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a b s t r a c t

A mathematical model incorporating the higher order deformations in bending is devel-
oped and analyzed to investigate the nonlinear dynamics of rotors. The rotor system con-
sidered for the present work consists of a flexible shaft and a rigid disk. The shaft is
modeled as a beam with a circular cross section and the Euler Bernoulli beam theory is
applied with added effects such as rotary inertia, gyroscopic effect, higher order large
deformations, rotor mass unbalance and dynamic axial force. The kinetic and strain (defor-
mation) energies of the rotor system are derived and the Rayleigh–Ritz method is used to
discretize these energy expressions. Hamilton’s principle is then applied to obtain the
mathematical model consisting of second order coupled nonlinear differential equations
of motion. In order to solve these equations and hence obtain the nonlinear dynamic
response of the rotor system, the method of multiple scales is applied. Furthermore, this
response is examined for different possible resonant conditions and resonant curves are
plotted and discussed. It is concluded that nonlinearity due to higher order deformations
significantly affects the dynamic behavior of the rotor system leading to resonant hard
spring type curves. It is also observed that variations in the values of different parameters
like mass unbalance and shaft diameter greatly influence dynamic response. These influ-
ences are also presented graphically and discussed.
1. Introduction

Over the years rotordynamics has become an important field in many engineering applications [1–3] such as jet engines,
helicopter rotors, turbines, compressors and the spindles of machine tools, etc. The prediction and analysis of the dynamic
behavior of rotor systems [4,5] are crucial because their rotating components possess unlimited amounts of energy that can
be transformed into vibrations. However, these vibrations can disturb the performance of the rotor system and even cause its
total destruction. The importance of considering the nonlinear and/or material constitution [6] effects in the dynamic
analysis of rotating equipment has increased in line with current demand for accurate and optimized performance. Thus this
field has become more challenging because the analysis of the nonlinear phenomena is far more difficult in comparison to
linear analysis. Nonlinearities in rotor systems can be due to many reasons [7]. For example, higher order large deformations,
rotor-base excitations [8–10], geometric nonlinearities [11,12], oil film in journal bearings [13], magnetic bearings [14].
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Nomenclature

L Length of shaft (m)
A Cross sectional area of shaft (m2)
d1 Position of mass unbalance from geometric center of shaft (m)
I Area moment of inertia of shaft (m4)
Md Mass of disk (kg)
Idx Mass moment of inertia of disk in direction x (kg m2)
Idy Mass moment of inertia of disk in direction y (kg m2)
h Thickness of disk (m)
l1 Position of disk on shaft (m)
R1 Cross sectional radius of shaft/internal radius of disk (m)
c Coefficient of damping (N s m�1)
Ts Kinetic energy of shaft (N m)
Td Kinetic energy of disk (N m)
Tu Kinetic energy of mass unbalance (N m)
Us Strain (deformation) energy of shaft (N m)
TR Total kinetic energy of rotor (N m)
UR Total strain (deformation) energy of rotor (N m)
q Density of material (kg m�3)
X Angular Speed of rotor (rad sec�1)
x1, x2 Angular frequencies of rotor (rad sec�1)
r1 Detuning parameter (rad sec�1)
aE Amplitude at the equilibrium position (m)
u(y, t) Displacement along x axis of rotor (m)
w(y, t) Displacement along z axis of rotor (m)
U Discretized displacement along axis x (m)
W Discretized displacement along axis z (m)
NA Dynamic axial force (N)
This article investigates the dynamics of the rotor system analytically and numerically, by considering nonlinearity
due to higher order large deformations in bending. In addition, if the supports of the rotor do not allow the shaft to move
in the axial direction, then dynamic force will act on the rotor axially as it operates [15]. This force will also produce
large deformations in bending. Moreover, there are other secondary effects that should be considered for increasing
the accuracy of the predicted results. These include rotary inertia effects, gyroscopic effects and rotor mass unbalance
effects.

