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Abstract 

The importance of environmental stochasticity for tropical tree dynamics has been recently 

stressed by several studies. This has spurred the development of a “time-averaged neutral 

model” of community dynamics by Kalyuzhny and colleagues that extends the neutral model 

by incorporating environmental stochasticity. We here show that this framework can be 

used to assess the presence of non-random correlations between species dynamics. Indeed, 

the time-averaged neutral model makes the simplifying assumption that species responses 

to environmental variation are uncorrelated. We therefore propose to use this model as a 

null hypothesis against which observed community dynamics can be compared. This study 

makes five contributions. First, we describe a novel time-averaged neutral model of 

community dynamics that is close to, but more flexible than the one previously proposed by 

Kalyuzhny and colleagues. Second, we develop an inference method based on approximate 

Bayesian computation (ABC) and demonstrate the identifiability of the model parameters 

from community time series data. Third, we develop a test of the significance of 

environmental stochasticity, and a method to quantify its contribution to population 

variance. Fourth, we develop a test of non-random correlation between species dynamics. 

Fifth, we apply these developments to three datasets of tropical tree dynamics. We evidence 

both a strong contribution of environmental stochasticity to population variance in the three 

datasets, and a non-random correlation of species dynamics in one of them. We finally 

discuss the implications of these results for the modelling of tropical tree community 

dynamics.  
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Introduction 

The study of the assembly and dynamics of tropical tree communities has been largely 

influenced in the past fifteen years by neutral theory (Hubbell 2001, Rosindell et al. 2011). 

This theory considers as pivotal the role of demographic stochasticity in community 

dynamics, that is the random birth and death of tree individuals irrespective of the species 

they belong to. This theory has been shown to reproduce many community patterns 

including species abundance distributions (Volkov et al. 2003), beta-diversity (Condit et al. 

2002) and phylogenetic imbalance (Jabot and Chave 2009). In contrast, when looking at 

community dynamics in community time series, several patterns cannot be reproduced by 

neutral models. In particular, the scaling of population size variance with respect to 

population size has been shown to be steeper in real communities than in neutral ones 

(Leigh 1981, Chisholm et al. 2014, Kalyuzhny et al. 2015).  

 

The fact that populations of abundant species have a larger temporal variability than 

expected under demographic stochasticity indicates that the dynamics of conspecific 

individuals is correlated. One straightforward way to explain this correlated dynamics of 

conspecific individuals is to consider that they respond in the same manner to 

environmental temporal variability. This process has been named environmental 

stochasticity in the literature (Lande et al. 2003). 

 

Kalyuzhny et al. (2015) made a critical contribution to the modelling of tropical tree 

community dynamics by showing that a community model incorporating both demographic 

and environmental stochasticity was able to reproduce a number of both static and 

dynamical patterns of the tropical tree community in Barro Colorado Island, including 

species abundance distribution, the scaling of population variance with population size, 

population fluctuation magnitude, and community temporal turn-over (Kalyuzhny et al. 

2015). They called this model “the time-averaged neutral model”, since each individual has 

the same over-time-average prospect of birth and death irrespective of the species it 
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belongs to, although in contrast with a standard neutral model, individual birth rates differ 

among species at each time step. 

 

In order to keep the model simple, they used a rather strong simplifying assumption: that 

species individual responses to environmental variability were uncorrelated (see methods). 

This simplifying assumption may appear doubtful. For instance, tree species differ in their 

sensitivity to drought (Engelbrecht et al. 2007), so that dry periods should benefit similarly to 

drought resistant species. And the same reasoning applies to any environmental component 

of species fitness (Hutchinson 1957). Still, an « effective » independence across species could 

result from the multi-dimensionality of environmental variation if species that respond 

similarly on one environmental axis do not co-vary on other axes. Recent analyses on 

tropical tree functional traits substantiate this possibility (Baraloto et al. 2010).  

 

In addition, Kalyuzhny et al. (2015) also considered in their model that there was a temporal 

autocorrelation in environmental conditions (modelled through a within-species temporal 

autocorrelation in fecundity rates), making species fitness temporally autocorrelated. This 

within-species temporal autocorrelation indirectly produces some level of between-species 

correlation in their dynamics. It could therefore contribute to alleviating the potential model 

error due to the assumption of between-species independence. 

