dirac’s delta function (Schwartz, 1966).

In addition to replacing the discrete elasticity operator by its long-wave classical analog, the continuum elastodynamics
description must propose a continuum representation f{s,t) of the discrete loading f(t) = {f(t)}xcz. While it is clear that at
any instant t the resultant force must be preserved

| snds=ayfuo. (49)

keZ

the detailed continuum representation of the localized discrete forces is non-unique. In what follows we consider two
most natural candidates and demonstrate that the predictions of the classical model depend on the chosen mode of
representation of the loading.

Impact test: singular loading: The most straightforward choice for the continuum distribution representing f(t) is the
singular loading of the form

fs,y=ad fut)d(s—ka). (50)

kez

In this case the discrete impact loading (21) should be interpreted in the classical continuum theory as

fs,)=> P00 (t—to)d(s—ka). (51

kez

The main problem with the representation (50) is that it violates the long wave character of the Taylor approximation
involved in the construction of classical elastodynamics. This crucial inconsistency is often ignored because the dynamic
problem (42) can still be formally solved.

Indeed, if we assume that the generalized function f{s,t) in (50) takes the form (51) we obtain

Uc(s,t) = Gc(s,t—to)% = H(t—to—|s| /c)zipc. (52)
We have already illustrated the function u.(s,t) in Fig. 5(b) and our Fig. 6(a) provides further comparison of the discrete and
continuum solutions. One can see that no oscillations occur in the classical elasto-dynamic solution. Outside the cone-
shaped domain bounded by Stokes’s rays |s| = c(t—to) the displacements are equal to zero while inside this domain the
displacements are constant.

Notice that, in contrast to the discrete case, the continuous displacement has a singularity at (s,t) =(0,tp). This
singularity produces two discontinuities traveling in opposite directions with velocities c and —c. As a consequence, the
velocity field D;u. becomes sufficiently singular for the integral (41c) to diverge at each t > to.

Indeed, the impact loading (51) can be viewed as the limit of a regularized sequence (Schwartz, 1966, 1983)

fis.n=> afi(Hd(s—ka), (53)

kez

where

H(tfto)fH(tftofé)
¢ ’

afz(t) :I_Jék,o

and € > 0 is a small time scale. An additional regularization in space does not change the result as shown in Appendix A.
By solving the CC problem with the regularized loading (53) we obtain

i{c(t—to)—\s\

€ —
U(s:0) = 2pc ce

[H(t—to—|s| /c)—H(t—to—ec—|s| /)] +H(t—to—c— \s|/c)}. (54)

At finite ¢ the displacement field is continuous, however, the function u¢ becomes singular as ¢— 0", approaching the limit
field u. given by (52). In contrast, the regularized velocity field is discontinuous

(s, ) = ﬁ[H(t—to— Is| /o)~ H(t—tg—e—|s| /)], (55)



while the work PS(f€,us,t) (41c) is finite

ug(0,0)—ug(0,to)

t =2
p ~ ~ ~ —
Pt = [ 5P Tt —HE—to-0) dE = Hit—to)p “O0

If we now take into account that ué(0,to) =0, the first term of the asymptotic expansion ¢—0* can be written as

I} +
PG ) ~ H(tfto)w - %%Pr(f,u,t).

An immediate consequence of this formula is that in classical elasto-dynamics the work of the loading device required to
generate the displacement field (52) is infinite. Instead, in the discrete theory, which the CC theory is expected to
approximate, the corresponding work was finite and equal to P(f,u,t) (see (24)). The problem is that in CC theory we apply
a finite force impulse to an effective particle with zero mass and, as a result, it starts moving with an infinite velocity. In
the discrete theory the mass of the particle receiving the force impulse is finite which leads to finite force increment and
finite work of the loading device.

It is of interest to trace the evolution of the infinite energy supplied by the loading device in the continuum problem.
Since none of the two macro-domains (unperturbed and translated) carries any energy, all the energy must be concentrated
in the infinitely thin transition zones |s| = c(t—to). The work of the loading device is therefore localized in the singularities of the
displacement field propagating in both directions with the characteristic speed c. This energy localization is another spurious
artifact of the long wave approximation because the latter is incompatible with the singular structure of impact loading.

Impact test: regularized loading: To correct the inconsistency between the long wave character of the elasticity operator
and the short wave structure of the loading, one can try to modify the continuum representation of the localized forces. The
interpolation condition can still be satisfied if we restrict the Fourier image of the discrete system of forces to the first
Brillouin zone. More precisely, we can use the following construction (Krumshansl, 1965; Eringen, 1972; Kunin, 1982;
Rogula, 1982):

f1G,0) =1g,(Df L), (56)
where 1g, is the characteristic function of the domain By. In the physical space we can write
fst=> fubri(s/a—k), (57)
keZ

where the weight function is now regular (see Fig. 10)
sin(nty)
717/

One can show that the continuum distribution of forces (57) provides the smoothest (Whittaker-Shannon-Kotel'nikov or WSK)
interpolation of the discrete system of loads f(t). Observe that while in the case of the singular loads (50) the Fourier spectrum
is completely de-localized, in the case of the regularized forces (57) it is fully contained in the strip By. In the physical space this
results in delocalization of the loading at the scale a and brings an internal length scale into the continuum theory.

To solve the continuum problem (42) with the source term given by (57) it is convenient to apply first the IF transform
and then the L transform. This again brings an algebraic problem (44)

Dl (,0ul(2,0) =f"(4,0).

K1(17) = sinc(n) = (58)

sinc(n)

25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-10-9-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 10
n

Fig. 10. The function (1) = sinc(n).



After inverting the L transform we obtain

1 —iwy, + o0 f*(}”a)) X
) = —— / Ot oy, 59
UC( ) 2n —imp—o0 (DI(;,.(U) € @ (59

which can be rewritten as

ul(At) =alg,()d H(H)

peZ

€2 sin(wy(t—t)ia/2)fp()e 4 &
/0 WAl P

Next, we invert the IF transform to obtain

t L@
(5,0 = Gi(s—pa,t—t)-2 dt, 60
e(s.) 2 /0 (s=pa.t—h L (60)
where
m/aQ si ] eiey (SEE) ey (552)
G¥(s,t) = H(t) /0 2 Sm(g)’:ﬁ’m/ 2 COS;AS) i =H() /0 i )2 i )dt. ©61)

In Fig. 11 we compare the kernels G.(ka,t) and G}(ka,t). One can see that the regularization of the force allows one to
recover the lattice scale oscillatory structure of the discrete solution without any additional improvements at the level of
the operator which remains scale-free.

We can now consider the impact test with the loading (21) to obtain

p

Uc(S,t) = Gf(s,t—to)ﬁ. (62)

The computation of the work gives

=2

P e, t) = H(t—to)PDeuc (0.t ) = H(t—to)% DiG*(0,0%) = Pr(f,u,0). 63)
As we see, now the work of the loading device is finite and is exactly equal to the analogous term in the discrete theory.
Despite this success in matching the energy, the point-wise agreement between the discrete solution (22) and its
continuum analog (62) is at most qualitative. In particular, while continuum loading interpolates the discrete one, the

continuum displacement field does not. This is related to the fact that the discrete elasticity operator @(4,w) is represented
in classical elastodynamics rather crudely.
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Fig. 11. Comparison of the discrete Green’s function G(ka,t), the CC Green’s function Gc(ka,t) and the pseudo-classical approximation G:(ka,t) for
(kt)y e N x 0z 1R™.



