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Abstract 10 

The bioaccumulation and biotransformation of arsenic (As) were studied in six representative marine 11 

sponges from the French Mediterranean and Irish Atlantic coasts. Methodologies were carefully optimized in 12 

one of the species on Haliclona fulva sponges for two critical steps: the sample mineralization for total As 13 

analysis by ICP-MS and the extraction of As species for HPLC-ICP-MS analysis. During the optimization, 14 

extractions performed with 0.6 mol L
-1

 H3PO4 were shown to be the most efficient. Extraction recovery of 81 %15 

was obtained which represents the best results obtained until now in sponge samples. Total As analyses and As 16 

speciation were performed on certified reference materials and allow confirming the measurement quality 17 

both during the the sample preparation and analysis. Additionally, this study represents an environmental 18 

survey demonstrating a high variability of total As concentrations among the different species, probably related 19 

to different physiological or microbial features. As speciation results showed the predominance of 20 

arsenobetaine (AsB) regardless of the sponge species, as well as the occurrence of low amounts of 21 

dimethylarsinic acid (DMA), arsenate (As(+V)), and unknown As species in some samples. The process 22 

responsible for As transformation in sponges is most likely related to sponges metabolism itself or the action of 23 

symbiont organisms. AsB is supposed to be implied in the protection against osmolytic stress. This study 24 

demonstrates the ability of sponges to accumulate and bio-transform As, proving that sponges are relevant 25 

bio-monitors for As contamination in the marine environment, and potential tools in environmental bio-26 

remediation.  27 

28 
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1. Introduction31 

Arsenic (As) is a ubiquitous element that ranks 20
th

 in abundance in the earth’s crust (1.5–3 mg kg
−1

). This 32 

metalloid occurs naturally in the environment, and it is also provided by some anthropogenic activities (Mandal 33 

and Suzuki, 2002). As is recognized to be toxic and one of the six most preoccupying pollutants on earth 34 

together with lead, mercury, chromium, some radionuclides and pesticides. The understanding of As cycle in 35 

marine ecosystem remains a challenging task since arsenic often occurs at very low concentrations (around 1 36 

µg L
-1

 in seawater) and under one of the most toxic inorganic species (As(+V)) (Cabon and Cabon, 2000). Within 37 

this context, there is a clear need to gain a better understanding of the As cycle in the marine environment. 38 

The quantification of total As in marine organisms and especially in seafood has been performed in 39 

numerous studies (Phillips, 1990; Kucuksezgin et al., 2014; Wu et al., 2014; Olmedo et al., 2013), but rarely in 40 

marine invertebrates. Among marine invertebrates, sponges are sessile filter feeders, capable of filtering every 41 

day a volume of seawater up to 50 000 times that of their body (Weisz et al., 2008). They have been recognized 42 

as excellent bio-monitors for trace element pollution (Perez et al., 2005; Cebrian et al., 2007) as they are 43 

capable to accumulate trace elements at concentrations higher than bivalves (Patel et al., 1985; Negri et al., 44 

2006; Padovan et al., 2012). On hard substrata, sponges are one of the top spatial competitors (Bell, 2008) and 45 

have recently been proposed as model organisms to monitor aquatic contamination, in addition to the already 46 

existing and well known “Mussel Watch Program” (Genta-Jouve et al., 2012). The bioaccumulation of trace 47 

elements in sponges was suggested to differ according to sponge species and the element of interest (Batista 48 

et al., 2014; Mayzel et al., 2014; Cebrian et al., 2007; Patel et al., 1985). Only few studies focused on As 49 

bioaccumulation in sponges (Aly et al., 2013; Araújo et al., 2003; Batista et al., 2014; Denton et al., 2006; Keren 50 

et al., 2015; Keren et al., 2016; Keren et al., 2017; Padovan et al., 2012; Pan et al., 2011; Perez et al., 2005; 51 

Schaeffer et al., 2006; Shiomi et al., 1988; Vaskovsky et al., 1972; Venkateswara Rao et al., 2009; Yamaoka et 52 

al., 2001; Yamaoka et al., 2006). These studies revealed how As concentrations in sponges is variable, 53 

exceeding 100 mg kg
-1

 in some cases, and usually higher than in other marine organisms (generally < 10 mg kg
-1

 54 
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in fish, algae and shellfish) (Llorente-Mirandes et al., 2010). Sponges seem to accumulate more As than other 55 

marine organisms, which makes them suitable models for biomonitoring studies, as already proposed by 56 

Genta-Jouve et al., 2012. As accumulation was previously demonstrated to be strongly related to sponge 57 

orders or species; for instance higher in demosponges than in calcareous sponges (Yamaoka et al., 2001). 58 

The determination of total As concentration is however not sufficient as As toxicity and biological impact 59 

depend directly on its chemical form, i.e. its speciation (Cullen and Reimer, 1989; Hughes, 2002; Sakurai, 2002) 60 

. Among arsenic species, inorganic arsenite As(+III) and arsenate As(+V) are the most toxic forms. These two 61 

inorganic forms are carcinogenic and cause damage to the respiratory, cardiovascular, nervous, and 62 

hematopoietic systems, as well as lesions to skin and liver (Pershagen, 1981). The methylated forms 63 

monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are less toxic than the previously mentioned 64 

inorganic species, but they are recognized as cancer promoters (Brown et al., 1997) while arsenobetaine (AsB), 65 

the major species in marine animals, arsenocholine (AsC), trimethylarsine oxide (TMAO) and 66 

tetramethylarsonium ion (TMAs) are considered nontoxic (ATSDR, 2007). Other As species, like arsenosugars 67 

(AsS), often found in seafood and generally in marine organisms, have been recognized not to be acutely toxic; 68 

nevertheless a chronic toxicity is a possibility (Andrewes et al., 2004). The quantitation of the different As 69 

chemical forms, i.e. arsenic speciation, can be performed with different analytical techniques(Benramdane et 70 

al., 1999; Hsieh et al., 2010; Nearing et al., 2014 ; Tian et al., 2010). HPLC-ICP-MS represents the most used 71 

technique by far (Benramdane et al., 1999; Nearing et al., 2014) because this hyphenated technique combines 72 

a rapid, powerful and reproducible separation method with a very efficient detector due to its high sensitivity 73 

and large linear dynamic range (Beauchemin, 2008). 74 

In most aquatic organisms, As speciation analysis has already revealed the occurrence of AsB, AsS, DMA and 75 

inorganic species. In freshwater organisms, the inorganic As(+III) species was reported as dominant for 76 

gastropods (Hong et al., 2014), two AsS species for microalgae, DMA for Anguilla japonica and more often AsB 77 

for other fish-species and crustaceans (Miyashita et al., 2009). AsB was suggested to contribute in a greater 78 
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proportion of total As in marine organisms than in freshwater ones, which represents the major difference in 79 

As speciation between aquatic organisms (Schaeffer et al., 2006; Hong et al., 2014). AsB is reported as the most 80 

abundant As-species in several organisms, such as shrimps, bivalves, crabs and fishes (Lai et al., 1999; Schaeffer 81 

et al., 2006; Taylor et al., 2012; Caumette et al., 2012; Hong et al., 2014), whereas some AsS species can also be 82 

dominant in clams and mussels (Grotti et al., 2010; Taylor et al., 2012). The relative proportions of these two 83 

major As-compounds (AsB and AsS) would depend on the position of the organism in the food chain: the 84 

percentage of AsB normally increases through the food web, whereas the AsS fraction decreases (Grotti et al., 85 

2010). Concerning sponges, the inorganic As(+V) specie was reported as dominant in freshwater sponges from 86 

the Danube River in Hungary (Schaeffer et al., 2006) whereas in Japanese and Philippine marine sponges, AsS 87 

and AsB were found to be dominant, showing interesting variability among the studied species (Shiomi et al., 88 

1988; Yamaoka et al., 2001; Yamaoka et al., 2006). Recently, the role of sponge-associated bacteria in As 89 

bioaccumulation was evaluated since bacteria are known as key contributors to important elemental cycling in 90 

sponges, specifically for carbon, nitrogen, sulfur as well as trace elements (Keren et al., 2015; Keren et al., 91 