 

The aim of this study is thus to apply a rigorous statistical framework to analyze tree 

community dynamics with environmental stochasticity, and to use this framework to assess 

both the contribution of environmental stochasticity to population variance and the 

presence of non-random correlations between species dynamics. In particular, we assess 

whether the model parameters can be reasonably well estimated from community time 

series data, notably the variance A and the temporal autocorrelation ρ of environmental 

stochasticity. We then develop a simple test of whether environmental stochasticity and 

within-species temporal autocorrelation are at play in a community using a model selection 

approach, and quantify their contributions to population variance using virtual communities. 
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Finally, we assess the presence of non-random correlations between species dynamics. 

These developments are applied to three datasets of tropical tree dynamics (Condit et al. 

2006). 

 

Material and methods 

Modelling community dynamics with demographic and environmental stochasticity 

We consider a model very similar to the one of Kalyuzhny et al. (2015) with two main 

differences. First, birth, immigration and death events are happening independently of each 

other at specified rates, so that there is no zero-sum rule and the community size can vary 

through time. Second, the temporal autocorrelation in environmental conditions is modelled 

for each species as a yearly draw from an autocorrelated lognormal distribution, rather than 

by independent draws every τ years as in Kalyuzhny et al. (2015). These two modifications 

do not change the spirit of the model of Kalyuzhny et al. (2015). They were made to increase 

the generality of the model and to make it more flexible to accommodate observed 

temporal variations in community size (Table 1). 

 

More precisely, in the model considered, during year t, each individual of species i present in 

the community 1) dies with a constant probability d independent of the species considered, 

and 2) produces descendants at a rate (1 – m) × d × fi(t), where m is the expected proportion 

of immigrants in the recruits, and the fecondity fi(t) of species i during year t is drawn from a 

temporally autocorrelated lognormal distribution with mean 1, variance A, and within-

species autocorrelation ρ on a log scale (i.e., cor[ ln(fi(t+1)) , ln(fi(t)) ] = ρ). Concretely, the 

number of descendants produced by an individual of species i during year t is drawn from a 

Poisson distribution with mean equal to (1 – m) × d × fi(t). This model of local community 

dynamics is thus neutral in the sense that every individual has the same average over time 

prospect of birth and death (Chave 2004), although birth rates differ among individuals at 

each time step. This is why Kalyuzhny et al. (2015) proposed to call this type of models, time-

averaged neutral models, a terminology that we adopt here. The choice of the lognormal 

distribution to model among year and species variabilities in birth rates is a standard choice 
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for modelling environmental stochasticity (Lande et al. 2003). It is supported by previous 

analyses of tree demographic rates in tropical forests (Condit et al. 2006). We nonetheless 

compared this model choice to an alternative one based on a Weibull distribution that was 

shown to better fit bird dynamical properties in North America (Kalyuzhny et al. 2014b) and 

showed that the lognormal distribution provided a better fit to tropical tree data (Table S6). 

Importantly, alternative choices for the modelling of environmental stochasticity could be 

easily plugged into the approach detailed in this study. 

 

On top of this local dynamics, immigration into the local community occurs at rate m × d, so 

that the total number of immigrating individuals during year t is drawn from a Poisson 

distribution with mean equal to J(t) × m × d, where J(t) is the community size at time t. These 

immigrants are drawn from a neutral regional pool with regional diversity θ, as in the neutral 

model of Hubbell (2001). Here, for computing efficiency, we model the species abundance 

distribution in the regional pool with a logseries distribution. 

 

We additionally considered two degraded versions of this model: a model without temporal 

autocorrelation, in which ρ is equal to 0, and a model without environmental stochasticity in 

which A and ρ are equal to 0. We also considered an augmented version of the model 

incorporating a trend in community size. In this augmented version, we additionally consider 

that the community as a whole has a carrying capacity K, so that death rates during year t 

are no longer considered constant and equal to d, but they are equal to d × J(t)/K. All the 

model versions considered are thus time-averaged neutral, except the one that does not 

include environmental stochasticity and is therefore neutral. 

 

A commented R code to simulate this model of community dynamics with demographic and 

environmental stochasticity is provided in the supplementary material (Appendix S7). 

 

Tropical tree data 
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We make use of three datasets of tropical tree communities gathered by the Center for 

Tropical Forest Science, and published in Condit et al. (2006). The three 50 ha forest plots 

are located in Barro Colorado Island (BCI) in Panama, in Mudumalai in India, and in Pasoh in 

Peninsular Malaysia (Table 1). These three tropical tree communities have been censused 

more than three times, which is a minimum number of censuses to estimate both the 

variance and the temporal autocorrelation of environmental variability (BCI: 5 censuses, 

Mudumalai and Pasoh: 4 censuses, see Table 1). In these three forests, we will use all the 

tree individuals above 10 cm of diameter at breast height, which is a common arbitrary size 

threshold to distinguish adult trees from saplings (Condit et al. 2006). 