In order to include the above-mentioned effects in the analysis of rotordynamics, a nonlinear mathematical model has
been developed. Hamilton’s principle [16] is used to formulate the equations of motion. The linear part of the model devel-
oped is analyzed for the first mode to obtain the natural frequencies of vibrations. In addition, the Campbell diagram is plot-
ted to determine the critical speeds and the system response due to an unbalanced mass. Then, in order to solve the complete
model including nonlinear terms, the method of multiple scales (MMS) [17] is applied. This is a well known perturbation
method [18] and has been proven to be very effective for solving nonlinear equations of motion [19–22]. Resonant curves
are plotted for different possible resonances and the effect of nonlinearity is discussed in comparison to the linear analysis.
The forced response of the rotor system due to an unbalanced mass by changing different rotor parameters is also presented
and the results are plotted graphically and discussed.

2. Modeling

The rotor system considered for this work consists of a flexible shaft and a rigid disk. We selected the same rotor geom-
etry as used by Duchemin et al. [9,10] shown in Fig. 1. The shaft, considered to be a beam of circular cross section of length L
and radius R1, is modeled by its kinetic and strain energies. The disk of external radius R2 and internal radius R1 positioned at
a distance y = L/3, is considered to be rigid and hence only requires kinetic energy for its characterization. The mass unbal-
ance denoted by mu is also situated at a distance y = L/3.

2.1. Kinetic energy

The kinetic energies of the disk, shaft and mass unbalance, denoted by Td, Ts and Tu respectively, are given according to [3]
Td ¼
Md
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Fig. 1. Rotor with shaft and disk.
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Tu ¼ muXd1ð _u cos Xt � _w sin XtÞ: ð3Þ
By adding Eqs. (1)–(3) the total kinetic energy of the rotor system becomes TR = Td + Ts + Tu.

2.2. Strain energy

The following expression for the strain energy of the shaft taking into account higher order large deformations is derived
in Appendix A.
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If the supports at both ends of the shaft are such that they do not allow the shaft to elongate, then an axial force NA will act
dynamically on the shaft. This force leads to another contribution to the strain energy of the shaft given by
Us2 ¼ NA
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dy. Therefore, the strain energy of the shaft becomes

Us = Us1 + Us2 and is given by
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The total strain energy of the rotor system can now be written as UR = Us

2.3. Application of the Rayleigh–Ritz method

The displacements in the x and z directions can be expressed as,
uðy; tÞ ¼ f ðyÞUðtÞ ¼ f ðyÞU and wðy; tÞ ¼ f ðyÞWðtÞ ¼ f ðyÞW: ð6Þ
The angular displacements can be approximated as
hx ¼ @w=@y ¼ f 0ðyÞW ¼ gðyÞW ; @hx=@y ¼ f 00ðyÞW ¼ hðyÞW; ð7aÞ

hz ¼ �@u=@y ¼ �f 0ðyÞU ¼ �gðyÞU; @hz=@y ¼ �f 00ðyÞU ¼ �hðyÞU; ð7bÞ
where the prime denotes the derivative with respect to y. Using the expressions given by Eqs. (6), (7a) and (7b), the kinetic
energy of the rotor system in a compact form can be given as,
TR ¼
1
2
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where,
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The strain energy of the rotor in a compact form can be written as,
UR ¼
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where,
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2.4. Application of the Hamilton principle

Using the Hamilton principle as
R t2
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dðTR � URÞdt ¼ 0, we can write
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We will treat the two terms in Eq. (12) one by one. The first term gives
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Different terms in Eq. (13) can be calculated as follows
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Similarly, the second term in Eq. (12) gives
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The two terms in Eq. (15) can be written as below
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The equations of motion can be written by collecting the terms of type dUdt and dWdt in Eqs. (14a)–(14c), and (16a), (16b).
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By simplifying and rearranging Eq. (17) we can write,
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2.4.2. For dW
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By simplifying and rearranging Eq. (19) we can write,
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Eqs. (18) and (20) can then be written as
€U �Xa1
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2
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Eqs. (21a) and (21b) are two nonlinear second order differential equations of motion of the rotor system studied, where a
damping term c has been added Also
a1 ¼ b2=b1; a2 ¼ k1=b1; b1 ¼ k2=b1; b2 ¼ k3=b1; m1 ¼ mu=b1: ð22Þ
The analysis of the free undamped linear system is similar to [3]. The Campbell diagram, forced response of the linear system
and numerical data are presented in Appendix B.