Nonzero initial conditions: Suppose now that in the CC theory we pose the problem with initial data u.(s,07) and ti-(s,07).
The corresponding spectral problem can be written as

DL, 0)Uc(L,w) = f(hw)+iwpuc(,0)+ pic(1,07), (64)
where we introduced the IF transforms of the initial data. In real space we obtain D’Alembert’s solution (e.g. Wolf, 1979)
t poo ;t _ s+ct
e(s.t) = H(D) / / Ges—s,t—t) L&D g gp 4 UeCFAOFUS—CtO) | T / 13.0) ds, (65)
JO J—oco pa 2 2c, s—ct

which is continuous as long as the loading f does not involve any singular impact component.
By following the pattern developed in the discrete theory, we can again interpret the nonzero initial conditions in the
CC setting as an instantaneous distribution of inertial forces

pa’bfuc(s,t) = pa{Diuc(5,07) & (£)+uc(s,07)D;d 4 ()} (66)
We then need to solve the problem (Schwartz, 1966, 1983)
pD[Huc]—oHDu, = f + pD2ue. (67)

The correspondence between the localized initial data, u(0) and D;u(07), and the continuously distributed initial conditions
uc(s,07) and D;u.(s,07) can be assumed in the following general form:
Uc(s,07) =Y w(0)k(s/a—k), Deuc(s,07) = Det(07)rc(s/a—k), (68)
keZ keZ
where we introduced the weight functions x(y) to be specified later; notice that the weight functions used in the
displacement field u.(s,07) may be different from those used in the velocity field D;u.(s,07).

In the example with an impact load we have seen that the equality between the discrete and the continuum
instantaneous work terms can be achieved when the force distribution is represented by the WSK relations with x = x1(%).
A direct inspection of the exact solution of the discrete problem seemingly suggests another weight function x(#) defined
in (37) and depicted in Fig. 9(b). In addition to these specially designed weight functions x and x; one can also use more
formal regularization of the point loads as it is done in the standard FE codes. For instance, it is customary to consider
polynomial shape functions, in particular, the simplest representative of this class

+1]+[p-1]-2
o0 = TE \g 1] 69)

is often used in the numerical quasi-continuum codes (Tadmor et al., 1996; Miller and Tadmor, 2002).
To illustrate different choices, consider the CC analog of the problem with initial displacement of a single mass point
which means that u(0) = Udy, and D;u(0) =0. Then
Uc(s,0) = > _K(s/a—ku(0) = K(s/a)d

kez
and the resulting motion takes the form

K((s+ct)/a)+ K((s—ct) /a)ﬁ
3 .
In Fig. 12 we show the displacement field obtained by using the weight function k=1, and compare it with the
interpolation of the corresponding exact solution of the discrete problem u(s,t) =uD;G(s,t) (36). Our Fig. 13 shows the
dynamics in the CC theory resulting from the initial point displacement regularized as u.(s,0) = ka(s/a)u.
While various choices of weight functions ensure the continuity of the field u.(s,t), they do not necessarily guarantee
the interpolation property u.(ka,t) = u(t). Also neither the local and global impulse balances

uc(s,t) = (70)

paDiuc(ka,t) = paDub), 71
/,Oo PDIUSE) ds =D paDiu(t), (72)
V0 keZ
nor the work balance
PP D2uc, U, t) = Pr(pDiu,u,b), (73)
where

Pﬁ(pb?uc,uc,t)=H(t)/ P{D¢tic(s,07)Dsttc(5,0)—1uc(s,07)D? uc(s,0 1)} ds

are automatic. The local impulse equivalence (71) is satisfied if the interpolation condition (k) = J; ¢ is satisfied as it is the
case for k; and xo. The global impulse equivalence (72) requires that the weight functions satisfy the interpolation
condition [*_x(s) ds=a as in the case of x;. However, in the case when u(0) = @y, and D;u,(0) = 0, the weight function
K1 does not satisfy (73) because Pf.(p‘bfuc,uc,t)z(nZ/G)Pr(p’Dfu.u,t). The weight function k, satisfies (71) and (72);
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Fig. 12. Displacement fields resulting from different continuum approximations of the discrete initial data u(0)=1ud,o and 11, =0. Discrete
displacement field u(s,t) =uD:G(s,t) corresponding to the initial displacement u(s,0) = ko(s/a)i = D;G(s,0")u (in black) and the continuum solution

Uc(s,t) = UKo ((S+ct)/a)+xo((s—ct)/a)]/2 corresponding to the same initial displacement u.(s,0) = xo(s/a)tl (in green). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. The solution of CC equations corresponding to initial regularized displacement field u.(s,0) = k2(s/a)tl and zero initial velocity.

however, it satisfies (73) only in the present case of prescribed displacement

2pc*u?
P(pDRuc,tiet) = L H() = Pr(pDiuu),
The comparison of Fig. 13 and Fig. 12 shows that in the case of k,(k) the agreement with the discrete theory is rather poor.
The inadequacy of the popular weight function x,(k) becomes even more visible if we considgl; *the problem withAlg*calized
initial velocity D:u(07)=vd;o and approximate D:uc(s,07)=7Vk,(s/a). Then u(s,t)=vG. (s,t—ty) where G, (s,t)=
sign(t)GF(s, |t]) and

GE(s.t) = H(®) / gl DL KAE=C/D) g,
0



The computation of the work gives Pr(pbf Ue,Ue,b) = %P;(pb?u,u, t), which means that one-third of the initial energy is lost
in this approximation. Similar results cagge obtained for the x,-regularized impact loading f(s,t) = f(t)x2(s/a). In this case
the displacement field is u(s,t) = (p/pa)G, (s,t—to) and the work is again PS(f,uc,t) = 2P:(f,u,t).

In the following sections we consider a set of QC models providing more complete force and energy equivalences
between discrete and continuum theories.

3. Continuum interpolation

To achieve micro-scale consistency between continuum and discrete theories it is natural to look for a QC interpolation
of lattice dynamics. The task is to replace the discrete sequence of functions, u,(t), representing a response of the system to
loads, fi(t), by a continuous function of two variables u(s,t) satisfying

u(ka,t) = u(t) 74)
and solving a continuum problem with distributed loads f{s,t) such that
fka,t) = fi(b). (75)

From the spectral viewpoint, the crucial step is to replace the exact equation (7) in the Fourier-Laplace space, which
corresponds to the problem with trivial initial data, by an interpolating equation

T (Lo (L) =f (1Lw). (76)

Here the new functions® &'(4,w) and f'(4,w) replace the periodic in A functions @(/,) and f(A,w). After the function
u(4,w) is recovered as a solution of the algebraic problem (76), the interpolating continuum displacement field u(s,t) in
real space can be obtained from the following inversion formulas:

1 —imp + 00 i

u(s,t)= —/ u'(s,w)e’t dw, (77a)
2n J—iwp—o0

where

1 0 » 1 chT(/l CO)EU‘S X
uf(s,w) = —/ u'(Aw)e™ di= — LT dA. 77b
(s,) ) (4,w) 21 ) o) (77b)
In some cases it may be more convenient to first invert the L transform and then the IF transform. Whatever is the choice,
the function u(s,t) must be a solution of the following nonlocal (in both space and time) equation:

/ / c (s;s ,t—i) UGBy ds di = f(s.b), (78a)
where
1 iy + o0 * .l i(wt +nia)
L(n,t)= R/ / D'(L,w)e dldw. (78b)
—iwp—o0 —o0

While looking at the force balance equation (78a) one is tempted to distinguish between the inertial and the elastic forces
and rewrite (78a) in the form

Lul-Lu]=f, (79a)

where

/ / ﬁ(?,t—i)u(é,i) ds dt = I [u(s,t)— L [u](s, t). (79Db)
Although below we present several cases when the introduction of the functionals I1[u] and I;[u] is natural, in the general
theory the inertia-elasticity splitting appear to be rather arbitrary.

To ensure that the continuous field u(s,t) (with s € aR) interpolates the discrete field u(t) (with k € Z) one needs
to check that (77b) and (9b) agree at s=ka € aZ for all t € w;'R. The general interpolation condition (74) may be
rewritten as

/-—iw,J +o00 /400 fT(/l,cU)ei(;‘ka*w” ~—iwyp + 00 /-n/a f(i,w)ei(),ka+wt)

dido= didw, (80)

) @T()».U)) J —iwp—o0 —n/a @().,(,1))

—iwp—o0

3 Starting from this section, we denote by y'(/,-) the IF transform of any continuum field y(s,-) when it is necessary to distinguish it from the DF
transform y(4,-) of a corresponding discrete field y(<)d§f{y,<(~)}ksz.



where the integration order can also be reversed. We recall that

Jno) =ay @ " with fy@)= [ e de
kez 0
and view Eq. (80) as a restriction on both f'(1,w) and ®'(2,w).
As we have already seen in the previous section, an important step is to specify the interpolation method for the
collection of point forces fi(t) (and for the discrete initial data, if necessary). The two natural choices for the body forces
have been already mentioned in the previous section: the singular loading

fs.=> fu®ds/a—k), 81)

kez
and the WSK regularized loading
fsty=> fi®sinc(s/a—k). (82)

kez
It is clear that both representations ensure the equivalence of the resultants (49).
Now, since the force distribution fi(t) may be arbitrary, the interpolation property can be reformulated as a restriction
on the elasticity operator ®'(J,w) only. For instance, in the case of singular loading (81) we obtain

3] ei/lka d m/a ei/lka d
——di= ————d.. 83
—00 D'(A, ) —n/a D(2,0) (83)
In the case of regularized loading (82) we have instead
m/a  @iika m/a  aiika
——di= ———da. 84
/_n/a d'(2,w) 2/ P(L,0) (84)

One can view Egs. (83) and (84) as a set of (weak) restrictions on the inverse elasticity operator [@'(/,w)]"! (Green’s
function).