 

Inference by ABC and a test of the presence of environmental stochasticity and temporal 

autocorrelation 

We developed an inference method for these models based on Approximate Bayesian 

Computation (ABC, Beaumont et al. 2002). ABC contains four main steps: 1) simulating a 

large number of times the model that is under study, with parameters drawn from prior 

distributions, 2) computing for each model simulation a set of summary statistics, 3) 

comparing these simulated summary statistics to the same set of statistics computed on the 

data, and 4) retaining the best fit simulations if their associated summary statistics are closer 

to the data summary statistics than an arbitrarily defined tolerance threshold. The 

parameter values used for these simulations form the posterior distribution of the 

parameters. A more detailed description of the ABC procedure for the present case study is 

given below. 

 

Preliminary analyses revealed that successful inference could be performed with a set of 6 

summary statistics: the average number of death events between two successive censuses 

Ndeath that is correlated with model parameter d (Fig. S1a), the average community size J that 

is correlated with K (Fig. S1f), the average species richness S across censuses that is 

correlated with m (Fig. S1b), the total number of species across censuses Stot that is 

correlated with θ (Fig. S1c), the average across species initially present of their standard 
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deviation of population sizes SDpop that is correlated with A (Fig. S1d), and the average 

across species initially present of their temporal autocorrelation coefficients R(1)pop that is 

correlated with ρ (Fig. S1e). This choice of summary statistics was largely inspired by the 

study of Kalyuzhny et al. (2015) and by previous works on the inference by ABC of neutral 

and non-neutral models (Jabot and Chave 2011). More precisely, some parameters jointly 

influence several summary statistics, notably m and θ that both influence S ans Stot., and A 

and ρ that both influence SDpop and R(1)pop. This will create correlations in the posterior 

distributions of these parameters, as we will see below. 

 

We first performed a model selection through ABC, to assess whether all model parameters 

could be inferred, or whether there was some level of over-parameterization. For each 

dataset, we performed four sets of 20, 000 ABC simulations with the four versions of the 

model: the full model with six parameters, and the three versions of the model without 

trend in community size: the models with environmental stochasticity with (ρ > 0) and 

without (ρ = 0) within-species autocorrelation, and the model without environmental 

stochasticity (A = 0 and ρ = 0). Uniform prior distributions were used: [0.01 ; 0.025] for d, 

[0.001 ; 5]  for A, [0 ; 1] for ρ, [ln(0.001) ; ln(0.1)] for ln(m) and [ln(1) ; ln(10000)] for ln(θ). 

Distinct uniform prior distributions were used for parameter K in the three datasets: [10000 ; 

30000] for BCI, [1000 ; 15000] for Mudumalai, and [25000 ; 50000] for Pasoh. These prior 

distributions were chosen to encompass observed summary statistics in the three datasets. 

For each simulation, the model parameters were randomly drawn from the corresponding 

prior distributions. The community was initialized using the first census, and the community 

dynamics was simulated starting from this initial condition for the number of years 

separating the first from the last census of the studied dataset (20 years for the BCI dataset, 

12 for Mudumalai and 13 for Pasoh). Note that this initialization procedure implies that 

parameter inference will be based solely on the community trajectory from this first census, 

as is classically done in community time-series analyses (e.g., Ives et al. 2003), and not on 

the likelihood of obtaining this initial community composition based on the model 

parameters evaluated. At the end of each simulation, the six summary statistics mentioned 

above were computed. They were normalized by their median absolute deviations across 

simulations (Csilléry et al. 2012). And the distance between the simulation and the data was 
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computed as the Euclidean distance in the 6-dimensional space of the summary statistics 

between the simulated and observed normalized summary statistics (Beaumont et al. 2002). 