3. Nonlinear analysis

The theoretical analysis of the nonlinear forced system is performed using the method of multiple scales in time (MMS),
which has been proven very effective in the analysis of such systems [17–22]. In order to apply MMS, displacements U and W
are expanded as below
UðT0; T1Þ ¼ u0ðT0; T1Þ þ eu1ðT0; T1Þ ¼ u0 þ eu1; ð23aÞ

WðT0; T1Þ ¼ w0ðT0; T1Þ þ ew1ðT0; T1Þ ¼ w0 þ ew1; ð23bÞ
where Tn = ent are slow time scales, T1 being slower than T0, and e is a small dimensionless parameter so that e < < 1. The
nonlinear, damping and forcing terms in Eqs. (21a) and (21b) are scaled so that they appear in the same order of e. Therefore
the following scaling is used
a1 ¼ a1; a2 ¼ a2; b1 ¼ eb1; b2 ¼ eb2; m1 ¼ em1; c ¼ ec: ð24Þ
Eqs. (21a) and (21b) can now be written as
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The different time derivatives in the above equation can now be written as:
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By substituting Eqs. (26a)–(26d) in Eqs. (25a) and (25b), using Eqs. (23a) and (23b) and then equating the coefficients of the
like powers of e on both sides of the resulting equations, we obtain following two systems of equations



System of order 0 equations (e0)
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System of order 1 equations (e1)
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The solution of Eqs. (27a) and (27b) is given as
u0 ¼ A1ðT1Þ expðix1T0Þ þ A2ðT1Þ expðix2T0Þ þ ½cc�; ð29aÞ

w0 ¼ iA1ðT1Þ expðix1T0Þ � iA2ðT1Þ expðix2T0Þ þ ½cc�; ð29bÞ
where [cc] denotes the complex conjugate.

3.1. Possible resonances and solvability conditions

Substitution of Eqs. (29a) and (29b) into Eqs. (28a) and (28b) gives us the following two equations
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We assume a particular solution in the form:
u1 ¼ P1ðT1Þ expðix1T0Þ þ Q 1ðT1Þ expðix2T0Þ; ð31aÞ

w1 ¼ P2ðT1Þ expðix1T0Þ þ Q2ðT1Þ expðix2T0Þ: ð31bÞ
After substituting the particular solution given above in Eqs. (30a) and (30b), it can be observed from the resulting equations
that there are two possible primary resonance conditions, X = x1 and X = x2.

3.2. Case of X = x2

For this case we have used X = x2 + er1, where r1 is a detuning parameter for controlling the nearness of X to x2.

Also, the solutions of Eqs. (30a) and (30b) exist only if certain solvability conditions are satisfied. The first step in deter-
mining these solvability conditions is to substitute X = x2 + er1 and the particular solution, given in Eqs. (31a) and (31b), in
these equations. We then equate the coefficients of exp (ix1T0) and exp (ix2T0) on both sides of the resulting equations and
follow the procedure given in [17] to determine the solvability conditions.



Fig. 2. Resonance curves (a) X = x1 (b) X = x2.
Finally, two solvability conditions are given below
@A1

@T1
¼ �c2A2

1A1 � c3A1A2A2 � c5A1; ð32aÞ

@A2

@T1
¼ �d2A2

2A2 � d3A1A1A2 � d4 expðir1T1Þ � d5A2; ð32bÞ
where c2, c3, c5, d3, d4, d5 are constants, given in Appendix B.
Substituting the solutions of A1 and A2 in the polar form i.e., An = (1/2)(anexp (ihn) where n = 1, . . . ,2, in Eqs. (32a) and (32b)

and separating the real and imaginary parts we obtain the following autonomous system of four first order partial differen-
tial equations.
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where C = �h2 + r1T1.
Eqs. (33a) and (33b) show that a1 = 0 is a solution. Equilibrium is also achieved in @a1/@T1 = 0, oC /@T1 = 0. The autono-

mous system above now reduces to two equations that can be resolved to give the following 6th degree polynomial equation
for plotting the resonant curves.
d2
2a6

E þ 8d2d5a4
E þ 16ðd2

5 þ r2
1Þa2

E � 64d2
4 ¼ 0: ð34Þ
The above polynomial is a function of amplitude at equilibrium aE and detuning parameter r1. Solving this polynomial gives
six solutions that are symbolically complicated expressions and are not reproduced here. Therefore this polynomial is trea-
ted numerically in the next section.