2016; Keren et al., 2017). The sponge symbiotic bacterium Entotheonella sp. was shown to constitute the As-92 

accumulating entity within the holobiont. 93 

 Considering the lack of studies on As speciation in marine sponges a deeper knowledge of As speciation in 94 

marine sponges is needed. In this work, a methodology was first developed for total As analyses by ICP-MS and 95 

As speciation by HPLC-ICP-MS in sponges. This approach was then applied to different sponge species collected 96 

in distinct marine environments. This study focused on different sampling sites located in the French 97 

Mediterranean coast, but also in the Irish Atlantic coast. These sites were characterized by different natural 98 

and anthropogenic As inputs offering thus the opportunity to study possible differences in As bioaccumulation 99 

and biotransformation related to the element availability. 100 

101 

2. Materials and methods102 
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2.1.  Sampling and target species 103 

The sponge samples analyzed in this study were collected either by SCUBA diving in the French 104 

Mediterranean coast in the Villefranche-sur-Mer Bay, or in the Irish Atlantic coast shore in Greenisland and in 105 

the Killkieran Bay. The French sampling area is densely populated and a well-known tourist destination, 106 

especially in summer time. Greenisland is a large inlet in the Belfast Lough, at the western end is the city and 107 

the port of Belfast, which sits at the mouth of the Lagan River. The lough opens into the North Channel and 108 

connects Belfast to the Irish Sea. Kilkieran Bay is a large, complex inlet in southern Connemara, County Galway, 109 

on west coast of Ireland. 110 

 Initial sampling of specimens of the sponge Haliclona fulva was carried out in the Bay of Villefranche sur 111 

Mer (N 43° 41' 59.0'', E 07° 19' 31.5'') on January  2014, in order to optimize the mineralization and extraction 112 

procedures for As analyses. Subsequent sampling was conducted in the Bay of Villefranche sur Mer on 113 

February and September 2016, in Killkieran Bay (N 53° 21’ 22.625’’, O 9° 42’ 17.153”) in October 2016, and in 114 

Greenisland, Carrickfergus (N54°41’24.383”, O 5° 51’ 36.633”) in November 2016.  Sampling locations are 115 

shown in Fig. 1A (supplementary information). At least, three specimens of each sponge species were collected 116 

from each sampling site and period. In order to minimize differences due to sponge ages, organisms of a similar 117 

size were chosen. In the Mediterranean coast, samples were collected between 5 and 40 m depth, whereas in 118 

Ireland, they were collected from intertidal areas. 119 

The following sponge species were collected for 2 sampling dates in the Mediterranean coast: Acanthella 120 

acuta; Cymbaxinella
p
 damicornis; Chondrilla nucula and Haliclona fulva. From Greenisland and Killkieran Bay, 121 

the following species were collected: Halichondria panicea and Hymeniacidon perlevis (Fig. 2A, supplementary 122 

information). These species were selected because of their widespread occurrence but also for their different 123 

morphological characteristics (KeyToNature, 2015): 124 



ACCEPTED MANUSCRIPT

6 

a) Acanthella acuta (Class: Demospongiae, Order: Axinellida, Family: Dictyonellidae) is a small erect 125 

sponge with rather small oscules. 126 

b) Cymbaxinella
p
 damicornis (Class: Demospongiae, Order: Axinellida, Family: Axinellidae,

p
phylocode 127 

name), is a rather small, erectly branching sponge with short, compressed branches. Oscules are small128 

and are located on the apices of the branches, the oscules are surrounded by a small triangular ‘flap’ of129 

tissue. The genus Axinella is difficult to define on the basis of morphological characteristic but for the130 

specie analyzed in this study the name Cymbaxinella damicornis was recently proposed by Gazave et al.131 

(2010) following the phylocode.132 

c) Chondrilla nucula (Class: Demospongiae, Order: Chondrillida, Family: Chondrillidae) is amorphous, with133 

globular lobes, or thickly incrusting, up to about 1 cm thick, spreading horizontally, with pronounced, 134 

deeply incised and lacunose, meandering lobes. The color is dark-brown to walnut-brown. 135 

d) Haliclona fulva (Class: Demospongiae, Order: Haplosclerida, Family: Chalinidae), is a specimen with136 

irregular and slightly hispid surface. The ectosomal and choanosomal skeletons have a regular, delicate, 137 

unispicular, and isotropic reticulation. Color is dark orange. 138 

e) Halichondria panicea (Class: Demospongiae, Order: Suberitida, Family: Halichondriidae), is intertidal or139 

shallow-subtidal, thickly encrusting, massive or occasionally branching, and presents typical volcanoe-140 

shaped oscular chimneys. The surfaces of this sponge are smooth, consistency firm, texture crumb-of-141 

bread. These sponges are basically light orange-yellow or pale yellowish green. 142 

f) Hymeniacidon perlevis (Class: Demospongiae, Order: Suberitida, Family: Halichondriidae), is one of the143 

most common species along the Atlantic coasts of Western Europe. It is orange and has an irregular 144 

surface, often with lower or higher irregular projections. Oscules are inconspicuous. 145 

Samples were kept frozen at -20°C. The sponge samples were then freeze-dried (Christ Martin
TM

 146 

Alpha
TM

 1-2 Ldplus) and ground in an agate mortar in order to obtain a homogeneous powder. Samples 147 

were transferred into PTFE pre-cleaned tubes and kept in a desiccator. 148 

149 
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2.2. Sample preparation 150 

All solutions were prepared with doubly deionized water obtained from Millipore water purification system 151 

(Elix & Synergy) (resistivity of 18.2 MΩ cm
−1

, Total Organic Carbon <5 μg L
−1

 and microorganisms <0.1 UFC ml
-1

). 152 

All PTFE and Teflon containers used for sample preparation and/or analysis were pre-cleaned using a 153 

procedure consisting of 24 h bath in 10% HNO3 and careful rinsing with Milli-Q water. For total As 154 

quantification, samples were digested in a closed microwave system (Ethos One, Milestone) prior to ICP-MS 155 

analysis. The digestion program included a 20 min temperature ramp up to 180 °C followed by 30 min 156 

isothermal step (power 2000 W). An aliquot of dried sponge sample was weighted in Teflon reactors. Chemical 157 

reagents were added and the microwave digestion was carried out. The sample mass and the use of different 158 

chemical reagents were optimized within this study. The following chemical reagents were used: HNO3 (Trace 159 

Metal Grade, 67 to 70% w/w, Fisher Chemical), HF (Ultra Trace Elemental Analysis 47-51% w/w, Optima, Fisher 160 

Chemical), HCl (≥30%, for trace analysis, Sigma-Aldrich) and H2O2 (≥30%, for trace analysis, Sigma-Aldrich). The 161 

mineralized solution was then transferred to PE pre-cleaned tubes and gravimetrically diluted with Milli-Q 162 

water, up to a final volume of 50 mL. All samples were further diluted 15 times in Milli-Q water prior to ICP-MS 163 

analysis. At least one procedural blank and one quality control Certified Reference Materials (CRM) were 164 

included in each digestion run and analyzed with the rest of the samples. The following CRMs were used in this 165 

study: TORT-2 (lobster hepatopancreas, Institute for Environmental Chemistry, National Research Council 166 

Canada, Ottawa, Canada), BCR-627 (tuna fish powder, Institute for Reference Materials and Measurements, 167 

Geel, Belgium) and MESS-2 (estuarine sediment, Institute for Environmental Chemistry, National Research 168 

Council Canada, Ottawa, Canada). These CRM were prepared and analyzed along with the vent samples as an 169 

assessment of analytical accuracy.  170 

For As speciation, the extraction method was optimized using different chemicals and/or proportion: Milli-171 

Q water, methanol (MeOH, HPLC Plus, ≥99.9%, Sigma-Aldrich) and H3PO4 (≥85 wt. % in H2O, trace metals basis, 172 