Based on these four sets of ABC simulations for the four model versions, model selection 

was performed using the method of Beaumont et al. (2008) with a tolerance rate of 0.01 

(meaning that the best 0.01 × 80000 = 800 ABC simulations were retained), implemented in 

the R package “abc” (Csilléry et al. 2012). This method fits a multinomial logistic regression 

on the summary statistics based on the set of 800 retained simulations, and evaluates the 

four model posterior probabilities as the multinomial logistic prediction at the value of the 

summary statistics observed in the data. The idea of using model selection to assess the 

number of parameters that can be efficiently inferred within an ABC procedure was initially 

proposed in Lagarrigues et al. (2015). Here, this model selection approach is also a way to 

test for the presence of environmental stochasticity and within-species temporal 

autocorrelation: their presence will be supported if the models without these components 

are rejected. 

 

We also assessed the quality of the fit of the selected models with a model checking 

procedure (Rubin 1984, Csilléry et al. 2010). This consists in assessing a posteriori that the 

summary statistics of the best-fit simulations are effectively close to the values observed in 

the data. For each summary statistics, we computed a p-value of model-data mismatch by 

computing the proportion of the 200 best-fit simulations that is equal or more extreme that 

the observed value. Since there is no a priori expectation of the direction of a potential 

misfit, this p-value must be lower than 0.025 to indicate a significant deviation at the 0.05 

level. However, a correction for multiple testing must be used. We used here the Holm-

Bonferroni correction. 

 

Assessing the contribution of environmental stochasticity to population variance  

We quantified the respective influences of demographic and environmental stochasticities 

on observed mean population variances in the three datasets. For the BCI dataset, for which 

there was no trend in community size in the selected model (see results), we proceeded as 
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follows: we simulated community dynamics using model parameter values from the 

posterior distributions except that environmental variance A was fixed at 0. We then 

compared, for three species abundance classes (1-19, 20-199, >200), the median population 

variances VARpop_demo obtained without environmental stochasticity to the observed median 

population variances VARpop_obs. The contribution of demographic stochasticity to observed 

population variances was quantified as VARpop_demo / VARpop_obs and the contribution of 

environmental stochasticity was quantified as 1 - VARpop_demo / VARpop_obs.  

 

For the two other datasets for which there was a trend in community size in the selected 

model, we proceeded slightly differently. Indeed in these datasets, the trend in community 

size also contributes to the overall population variances. We also simulated community 

dynamics using model parameter values from the posterior distributions, but we performed 

two sets of simulations: one with environmental variance and the second without 

environmental variance (A fixed at 0). In these two sets of simulations, the fitted trend in 

community size was removed, using death rates independent of community size, with values 

drawn from the posterior distribution of parameter d. The contribution of demographic 

stochasticity to population variance was quantified as above as VARpop_demo / VARpop_obs while 

the contribution of environmental stochasticity to population variance was quantified as 

(VARpop_env - VARpop_demo)/ VARpop_obs, where VARpop_env is the median population variance 

obtained in the simulation set with both demographic and environmental variances. The 

remaining part 1-(VARpop_env/ VARpop_obs) quantifies the contribution of the trend in 

community size to population variance. 

  

Assessing non-random correlations between species dynamics  

Due to the short length of the time series considered (5 censuses in BCI, 4 in the two other 

datasets), direct tests of between-species correlations in their dynamics would have a low 

power. Besides, the within-species temporal autocorrelation incorporated in two of the four 

models considered can potentially generate some level of between-species correlations in 

their dynamics. Consequently, one needs to take this model component into account when 
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assessing the assumption of species independence in their responses to environmental 

conditions. We thus developed a test of the presence of non-random correlations between 

species dynamics, using a model checking procedure (Rubin 1984, Csilléry et al. 2010). We 

proceeded in two steps. First, a more precise parameter inference with the selected model 

was performed using the sequential ABC algorithm of Lenormand et al. (2013) within the R 

package “EasyABC” (Jabot et al. 2013). This procedure required 14,500 ABC simulations for 

the BCI dataset, 14,000 for Mudumalai, and 19,000 for Pasoh. Second, we sampled 

parameters from the obtained posterior distribution and computed, for each simulation 

below the tolerance threshold obtained by the sequential algorithm, the correlation matrix 

of the most abundant species with an initial abundance of at least 50 individuals. This 

correlation matrix was computed as follows: for two species i and j, the term (i,j) in the 

matrix was equal to the correlation coefficient Corij between the two trajectories of 

population sizes across censuses of species i and j. 200 such correlation matrices were 

computed and they form the posterior predictive checks that can be compared to the 

correlation matrix computed from the data (Csilléry et al. 2010). Rather than comparing each 

correlation coefficient one by one, we compared a unique index: the average of the absolute 

values of the matrix coefficients |Corpop|. 

