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ABSTRACT 
 

Ground resonance is potentially destructive oscillations that may develop on helicopters rotors 

when the aircraft is on or near the ground. Therefore, this unstable phenomenon has to be detected 

before it occurs in order to be avoided by the pilot. To predict the zones of instability, works have 

generally relayed on off-line modal analysis of the helicopter model. Unfortunately, this off-line 

analysis is not sufficiently reliable. The subspace-based cumulative sum CUSUM test, able of on-line 

monitoring, is a good alternative which permits - at once- to avoid the system identification for each 

flight point and to have more robust detection, with reduced costs. In this paper, we describe an 

alternative test- with a moving reference this time- in order to kill wrong alarms or premature 

responses that are observed for fixed-reference tests. Numerical results reported herein are driven from 

simulation data. 

INTRODUCTION 

 

Ground resonance is a recurrent phenomenon of instability for helicopters. It is due to the coupling 

between the lagging motions of the rotor blades and the fuselage in-plane oscillations. 

Since the works of Coleman and Feingold [1], in which a description of this phenomenon and a 

mechanical analysis were first given, numerous methods –analytic and numeric- have emerged and 

many papers have been published on the subject [2]. The main goal of these contributions was to give 

a sufficiently accurate mechanical modeling and, then, to determine the instability zone- that is the 

values of the rotor angular velocity at which the resonance may occur (i.e. the system is unstable when 
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one or more of the damping coefficients become negative). The disadvantage of this off-line and 

deterministic modal analysis is that it does not take into account the uncertainties for complex systems 

like helicopters. In fact, the dynamical behavior of this class of systems is function of much 

randomness (structural uncertainties, loads, erosion, fatigue…) so that the margins of stability could be 

affected [3]. The structure has, therefore, to be identified continuously in-flight and often tested on 

ground, which is costly in money and in time. 

The subspace-based algorithm of detection offers an interesting alternative to deal with this 

problem. The main idea behind this method is to compute a criterion of instability at a stable reference 

and then, by some distance formula, determine when this distance is significantly different from zero. 

A comprehensive study of fault detection method can be found in [4,5]. 

A statistical cumulative sum (CUSUM) test [6] can be build for this subspace approach, in order to 

track eventual changes recursively i.e. in real-time. In previous works [7], the authors have 

investigated the capacities of this method to detect ground resonance. Results have shown that the test 

responds close to the instability but there still be a slight premature response before. This was 

predictable; the reference is taken far from the resonance region, so any slight change in the stability 

criterion (which is the value of the damping ratios) engenders a slight response of the test, and these 

responses are then cumulated in time, so that they could trigger a wrong alarm. 

We describe herein an adaptive CUSUM test, which updates the reference recursively (sliding 

reference) and thus, kill all wrong responses. The paper is organized as follows: first, the principle of 

CUSUM subspace-based test is explained. Then, we give the analogous test for the case of sliding 

reference. Finally, both of two algorithms are applied to a simulation data of a helicopter with hinged-

blades rotor.    

SUBSPACE-BASED DETECTION WITH SLIDING REFERENCE 

 

The subspace-based fault detection and isolation has enjoyed some popularity since its 

introduction in the seventies, and has found its application in many fields such as civil engineering and 

aeronautics. These methods are derived from the subspace-based identification which is reminded 

below, in its covariance-driven version. For more extended explanation, one can refer to [8].  

 

Subspace Identification 

Let consider the linear discrete system: 
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Where nx ℜ∈ is the state vector, nxnF ℜ∈ the state transition matrix, rxnH ℜ∈ the observation matrix 

and ry ℜ∈ the output vector. The vectors w and vare two white Gaussian noises with zero means. 

The number of sensors r is chosen so that it is inferior   

The classical subspace identification method consists in building the Hankel matrix filled with the 

output covariances. Then, from a well-known factorization of this matrix into a product of the 

observability matrix and the controllability matrix, one can deduce the eigenstructure of the system in 

(1). 

Let covH be the covariance-driven Hankel matrix of dimension qrrp ×+ )1( , with p and q the tail 
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Where Ri = E (yk yk-i
T) is the correlation of the output data and E is the expectation operator. For a 
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One can easily demonstrate that covH posses the factorization property: 

qp COH ⋅= +1
cov  , with O and C, respectively, the observability and the Controllability matrices. 