Sigma-Aldrich). Extractions were performed the day before analyses and extracts were kept frozen during the 173 
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night. Since no sponge CRM is available on the market, the extraction performances were evaluated using the 174 

certified reference material BCR-627 (certified for As speciation) and TORT-2. For sponge samples, extractions 175 

were performed at least 3 times for each species to account for intra-specie variability. 10 mL of the selected 176 

solvent were added to about 50 mg of dried sample. The mixture was sonicated for one h. The extracts were 177 

then filtered with a single-use syringe through single-use syringe filters (0.45 µm, Minisart® RC25, Sartorius) 178 

and gravimetrically diluted 10 times in Milli-Q water. The extracts were analyzed by HPLC-ICP-MS.  179 

 180 

2.3. Sample analyses 181 

A quadrupole ICP-MS (Elan DRCII, Perkin Elmer) was used as detection system for the determination of 182 

total As in sponge samples. ICP-MS operating parameters are summarized in Table 1. 
75

As isotope may be 183 

interfered in saline matrices by Cl (by 
40

Ar
35

Cl
+
). The most common way to remove these spectral interferences 184 

is using the following correction equation:  I(As) = I(m/z=75)-3.127×I(m/z=77)+2.733×I(m/z=82) where I stands 185 

for  intensity (Potot et al., 2012; Barats et al., 2014). This mathematical correction accounts for about possible 186 

polyatomic interferences (
40

Ar
35

Cl
+
 or 

40
Ar

37
Cl

+
) as well as for the occurrence of selenium (

77,82
Se) in samples. 187 

Preparation of standard solutions and dilution of samples for analysis were carried out in a class 100 clean 188 

laboratory. External calibrations were performed with daily prepared standards obtained by proper dilution of 189 

multi-elemental standard for ICP-MS (ICP-MS standard N°3 Perkin Elmer
®
, ICP-MS standard N°2 from SCP 190 

SCIENCE
®
) or a mono-elemental As standard (PlasmaCal, SCP SCIENCE

®
). An internal standard solution 191 

(containing 10 and 1 µg L
-1

 of Ge and Tb respectively) was prepared by dilution of mono-elemental standards of 192 

Ge and Tb (PlasmaCal, SCP SCIENCE
®
). 

74
Ge was chosen as an internal standard for As analyses to correct 193 

instrumental drifts. All sample analyses were preceded by a minimum of a five-point calibration curve spanning 194 

the entire concentration range of interest. All results were instrument blank corrected to account for any 195 

operational bias. The ongoing instrument performance was monitored by the analysis of continuing calibration 196 

verification standards. Daily analyses of the certified reference natural river water SLRS-5 or SLRS-6 (National 197 
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Research Council, Canada) and analyses of the 3 solid CRM (MESS-2, TORT-2 and BCR-627) were carried out to 198 

check measurement accuracy and reproducibility of analytical calculations. Detection limits for 
75

As averaged 199 

30 ng L
-1

. 200 

As speciation analysis was performed by HPLC-ICP-MS. Instrumental settings and chromatographic 201 

conditions used throughout this work were described in Table 1.  Ion intensities at m/z = 75, 77 and 82 were 202 

monitored using a ‘time-resolved’ method from Chromera software (version 2, Perkin Elmer). No mathematical 203 

correction equation was used, but signals at m/z = 77 and 82 were thoroughly monitored to insure the absence 204 

of the polyatomic interference with Cl. The HPLC used in this study (Serie 200 Pump, Perkin Elmer) was 205 

equipped with an anion exchange column (Hamilton PRP-X100, length 25 cm, particle size 10 µm, i.d. 4.1 mm). 206 

Mobile phases were prepared by dissolving (NH4)2CO3 salt (Sigma Aldrich) in Milli-Q water. This salt is 207 

commonly used with this type of anion exchange column (Wahlen et al., 2004). The final pH of the solution was 208 

adjusted to 9, by adding small amounts of either nitric acid or ammonia. The HPLC injection loop was cleaned 209 

using a 10% MeOH solution. The outlet of the HPLC column was connected via PEEK capillary tubing (0.125 mm 210 

i.d.) to a Rheodyne switching valve (6 ports, 2 positions, purchased by Perkin),  which was in turn connected to211 

the ICP-MS cyclonic nebulizer. Chromatographic conditions were optimized (composition of mobile phase, 212 

gradient, flowrate) to reach a rapid and sensitive analysis of 5 As species in 5 min. For calibration, the 213 

procedural blank chromatogram was subtracted. External calibration curves were used to quantify AsB, As(+III), 214 

DMA, MMA, As(+V) with the corresponding standards. Limits of detection were estimated using peak 215 

maximum height, and averaged 0.13 µg L
-1

 of As in diluted extracts, corresponding to 0.25 µg g
-1

 in sponge 216 

samples. Arsenic speciation analyses were performed on diluted solutions obtained after a solid-liquid 217 

extraction, optimized in this study, lead on each dried sponge samples. For quantification in sponge samples 218 

and CRM, the chromatograms of the extraction blanks were systematically subtracted. In case of unknown As 219 

species, the calibration curves are similar for all As species analyzed in this work, as previously demonstrated 220 

(Francesconi and Sperling, 2005) and serves to quantify unknown As species when are detected. This approach 221 
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was previously used for algae (Llorente-Mirandes et al., 2010) and in sponge samples (Taylor et al., 2012). 222 

Standards used for As speciation were prepared daily from dilution of As(+III) and As(+V) stocks (1000 mg.L
-1

, 223 

Absolute standard, Inc.) and organic As-mono-species solutions. The latter were prepared from salts of 224 

arsenobetaine (AsB), sodium dimethylarsenite  (DMA), disodium methylarsenate (MMA) (Sigma-Aldrich). 225 

Species were identified by their retention times compared with standard compounds. Concentrations were 226 

determined by comparing peak heights to known standards. The CRM BCR-627, certified for AsB and DMA, was 227 

analyzed to check the accuracy of extraction and analytical methods. The TORT-2 was also analyzed for As 228 

speciation and compared with literature data. 229 

Statistical data treatments were carried out using XLSTAT (version 2014.05.5, Addinsoft, Paris, France). 230 

One-way ANOVA tests were performed with a significance level of p<0.05 to estimate the inter-species 231 

variability of As concentrations, between sites (Irish sponges), and between seasons (Mediterranean sponges). 232 

 233 

3. Results and discussion 234 

3.1.  Optimizations of analytical methodologies 235 

3.1.1. Development of the mineralization method for total As analysis in sponges 236 

Nitric acid is often used to digest different types of marine organisms for trace elements analyses (shrimps, 237 

mussels, gastropods, worm, oysters) (Taylor et al., 2012; Zhang et al., 2015), even for freshwater sponges 238 

(Schaeffer et al., 2006). A two-steps method using HNO3 and then H2O2 was also reported in aquatic organisms 239 

such as algae, fishes, bivalves, crabs, and shrimps (Hong et al., 2014; Llorente-Mirandes et al., 2010), as well as 240 

in sponges and associated bacteria (Keren et al., 2017). In order to select the best digestion procedure for As 241 

determination in marine sponges, an optimization was carried out on a Haliclona fulva sample. Mineralization 242 

protocols were developed on about 100 mg of dried sponge sample. The different methods and their results 243 

are presented in Table 1A (supplementary information). Protocols without microwaves have been rapidly 244 
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abandoned because they resulted in jelly solutions, low As recoveries or results with a poor reproducibility. 245 

Acid digestions assisted by microwaves without HF usually resulted in slightly lower As recovery than those 246 

obtained with HF (around 20% less). Sample microscope observations revealed undigested spicules in the 247 

solution without HF (Fig. 3A, supplementary information). These protocols conduced to a partial mineralization 248 

of sponge samples. In Antarctic Demospongiae (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona 249 

sp.) and in the Mediterranean species Petrosia ficiformis, the accumulation of pollutants (Cd, Pb and Cu) was 250 

demonstrated as being lower in the spicules than in the corresponding organic fraction even if spicules 251 

represent about 80% of the biomass (Illuminati et al., 2016). This observation is in full agreement with our 252 

results. Nevertheless, the As amount in Halicona fulva spicules cannot be neglected because it represents 253 

around 20% of the total As. For sponges with siliceous skeletons, the use of HF is thus recommended. Higher As 254 

concentrations were obtained with the use of HNO3/HF or HCl/HNO3/HF mixtures. Nevertheless the use of 255 