 

We finally replicated the model checking analysis for the BCI dataset, using either the first 

three censuses or the first four censuses, to assess whether considering shorter time series 

might change our understanding of the correlations between species trajectories.  

 

Results 

Parameter identifiability and a test for the presence of environmental stochasticity and 

within-species temporal autocorrelation 

Models with temporally autocorrelated environmental stochasticity were selected against 

the simpler nested models in the three datasets (Table 2), and their fits of the summary 

statistics were overall satisfactory (Table S2). This indicates that the model studied is not 

over-parameterized and that both environmental stochasticity and within-species temporal 
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autocorrelation are critical to explain the observed dynamics in the three tropical forests 

considered. In two of the three datasets (Mudumalai and Pasoh), a model further 

incorporating a trend in community size was selected. This result reminds that the standard 

zero-sum rule abundantly used since the work of Hubbell (2001) should not be seen as a 

panacea for modelling community dynamics, despite its attractive simplicity.  

 

Selected models had an overall satisfactory fit of the six summary statistics used in the 

inference (Fig. 1, Table S2). For the BCI dataset, two p-values were below the threshold of 

0.025 (those associated with the average S and total Stot species richness). However, when 

applying the Holm-Bonferroni correction for multiple testing, they were no longer significant 

(since the corrected thresholds become equal to 0.025/6 = 0.0041 and to 0.025/5 = 0.005 for 

the two lowest p-values respectively). Still, this model checking procedure highlights that the 

fitted model tends to underestimate the average species richness S, while it tends to 

overestimate the total among censuses species richness Stot. This model-data mismatch is 

due to a larger mortality rate of very rare species in the data compared to the one of more 

abundant species (data not shown), a pattern that could not be reproduced with the models 

studied. Interestingly, the selected model for BCI was also able to reproduce observed values 

of two additional summary statistics not included in the inferential procedure: the average 

Shannon’s index H across censuses, and the average Bray-Curtis similarity BC between each 

census and the initial one (Fig. S3). It was also able to marginally reproduce the number of 

times Ntrans that a population increase between two censuses is followed by a population 

decrease or the reverse (Fig. S3). These complementary results strengthen the 

demonstration of the overall good fit quality of the selected model regarding community-

level static and dynamical properties. Similar results were obtained for the Mudumalai 

dataset (Table S2). For the Pasoh dataset, even the full model had a small but significant 

model-data mismatch for the average number of species S (Table S2). It is worth noting that 

for both BCI and Mudumalai, several models had good quality fits according to this model 

checking procedure (Table S2). The Bayesian model selection procedure still succeeded in 

clearly ranking these competing models (Table 2). 
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For the BCI dataset, estimations of the mortality rate d and of the temporal autocorrelation 

ρ had low uncertainty with narrow posterior distributions (Fig. 2a,c). The environmental 

variance A was also well estimated, although with a wider posterior distribution (Fig. 2c). The 

parameters of immigration m and of regional diversity θ had wider posterior distributions 

(Fig. 2b), which is in line with previous studies (Etienne et al. 2006, Jabot and Chave 2009). 

Similar results were obtained with the two other datasets, with the additional result that the 

community carrying capacity parameter K also had a relatively narrow posterior distribution 

for these two datasets (Fig. S4-5).  

 

We found larger environmental variances (A = 2.2, Fig. 1f) for BCI than in the study of 

Kalyuzhny et al. (2015) in which it was estimated at 0.8. This large environmental variance 

was also recovered in the Mudumalai dataset (A = 3), but less so in Pasoh (A = 0.94, Fig. S4-

5). We also found that parameters A and ρ were negatively correlated (Fig. 2c). This last 

result explains the discrepancy between our estimate of A and the one of Kalyuzhny et al. 

(2015) who considered a strong temporal autocorrelation in their model in which 

environmental variables were assumed constant during 10 years. Our analysis thus 

demonstrates that a larger environmental variance associated with a less strong temporal 

autocorrelation is more likely (Fig. 2c). 