Fig. 3. Results obtained by continuation procedure using Matcont at r1 = 20 for bifurcation diagram, (b) state plane at point A, (c) state plane at point B.
3.3. Case of X = x1

This case can be treated in the same way as the previous one. The results can be obtained directly by changing x2 with x1

in Eqs. (30a) and (30b) and considering a new detuning parameter defined as X = x1 + er1.

4. Numerical investigations (Results and discussion)

The investigations were conducted using three different methods, i.e. the method of multiple scales, a continuation
scheme in Matlab called Matcont3 and a step by step integration method in Matlab Simulink. All the numerical data are given
in Appendix B.
3 A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, W. Mestrom, A. M. Riet, B. Sautois, MATCONT: A continuation toolbox in Matlab, http://www.matcont.ugent.be/.

http://www.matcont.ugent.be/


Fig. 4. Results obtained by continuation procedure using Matcont at r1 = 504 for X = x2 (a) bifurcation diagram, (b) state plane at point A, (c) state plane at
point B.
4.1. Resonant curves

4.1.1. Method of multiple scales (MMS)
The numerical solutions for the two resonant conditions X = x1 and X = x2 are presented showing the plots of resonant

curves of hard spring type (Fig. 2).
The effect of nonlinearity has caused these curves to bend rightwards from the position of the linear response given in

Appendix B in Fig. B. It is interesting to note the plotting ranges of these curves to generate the same shapes. For the case
X = x2 these curves are significantly expanded and the range of amplitude is higher.



4.1.2. Continuation procedure (Matcont)
The bifurcation diagrams and state planes are presented in Figs. 3 and 4. For a given value of the detuning parameter there

are three solutions in the positive plane. Out of these solutions, two are stable and one is unstable. The continuation proce-
dure is capable of tracing two stable solutions which can be seen corresponding to points A and B on the curves in Fig. 3(a)
and Fig. 4(a). The curve of the unstable solution lies somewhere between these two curves. The results of this procedure
match with those obtained by MMS but the latter is more preferable as it can plot the unstable solutions as well.

The state planes are plotted for two different points A and B on the resonant curves given in Fig. 3(a) and Fig. 4(a). It can
be observed that the amplitude at point A is much lower as compared to that of point B. Also the orbits corresponding to
point B tend to be more oval as compared to those corresponding to point A. Therefore it can be concluded that the effect
of nonlinearity due to higher order deformations is more visible at the curve at point B.
Fig. 5. Phase diagrams, poincaré sections and time amplitude responses for X = x1.

Fig. 6. Phase diagrams, poincaré sections and time amplitude responses for X = x2.



4.1.3. Direct integration by step by step method (Matlab)
A step by step analysis was conducted using the Simulink toolbox of the Matlab. The equations of motion given by Eqs.

(21a) and (21b) are treated directly. The results are compared with those obtained by MMS and are presented as dots in
Fig. 2. The phase diagrams, poincaré sections and time histories of the amplitude are given in Figs. 5 and 6. The discrepancy
between MMS results and step by step results in Fig. 2 are mainly due to the difficulty to obtain the maximum and minimum
in the amplitude response curves, see for example Figs. 5 and 6. The amplitude modulation is also visible in these figures. The
simulation was carried out and the phase diagrams were plotted for the last 0.2 s. This corresponds to 4 periods where the
amplitude modulation is low. Hence as a result the 4 points on the poincaré sections lie close together.
4.2. Effect of various parameters

In regard to the limitations presented by the continuation procedure (the inefficiency in predicting unstable branch) and
step by step method (difficulty in choosing the initial conditions and hence not attaining the stability in time amplitude re-
sponse), in the following the method of multiple scales is used. In Eq. (34) d2, d4 and d5 are functions of various quantities a1,
b1, a2, b2 and m1 (Appendix B). These quantities, according to Eqs. (22), (11), and (9a), (9b), further depend on geometric,
material and mass unbalance parameters. This indicates that a change in the values of these parameters will give different
Fig. 7. Effect of b2 = 0 (a) X = x1 (b) X = x2.