HNO3/HF was preferred to prevent possible interferences onto the 
75

As isotope coming from HCl. Finally, the256 

chosen sample preparation procedure involving a microwave digestion has been performed using 5 ml of HNO3 257 

and 2 ml of HF. 258 

The optimized mineralization protocol was then applied to BCR-627 and TORT-2 marine biota CRMs as well 259 

as to MESS-2 sediment CRM. The obtained results for total As were in all cases in good agreement with the 260 

certified values, as shown in Table 2. Further applications of the developed procedure were performed on 261 

about 50 mg of dried sponge. 262 

3.1.2. Development of the extraction method for sponge samples 263 

A very delicate step of the speciation analyses is the chemical extraction of As species as it has to 264 

guarantee the preservation of original chemical forms, avoiding oxidation, reduction or more generally any 265 

conversion in other chemical species. As reported by different authors (Lai et al., 1999; Schaeffer et al., 2006; 266 

Ciardullo et al., 2010; Llorente-Mirandes et al., 2010; Taylor et al., 2012; Zhang et al., 2015), the most common 267 

solid-liquid extraction for As species from biological materials include the use of H2O, MeOH or a mixture of 268 
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them, since AsB is the predominant specie in marine animals and it is soluble in both solvents (Leermakers et 269 

al., 2006). A solution made of 2% HNO3 was also used in chemical extraction for various aquatic organisms 270 

(fishes, bivalves, crabs, shrimps) (Hong et al., 2014). H3PO4 was more often used for As extraction from soils 271 

and sediments as it preserves the two redox states of As in these samples (Ellwood and Maher, 2003). In 272 

sponges, extractions were performed either with H2O in freshwater organisms (revealing low recovery of 30%) 273 

(Schaeffer et al., 2006), or with a mixture H2O/MeOH (Shiomi et al., 1988; Yamaoka et al., 2001; Yamaoka et al., 274 

2006; Keren et al., 2017). Extraction recoveries were not estimated in these last studies using methanol. Due to 275 

lack of some data in these studies, an estimation of extraction recoveries obtained from sponges, can only be 276 

performed with the results from Shiomi et al., 1988, using the ratio of the total water-soluble As divided by the 277 

total As. These calculations gave extractions recoveries ranging from 19-56% for three sponge species. The aim 278 

of the present study was then to develop a more efficient extraction methods using different extracting 279 

solutions. 280 

The optimization of the extraction procedure was performed on three replicates of H. fulva sponge 281 

samples, using 10 mL of a given solution and 50 mg of dried sponge sample. Extraction recoveries were 282 

calculated considering the total average As content of 29 ± 5 mg kg
-1

 previously measured by ICP-MS on 283 

digested samples. Regardless of the tested extracting solution, extraction recoveries obtained in the present 284 

study were higher than 72 % (Table 3) which are significantly higher than previous published results on 285 

sponges. The use of pure water as extracting solvent was not preferred because this method led to a lower 286 

extraction recovery (72%) than those obtained with the other methods. This result is in accordance with 287 

previous studies demonstrating that some As species are not soluble in water (Shiomi et al., 1988). The 288 

extraction procedures which gave the best recoveries of total As were those involving MeOH, reaching an 289 

extraction recovery of 86 %. Nevertheless the use of MeOH can lead to severe matrix effects, as already 290 

described in a previous study (Nam et al., 2010). Extraction methods using methanol revealed also a high 291 

variability of the results, as shown by high standard deviations (Table 3). Accounting uncertainties, similar 292 
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results were reached for extracted As with 25% MeOH or 0.6 mol L
-1

 H3PO4 as extractants. Even if extractions 293 

performed with 25% MeOH revealed a highest extraction recovery (86%), this method was not retained due to 294 

possible analytical discrepancies and higher variabilities of the results. The 0.6 mol L
-1

 H3PO4 solutions was 295 

selected because it appeared to be the best compromise:  a good extraction recovery 81% (close to the 86% 296 

obtained with 25% of MeOH) and a good reproducibility of the results (RSD=3%). Considering that only a few 297 

studies have been published on As speciation in sponges, the choice of H3PO4 solution was also made in order 298 

not to lose the possible inorganic As species (the most toxic ones) possibly occurring in sponges samples, and 299 

to be able to preserve their chemical forms. The chosen extraction method was therefore applied to the 300 

selected CRMs. The extraction recoveries were found to be quite good, 106 and 97 %, for TORT-2 and BCR 627 301 

respectively (Table 2). These results thus demonstrated the efficiency of the selected extraction solution. 302 

3.1.3. As speciation analyses 303 

Speciation analyses of the extracts allowed mainly AsB to be quantified whatever the extraction methods, 304 

AsB representing 57-114% of the extracted As (Table 3). The AsB concentration was overestimated using 50% 305 

MeOH as extractant, as shown by the anomalous high proportion of As from AsB in extracts (114%). As 306 

previously demonstrated, AsB concentrations can be overestimated using MeOH (Nam et al., 2010). Such as for 307 

extracted As, As from AsB concentrations revealed similar results with 25% MeOH or 0.6 mol L
-1

 H3PO4 as 308 

extractants, accounting uncertainties. The difference on extraction recovery obtained for As from AsB were 309 

thus not significant due to the high variability of the results obtained with 25% MeOH. Finally, the extraction 310 

method with 25% MeOH was not retained due to possible analytical discrepancies and higher variabilities of 311 

the results. With the 0.6 mol L
-1

 H3PO4 solutions, AsB represent 64% of the extracted As with a better precision.   312 

Speciation analyses were performed then on CRMs and conduced to good speciation recoveries: 74% and 313 

98% for TORT-2 and BCR 627 respectively (Table 2), highlighting the efficiency of speciation analyses. 314 

Measurements on the certified reference material BCR-627 gave a mean value of AsB equal to 4.5 ± 0.5 mg kg
-1

 315 

(n=6) and the occurrence of DMA just above the detection limit, in agreement with certified values. In TORT-2, 316 
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the average AsB value was 13 ± 5 mg kg
-1

 (n=4), in accordance with previously reported values (Suner et al., 317 

2001; Wahlen et al., 2004). Two other As species occurred at low concentrations: DMA at 1.2 ± 0.8 mg kg
-1

 and 318 

another unknown As specie, named A, at 1.9 ± 0.6 mg kg
-1

, eluting between DMA and MMA (retention time: tR 319 

= 2.5 min). The DMA result is in agreement with the indicative value. These results on the two CRMs confirm 320 

thus the efficiency of speciation analyses with accurate measurements of AsB. 321 

 322 

3.2. As bioaccumulation in sponges 323 

3.2.1. Variability of As concentrations in sponges 324 

The variability of As content in sponges was estimated within the same specimen (intra-specimen 325 

variability), within the same sponge species (inter-specimen or intra-species variability), between different 326 

sampling sites or seasons, as well between different sponge species (inter-species variability). 327 

The intra-specimen variability was evaluated analyzing at least 3 replicates of each sponge specimen (Table 328 

2A, supplementary information). Each replicate underwent the whole sample preparation (i.e. microwave 329 

digestion and dilution). The total As content was highly variable within each specimen, with relative standard 330 

deviations (RSD) ranging from 8 to 36%. This result highlights a certain inhomogeneity which may be related to 331 

the low amount of sponge samples weighted for digestion (50 mg).  332 

The inter-specimen (or intra-species) variability was evaluated by determination of total As in different 333 

specimens collected for each sponge species (Table 4). The variability, expressed with RSD, was usually around 334 

10%, but it reached 38% for C. nucula in Feb. 2016. In Irish sponges inter-specimen variability was lower than in 335 

French samples (Table 4). Different authors reported RSD higher than 30% when evaluating intra-species 336 

variability in total As and other trace elements found in sponge samples (Batista et al., 2014; Cebrian and Uriz, 337 

2007). A relevant natural variation shall further be considered for these marine invertebrates. 338 
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Variability of the total As content related to sampling site characteristics was also estimated. The variability of 339 

As content and its species were estimated according to light conditions and the depth of the sampling (Fig. 1). 340 