Below we present in two separate sections the analysis of two types of QC interpolating theories. One of them, which
leads to spatially nonlocal and temporally local problem, requires nonlocal boundary conditions and can deal adequately
only with regularized loadings (82). The other one operates with spatially local and temporally nonlocal equations,
requires only conventional boundary conditions and is compatible with both regularized and singular loadings (81). Both
types of theories ensure the energetic equivalence of discrete and continuum models by preserving the value of the
external work

ot 00 . 3 3 " ) ) )
/0 ./,mf(s't)Di”(s't)detEaZ_/O Fr(®)Dsu(t) dt. 5)

keZ

4. Spatially nonlocal QC models

Assume first that the point forces appearing in the lattice model are interpolated in the continuum framework by the
WSK interpolants (82). This case can be handled by two known models which differ only in details. Throughout most of
this section we assume that u(s,t)=0 for t <0, at the end of this section we briefly discuss a nontrivial initial value
problem.

Model with unlimited Fourier spectrum: The most straightforward way to satisfy condition (84) is to assume (Eringen,
1972; Kunin, 1982; Rogula, 1982)

o' (,w)= P,w). (86)
This strong equivalence assumption yields the following dynamical equation:

u(s+a,t)+u(22—a,t)—2u(s,t) —fs.0), 87)

pD?u(s,t)—a

where the separation into inertial and elastic terms mentioned in (79b) is straightforward

I [u](s,t) = pDFu(s,t), (88a)

u(s+a,t)+u(s—a,t)—2u(s,t)

IZ[u](sv f=o a2

(88b)

The corresponding nonlocal problem (78) has the kernel

£01.6)= 5 50)DFs . (01— 5.0 (D a1, (89)



where x,(17) was introduced in (69) and
D rea (1) = 801+ 1)+ 8(n—1)—25(1).

The above relation allows one to rewrite (88b) in the form

Luls,t) = % / - K2((s—5)/@D2uG, ) d.

In this framework the elastic energy, the kinetic energy and the external work take the form (Eringen, 1972; Rosenau,
2003; Silling, 2000; Seleson et al., 2009)

o 2

e ut) = % / {W} ds, (90a)

tun="2 / " Deuts, b ds, (90b)
t =] . . .

Pf(f,u,t):// f(s,H)D.u(s,t) ds dt. (900)
0 —00

For general continuum fields (u(s,t),f(s,t)) interpolating the discrete fields (u(t),f(t)) we have
Pfun#Pfwn), L =Ee(mt) and Exub) = E(ub).
These inequalities turn into equalities for the WKS class of loadings and displacement fields whose support is confined to K.
We observe that while the kinetic energy and the external work are both local, the elastic energy in this model is
(strongly) nonlocal in space. This type of models have been recently widely used for numerical simulation of solid
materials with discontinuous displacements (Silling, 2000; Seleson et al., 2009).

Interestingly, spatial nonlocality can be “moved” from elastic to kinetic energy if one uses instead of the field u(s,t) a
different field U(s,t) with (Rosenau, 2003; Truskinovsky and Vainchtein, 2006)

u(s,t) = / M(s—s)U(s,t) ds. 91)
The nonlocal operator M may be defined in different ways; for instance, one can adopt the following implicit
characterization:

aD;U(s,t) = u(s+a/2,t)—u(s—a/2,t). 92)
At the spectral level this corresponds to the following explicit assumption:

Aa

t1) =
M) = 2 sin(Aa/2)’

93)

The resulting spatially local equations for the new variable U(s,t) are derived in Appendix B.
Model with Bo-band limited Fourier spectrum: In the class of loadings and displacement fields whose spectral support is
localized in [, it is natural to replace (86) by (Krumshansl, 1965; Kunin, 1982; Rogula, 1982)

&'(L,w) = 15,(L)P(L,®). (94)

This is another strong equivalence assumption which establishes a formal one-to-one mapping between the QC problem
defined in the WSK interpolation space and the original discrete problem (Kunin, 1982). The associated nonlocal problem
in the physical space (see (78)) is characterized by the kernel

L1, =" sinc(nD}o . 0~ 25 8.+ OD} s, (©5)

where
0o R R . n+1 . . . n-1 . . . no. . . 4
K3(17)=/ K1(n—1)K2(1) dn:(r]+1)/0 sinc(n) dr]+(r]—1)/0 sinc(n) dn—qu/O sinc(n) dn—ﬁcos(nn). (96)

The second derivative of the function x3(#) can be written as

n?-1/2

2
Dy,K3(’7) =-4 17271

sinc(y).



For this model, the inertial contribution to the force balance I;[u] in (79b) remains as in (88a), while the elastic contribution
takes the form

uwuh%/mmwémw@@m& (97a)

For comparison with the classical continuum approach we mention that similarly regularized CC model with
&' (), ) = 15,(NPL(,®)
is equivalent in the physical space to a nonlocal problem of the type (42) with the kernel

£E0.0) = D sincDFo . 0 256+ OD} 11 (), (98)

where the second derivative of x(#) in (58) is given by
(2—m?n?)sinc(n)—2 cos(nn)
"2
In such a hybrid model the inertial functional I;[u](s,t) in (79b) remains like in (88a), while the elastic contribution to the
force balance takes the form

D; i1 (1) =

Lu](s,t) = % / K1((s—§)/a)D§u(§,t) ds. (99a)
Our Fig. 14 presents a comparison of the three elastic kernels k1, x5, and xs.

The main limitation of the QC theory (94) is the restriction on the space of shape functions whose spectral support must
be contained in K and which must be regular. In particular, the functions describing localized impact are automatically
excluded. The model based on (86) (but not on (94)) can be in principle used in a broader space; however, in the case of
singular loading and nonzero initial conditions, both models (86) and (94) produce artifacts (see Appendix C).

To illustrate the inner working of this class of models, consider the response of the system to a general regularized
discrete loading in the form (82). In this case the two models presented in this section are equivalent. The solution of (76)
can be easily found if we first invert the L transform and then the IF transform (in the previous sections the inversion was
done in an opposite order). We obtain

f\a—iipa
WD =1k()Y /0 ‘ G,Q(z,t_f)fp(t)%p di (100)

peZ
and

u(s,t)_ /GK(S pa,t— t)fp() (101)

peZ

Here we introduced the “pseudo” Green'’s function
1 n/a X N a —iwp +o00 eiwt

Gi(s,t) = =— / G,T((A,t)e“s dA where G;r((/l,t) = — ———

2T ) _z/a 27 J iwy-c0 @2 sin®(la/2)—w?
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Fig. 14. Comparison of the three weight functions r; in (58), k, in (69), and k3 in (96).



A straightforward computation gives

G,Z(i,t) —H(®) a sin(wxtsin(la/2))

wysin(ia/2)
and
/% q sin(wstsin(Aa/2)) cos(/s) .
Gy(s,t) = H(t)/0 xSiNG2) - dl.= ng;smc(s/a—q)c(qa,t). (102)

An important consequence of the last formula is that D;Gk(s,0™) = sinc(s/a) = 11 (s/a) (see Fig. 10) which is different from
the function D;G(s,0") = ko(s/a) shown in Fig. 9.