 

Assessing the contribution of environmental stochasticity to population variance  

Values of temporal autocorrelation were variable among the three datasets, varying from 

0.60 at Pasoh to 0.68 at BCI and 0.92 at Mudumalai. The resulting contributions of 

environmental and demographic stochasticity to population variance were found to be 

consistent across the studied sites. In BCI, where no trend in community size was observed, 

demographic stochasticity was the main driver of population variance for rare species, and it 

was progressively surpassed by the influence of environmental stochasticity for more 

abundant species (Fig. 3a). In Mudumalai where the community size decreased by more than 

16% in 12 years, the trend in community size explained the larger part of population 

variance (between 49 and 77% depending on the abundance class, Fig. 3b). The remaining 
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part of the population variance was again largely explained by demographic stochasticity for 

rare species, while environmental stochasticity was the main driver for more abundant 

species (Fig. 3b). In Pasoh where the community size increased by 6% in 13 years, the trend 

in community size also explained a large part of population variance (Fig. 3c). The remaining 

part was again mainly due to demographic stochasticity for rare species, and to 

environmental stochasticity for abundant ones (Fig. 3c). 

 

Non-random correlations between species dynamics  

Observed correlation coefficients between population trajectories tended to be larger in 

absolute values than the ones computed on simulated community dynamics, with a larger 

number of strongly positively or negatively correlated population trajectories (Fig. 4a). This 

trend was significant for the BCI dataset (p<0.005, Fig. 4b). This indicates that observed 

levels of correlations between species dynamics cannot be explained by the time-averaged 

neutral model in this dataset. Non-random correlations between species in their responses 

to environmental variability thus need to be invoked. In the two other datasets, the same 

test led to the same trends of stronger between-species correlations in empirical data than 

awaited under the time-averaged neutral model (Fig. 4c,d). These trends were however non-

significant (p=0.09 in Mudumalai, p=0.24 in Pasoh, Fig. 4d). One possible explanation for this 

lack of significance for these two datasets may be that these communities were studied 

during a period of directional trend in community size which seems to be an important 

driver of the dynamics of these two communities (Fig. 3). Another possible explanation is the 

shorter length of the time series for these two datasets. Indeed, we found that deviations 

from model predictions were increasing with the number of censuses considered in the 

analyses for the BCI dataset (Fig. 5). 

 

Discussion 

Several recent studies have proposed to model plant community dynamics with both 

demographic and environmental stochasticity (de Mazancourt et al. 2013, Kalyuzhny et al. 

2015), following the seminal presentation of Lande et al. (2003). To further advance our 
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understanding of the consequences of environmental stochasticity on community assembly 

and dynamics, rigorous inference methods need to be developed for these models, as was 

done previously with neutral and non-neutral dynamical community models (Beeravolu et al. 

2009, Jabot and Chave 2011). The present contribution provides a quantitative Bayesian 

inferential framework for slightly modified versions of the time-averaged neutral model 

recently proposed by Kalyuzhny et al. (2015).  

 

We showed that it is possible to estimate both the variance A and the temporal 

autocorrelation ρ of environmental stochasticity from community time series of marked 

individuals (Fig. 2), and we provided a simple way to assess the importance of environmental 

stochasticity through a model selection technique. We recovered the results of Chisholm et 

al. (2014) and of Kalyuzhny et al. (2015) that environmental stochasticity was critical to 

understand the dynamics of tropical tree communities (Table 2). We further showed that 

environmental stochasticity was mostly important for abundant species, while rare species 

were mostly impacted by demographic stochasticity (Fig. 3). This may contribute to the fact 

that hyper-diverse tropical forests with many rare species often show neutral-like patterns 

(Jabot and Chave 2011, Kubota et al. 2015, Qiao et al. 2015). 

 

Our analysis further revealed that environmental variance was larger and temporal 

autocorrelation in environmental conditions lower (Fig. 2) than previously found by 

Kalyuzhny et al. (2015). Still, the presence of relatively large year-to-year autocorrelation in 

species demographic rates, already evidenced by Feeley et al. (2011) in BCI, calls for a 

biological explanation. Indeed, climatic variability does not show large year-to-year 

autocorrelation (Lande et al. 2003), so that other sources of autocorrelation needs to be 

invoked. First, gap dynamics is likely to produce long standing (decadal) conditions favoring 

some species over others in tree communities, depending on species light requirements and 

their sensitivities to crowding (Shugart 1984, Uriarte et al. 2004). Second, the long 

generation time of trees and their capacity to store resources (Chapin et al. 1990, Poorter 

and Kitajima 2007) is likely to dampen their response to yearly environmental fluctuations 

and thus to increase the autocorrelation of the stochastic environmental variables. Third, 
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synchronizing processes such as mast fruiting (Norden et al. 2007) or extreme climatic 

events (Brando et al. 2014) may also tend to increase temporal autocorrelation. The inferred 

strong autocorrelation in stochastic environmental variables is thus biologically plausible. 