ANOVA tests revealed no significant difference between As content in C. damicornis specimens collected in the 341 

cave center and those collected at the cave entrance; analogously no significant differences were found 342 

between C. nucula specimens collected at different depths. For Irish sponges, ANOVA analyses revealed no 343 

significant differences in As contents for the same Irish specie collected in Belfast and Killkieran Bay. ANOVA 344 

analyses performed on Mediterranean sponges, showed no significant differences between As contents 345 

measured in samples collected in two different period, except for C. damicornis sponges which showed 346 

significant lower As content in September 2016. As-bioaccumulation is an integrative data over the sponge's 347 

life. This explains in part the low temporal variations of As content in Mediterranean sponges between the two 348 

sampling periods. Seasonal variations in As contents within the same species can be thus considered moderate 349 

taking into account the inter-specimen variability. 350 

A significant inter-species variability of total As content was shown, regardless of the considered sampling 351 

period, and confirmed by ANOVA analysis. In France, C. damicornis sponges accumulate significantly higher As 352 

amounts compared to other Mediterranean species (up to two times more). In Irish samples, As concentrations 353 

were significantly lower than those measured in Mediterranean specimens (2 times lower). Differences in 354 

accumulation efficiency between sponge species can be related to differences in morphological characteristics 355 

but also to the age of the sponges. The different species have different growing rates. H. panicea and H. 356 

perlevis are very fast growing compared to C. damicornis and C. nucula. The samples collected in the Irish 357 

coasts belong to the same order (Suberitida), which could explain similar behavior in terms of As accumulation 358 

while the Mediterranean sponges belong to the different orders Axinellida (C. damicornis), Chondrosida (C. 359 

nucula), Haplosclerida (H. fulva), and Bubarida (A. acuta). This study confirms that As concentration is 360 

dependent on sponge species, as shown by the variable As contents found in the literature (Table 5). Sponges 361 

accumulate more As than other marine organisms, which makes them suitable models for biomonitoring 362 



ACCEPTED MANUSCRIPT

16 

 

studies, as already proposed by Genta-Jouve et al., 2012. As accumulation was previously demonstrated to be 363 

higher in demosponges than in calcareous sponges (Yamaoka et al., 2001) and highly variable among different 364 

species of demosponges, as shown in the present study. Yamaoka et al.  (2006) measured an As content equal 365 

to 6.1 mg kg
-1 

in Acanthella sp., which is slightly lower than values found in the present study. This difference is 366 

easily explained considering that the present study refers to As content in sponges measured after total 367 

digestion while Yamaoka et al. worked on water soluble fractions. Additionally, sponges may have very 368 

different morphological characteristics or microbiomes even when belonging to the same genus. In Haliclona 369 

sp., previous study revealed As concentrations of 0.81 mg kg
-1

 in Haliclona sp. white, 13 mg kg
-1

 in Haliclona 370 

permolis (Yamaoka et al., 2001), 1.03 mg kg
-1

 in Haliclona tenuiramosa (Venkateswara Rao et al., 2009) and 371 

between 1.5 and 8.5 mg kg
-1

 for Haliclona oculata (Aly et al., 2013). For these two species (Acanthella sp. and 372 

Haliclona sp.), the present study revealed higher As contents ranging from 29-44 mg kg
-1

 (Table 4).  Perez et al. 373 

(2005) measured also high As concentrations in another sponge species collected in the Mediterranean sea, 374 

Spongia officinalis (86.3-134.1 mg kg
-1

). Regarding Halichondria panicea , Vaskovsky et al. (1972) reported 375 

similar As concentrations (6 mg kg-1). But these results refer to As concentration measured in lipid extracts 376 

which is only a part of the total As content determined in this study. The present study confirms thus that As 377 

concentrations in sponges depends on the specific properties related to a particular sponge species.  378 

3.2.2. As bioaccumulation in sponges 379 

The Bio-Concentration Factor (BCF) and the Bio-Accumulation Factor (BAF) are useful and powerful tools in 380 

the interpretation of such results, since they give an idea of sponge behavior related to the surrounding 381 

environment and feeding habits. BCF represents the ratio between the As concentration found in biota and in 382 

the habitat, in this case the sediment. BAF represents the ratio between the As concentration found in biota 383 

and in the organism’s diet, in our case seawater, since sponges are filter feeders (Gobas, 2001). 384 

In this work, sediment collected from the French coast showed a constant As content for both sampling 385 

period: 7 ± 2 mg kg-1 of As (measured on three sediment samples for each sampling period) while sediment 386 
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samples collected from Kilkieran Bay and Greenisland show an As content of 7 ± 2 and 2.9 ± 0.3 mg kg
-1

387 

respectively. These values are below the limit imposed by the principal environmental authorities for As in 388 

marine sediments (7.24 mg kg
-1

, US EPA, 2006). Regarding sponges collected in Ireland, specimens coming from 389 

Kilkieran bay showed BCF close to 1, while specimens of H. panicea and H. perlevis sponges collected in Belfast 390 

showed BCF of 2.1 and 3.5 respectively. BCF in Mediterranean sponges range from 3.6 to 12. Similar values 391 

were reported for  bivalves (6-19) (Negri et al., 2006) and were found to be higher than in other sponges (close 392 

to 1) (Mayzel et al., 2014). Extremely high As BCF of 477 was also previously measured in only one sponge 393 

species,  Theonella swinhoei, which was explained by the presence of a particular bacterium (Mayzel et al., 394 

2014). It is worth noticing that Theonella swinhoei is a slow growing and long lived sponge specie so As 395 

concentration may be also linked to the age of the sponge and thus responsible for the elevated BCF. The fact 396 

that most BCF were higher than 1 (except in Kilkieran Bay) proves that sponges are able to accumulate As at 397 

higher concentrations than their surrounding environment (sediment in our case), which means that there are 398 

additional biological processes involved in As accumulation. 399 

As concentration in seawater used for the calculation of BAF in Mediterranean sponges was determined in 400 

a sample collected in Monaco and measured at the Environment Laboratories of the International Atomic 401 

Energy Agency. The average value found in seawater sample was 1.5 ± 0.2 µg L
-1

 and it was used for BAF 402 

calculations because of the vicinity of the sampling site. This As content is in agreement with total As content of 403 

1.3 µg L
-1 

previously measured in surface seawater from Mediterranean Sea (Cabon and Cabon, 2000). 404 

Mediterranean sponges BAF of As ranged between 15000 and 60000, i.e.  in the order of 4.2 to 4.8 for log BAF. 405 

For the calculation of BAF in Irish sponges, the average reference value for As in seawater was 2.5 µg L
-1

, as 406 

reported by Crompton and Crompton (1989). The BAF obtained were between 274 and 318 for samples 407 

collected in Kilkieran Bay and between 250 and 412 for samples collected in Greenisland, namely values 408 

between 2.4 and 2.6 in logarithmic scale. BAF calculations revealed thus significant higher values for 409 
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Mediterranean sponges than Irish ones, but both sufficiently high to indicate that these organisms are efficient 410 

bioaccumulators of As. 411 

Other BAFs reported in the literature for freshwater or marine organisms are in the range of 3<log BAF<4 412 

for fishes, bivalves, shrimps, gastropods and mussels (Hong et al., 2014; Giusti and Zhang, 2002) algae and 413 

plankton (Chen et al., 2000; Mitra et al., 2012). In uncontaminated environments, As concentrations were 414 

measured in freshwater sponges (Ephydatia fluviatilis), water and sediments by Schaeffer et al., (2006) showing 415 

values of about 8.07 mg kg-1, 1.1 µg L-1 and 3.6 mg kg -1 respectively (which is lower As contents than our 416 

Mediterranean sampling site but comparable with the Irish one). With these previous measurements on 417 

freshwater sponges, BAF and BCF calculations performed for As revealed: a BCF of  2.24 and a BAF of 7336 (log 418 

BAF=3.9). These results were slightly lower than those determined in our Mediterranean marine sponges but 419 

higher than results obtained for Irish samples. Nevertheless, it is quite difficult to compare these results due to 420 

different environmental conditions (freshwater or seawater). Concentrations of As in water, sediments and 421 

biota were previously suggested to increase with increasing salinity and BAF for As in other aquatic organisms 422 

might be slightly inversely proportional to salinity (Hong et al., 2014). In this study, BAF for As were higher in 423 

samples coming from the Mediterranean Sea (average salinity of about 38‰) than those collected in Ireland 424 