And: 

 

  (3) 

 

 

The subspace spanned by the left part of Hankel decomposition, namely the observability matrix, 

contains all the information about the eigenstructure of the system. This matrix can be obtained from a 

Singular Values Decomposition (SVD) ofcovH : 
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Then, to extract the matrices of transition and observation F and H, a least square minimization is 

made:                                                                                                                                                        
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Once F and H found, the eigenvalues and the observed eigenvectors (λ, φλ) are computed by resolving 

the equations:                                                                                                                                          

       (6) 

 

The couple (λ, φλ) is the eigenstructure of the system. It is stacked into the vector 
vec

θ
Λ 

=  Φ 
where ᴧ 

is the vector whose elements are the eigenvalues λi and Φ is the matrix whose columns are the mode 

shapes φi. 

 

Subspace-Based Fault Detection 

 The fault detection consists in monitoring the eigenstructure and determining if any change 
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has occurred on it. For that, a reference state θ0 and some distance, from this reference, called residual 

are defined. 

 That distance is chosen as the product between a left kernel S of the matrix of observability (or 

of covH ) at the reference, and this matrix at the current state θ: )()( 10 θθ +⋅ p
T OS  or

)()( ,1
cov

0 θθ qp
T HS +⋅ , S is taken so that ST.S=Id. 

 This distance is null when the current eigenstructure θ is close to θ0, and different from zero, 

else. We build then the residual below [6]: 
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− =  and N the number of output data we 

have.  

This residual is not useful for real-time detecting of instability on helicopters. First, because it is 

computed once one has all the N data. And second, because for an aircraft, the change on an 

eigenvalue does not mean that there is no more stability. In fact, the eigenvalues of a helicopter 

changes all the time with the rotor angular velocity; the helicopter is unstable when one of the 

damping ratios is negative. The residual we have should then be expressed as function of the damping 

coefficients ρi, and recursively for online detection. 
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residual. Consistent estimates of these matrices 
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1^ −

Σ are given in [5]. 

The CUSUM test to decide whether a change has occurred or no is (see [6,7] for more details): 
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In order to have a response at the instability, the reference eigenstructure has to be taken close to the 

instable state. This is not possible for systems like helicopters, because it may lead to the destruction 

of the apparel. The reference is then taken far from resonance. In this case, any slight change in the 

damping would lead to a slight response of the test; these parasite responses are then cumulated and 

could trigger a false alarm. The modal analysis of a hinged blades helicopter given later in this paper 

will show that the damping ratios changes are not unimportant. So, the parasite responses would be 

significant. 

 

CUSUM Test with Sliding Reference 

 The idea of tests with sliding reference derives from the adaptive algorithms which were 

investigated in some works [9,10,11]. These algorithms consist in subspace tracking by updating it, 
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using new coming data from sensors. The subspace which has to be tracked, in our case, is the left 

kernel S(θ0). This kernel is now computed for a sliding reference θn.  

The recursive residual Zk writes this time: (9) 
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The kernel Sk is updated with the IV-PAST method that is investigated in [12,10] and is computed for 

the sample k-l with k the current sample and l some time lag fixed by the user. The algorithm can be 

described as follows: 

 

• Compute an initial kernel S0 for some data tail N, (yq …yN-p) 

• Then with IV-PAST, if we have Sn,(computed for data y from sample q+n-l-L to sample q+n-l-

p, L is the length of the sliding window) Sn+1 is computed 

• Jn and Σn
-1 are estimated as in the fixed-reference case but using Sn in calculus, for the current 

sample n 

• The test is applied to compare the sliding reference at n-l and the current state n 
 

 

The two hypotheses to test are  




 ≈

0:

0:

)(1

)(0

f
nn

nn

g

g

EH

EH

ρ

ρ
 (10) 

 

 

The utility of this algorithm is shown below on the application to a helicopter simulation data. It 

indeed permits to kill any premature response, and only responds when the system becomes unstable. 

HINGED BLADES HELICOPTER MODEL 

  

We give herein the equations of motion for helicopter’s ground resonance and a modal 

analysis of stability. Further mechanical explanations could be found in [7]. 