Impact test: We are now in a position to present the solution of a localized impact problem under the assumption that it
has been WSK-regularized. By direct substitution of (21) into (101), we obtain

u(s,t)y="y_sinc(s/a—q)Gk(qa,t—to) P _ GK(s,t—tO)E. (103)
qeZ pa pa

The solution (103) is illustrated in Fig. 15. Notice that Gk(s,t) > O at the lattice points s € aZ, which agrees with the fact
that Gg(ka,t) = G(ka,t) > 0. In Fig. 15(b) we show the nonphysical oscillations originating from the replacement of the
discrete model by our spatially nonlocal QC interpolation.

Nonzero initial conditions: Consider now a nontrivial initial value problem in the model with band limited spectra.
According to WKS interpolation hypothesis (Kunin, 1982) the continuous initial conditions must be written as

u(s,0) = " (0) sinc(s/a—k) = > "u(0)x1(s/a—k), (104a)
keZ keZ
u(s,07) =" u,(07) sinc(s/a—k) => 1,07 )1 (s/a—k). (104b)
keZ kezZ

As before, we can represent the initial conditions as singular inertial forces. Then the equation of motion (79a) takes
the form

Lul-L[ul =f+pDfu, (105)
where we recall that in this class of models I1[u] =Df[Hu] and
padiu(s,t)=pay Diu(t)sinc(s/a—k). (106)
kez

The solution of this initial value problem can be written as

t # —~ —~
u(s,t):Z[ / GK(s—ka,t—f)fk% dt +u,(0) D;Gg(s—ka,t)+11,(07) Gg(s—ka,t) |, (107)
kez /0
where
Gi(s,t) = G (s,0)—Gi (s,—t) = sign(t) Gy s, |t)). (107)

Fig. 15. (a) The pseudo-Green'’s function G(s,t) for the QC model. (b) The difference Gg(s,t)—G(s,t).



Due to the known properties of the WKS interpolation, this way of representing the discrete initial data ensures the
continuity of u(s,t), guarantees pointwise equivalences between continuum and discrete external loads f{s,t) and f(t), and
preserves the work as required by (85); such an equivalence also holds for the inertial loads pa®?u(s,t) and paD*u(t).

The main problem with the two interpolation schemes described in this section is that the corresponding models are
spatially nonlocal which raises the issue of nontrivial boundary conditions and requires consideration of extended
interaction layers replacing sharp interfaces between the bodies (Kunin, 1982). In the next section we discuss how the
spatial nonlocality can be systematically circumvented.

5. New temporally nonlocal (TN) model

In the case of generic loadings whose spectrum f(4,t) is not confined to the interval K, the continuum interpolation
proposed in the previous section fails (see Appendix C) and one has to look for the alternatives. In this section we present a
dynamic extension of the static theory developed in Charlotte and Truskinovsky (2008) which is free of the shortcomings
discussed above. Since we are no longer dealing with regularized loading, our construction will be based on the
interpolation condition (83).

We begin by rewriting the spectral Green’s function of the discrete model [@(1,w)]"' as a Mittag-Leffler’s fractional
decomposition by the poles in the complex plane A at fixed frequency w

i J2q(®) 1
D) =2 2 '
[D(,m)] qEZZ@(/qu(CU)-w)AZ*/gq(w)

(109)

where @'(1,w) = 0®(A,w)/dA. Following Charlotte and Truskinovsky (2008) we can now truncate the expansion (109) by
including only the roots of the characteristic equation located inside the By-strip. We then obtain a new quasi-continuum
model with elasticity operator

2/10 1 a ;»0 1

T T o) 272 usinon) 22 (110)

[@" (A, w) !

For each value of w € w,C\C, the spectral function [@(/,w)]"! has the same residues in the domain By as the spectral
function of the original discrete model. This ensures that the interpolating condition (83) is satisfied. Notice that the
elasticity operator of the new theory

afi? —/lg]sin(/loa)

i —
D' (L,w)= Tod

111
is no longer periodic in A and that the resulting model is spatially local. Since the Mittag-Leffler decomposition could be
performed only in one complex dimension 4, the remaining dependence on w is nontrivial which means strong temporal
(time) nonlocality.

While the TN operator (111) appears to be very different from the original spectral operator @(4,w) of the discrete
theory (8), which is local in time and nonlocal in space, both models converge to the CC model ®{(%,w) in the limit of low
frequencies (|w| < w) and long wavelengths (|2 s a). More precisely, if (w;1,a)—(0,0) while the product w.a=2c
remains finite and |2ja| =2|w/w.| <1 then 19— 2§ and @' (Z,w)— PL(,w). We also recall that @(Lg,w) =0, ®'(lg,w)=0
and &/ (J,w) =0 for all w € w.C\C.

In the physical space the dynamic equations of the TN theory take the form

—iwp +00 2 216 )
o / b [Ds +)LO]SIH(}'Oa) u(s,w)e’“" do :f(S,t), 112)

2n iwp—oo /10

where f(s,t) is defined as in (50). The inertial and elastic terms can be separated as in (79a) with

—iw)p + 00 2 i
Luls,t) = %/ 4 2070: 11— %u(s,w)e"”‘ dw, (113a)
—lwp—00 *
_ o ~—i)p + 00 W w2 5 oo
L[ul(s,t) = _E/—iwb—oc YR /1—w—§Dsu(s,w)e do. (113b)

Notice that, the integration in (113) is performed over the measure generated by the phonon frequency distribution
function

which is normalized according to [ v(w) dw =1 (Kunin, 1982).



To compute the integrals in (113) we need to first rewrite their integrands as a combination of terms satisfying the
conditions of Jordan’s integration lemma. We obtain

I L oo, 1 iot g 114
0= 5 [ oo uam{[ —w—i} u(sw)}e w (114a)
L[u](s,t) = l/71}017%0[@ 5 (w)] 1—w—2 D?u(s,w) Se' dw (114b)
ST =on iy —o00 2 wz] ’
where
Y](w)d:ef 2iotlga - ipwyioa y (115a)
a2w>,<a)21/17<£—;E 2w? 1-3
Yo ()% —22 - 21 , (115b)

i0eioa J1-2 [1—<?
iwyloa 1—0)3‘ wylod /1 o

By mapping these two kernels into the real space we obtain

—iwyp + 00 . N
() = i/ (@) dw = Yy(wt) forp=1,2. (116)
27 —imp—00
The function Y;(t) = Yj(wxt) can be interpreted as a mass density kernel while the function Y5(t) = Y5(w.t) can be viewed
as an elastic kernel. The integrals in (116) can be written as

@:CoS(0rt) dow b, (117a)

2

2 (J)r
51

*

76 =H(t)p{ 1-

Wy

5 () = H(t)t 1_/004C°S(“’—ft)d“’r . (117b)

2 2
N [?T-Hfz] @r_q
+

2
[

By using a different path in Laplace’s space we can obtain another representation which is easier to handle

2 ~T/a : : I 1
Yit) = H(t)ﬂ / Ar 51n(.51;1(/1ra/2)w*t) A / Ar sm(cosil(ﬁra/Z)a)*t) an . (118a)
2n sin®(-a/2) 0 cosh’(1.a/2)
6 HO 20 { /n/a sin(sina)ra/z)w*t) it /w i sin(coszh(zr:z/z)w*t) p ir}. (118b)
T |Jo ir 0 s+

1T (O ()

o, t

Fig. 16. The behavior of the functions 1—Y;(£)/ Yp(00) = 1— Yp(wyt)/ Ty(co) for p=1,2.



Our Fig. 16 shows the transient behavior of the effective mass density Y; and the effective elastic modulus Y5 as they
approach their long-time asymptotes

Yi(+oo)=p and Ty(+o0)=a. (119)
Observe that both kernels Yj(t) are positive. On can also obtain from (117) and (118) the following useful relations:
Yi)=0, %L(1H=0, D Yi()=0, D?Y;(t)=0 for t<O0. (120)

To express the integrals in (113) more transparently, we assume temporarily that the following initial condition is
satisfied:

uGs,t)=0 fort<O. 121)
We also exclude impact loads, so that u(s,t*)=u(s,t~) and Dqu(s,t*) = D.u(s,t~). Then, we can write for t >0

r ot

Luls. = |1+ %Df} /0 u(s,t—H)D? Yi (b) di, (122a)
L * -
r t

Luls,t) = |1+ %Df}Df /0 u(s,t—H)D; Yz (£) dE. (122b)
L £

Substituting expressions (122) in the dynamic equation (79a) we obtain
1

D2
W

] t
{1+ D? /0 [u(s,t—8)D3 Y1 (£)—DZu(s,t—1)D; Ya(D)] di = f(s,0). (123)

A unique solution of Eq. (123) that satisfies the initial conditions (121) can be written in the form
t proo P
u(s,t) = / / Gs—s.t—) &0 g g (124)
0 J-o0 pa

where Green'’s function G(s,t) is given by (15). The appearance in this formula of the continuous analog of the discrete
causal Green'’s function (18) means that the TN theory provides the most natural continuous interpolation of the solution
for the original discrete problem (13).