(average salinity 34‰) (Salaün et al., 2007; Tsimplis and Baker, 2000). However, the comparison is not easy due 425 

to the presence different sponge species, and the fact that TEs bioaccumulation in sponges was suggested to 426 

differ according to sponge species (Batista et al., 2014; Mayzel et al., 2014). Factors affecting the differences in 427 

the bioaccumulation are suggested to be mainly related to sponge species due to morphological characters like 428 

spicules, fibers but also the microbial content. 429 

430 

3.3.  As biotransformation in sponges 431 

3.3.1. Variability of extracted As according to sponge species 432 
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For all sponge species collected in this study, extraction recoveries vary from 49% to 105% (Table 4), 433 

demonstrating the efficiency of the optimized extraction method for As. The variability of As extracted 434 

amounts within the same species was quite moderate (ranging from 10 to 30%). It can be easily noticed that 435 

the extraction recoveries differ according to sponge species. The best As extraction recoveries (> 77 %) were 436 

obtained for C. nucula, H. panicea and H. pervelis. Extraction recoveries ranged between 51 and 69% for H. 437 

fulva and A. acuta sponge species. Lowest extraction recoveries were obtained for C. damicornis (46-49 %). 438 

These low extraction recoveries may be explained by the occurrence of As organic species (for example, AsS), 439 

not extracted with our method and which would be better extracted with methanol. For C. damicornis sponges, 440 

further development of the extraction procedure would be necessary to increase the extraction recovery. 441 

3.3.2. As speciation in sponges 442 

As speciation analyses were performed on extracts of sponge samples (Table 4). For each sponge species, 443 

speciation analyses were carried out on 3 sponge specimens. Significant differences on As speciation occur 444 

between the Irish and Mediterranean sponges (Fig. 2). Despite the fact that most of the As was successfully 445 

extracted in Irish sponges (>81 %), a large proportion of the extracted species was not identified/quantified 446 

(speciation recoveries ranged from 52 to 66 %). Vaskovsky et al. (1972) reported a similar As concentrations in 447 

Halichondria panicea sponges, but measured in lipid extracts. This result may prove the occurrence of As rather 448 

under organic As species, probably those not identified in our study. For Mediterranean sponges, although the 449 

extraction recovery was generally lower than Irish samples (especially for C. damicornis), almost the totality of 450 

extracted species were identified and quantified, with a speciation recovery between 79 and 119%. Within the 451 

same sponge species and the same sampling date, the variability of extracted As content and As speciation 452 

related to sampling site characteristics was also estimated (Fig. 1). ANOVA analysis revealed no difference on 453 

extracted As and As speciation for C. nucula sponges sampled at different depth; analogously no significant 454 

difference in extracted As and As speciation was found for C. damicornis specimens collected at the center and 455 
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entrance of the cave. Such as As bioaccumulation, As speciation in sponges is suggested to be mainly related to 456 

sponge species. 457 

As speciation analysis in sponge extracts reveals the large occurrence of AsB (>29% of the total As) and the 458 

presence of different As species at low concentrations: DMA, As(+V) (Fig. 2). Additionally, two unknown species 459 

were found: a first one eluting between DMA and MMA (only for C. nucula in Sep. 2016) and a second one 460 

eluting after As(+V). These results on As speciation in marine sponges are different from those obtained in 461 

freshwater sponge Ephydatia fluviatilis in which inorganic species were found to be dominant: 57 % of As(+V), 462 

20 % of As(+III)), AsS (11%), DMA (4%) and undetected AsB (<1%) (Schaeffer et al., 2006). In the present study, 463 

among minor As species, DMA accounted for about 10% of extracted As in Mediterranean sponges, (i.e. 4-8% 464 

of the total As content) whereas this specie was not detected in Irish sponges at all. As(+V) was detected in all 465 

sponges’ species, but it was possible to quantify it only for some of the Mediterranean specimens. This species 466 

represents about 5-9 % of the extracted As content (i.e. 1-5 % of the total As content). The unknown As 467 

species, named B and eluting after As(+V) (retention time, tR = 4.5 min), presents a similar As concentration 468 

(close to 1 mg kg
-1

) regardless of the sponge species, representing between 5% and 15 % of extracted As in 469 

Mediterranean and Irish sponges respectively (i.e. 2 and 15% of the total As). The unknown As specie A, eluting 470 

between DMA and MMA (tR=2.5 min), occurs in A. acuta specimens but only in samples collected in September 471 

2016, representing 6% of extracted As (i.e. 5% of the total As). Even if AsB is the main As species in H. fulva, A. 472 

acuta and C. nucula sponge species, it occurs in a lesser proportion in C. damicornis (31-44 %), H. panicea (29-473 

34 %), and H. pervelis (33-47 %) (Fig. 2). Even though C. damicornis accumulates more As than the other sponge 474 

species, this sponge specie does not accumulate more AsB. This higher As content is thus related to other As 475 

species, probably other organic forms not extracted or not detected with the methodology used in the present 476 

study. The AsB predominance in A. acuta (86-94% of As extracted or 48-55% of total As) is in accordance with 477 

the previous results on a sponge of the same genus (28% of the water soluble extract) (Yamaoka et al., 2006). 478 

Two AsS were also reported to occur in large amounts (22% oxo-AsS-phosphate, 11% oxo-AsS-glycerol, and 479 
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39% of unknown As species). These other As species may coincide with the occurrence of unknown As species 480 

found in our study or other As species not extracted with our method, specifically the As specie B representing 481 

7.5% of extracted As. In H. fulva, AsB was also the predominant As-species (75-80% of As extracted or 46-55% 482 

of total As), whereas in the same genus (H. permolis), the oxo-AsS-phosphate was identified (61% of the water 483 

soluble extract) (Yamaoka et al., 2001 and 2006). The same authors also reported AsS as predominant As 484 

species in Halichondria sp., and a content of AsB between 9 and 32% whereas AsB were reported dominant in 485 

another study (Shiomi et al., 1988). In the present study, H. panicea sponges from the same genus contained 486 

an AsB which accounts for 34 and 29% of total As, for samples collected in Kilkieran bay and Greenisland, 487 

respectively. All these results demonstrates that As speciation and the predominance of AsB or the AsS may 488 

not result only from sponge specie or genus characteristics. Yamaoka et al., (2001 and 2006) suggested that the 489 

different proportions of AsS may reflect the different symbionts living within sponges. This previous hypothesis 490 

would support: (1) the change of the predominant As-species within the same sponge species, and (2) the 491 

difference of As-bioaccumulation and biotransformation within a specific sponge species (C. damicornis, here) 492 

comparing to the others. 493 

3.5. Pathways of As bioaccumulation and biotransformation 494 

In surface seawater, As usually occurs under toxic inorganic species, mainly As(+V). Arsenic speciation 495 

analyses in seawater reported in the literature revealed a content of  1 µg L
-1

 of As(+V) and 0.2 µg L
-1

 of As(+III) 496 

in the Mediterranean sea (Cabon and Cabon, 2000) and from 1.9 to 3 µg L
-1

 of As(+V) and As(+III)<LOD in Irish 497 

seawater (Salaün et al., 2007). Sponges are efficient filter feeders, strongly accumulating As (4 < log BAF < 5). 498 

Due to As bioaccumulation and biotransformation (converting toxic inorganic As species in less-toxic organic 499 

species) within the sponge tissue, sponges may be a relevant tool for bioremediation of As-contaminated site, 500 

producing possible secondary metabolites of great interests (pharmaceuticals and bioactive compounds) under 501 

stressful environmental conditions (due to pollution). For instance, a polyarsenic organic compound showing 502 

antibacterial and antifungal properties was recently isolated from sponges  (Mancini et al., 2006). The possible 503 
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application of sponges in the field of environmental bioremediation has been proposed in previous studies with 504 

different applications (Longo et al., 2010; Santos-Gandelman et al., 2014).  505 

The main occurrence of AsB in osmoconformers such as sponges may be justified in waters characterized 506 

by high salinity because this molecule (as glycine-betaine) may serve to  protect against osmolytic stress 507 