The class of helicopters considered herein is the one with in-plane hinged blades rotors. The model 

below is known to be a sufficiently precise description for ground resonance studies [1].  

 

 
Fig. 1. Helicopter’s mechanical model- 3 blades 

  

The helicopter’s fuselage is considered to be a rigid body with mass M, attached to a flexible LG 

(landing gear) which is modeled by two springs Kx and Ky, and two viscous dampers Cx and Cy as 
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illustrated in Fig. 1. The rotor spinning with a velocity ω, is articulated and the offset between the MR 

(main rotor) and each articulation is noted a. The blades are modeled by a concentrated mass m at a 

distance b of the articulation point. Torque stiffness and a viscous damping Kβ and Cβ are present into 

each articulation. The moment of inertia around the articulation point is Iz 

The degrees of freedom are the lateral displacements of the fuselage x and y, and the out-of-phase 

angles βk=1…Nb, with Nb the number of blades. 

 

State Vector Model 

Applying the theorem of Lagrange to this model, one can demonstrate that [7]: 
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Linear Parameter-Varying (LPV): 
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Modal Analysis 

The criterion of instability here is the drop of one or more damping ratios ρi from positive 
values to negative ones (ρi <0). Given the matrix A, the variation of these coefficients with the angular 
velocity can be plotted. They are computed using the eigenvalues λi of A:  
 
 
 
The plot is shown in Fig. 2 with the structural properties reported in Table 1. 
 

Table 1. Structural properties for hinged-blades helicopter with 4 blades 

Structure variable Value(unit) 
Blade mass  
m 31.9 Kg 

Fuselage mass  
M 2902.9 Kg 
Blade stiffness  
Kβ 200 N/m 
Main LG stiffness  
Kx 
Ky 

3200 N/m 
3200 N/m 

Blade damping 
Cβ 
Main LG damping 
Cx 
Cy 

 
15 N.s./m 
 
300 N.s/m 
300 N.s/m 

Lengths 
a 
b 

 
0.2 m 
2.5 m 

Moment of Inertia at articulation point 
Iz 

 
259 Kg/m2 

  
 

Fig. 2 illustrates that the damping coefficients become positive and they are varying smoothly 

with rotor's angular velocity. The second modal damping coefficient ρ2 (mode 2) changes from 

positive values to negative ones, from ω=1.62 rad/s to ω =2 rad/s, which is a criterion for ground 

resonance. It is this damping coefficient which will be monitored by CUSUM test. 

A question to ask would be: why using the CUSUM test if we have the interval of instability 

from the modal analysis of the mechanical model? The answer is that this analysis is based on a 
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   Fig. 2. Damping coefficients vs. blades angular velocity

Simulation Results for CUSUM Test

 
 To test the performances of the sliding approach to the fixed
model above is simulated at a rate τ

state of reference) to ω=2 rad/s by a step of 0.01 rad/s. For 
are simulated. 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Fixed reference CUSUM test response 
vs. sample

 
The fixed reference test responds for 
zoom shows that the response occurs before. This was predictable
shown in Fig. 2) is continuously dropping; any change on its value engenders a response of the test. 
The response of the sliding test proves that, indeed, this approach kills any parasite response and the 
alarm is only triggered on near the instability, and not far from it.

CONCLUSION 

 
The problem of detecting the ground resonance is addressed. An adaptive a
order to perform the response time and tested with simulation data. Future works encompasses a 
generalization of these methods to
anisotropic blades that leads to a 
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model above is simulated at a rate τ=0.02 s. The angular velocity varies from ω=1 rad/s (taken as the 

=2 rad/s by a step of 0.01 rad/s. For each value of velocity, 1000 output samples 

 

Fig. 3. Fixed reference CUSUM test response 
vs. sample 

Fig. 4. Sliding reference CUSUM test 
response vs. sample

The fixed reference test responds for ω=1.6 rad/s, corresponding to the velocity of resonance, but a 
zoom shows that the response occurs before. This was predictable, the second damping coefficients, as 
shown in Fig. 2) is continuously dropping; any change on its value engenders a response of the test. 

response of the sliding test proves that, indeed, this approach kills any parasite response and the 
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