Fig. 8. Effect of variation in mass unbalance mu (a) X = x1 (b) X = x2.



Fig. 9. Effect of variation in shaft diameter (a) X = x1 (b) X = x2.
numerical solutions of Eq. (34), thus generating different resonant curves. Therefore these different parameters can be ad-
justed to change the behavior of the rotor significantly.

4.2.1. Effect of b2 = 0
According to Eq. (22) quantity b2 depends on k3 which represents the effect of an axial dynamic force, see Eq. (11). This

implies that if we want to study the dynamics of the system without considering the effect of an axial force we can substitute
b2 = 0 in various constants given in Appendix B. This affects the overall response of the system. The generated resonant
curves are presented in Fig. 7. A comparison of these curves with those of Fig. 2 shows that the amplitude has increased. Also
a decrease in the horizontal plotting range of these curves indicates that the spring hardening effect becomes visible even at
very low values of detuning parameter r1.

4.2.2. Effect of varying the mass unbalance mu

The quantity d4 in the polynomial given by Eq. (34) depends on the mass unbalance mu through Eqs. (B.2) and (B.10) in
Appendix B and Eq. (22) in the text. Therefore the response of the system can be varied by changing the value of the mass
unbalance. Fig. 8 represents the effect of varying the mass unbalance from 1 � 10�5 kg to 100 � 10�5 kg. Different resonant
curves plotted on the same scale show that as the mass unbalance is increased, the horizontal component of these curves
expands more to cover a greater range of detuning parameter r1.

4.2.3. Effect of varying shaft cross-sectional radius R1

The quantities a1, b1, a2, b2 and m1 in Appendix B are related to parameters b1, b2, k1, k2, k3 using Eq. (22). All these param-
eters depend on the cross-sectional radius of the shaft. This can be observed from Eqs. (9a), (9b) and (11) in the text and Eqs.
(B.12)–(B.16) in Appendix B. Therefore a change in the shaft radius will change the numerical values of all the parameters
and quantities mentioned above. Fig. 9 shows the system response for three different values of shaft cross-sectional radius. It
can be observed that the resonant curves bend more strongly towards right as the shaft narrows.
5. Conclusions

The nonlinear behavior of rotor dynamics due to large deformations and a dynamic axial force was analysed for the first
mode. A mathematical model was developed and solved using the multiple scales method. The numerical investigations
were conducted using three methods, i.e. the method of multiple scales, a continuation procedure (Matcont) and a step
by step analysis in Matlab Simulink. It is concluded that the method of multiple scales is more efficient than the other
two methods as all the stable and unstable solutions can be seen in the resonant curves.

The results showed that nonlinearities along with other phenomena like gyroscopic, rotary inertia and mass unbalance
effects significantly influence the dynamics of the rotor system. The linear analysis showed that resonance existed only at
the second critical speed, but in the nonlinear analysis another resonance appeared at the first critical speed. Furthermore,
nonlinearities caused the resonance curves to be of hard spring type. In the absence of dynamic axial force and at lower val-
ues of mass unbalance, the spring hardening effect was visible even at lower values of detuning parameter r1. Using the
method of analysis presented here facilitated studying the changes caused by modifying different rotor system parameters,



by changing the numerical values of the latter. The future perspectives of this work include the experimental validation of
the results and the consideration of the effect of shear deformations (Timoshenko beam).

Appendix A

A.1. Strain energy of the shaft

The shaft is modeled as a beam of circular cross section in bending (Fig. A). The displacements in the x, y and z directions
of the beam are given below.
ux ¼ u; uy ¼ �zhx þ xhz; uz ¼ w: ðA:1Þ
The longitudinal strain (deformation) in the y direction can be shown to be
eyy ¼ #
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The strain energy can be given as:
Us1 ¼ 1
2

Z L

0

Z
A

ryyeyy
� �

dAdy: ðA:3Þ
By using the relation ryy = Eeyy, the strain energy can be written as:
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By using Eq. (A.2),
Us1 ¼
E
2