(Clowes and Francesconi, 2004; Caumette et al., 2012). Since AsB is also the least toxic form of arsenic, the 508 

production of such a molecule during a protecting process could be useful in the detoxification of As 509 

contaminated waters. Since no AsB occurs in seawater and low contents of inorganic As measured in sponges, 510 

biotransformation is responsible of these changes of As speciation. During their feeding process, sponges 511 

ingest water (where the dominant As-species is As(+V)), and microorganisms (potentially containing organic As 512 

species). Two different pathways may be responsible of the As bioaccumulation and biotransformation within 513 

sponges: (1) a dietary route, through the feeding of microorganisms (phytoplankton) enriched by organic 514 

species; (2) and/or a waterborne route, i.e. a direct uptake from seawater and biotransformation within 515 

sponges. 516 

Phytoplankton is considered as a major food source for the organisms of higher trophic levels, such as 517 

sponges; this autotrophic organism plays an important role in the distribution and biotransformation of As 518 

species in the marine environment (Rahman et al., 2012). Microorganisms which constitute the sponge’s food, 519 

are known as producers (the first link of the food chain), contain high concentrations of As. AsB retained first 520 

the attention because it is formed by organisms at low trophic levels and accumulated through the food chain 521 

(Edmonds et al., 1993; Edmonds et al., 1997; Cullen and Reimer, 1989; Francesconi, 2010). Phytoplankton, 522 

microalgae, bacteria or cyanobacteria are able to convert inorganic As into organic species through biological 523 

processes (Azizur Rahman et al., 2012; Wang et al., 2015; Miyashita et al., 2016). For example, in 524 

phytoplankton, inorganic arsenic is incorporated in cells where it is methylated and transformed into AsS via 525 

adenosylation steps, possibly as a detoxification process (Caumette et al., 2012). The direct uptake of AsB-526 

enriched microorganisms by sponges seems thus to be unlikely because As speciation in producers (algae, 527 
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phytoplankton) revealed the main occurrence of AsS and a low content of AsB (Grotti et al., 2010; Llorente-528 

Mirandes et al., 2010). Another dietary route would be the ingestion of AsS enriched microorganisms and the 529 

further conversion of AsS into AsB with sponge metabolisms or their symbionts organism. The unknown or 530 

undetected As species found in this study may be related to the occurrence of these AsS species. 531 

The occurrence of AsB in sponges may be also related to microorganisms enriched with another As species, the 532 

(arsenoriboside) and ingested by the sponges. . As proposed by Caumette et al. (2012) for zooplankton, once 533 

sponges ingest phytoplankton, AsS may be degraded by associated bacterial communities, leading to the 534 

formation of AsB. The latter was also suggested to be produced within marine organisms from the 535 

transformation of arsenoribosides accumulated from their diet (Foster and Maher, 2016). Arsonioribosides 536 

would be thus another precursor of AsB formation. If the occurrence of As(+V) in seawater is recognized to be 537 

constant along time, the occurrence of micro-organisms is not continuous and can vary with seasons (e.g. 538 

phytoplankton dynamics vs nutrients in seawater). Because of the main occurrence of AsB within our sponge 539 

samples and the seasonal phytoplankton dynamic, the As biotransformation pathway via a dietary route it is 540 

rather unlikely to be the main process. 541 

A waterborne route is the second hypothetic pathway for As bioaccumulation and transformation in 542 

sponges. After direct uptake of As(+V) from seawater, sponges might biotransform this inorganic As into AsB. 543 

Biological processes including methylation steps and conversion into AsB have previously been proposed for 544 

marine fishes (Zhang et al., 2016a; Zhang et al., 2016b) as well as for marine sponges (Yamaoka et al., 2006). 545 

For marine sponges, DMA was also proposed to be converted into AsS and further into AsB (Yamaoka et al., 546 

2006). The unknown or undetected As species found in our sponge samples may account for the occurrence of 547 

AsS occuring in different proportions within sponges (34 - 60 %, orange parts in Fig. 2). The As 548 

biotransformation within sponges may be directly related to the sponge metabolism, but could also indirectly 549 

occur by the action of symbiotic micro-organisms (microalgae, bacteria). Symbiotic cyanobacteria can contain 550 

high As content and were already recognized as the source of the AsS in sponges (Yamaoka et al., 2001). 551 
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Recently, As cycle in a Theonella swinhoei sponges was demonstrated to be largely driven by symbiotic bacteria 552 

(Keren et al., 2017). This last result suggested rather the main implication of symbiont bacteria for As 553 

biotransformation within sponges; but it is not obvious to confirm this pathway with our results.  554 

4. Conclusions 555 

For the first time, several sponge species from the northwestern Mediterranean, and the northeastern 556 

and western Irish coasts were investigated for their As bioaccumulation and biotransformation. Methodologies 557 

were optimized for As total determination and speciation in these marine organisms. The total As content was 558 

found to be very diverse according to sponge species and sampling sites, ranging between 6 and 77 mg kg
-1

. 559 

Bioaccumulation and bioconcentration factors revealed the great capabilities of sponges to accumulate this 560 

element with respect to concentration found in surrounding environment. As speciation showed predominance 561 

of AsB in all analyzed samples, in accordance with previous studies on marine organisms. The pathway for the 562 

conversion of As(+V) from seawater into AsB in sponges is likely to be associated to the sponge metabolism or 563 

symbiont organisms. Finally, the outcomes of this study contribute to a better understanding of the 564 

distribution and metabolism of arsenic compounds in marine sponges. 565 
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Figure 1.  

Results on total As in digested and extracted samples, and on As speciation for two sponge species 

(C. nucula and C. damicornis) collected under different environmental conditions (depth and light). 

The error bars represent the standard deviation calculated considering every replicate performed on 

each species (n=3).  

 
Figure 2. 

Distribution of different As species in a) different sponge species collected during two sampling 

periods in France and b) different sponge species collected in two sampling sites in Ireland. 
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Tables 

 

Table 1. ICP-MS and HPLC-ICP-MS settings used for total As analyses and As speciation in marine sponge samples 

ICP-MS Settings     

 

RF power 1550 W 

 

Plasma gas flow 15 L min
-1

 

 

Auxiliary gas flow 1.1  mL min
-1

 

 

Carrier gas flow 0.9 L min
-1

 

 

Nebulizer quartz concentric 

 

Spray chamber cyclonic 

 

Interface Pt sampling and skimmer cones 

 

Analytical mass (m/z) 75, 77, 82, 74 

   HPLC conditions 

  

 

Column (anion exchange) Hamilton PRP-X100 

 

Column temperature 20°C 

 

Injection volume 250 µL 

 

Mobile phase A 5 mM (NH4)2CO3 pH=9 

 

Mobile phase B 70 mM (NH4)2CO3 pH=9 

 

Flow rate 2 mL min
-1

 

 

Gradient programme 0-2 min: 100% A 

  

3-6 min: 100% B 

    7-10 min: 100% A 
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Table 2. Total As and As speciation results for three CRMs: BCR-627, TORT-2 and MESS-2. Extracted As concentrations were determined by ICP-MS and AsB concentrations by HPLC-

ICP-MS. * and ** represent reference values given by *Sunner et al., 2001 and **Wahlen et al., 2004. 

Certified Reference Materials TORT-2 BCR-627 MESS-2 

Microwave 

digested 

solutions 

Total As (mg kg-1) 22 ± 2 (n=6) 5.2 ± 0.5 (n=4) 19.2 ± 1.1 (n=4) 

Certified value 21.6 ± 1.8 4.8 ± 0.3 20.7 ± 0.8 

Recovery (%) 102 108 92 

Extracted 

solutions 

Extracted As (mg kg-1) 23 ± 4  (n=3) 4.6 ± 0.3 (n=6) 

Extraction recovery (%) 106 97 

As from AsB (mg kg-1) 13 ± 5 (n=4) 4.5 ± 0.5 (n=6) 

Certified value 
13.8 ± 0.2* 

14.3±1.1** 
3.9 ± 0.2 

As from DMA (mg kg-1) 1.2 ± 0.8 (n=4) 0.1< c <0.3 

Certified value 
0.97 ± 0.05* 

0.84±0.10** 
0.15 ± 0.02 

As from unknown peak 1.9 ± 0.6 (n=4) - 

Speciation recovery (%) 74 98 

Table 3. Extracted As concentrations and As speciation results obtained using different extraction methods on a pool of H. fulva sponges. Extracted As concentrations were 

determined by ICP-MS and AsB concentrations by HPLC-ICPMS. Extraction recoveries were calculated on the average total As content of 29 ± 5 mg kg
-1

. 