We must however recognize that our inference of autocorrelation strength present a non-

negligible level of uncertainty (Fig. 2c, Fig. S4c, Fig. S5c) and that it is necessarily dependent 

on our (reasonable) model assumptions. Reported autocorrelation levels should thus be 

interpreted and used with caution.  

 

Previous studies have investigated the signature and magnitude of environmental 

stochasticity in various types of ecological communities, using various mathematical 

approaches. For instance, model-based analyses of community time-series with likelihood 

(Ives et al. 2003) or Bayesian techniques (Mutshinda et al. 2009, 2011) have been proposed. 

These parameter-rich approaches require relatively long time-series so as to obtain reliable 

inferences and were consequently applied to a limited number of systems that have been 

intensively studied for a long time, with typically several dozens of censuses. Using these 

techniques, Mutshinda et al. (2009, 2011) demonstrated that environmental stochasticity 

exerted a much stronger influence on community dynamics than demographic stochasticity 

and interspecific interactions for a diverse range of animal communities. Similar conclusions 

were obtained using model-free analyses of dynamical patterns for both plant and animal 

communities (e.g., Houlahan et al. 2007, Chisholm et al. 2014, Kalyuzhny et al. 2014a,b). The 

main advantages of these last approaches are that 1) they are not restricted to massive 

datasets, and 2) they are more flexible, in that they do not rely on necessarily debatable 

model assumptions. They constitute in this sense attractive ways to design pertinent model 

assumptions that can be later tested with model-based approaches. Inferences based on 

time-averaged neutral models are thus complementary to these existing approaches, in that 

they are a model-based approach that is “parameter-economical”, and can thus be used on 

less massive datasets. They corroborated in this study the previous findings of the prevailing 

role of environmental stochasticity in shaping community dynamics, especially for abundant 

species (Fig. 3). 
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A critical simplifying assumption of the time-averaged neutral model is that species respond 

independently of each other to environmental variability. The second main goal of this study 

was thus to assess the validity of this strong assumption of species independence. We 

performed this assessment using a model checking procedure comparing the correlation 

matrix of species trajectories in both observed and best-fit simulated communities. This 

assumption was rejected for the BCI dataset (p<0.005), but not for the two other ones (Fig. 

4). These results are unlikely to be biased by the (non-significant) model-data mismatch 

surrounding the dynamics of very rare species, since only abundant species (>49 individuals) 

were considered in the correlation matrix. These results show that non-random correlations 

between species dynamics need to be invoked to explain observed community dynamics, at 

least in some study sites. They nevertheless show that deviations from the predictions of the 

time-averaged neutral model are not systematic, neither very large. Indeed, at BCI, 

between-species correlation was found to be equal to 0.72 on average, a number only 

modestly larger than the predictions of the time-averaged neutral model that were located 

around 0.6 (Fig. 4b). 

 

We then tried to understand what could explain this relatively modest failure of the model 

predictions on between-species correlations. We evidenced that the deviations from model 

predictions build over very long time, thereby making short time series insufficient to detect 

statistically significant deviations (Fig. 5). A more positive interpretation of these last results 

is that the simplifying assumption of species independence proposed by Kalyuzhny et al. 

(2015) seems to be sufficient for some communities, and up to twenty year-long temporal 

horizons.  

 

An important question is whether one can use time-averaged neutral models in 

communities in which the assumption of independence is violated, as in BCI. The present 

work and the previous one of Kalyuzhny et al. (2015) shows that the model is still valid if one 

wants to make general predictions on community-wide dynamical patterns such as average 

population variability and its scaling with population abundance, or the respective 

contributions of demographic and environmental stochasticity to the observed community 
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dynamics. In contrast, this model is unlikely to make good predictions in such cases 

regarding between-species correlations in their demography. 

 

More generally, the present contribution employs a quantitative statistical framework to 

analyze community time series with time-averaged neutral models. Being able to quantify 

environmental stochasticity in ecological communities from community time series opens 

exciting new questions for ecological research. Theoretical predictions could be developed 

on how environmental stochasticity might shape spatial and temporal patterns in 

metacommunities (Hubbell 2001, Chave et al. 2002, Ulrich 2004, Economo and Keitt 2010, 

May et al. 2015) and anthropogenic impacts on biodiversity (Solé et al. 2004, Gilbert et al. 