Impact test: An important property of the TN model (123) is that it can adequately handle singular loadings even though
the formal derivation of Eq. (123) seems to have excluded the impact loads. Indeed, consider a regular sequence of loadings
in (124) converging to classical impact in the limit (8,¢)—(0%,07)

fe o o HO-H({t—0 P
s = c 8a

The corresponding displacement field in (124) can be shown to have a limit

Ki(s/fa) - p o4 ()o(s) withi=1,2.

t poo Bece 7 3
Be(s by = A GO I S
u (s,t)_/0 /700 G(s—S,t—t) o ds dt paG(s,t).

In the distribution theory sense, the function G(s,t) in (15) represents the fundamental solution of Cauchy’s initial value
problem

LG, 0)—L[GI(s,t) = pad + (£)5(s), (125a)
G(s,t)=0 fort<O. (125b)

In particular, the particle displacement field in the benchmark test (51) can be written in the form
— Gs.t—to) P
u(s,t) = G(s,t to)pa. (126)

This continuous solution interpolates the discrete solution (22) and therefore the TN theory preserves all the details of the
discrete solution.

If instead of spatially singular loads (81), we apply spatially regularized loads (82), the response in (126) remains
relatively close to the solution of the discrete problem. The exact solution in this case can be written as in (101) with the
pseudo-Green function kernel Gk replaced by

G's.0= [ Gis—naoin d. (127)

A quantitative comparison of the kernels G, Gk, G., Gi and G* computed along the classical Stokes’ rays is shown in
Fig. 17. One can see that, as expected, the discrete kernel G(ka,t) (discrete solution) is interpolated by both G(s,t) (solution
of spatially nonlocal QC theory) and G(s,t) (solution of the TN theory) while the functions G, (classical solution for singular
impact problem) and G! (classical solution for regularized impact problem) clearly stand aside. In contrast to the classical
elasto-dynamic solution G, the pseudo-kernel G} exhibits oscillations but still remains rather far from the discrete
solution. Another pseudo-kernel G* (solution of the TN model for regularized impact) while being clearly different from Gy
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Fig. 17. Wave-front values of G, Gx, G*, G. and G; (respectively given in (15), (102), (127), (47) and (61)) along the CC wave-front set |s| = c(t—to). Red
circles corresponds to the discrete points w.t =2 s/a € Z where G(ct,t) = Gg(ct,t). After a transient phase the functions Gg(s,t), G(s,t) and G*(s,t) converge
to the same asymptotic limit (0.3 x w;!). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

near the impact source, converges relatively fast to it; this shows the robustness of the temporally nonlocal (TN) model
even when the singular loading is approximated by the regularized loading. Most important, however, is that the response
of the TN theory (110) to singular loading agrees with the discrete theory without introducing any spurious oscillations.
This is achieved due to a nontrivial memory structure in this continuum model which imposes additional smoothness on
the time variations of the displacement field.

Nonzero initial conditions: As we have seen, the TN model is characterized by complex internal inertia and nontrivial
rate dependent internal elasticity. However, the model remains spatially local and requires only two boundary conditions.
It is also helpful that exactly as the original discrete model, the TN model can be viewed as a theory requiring only two
initial conditions.

Indeed, consider a general discrete problem with initial conditions u(0) and Du(0™). In contrast to the CC model and the
continuous interpolations studied in the previous section, in TN model we do not need to choose the continuum
interpolation of the initial conditions u(s,07) and D;u(s,07) and can instead use directly the lattice values

u(ka,0*)=u,(07), Deu(ka,0”)= Du(07). (128)

We can again write the dynamic equation (123) while taking into account the inertial forces
1 t . . o
[1 + @DE] /0 [u(s,t—0)D? Y1 (£)—DZu(s,t—)D; Y>(D)] di = f(s,6) + pDFu(s,b). (129)

Here we introduced

padiu(s,t)=pay Diu(t)d(s/a—k). (130)

kez
The spectral form of the equation (129) is

i) +pD*ut2,0) = ')’ (4 w), (131a)
where

pD*ut (1, w) = p[Dru(4,07) +iwu(i,0)]. (131b)

The solution of (131a) for the singular loads (81) reads

t t . ~
u(s,t):Z[ / G(s—pa.t—f)j% dt 4+ D¢G(s—pa,t)uy(0) 4 G(s—pa,bit,(07) |, (132)
peZ 0
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Fig. 18. TN andACC displacement fields resulting from smooth continuum representations of the discrete initial data: u;(0) =1 Jy ¢ and 11,(0) = 0. The TN
solution u=D;G  u (in black) and the CC solution uc(s,t) = u[x((s+ct)/a)+ k((s—ct)/a)] /2 (in green) for the cases k(1) = k1(1) in (a) and xk(n) = k(1) in (b).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where the functions G and G are defined in (15) and in (35), respectively. One can check that the continuum representation
of the initial conditions takes exactly the same form as in the original discrete theory (34)

u(s,0)="> _DiG(s—pa,0 " yup(t =0)= > "Ko(s/a—p)uy(0), (133)
peZ peZ
Deu(s,07) = > _DiG(s—pa,0)itp(07) = Ko(s/a—p)itp(07). (134
peZ peZ

The correspondence between fundamental solutions ensures an equivalence between the work in the discrete model
Pi(f,u,t) and in the TN model Pi(f,u,t).
To highlight the role of singular inertia loads pa®?u in (130), one can try to regularize them by assuming that

padu(s,t) = pad Diup(t)K(s/a—k), (135)
keZ

where we use regular spatial weight function () instead of the singular Dirac function J(#). The solution of the
corresponding TN problem (129) can be written as
t A fp(f) A P P L
u(s,t)zz / G(s—pa,t—t)T dt+D:G (s—pa,tu,(0)+G (s—pa,t)i,(07)|, (136)
pe”Z 0

where the pseudo-kernel

6**(5, t) = G*™(s5,t)—G*™(s,—t) = sign(t)G™(s,

t)) 137)

is based on function G**(s,t) given by
G™(s,t) = / G(s—na,t)k(n) dn. (138)

In Fig. 18 we show the displacement field (136) for two different continuum representations of the discrete initial data
u(0) =udy o and 11,(0) = 0. One representation is based on the weight function x; (see Fig. 18(a)) and another one on &,
(see Fig. 18(b)). Both CC solutions shown in Fig. 18 satisfy the condition u.(ka,0) = u,(0), and cgggitions (71) and (72),
however, none of them satisfies the kinematic equivalence condition (74). The TN solution u= DG u computed with the
regularized representation of the initial conditions similarly does not satisfy any of the above conditions, in particular, we
lose the kinematic equivalence (74). However, the TN solution (136) can still be shown to approach the interpolating
solution with singular initial data (132) at sufficiently large times ¢ > 0 (see Fig. 12).