Extracted As 

(mg kg
-1

) 

Extraction 

recovery (%) 

As from AsB 

(mg kg
-1

) 

As from AsB in 

extracts (%) 

H2O 21 ± 3 72 14 ± 3 67 

MeOH 50% 21 ± 2 72 24 ± 3 114 

MeOH 25% 25 ± 1 86 19 ± 3 76 

H3PO4 0.3 mol L
-1

20 ± 3 69 13.0 ± 0.8 65 

H3PO4 0.6 mol L
-1

23.5 ± 0.7 81 15.2 ± 0.8 64 

H3PO4 1 mol L
-1

24.2 ± 0.5 83 13.9 ± 0.8 57 
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Table 4. Summary of As speciation results obtained for different sponges species sampled between February and November 2016 in three sites located in western Europe. 

S
it

e
 

D
a

te
 

Sponge 

species 

Total As Extracted As 
Extractio

n 

recovery 

(%) 

As from AsB As from DMA As(V) 
Unknown As 

specie A 

Unknown As 

specie B 
Speciation 

recovery 

(%) 

Known 

As in 

sponge 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 
mg kg

-1 RSD 

(%) 

V
il

le
fr

a
n

ch
e

 s
u

r 
M

e
r 

(F
ra

n
ce

) 

F
e

b
. 

 2
0

1
6

 

H.  fulva 26 23 16 56 59 12 67 1,7 35 1,4 14 <0,1 1,5 33 106 66 

A.  acuta 44 18 28 4 64 24 25 3,1 23 1,9 16 <0,1 1,9 21 109 69 

C.  nucula 34 38 26 27 77 24 38 3 33 1,44 1 <0,1 1,3 8 116 88 

C. 

damicornis 
74 15 36 22 49 23 35 3 33 1,6 25 <0,1 1,7 24 79 39 

S
e

p
. 

 2
0

1
6

 

H.  fulva 29 17 20 25 69 16 13 1,9 5 0,1<c<0,4 <0,1 1 10 95 66 

A.  acuta 33 6 17 12 51 16 25 2,1 5 0,6 33 <0,1 1,4 29 119 61 

C.  nucula 27 15 24 29 87 22 32 2,3 30 0,1<c<0,3 1,5 27 0,1<c<0,3 104 92 

C. 

damicornis 
55 13 25 12 46 27 48 2,7 37 0,1<c<0,3 <0,1 1 20 120 56 

K
il

k
ie

ra
n

 B
a

y
 

(I
re

la
n

d
) 

O
ct

. 
 2

0
1

6
 

H.  panicea 7,3 11 6 2 83 2,5 8 <0,1 0,1<c<0,3 <0,1 0,89 9 57 47 

H.  perlevis 6,9 7 7,2 6 105 2,4 13 <0,1 0,1<c<0,3 <0,1 1,1 18 47 49 

G
re

e
n

is
la

n
d

 

(I
re

la
n

d
) 

N
o

v
. 

 2
0

1
6

 

H.  panicea 5,7 9 4,7 9 81 1,7 18 <0,1 0,1<c<0,3 <0,1 0,8 25 52 43 

H.  perlevis 7,6 4 7 29 88 3,7 30 <0,1 0,1<c<0,3 <0,1 0,91 3 66 61 
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Table 5.  Summary of literature data available on total As and its speciation in sponges. Total As results refer to total content in dried sample, unless otherwise stated.  

Sponge specie 

 

Sampling location 

 

Total As 

(mg kg
-1

) 

 

As concentration (mg kg
-1

) Reference 

  AsB AsS Others 

Hymeniacidon heliophila Guanabara Bay, 

Brazil 

4.6-8.1    
Batista et al., 2014 

Paraleucilla magna 1.2-2.6    

Haliclona oculata Poole harbor, UK 1.5-8.5    Aly et al., 2013 

Spheciospongia 

vagabunda 

Darwin Harbour, 

Aurstralia 
10.1-56.4       Padovan et al., 2012 

Hyrtios erectus 

Red Sea, Saudi Arabia 

15-63.9       

Pan et al., 2011 

Hyrtios sp. 2.30       

Stylissa carteri 7.5-10.7       

Chalinula sp. 13.7-22.1       

Xestospongia testudinaria 20.7-42.2       

Phyllospongia papyracea 8.0       

Amphimedon sp. 11.2       

Spongia arabica 106.1       

Spheciospongia inconstans 15.0       

Haliclona tenuiramosa Gulf of Mannar, India 0.32-1.09       Rao et al., 2009 

Petrosia testudinaria Gulf of Mannar, India 2.30       Rao et al., 2006 

Thorecta sp. 

Bohol Sea, 

Philippines 

6.2* 3.0 2 1.2 

Yamaoka et al., 2006 

 

*water fraction 

Dysidea sp. 24.8* 15.2 1.4 8.1 

Theonella sp. 157.0* 136.6 2.21 18.2 

Acanthella sp. 6.1 * 1.7 2.0 2.4 

Phyllospongia sp. 4.4* 1.5 2.12 0.7 

Aaptos sp. 112.5* 98.1 0.25 14.2 

Biemna fortis 1.0* 0.13 0.15 0.8 

Jaspis sp. 6.1* 0.6 3.7 1.7 

Subertes sp. 10.3* 1.7 7.4 1.1 

Haliclona permolis 13* 3.3 9.9 0.5 

Halichondria japonica 3.4* 1.1 1.6 0.8 

Haliclona sp. white 0.8* 0.2 0.5 0.2 

Halichondria okadai 5.5* 0.5 4.5 0.5 

Ephydatia fluviatilis 
Danube river, 

Hungary 
8.07  <0.02 0.29 

0.12 

(DMA) 
Schaeffer et al., 2006 

Spongia officinalis Marseille, France 86.3-134.1       Perez et al., 2005 
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Callispongia diffusa 

Guam Island, 

Pacific Ocean 

<0.01       

Denton et al., 2006 

Cinachyra sp.  <0.01       

Clathria vulpina <0.01       

Dysidea sp. 0.01-10.5       

Liosina cf. granularis 39.7-47.7       

Stylotella aurantium 0.01-6.42       

Unidentified sponge 1 5.91-19.8       

Unidentified sponge 2 37.9       

Unidentified sponge 3 0.01-43.1       

Cliona viridis 

Berlangas Islands, 

Portugal 

25-32       

Araujo et al., 2003 

Cliona celata 12-47       

Myriastra ananoora 73       

Erylus discophorus 60-99       

Adocia sp. 16-21       

Spongia nitens 33-65       

Spongia agaricina 47-83       

Spongia officinalis 47-64       

Cacospongia scalaris 64-119       

Ircinia fasciculata 31-65       

Haliclona permolis 

Seto Inland Sea, 

Japan  

13.00* 3.34 9.2 0.52 

Yamaoka et al., 2001 

*water fraction 

Halichondria japonica 3.42* 1.10 1.54 0.78 

Halichondria okadai 5.50* 0.53 4.5 0.47 

Haliclona sp. white 0.81* 0.15 0.45 0.21 

Halichondria okadai 

Chiba, Japan 

6.80 n.q.     
Shiomi et al., 1988 

n.q. : not quantified Halichondria japonica 6.40       

Spirastrella insignis 3.20 n.q.   n.q. 

Halichondria panicea Posiet Bay Japan 6.4**        

Vaskovsky et al., 1972 

**lipid extract 
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FIGURES 

Figure 1 
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Figure 2 

a) 
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b)
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Highlights 

- The efficiency of H3PO4 as extractant for As speciation in sponges was demonstrated 

- As bioaccumulation and speciation mainly depend on sponge species  

- As speciation in sponges revealed the predominance of AsB  

- Sponge itself  or symbiont organisms are responsible of AsB formation 

- Sponges are efficient tools for biomonitoring and bioremediation studies 