2006, Hubbell et al. 2008), as well as how diversity indices may depart from null predictions 

incorporating environmental stochasticity (Münkemüller et al. 2012). A decade of research 

did not deplete the study of neutral models based on demographic stochasticity (Rosindell et 

al. 2011). This myriad of works now needs to be generalized to embrace the combined effect 

of demographic and environmental stochasticity. 

 

As a concluding remark, it may sound abusive to use the terminology of “time-average 

neutrality” to designate a model including both demographic and environmental 

stochasticity, since what drives environmental stochasticity is classically referred to as niche 

processes (as opposed to neutral processes) in the ecological literature.  Actually, the 

distinction between “strong” and “weak” versions of the equivalence assumption of the 

neutral theory was stressed early on during the maturation of this theory (Chave 2004), 

where “strong” neutrality refers to the strict fitness equivalence among individuals, while 

“weak” neutrality refers only to average fitness equivalence among individuals, as in time-

averaged neutral models. A good reason for calling neutral these “weakly” neutral models is 

that individuals still behave neutrally from an evolutionary standpoint. Beyond this semantic 

discussion, the interesting originality of time-averaged neutral models is their way of 

merging what is commonly referred to as “niche” and “neutral” processes. Indeed, 

previously proposed syntheses of these two types of processes are commonly relying on the 

addition of neutral-based noise to niche-based processes that generate average fitness 
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differences among species (e.g., Tilman 2004, Gravel et al. 2006, Jabot and Chave 2011). In 

contrast, time-averaged neutral models integrate niche-based differences among species 

without breaking the weak version of the equivalence assumption among individuals (Alonso 

et al. 2007, Kalyuzhny et al. 2015). 
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Table 1. Characteristics of the tropical tree datasets. 

Site Site area 

Number of 

censuses used 

Census 

date 

Community size 

Species 

richness 

Barro 

Colorado 

Island 

50 ha 5 

1985 

1990 

1995 

2000 

2005 

20640 

21176 

21404 

21148 

20848 

235 

227 

225 

225 

227 

Mudumalai 50 ha 4 

1988 

1992 

1996 

2000 

15033 

14028 

13070 

12574 

62 

63 

63 

61 

Pasoh 50 ha 4 

1987 

1990 

1995 

2000 

26550 

27659 

29257 

28279 

678 

666 

674 

671 
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Table 2. Posterior model probabilities for the three datasets. For each dataset, the 

probability of the selected model is in bold. 

Site BCI Mudumalai Pasoh 

Dem. stochasticity (A = 0 and ρ = 0) 0 0 0 

Dem. and env. stochasticity (ρ = 0) 0.03 0 0 

Dem. and env. stoch. with autocorrelation 0.63 0.03 0.0002 

Full model with trend in community size (K) 0.35 0.97 0.9998 
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Figure 1. Model checking plots for the BCI dataset and the selected model (see Table 2). 

Histograms represent the simulated values of the various summary statistics for the 200 

best-fit simulations. Observed values are depicted by the vertical grey lines, and the 

corresponding p-values are indicated. 
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Figure 2. Posterior distributions for the BCI dataset. Panel A: marginal posterior distribution 

for parameter d. Panels B and C: joint posterior distributions for parameters (θ,m) and (A,ρ) 

respectively, highlighting the correlations between these parameters. In these panels, points 

represent posterior samples obtained by ABC, the grey levels stand for posterior density, 

and the black lines are iso-density curves. 
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Figure 3. Contributions of demographic and environmental stochasticities to population 

variances. Panels A, B and C refers to the BCI, Mudumalai and Pasoh datasets respectively. 

The proportion of population variance due to demographic stochasticity is depicted in black, 

the one due to environmental stochasticity is in dark grey, and the variance due to the trend 

in community size is in light grey.  
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Figure 4. Non-random correlations between species dynamics. Panel A: Distribution of 

correlation coefficients in the BCI plot (grey) and in a typical simulation fitting the BCI plot 

(white). Panels B, C, D: Distributions of the average absolute values of correlation 

coefficients |Corpop| in the 200 best-fit simulations for the BCI, Mudumalai and Pasoh 

datasets. The vertical lines stand for observed values of this index in the three plots. 
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Figure 5. Lower model failure with shorter time series. Panels A, B: Distributions of the 

average absolute values of correlation coefficients |Corpop| in the 200 best-fit simulations in 

BCI, using either the first three or the first four censuses instead of the five censuses as in 

Fig. 4b.  The vertical lines stand for observed values of this index in the plot. 
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