6. Alternative formulations and approximations

The integro-differential equation of the TN theory (123) is rather complicated and it is natural to try to simplify it.
Below we propose several ways of rewriting this equation which makes its structure more transparent. We again assume



for simplicity that the initial conditions are trivial (121). The external load f{s,t) with support in [tg,o0[ can be arbitrary,
however, in this section we exclude point impact.
Under these conditions the general solution of the discrete problem can be interpolated by the function (124)

t + 00 e f
U(s.t) = /t [ N DtA(s—§,t—f)j% ds di, (139)

which we have presented in terms of the anti-derivative A(s,t) from (28). As a benchmark test we consider here a spatially
localized step loading (25)

fs.y=a) fr)d(s—ka) with afy(t) = w«pdioH(t—to), (140)
keZ

which produces the displacement field
u(s,b) = wT*p[A(s.t)—A(s.to)]. (141)

In this section we compare this exact solution with solutions generated by several modifications of the general TN theory.
First we notice that by taking into account (120) and the assumed initial conditions, we can rewrite (123) in the form

t t t t
fs,n=D} / Yi (t—b)o(s,f) di—D2D; / Yo(t—b)o(s,b) df = D? / D Yi(t=Dto(s,b) dE—DZ | D; Ya(t—b)ilg(s,t) dE,
to to to

to

(142)
where we introduced a new displacement field

N 1

fig(s,t) = {1 + w—in} u(s,t). (143)
The nonlocal relation between ig(s,t) and u(s,t) can be explicitly inverted

t i —A ~ ~
u(s,t) = H(t—to)/ SIN@AE=0) 5 6 1 di. (144a)
to Wy
The solution ilg(s,t) can be written as
t p+oo & f
flo(s,t) = / / D[Ao(s—§.t—f)M ds dt, (144b)
to J—oo pa
where we defined the new kernel
—iy + 00 1 —%(] —e"“’t)e“(’ Is|
AO(S‘t) - 27'[(1)* ./71‘(1)[,—00 w? de
aH(r) [ /a2 sin? <7‘“*“i“2“"’/ 2)) cos (1;5)
Toom ,/0 w? tan?(jra/2) o
+0oo —Ai ‘S‘ .
+ sin(\s\n/a)/ Zewz tanh?(/,a/2)sin’ <M) d)vi}. (145a)
0 *

In the case of step loading the solution iy can be written in the form (141), modulo replacement of A by Ao. As one can see
in Fig. 19, this solution captures the main macroscopic phenomenon, however, the recovery of the original displacement
field u brings additional lattice scale oscillations generated by the nonlocal operator (144a).
An interesting feature of the new representation is that both momentum and stress have now similar relation to the
displacement field. Indeed we can rewrite (142) as
Dip—Dso =f. (146)

Here the stress ¢ and the linear momentum p are defined by the classical constitutive relations p = pv* and ¢ = a&*, where
the generalized strain

&*(s,t) = Ds /t[ Y;(+oo)DtY2(t—f)ﬂ0(s.f) di (147)
0
and the generalized velocity
V¥(s,t) = Dy /t t Y, (4 00)De Vi (t—D)ito(s.F) di (148)
0
are represented as strikingly similar nonlocal functions of the displacement field. Such a ‘blending’ of stress—strain

relations and momentum-velocity relations is typical for the homogenized description of dynamic media with micro-
structure (Willis, 1981, 1997; Milton and Willis, 2007).
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Fig. 19. Comparison of the functions A(s,t) and Ag(s,t); in ((a), (b)) the function A(s,t) is shown in green. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

It is also of interest that the dynamic equations (142) and (146) can be reformulated as a classical wave equation if we
introduce two different (but dependent) displacement fields
Y1 (00)D? 11 (5,0)— Ya(00)DZ Uz(s,t) = f(s.t). (149)

The fields {iip(s,t)}, -1, are defined by the following relations:
t
ly(5.6) = / Y, (co)De Yy(t—biio(s.b) i, (150)
to

which implies a nonlocal relation between them.

In addition to symmetric formulations of the TN model where time nonlocality is present in both inertial and elastic
terms, it is instructive to consider formulations where temporal nonlocality is concentrated either only in the elastic or
only in the inertial term. For instance, in terms of the field i1; introduced above, the TN dynamic problem can be rewritten
as a problem with conventional inertia and time nonlocal elasticity

t t
f(s,t):prﬂl(s,t)—%Dt/ 01 (t—HD?D2i(s,F) df=pra1(s,t)—§D%D§/ i1y (s,t—)D; 01 (b) i, 151)
* to % to
where
1 —iwyp + 0o wZEiwt (1)21.'2 1 © g cos(m,t
@1(0:—%/ O — do=H(O| %+ 516 g—%dwr . (152)
—iwp—o0  (DC O(w) Jos t+ Wy [[GTJFTCZ]
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Fig. 20. The transient behaviors of the functions @{—@; where O(t) = (wxt)?/241/3 (a) and 1—0O,(t) (b).

The behavior of the kernel @(t) is shown in Fig. 20(a); one can show that ©1(0) =0, and that ©1(t) ~ O{(t) = (wsb)*/
2+1/3 at large w.t.

After the field i1, is known the original displacement field u can be reconstructed explicitly

t
u(s,t)= %/{ Dy Ya(t—)ii4(s,t) dt.
0

(153)
Next, suppose that 17 solves the trivial initial value problem for (151) which means that
it p+oo et
f1(s,t) = / / D[Al(s—§,t—f)M ds dt (154)
tp J—o0 pa
with
Ay, — / /*’“b+°°1)0ae'<‘0\5\+wf> doo di — aH) | ot /“/”) a sin(myt 51n(2,a/2))51n() s \)
! " Jo 27 )iy 2m? Com |@wa Jo T 22 sin®(a/2)tan(Z,a/2)
+00 a—4iS ¢f .
-7 Sin(\s\n/a)/ e sin(@st czosh(i,a/Z)) tanh(4;a/2) d4;
0 2w? cosh”(4;a/2)
+00 a—4iS
- cos(sn/a)/ e’? sin(ayt ZOSh(i i4/2)) J;a tanh(4;a/2) dA; (155a)
2w2 cosh”(4;a/2)

In the case of step loading (140), the solution i of (151) can be again expressed as in (141) with A replaced by A;. This
solution is illustrated in Fig. 21(a) and (c). Notice that already i, captures the main macroscopic phenomenon; however, it
still misses lattice scale oscillations ahead of the deformation fronts. The recovery of the microscopic solution is performed
by using the nonlocal operator (153) which restores the missing lattice scale details (compare Fig. 19(c) with Fig. 21(c))
Observe also that the field @i, is more oscillatory than the field .

Similarly, the TN dynamic problem can be reformulated as a problem with nontrivial inertia and standard CC elasticity
in terms of the field i,

ot
f(s,ty=pD; / O, (t—1)D?i5(s,t) di—oD2iiy(s,0) = pD? / {ly(s,t—£)D; Oy(£) dE—aD205(s,8).
to to

(156)
Here we introduced another kernel
c2 *i‘l’b+°°)v§(w)eiwt 5 [ a cos(ont)

This function is illustrated in Fig. 20(b); one can see that @,(0) = D;®,(0) =0, and @,(cc) ~ 1 in the long-time limit.
Once again the original field u(s,t) can be obtained explicitly as

1/t an an
u(s,t) = E[D D¢ Yi(t—t)ily(s,t) dt, (158)
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Fig. 21. Comparison at fixed instants of A, (in black) in (a), and A, (in black) in (b), versus A. (in green). The differences A.(s,t)—A;(s,t) in (c) and
Ac(s,t)—Ax(s,t) in (d) at fixed instants. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

where the field ii;(s,t) solves the dynamic problem (156)

t + 00 & f
fiy(s,) = / / Diy(s—s.t— 1y D gs di. (159)
ty J—o0 pa
Here
_ pa* [Tt et _1)eihls] _aH(®) n_r_/“/az sin(wst sin(A-a/2))sin(%|s|) .
AsD =10 /4%700 whoa o wsa  Jo /ra03 tan(-a/2) "
+o0 —2iS Qi 7.
- sin(|s\n/a)/ 2e sm(({)z*t cosh(%4a/2)) tanh(/4;a/2) d2;
0 wi[A;a? +m?]
+00 )a—4iS gj .
+ cos(sn/a)/ 2e sm(w;t cosh(%ia/2)) Jia tanh(/;a/2) d; 3. (160a)
0 wi[A;a? +mn?)

and in the case of step loading (140), the solution i, of (156) can be expressed as in (141), by replacing A by A, (see
Fig. 21(b) and (d)). Again, the solution I, captures the macroscopic features of dynamics but misses the detailed structure
of lattice oscillations. Those can be recovered by applying the operator (158) (compare Fig. 19(c) with Fig. 21(d)). Although
the fields i, and ii; are qualitatively similar in the sense that they are both more oscillatory than the field iiy(s,t), they
remain quantitatively different as one can see from Fig. 22. The model based on ii, with all temporal nonlocality contained
in the inertial term (see (156)) is particularly promising because it can be easily generalized to the case of nonlinear
elasticity.