Z L

0

Z
A
�z

@hx

@y
þ x

@hz

@y
þ 1

2
h2

x þ
1
2

h2
z

� �2

dAdy; ðA:5Þ

Us1 ¼
E
2

Z L

0

Z
A

z2 @hx
@y

� �2
þ x2 @hz

@y

� �2
� 2xz @hx

@y

� �
@hz
@y

� �
þ 1

4 h4
x

þ 1
4 h4

z þ 1
2 h2

xh
2
z � 2 z @hx

@y þ x @hz
@y

� �
1
2 h2

x þ 1
2 h2

z

� �
2
64

3
75dAdy: ðA:6Þ
The 3rd and 7th term in the above equation can be neglected due to the symmetry of the cross-section. Also,
Ix ¼

R
A z2dA; Iz ¼

R
A x2dA; I ¼ Ix ¼ Iz (due to symmetry) and

R
S ds ¼ A is the area of the cross section.

Therefore, Eq. (A.6) becomes,
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Fig. A. Transverse vibrations (beam in bending).



Appendix B

B.1. Linear analysis

The rotor was studied as a free undamped linear system to determine the natural frequencies of vibration and the Camp-
bell diagram given in Fig. B(a) was plotted to determine the critical speeds. The two critical speeds x1 and x2 were found to
be 2520 rpm (42 Hz) and 3089 rpm (51.5 Hz). The response due to mass unbalance is given in Fig. B(b) which shows that
there is a peak in the amplitude corresponding to the second critical speed.

B.2. Constants

Different constants incorporated in Eqs. (34) and (35) are given as
c2 ¼ C2=C1; c3 ¼ C3=C1; c5 ¼ C5=C1; ðB:1Þ

d2 ¼ D2=D1; d3 ¼ D3=D1; d4 ¼ D4=D1; d5 ¼ D5=D1; ðB:2Þ
where
C1 ¼ �2x3
1 � a1x2

1x2 þ a2
1x1x2

2 þ 2a2x1 � a1a2x2; ðB:3Þ

C2 ¼ 2iðb1 þ 2b2Þ x2
1 þ a1x1x2 � a2

� �
; ðB:4Þ

C3 ¼ 4iðb1 þ 2b2Þ x2
1 þ a1x1x2 � a2

� �
¼ 2C2; ðB:5Þ

C5 ¼ �c x3
1 þ a1x2

1x2 � a2x1
� �

; ðB:6Þ

D1 ¼ �a1 � a2
1 þ 2

� �
x3

2 � a2ða1 þ 2Þx2; ðB:7Þ

D2 ¼ 2iðb1 þ 2b2Þ ða1 � 1Þx2
2 þ a2
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; ðB:8Þ

D3 ¼ 4iðb1 þ 2b2Þ ða1 � 1Þx2
2 þ a2
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¼ 2D2; ðB:9Þ
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D5 ¼ c ð1� a1Þx3
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Fig. B. (a) Campbell diagram, (b) mass unbalance response.



B.3. Numerical data
q ¼ 7800 kg m�3; E ¼ 2� 1011 N m�2; c ¼ 0:001; L ¼ 0:4 m; R1 ¼ 0:01 m;

R2 ¼ 0:15 m; h ¼ 0:03 m; mu ¼ 1� 10�4 kg; d1 ¼ R2 ¼ 0:15 m;

Md ¼ p R2
2 � R2

1

� �
hq ¼ 16:47 kg;; ðB:12Þ

Idx ¼ Md 3R2
1 þ 3R2

2 þ h2
� �

=12 ¼ 9:427� 10�2 kg m2; ðB:13Þ

Idy ¼ Md R2
1 þ R2

2

� �
=2 ¼ 1:861� 10�1 kg m2; ðB:14Þ

A ¼ pR2
1 ¼ 3:142� 10�4 m2; ðB:15Þ

I ¼ pR4
1=4 ¼ 7:854� 10�9 m4: ðB:16Þ
For the geometry and material properties of the rotor system given above, the numerical values of different constants in
expressions (B.2)–(B.11) are given as
a1 ¼ 2:0084x10�1; a2 ¼ 83:623x103; b1 ¼ 2:5087x109; b2 ¼ 9:5457x1012; x1 ¼ 258;

x2 ¼ 323; f ðl1Þ ¼ 8:660x10�1; d1 ¼ 0:15; c ¼ 0:001:
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