Fig. 22. The difference between the kernels A; and A,. (a) Large scale structure. (b) Small scale structure at different instants.

We now briefly describe one approach to constructing a sequence of approximate models capturing successively
shorter time scales. Starting with the classical form of dynamic equations (146) we observe that

t
a(s,t) = Y5 (00)Dstla(s,t) = /t Dth(tff)[lJr%D?]Dsu(s,f) dt, (161a)

t
p(s,t) = Yi(c0)Dell1(5,t)=D; | D:Yi(t—F) {1 + %D%} u(s,t) dt. (161b)
*

to
In the spectral space the relations (161a) and (161b) take the form
si (Aoa)

o(s,w) =0 Tod &(s,m), (162a)
p(s,0) = pioa Siz(w)“‘;a) v(s,0), (162b)

where we introduced the classical velocity field v = D;u and the classical strain field ¢ = D,u. This spectral representation of
the nonlocal constitutive relations suggests several ways of constructing approximate QC models. For instance, by using a
combination of Taylor and Padé expansions we can generate a series of local constitutive models of the form

[1+ Z( L4 Q. D¥|c=0|1+ Z( " RaD? | & (163a)
n=1 * n=1 *
[1+ Z SnDzn]D pl1+ Z( D TnDZ} (163b)
n=1 n=1

where the coefficients (Q,,R;,S:,Tn) can be found explicitly. As a basis of such an expansion one can use one of the
following representations:

1 2 r
&(s,w) = &m o(s,w) and p(s,w)= cj (( ))pv(s w), (164a)
gr( ) C c
m a(s,w)= oe(s,w) and Ce (@) ——pS,w) = m pv(s,(u). (] 64b)

Here we introduced the group and phase velocities

Cor(®) = — (/IO(CU)) =

(165a)

2 Wy sm(koa/Z)
o

= e (165b)

Cph ((,0) =



In the low frequency regime || < w, one can use the Taylor expansions

c 1 r(n+1/2) (g)z"
Con() ~ T(1/2) & T+ 1)2n+1) \w.)

c 171 I(n+p/2) [ ©\*" _
Lgr(w)} _F(p/Z)Z I'n+1) (@) o p=l

neN

neN

where I is Euler’s function (Abramowitz and Stegun, 1972). If we identify the coefficients in (163) according to (164a) or
(164b), we obtain

1 I'(k+1/2)T(n—k+1/2)

1 n
Q= (/2 2 2 T TR ) T ki D)

1 "1 I'(k+1/2)T(n—k-1/2)
>

T":F(l/Z)F(—l/Z)k 2k+1 I'(k+1) T'(n—k=+1)°

=0
Ry =S,=0.
for the case (164a) and

S 1 I'(n+1/2) 1 I'(h-1/2)

Q=Tn= 0 = nrirm+ DIA/2) = F=i/2) T+1) -

for the case (164b). In order to decide which approximation is appropriate one needs to specify the nature of the physical
problem. Several interesting attempts in this direction can be already found in the literature (e.g. Mindlin, 1964; Polyzos
and Fotiadis, 2012).

7. Discussion

In this paper we made an attempt to extend the framework of continuum elasto-dynamics into the domain where the
behavior of a crystal lattice is strongly discrete. This means that we consider problems where both spatial and temporal
external scales, describing either geometry or loading, are comparable to their internal counterparts dictated by the lattice
itself. In order to focus on nonlocality and dispersion we excluded the effects of nonlinearity. In this way we avoided the
localization, on one side, and the energy tunneling from long to short waves with subsequent thermalization, on the other
side. We also minimized the geometric and structural complexity of the problem by focussing on the simplest 1D chain
with NN interactions.

The main goal of our study was to construct a QC model whose solutions provide an exact interpolation of the solution of
the fully inertial discrete model. Since the interpolation problem has typically multiple solutions one is confronted with
the choice that can be guided by physical, analytical or computational considerations.

The previous interpolation related efforts, mainly associated with the names of Kunin (1982) and Rogula (1982), were
aimed at the models with classical inertia and strong spatial nonlocality. Such models have been recently rediscovered by
the computational community under the name of peridynamic theory (e.g Silling, 2000) and are widely used as a coarse
grained form of molecular dynamics. However, the analytical complexity of this approach and the necessity to deal with
long range spatial interactions extending beyond the actual boundaries of the bodies, makes the detailed mathematical
analysis elusive. Therefore our main goal was to develop a spatially local QC theory which is nevertheless fully faithful to
the original discrete model and still allows for temporally local approximations.

In our previous work (Charlotte and Truskinovsky, 2008) devoted to statics we have shown that a spatially nonlocal QC
model of a simple lattice with arbitrary long interactions can always be replaced by a series of spatially local models
incorporating auxiliary variables describing micro-corrections to the macroscopic displacement field. In this paper we
extended this framework to dynamics. Assuming that the static part of the model is understood we focussed on the
simplest inertial effects. To this end we have drastically simplified the spatial structure of the lattice model by considering
a simple particle chain without nontrivial internal length scales.

Our main result is that lattice scale elasto-dynamics can be adequately represented at the continuum level by a
temporal memory structure. More precisely, we proposed a QC model with nontrivial inertia and hereditary elasticity
(temporally nonlocal or TN model) which accomplishes an exact interpolation of our prototypical discrete model. The
unusual non-Newtonian inertia can be understood in the framework of a meta-material paradigm (Milton and Willis,
2007) which presumes that a “visible” continuum particle carries a variety of internal degrees of freedom representing
locally non-affine (non-Cauchy-Born) dynamic responses. The memory structure of our elasticity can be linked to the
“structural attenuation” (Brillouin and Parodi, 1956) involving energy redistributions between microscopic degrees of
freedom. In this sense both the nonclassical inertia and the hereditary/memory structure of elasticity are the means of
adequate continuum representation of high frequency vibrations of the lattice without introducing temperature (see also
Park and Liu, 2004; Park et al., 2005; Tang et al., 2006; Karpov et al., 2007; Tadmor and Miller, 2011). The extension of the



proposed model towards including interactions beyond nearest neighbors is straightforward in view of the results
obtained in Charlotte and Truskinovsky (2008) and will require adding appropriate internal variables equipped with their
own temporal nonlocality.

Despite the unquestionable complexity of the derived TN model in the time domain, it remains local in space which
facilitates spatial matching of the QC based computations with the MD based computations. In particular, the proposed QC
scheme can be used as an interface between discrete and CC representations of lattice vibrations (Farrell et al., 2007). The
development of such an interface is crucial for building effective hybrid discrete-continuous codes aimed at solving a
variety of multi-scale problems involving nucleation and interaction of crystal defects, as well as addressing other
challenges raised by nanotechnologies (Fish, 2006).
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Appendix A. Spatial regularization in the impact test

Consider the following delta sequence of loading functions which are regular both in space and time:

s, = Z% sinc((s—ka)/ fa). (A1)
keZ

Here af (t) is given by (53). The sequence (A.1) preserves the resultant force ff‘;of/{"(s,t) ds =a3y",fi(t) and in the limit

p—0" and ew,—0" we recover the localized impact loading (21). The solution of the continuum problem (42) with the
source term given by (A.1) can be written as

5O g =" ul“(kpa,nsinc(s/fa—k). "2

P kez

ot
usn=3" [ Gus—pay/pa—iyp

peZ

According to (61), the function G(s/B,t/B) converges to G(s,t) in (47) when 8- 0. If we now compute the work (41c) for
the regularized impact solution, we obtain

t poo fhe e £
Pr(f ul) = T sy s i
(P upe) kz;/o/w il s ds

= P {[H(E—to)~H(t—to—uf (0,0~ u“(0,t0)] + H(t—to—OTuf (0,80 + O —ul“(0, o))

Suppose that 8> 0 is fixed and consider the limit ew,—07. Then the loading and the resulting displacement field remain
spatially regular as we see from

st = limofﬁ"(s,t) = ZM sinc((s—ka)/ fa) (A.3)
Ouc= iz P
and
uf(s,H lim uf<(s,t) = G{(s/B.(t—to)/ ) %. (A4)

If now f—~0" we recover the CC solution for the impact loading
Uc(s,t) = Gc(s,t—to)%.

The computation of the work in the limit ¢ »0* gives

o1
Bpa B
One can see that in the limit -0 this expression diverges. We also notice that the value =1 (WSK regularized load)
ensures a perfect match of the discrete work in the CC theory.

PE(f,ubl,t) = H(t—to)pDeuf (0,65 ) = H(t—to) Pr(fu,t). (A.5)

Appendix B. An alternative representation of the spatially nonlocal QC model

Given that (76) can be rewritten as
o2
M2(2)

[D(1,0)—p?uf(Aw)=f (Lw) with &(2,0)= %‘j sin(1a/2) =



and that (91) provides u'*(xl,w):MT(A)fJT(Z,w), it is clear that the new variable U must satisfy the following spectral
equation:

V)
72— par? RTND (huw) = MTA)f T (o) where R (A) = M (4) = %. (B.1)
In the physical space this leads to the following dynamic equation:
/ pR(s—s)D2U(s,t) ds—D2U(s,t) = / M(s—S)f (s,t) ds. (B.2)

The next step is to compute explicitly the kernels M(s) and R(s) by using the inverse IF transform (43a) in the sense of
generalized tempered functions (Schwartz, 1966, 1983; Bremermann, 1965) and the following Mittag-Leffler fractional
decompositions:

Ty =1+ g_l)q{ R } N
M) =1+ q;mq(o) J—72q(0) 7t 2g(0) (B.3)

2 1 1 1 1 1 1
RI () =142 +2,° ( . - ))f‘ < . +—— )
) ,,;Aiq(m q;izq(o) =220 [A+72g(0) {51 754(0) \[A=22g(O)F  [A+229(0)

(B4)

where according to (12) we must put A4(0) =2qma~'. The explicit representations for M(s) and R(s) can be written
either as

M(s):Dg{g‘ +s[ (=10 sinc(2qs/a)}, (B.5)
q=1
—D? ﬂ ; 1.5 3 a2
R(s)_Ds{ 5 +2DS;\S\S sinc(2gs/a) 2Dsq§1‘s‘ sinc (qs/a)} (B.6)
or as (see also Higgins, 1996; Marks, 1991)
a8 |s|[pa—s] s
M(s)=D; 7+§TH(1_2‘5_‘7D}' (B.7)
o) sl [s|[2p+1)a—2s] 2s
72(5)_Ds{7 +D5§fﬂ<1— F—Zp—]‘)
1 5 2s
D2 [s|ls—pali(p+ a—sH (1— 2 ap-1 ') } B.8)
peZ

For comparison, we mention that in the classical (long-wave) continuum approximation with u = U we preserve only the
first terms in these expansions

M(s) =R(s) = D? ‘%' =4(s) <= R(A)=1=M().

Now, by using the variable U we can rewrite the elastic energy, the kinetic energy and the external work as

0.6 = % / Y DU, O ds = £40,b), (B.9a)

En="2 K h [ " Ris—5,0D:0(s,0D UG, d5 ds, (B.9b)
t o) =) . - . . .

Prf.0,b = /0 1 [ M(s=9)f(5,0D;U(s,t) ds ds dt = PE(f,u,t). (B.9¢)

The comparison with energies introduced in (90) shows that
PIFO.0 = PEfaut), ExU.=cfwt) and Ep0,H)= ).
The solution of the spectral problem (B.1) with the spatially smooth loading force (82) can be written as

B0 g

~ .t A
U(s.t):X:/0 D:Ax(s—pa,t—t) )

peZ

(B.10)



Fig. 23. Comparison of the kernels Ak (in black) and A. (in green) (a). The difference A.(s,t)—Ak(s,t) (b). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

with
_AH(t) (™% sin®(wst sin(4ra/2)/2)cos(Ars)
Aso="75 /0 e . B.11)
In particular, for a spatially smooth, time-step, loading combining (25) with (82) this solution reads
- WD
Uts.t) = p*p [Ac(s,D—Ak(s.to)]. (B.12)

Fig. 23 illustrates this solution and compares it with the corresponding solution of the CC theory. Interestingly, the new
representation captures lattice oscillations ahead of the propagating front.

Despite the obvious appeal of having a local elastic energy in the new variables the complexity of the kinetic energy
kernel makes it hardly practical outside some particularly simple dynamic situations (e.g. traveling waves as in
Truskinovsky and Vainchtein, 2006). In contrast, the alternative formulation in term of the original field u(s,t) is quite
easy to implement numerically and different nonlinear extensions of the model (87) have recently gained a lot of attention
(e.g. Silling, 2000; Seleson et al., 2009).

Appendix C. Artifacts associated with singular forces in spatially nonlocal QC model

In order to show that the general approach introduced in Section 4 provides at most an approximation in the case of
localized loadings, it is sufficient to consider a static problem.

Suppose that the self-equilibrated force distribution f(s) is such that its IF-spectral supporth(i) on a~'R is not limited
to K. If we use the approximation (86), then the equilibrium displacement field must solve the following set of difference
equations:

a% [{(S+ Q)+ 11 (5—a)— 201 (5)] = — (5). (C.1)
The solution {i(s) can be written in the form

o 71,
ﬁ(S): l f (/“)

is/. ~h
2] 0.0 HTE. (C.2)

where according to (4) and (8)
. 4o .
D(2,0) = pw? sin®(1a/2) = = sin(1a/2).
Here ﬁh(s) =2 qezlAq +Bgsle#a( is the general solution of the homogeneous equation and /,4(0) = 2q7mt/a = — 244 1(0). The

unknown coefficients (A4,By) and (A_q,B_g) are complex conjugate; if the spectrum of i"(s) is inside K ¢ Bg, only the two
real coefficients (Ag,Bp) are different from zero.



By using the Mittag-Leffler fractional decomposition (B.4) for [®(4,0)]"' = R(/l)/oc/lz, we can rewrite (C.2) as

jo S, (?) DPf(s) ds, (C3)

2
ii(s)—i"(s) = > ap”/
p=0

where the functions S,(#) for 1 € R are defined as follows:

00

__Inl
So() =— 2 (C4a)
S0 = _2lnin > " sinc(2qn) a'=‘*'—mZ[2p+1—2;7]H(1—|2n—2p—1 ) (C4b)
o qg=>1 20 peZ ' .
Sa(m) = nf > sinc(gn) = mZ[n—p][p+ 1-nH(1—[2n—2p—1|) (C40)
2 200 & 4o P ' ’
We can now compare ii(s) in (C.2) with the solution of the discrete static problem u = {ii};.7, Which satisfies the equation
o . . . .
afz[uk+1+uk—1fzuk]=*fk- (C.5)
and can be written as (Charlotte and Truskinovsky, 2008)
il = aZCc(ka—pa)fp +1i (ka), (C.6a)
peZ
where
N s
Ge(s) =aSo(s/a) = — % (C.6b)

Here ﬂ?(s)défAmLBcs, with real constants (Ac,Bc), is the general solution of the homogeneous equation (C.5).

One can see that for the special solutions of the inhomogeneous problem, ii(s) in (C.3) and u in (C.6a), to agree at the
lattice points aZ, we need to place special restrictions on f(s) and f = {f}.z, namely that the spectral support of f (s) on aR
is limited to K and that it represents a maximally smooth interpolation of the discrete system f

f&)=>"f sinc(s/a—k). (C.7)

kez

In this case (C.3) can be written as

i(s)-u"(s) = ay_Gk(s—pa)f ,, (C8a)
peZ
where
> 1 e eis > sin(zfs|/a) [°  a?e B
Gke)E [ di=Ge(s)+ / d’ C.8b
K= 50 —n/a P(4,0) <) n o 4o cosh?(la/2) (©8h

Now it is not difficult to check that ﬁ(ka)—ﬂh(ka) = ﬁk—ﬂ’g(ka) for k € Z. In the opposite case when the loads are singular
f(s)=>"rezfk 6(s/a—k) the function (C.3) obviously disagrees with the discrete solution.
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