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ABSTRACT 
 
Non-random patterns of species segregation and aggregation within ecological communities 

are often interpreted as evidence for interspecific interactions. However, it is unclear whether 

theoretical models can predict such patterns and how environmental factors may modify the 

effects of species interactions on species co-occurrence.  Here we extend a spatially explicit 

neutral model by including competitive effects on birth and death probabilities to assess 

whether competition alone is able to produce non-random patterns of species co-occurrence. 

We show that transitive and intransitive competitive hierarchies alone (in the absence of 

environmental heterogeneity) are indeed able to generate non-random patterns with 

commonly used metrics and null models. Moreover, even weak levels of intransitive 

competition can increase local species richness.  However, there is no simple rule or 

consistent directional change towards aggregation or segregation caused by competitive 

interactions. Instead, the spatial pattern depends on both the type of species interaction and 

the strength of dispersal. We conclude that co-occurrence analysis alone may not able to 

identify the underlying processes that generate the patterns.  

 
 
Key words Ecological species-sites matrix, competition, C-score, nestedness, beta diversity, 

ecological drift, meta-community  
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Introduction 

Ecologists have devoted much effort to understanding the role of competitive interactions 

in shaping ecological communities (reviewed in Weiher and Keddy 1999, Chesson 2000, 

Chave et al. 2002, HilleRisLambers et al. 2012). Within the framework of competitive 

exclusion (Gause 1934), a simple dominance hierarchy of competitive strengths (species A > 

species B > species C…) should eventually lead to a monoculture of the competitively 

superior species. But this is rarely seen in nature (Soliveres et al. 2015). Instead, most 

communities are characterized by a small number of common species (which may be 

competitively dominant), and a large number of rare species (which may be competitively 

inferior). 

How are inferior competitors able to persist in a community? Proposed mechanisms 

include niche segregation (Chesson 2000), environmental heterogeneity (Amarasekare 2003), 

abiotic stress (Bowker et al. 2010), disturbance (Watt 1947, Grime 1977), and limited 

dispersal (Hurtt and Pacala 1995, Kerr et al. 2002, HilleRisLambers et al. 2012).  These 

mechanisms may also explain the observed high diversity and co-existence of ecologically 

similar species (Fox 2013). In this respect, Grime (1973) highlighted the importance of 

context-dependent competitive strength, in which the ordering of species in a competitive 

hierarchy changes in different environments (Chamberlain et al. 2014, Gioria and Osborne 

2014).  

If competitive strength is context-dependent, species richness and abundance should 

differentially co-vary with environmental factors that most limit reproduction, leading to 

segregated occurrences of competing species along the environmental gradient. Diamond 

(1975) used examples of perfectly segregated species pairs (“checkerboard pairs”) as evidence 

for competitive exclusion (Diamond 1975, p 387), although he did not explicitly invoke 

context-dependent competitive interactions. Subsequent null model analyses of species co-

occurrence have frequently detected individual species pairs and assemblages in which there 

is less co-occurrence than expected by chance (Gotelli and McCabe 2002, Ulrich and Gotelli 

2010, 2013).  

Following Diamond’s (1975) approach, many authors have inferred past or present 

competitive exclusion from spatially segregated co-occurrence patterns (e.g. Pitta et al. 2012, 

Kennedy et al. 2014, but see Connor et al. 2013). Comparing communities at different times, 

Zaplata et al. (2013) and Ulrich et al. (2016) found that local plant assemblages became 

increasingly spatially segregated during early succession, and that these changes were 

associated with spatial variability in soil attributes.  
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Although empirical and statistical support for segregated and aggregated species pairs is 

widespread (Lyons et al. 2016), these community patterns are hard to generate from 

theoretical models. Only a few studies have so far evaluated whether and to what degree 

competition alone (without additional habitat effects like filtering) is able to produce a 

spatially segregated pattern of species occurrences (e.g. Wootton 2001). With appropriate 

parameter settings, simple two-species (Levin 1974) and three-species (Caraco and Whitham 

1984) interaction models can predict aggregated or segregated occurrences. However, patterns 

of species aggregation and segregation are more difficult to generate for models of diffuse 

competition in multi-species assemblages (Hastings 1987).  

A number of theoretical (Allesina and Levine 2011, Ulrich et al. 2014) and empirical 

(Soliveres et al. 2015, Ulrich et al. 2016) studies suggest that competitive intransitivity is an 

important mechanism that allows species to coexist within a single community in spite of 

strong competitive interactions. Intransitive competitive networks (Gilpin 1975) are formed 

by loops in the hierarchy of competitive strength. For example, in the  he rock-scissors-paper 

game, the competitive hierarchy species A> species B> species C> species A forms a loop 

that can theoretically promote coexistence (Huisman et al. 2001, Kerr et al. 2002, Laird and 

Schamp 2006, 2009).  

Ulrich et al. (2014) demonstrated that transitive and intransitive competitive hierarchies 

in ecological communities can be unequivocally translated into a stable state distribution of 

abundances by means of a Markov chain model (Horn 1975). This model predicts constant 

abundance distributions within a homogeneous environment and no spatial segregation of 

species occurrences among sites (Ulrich et al. 2016). However, if competitive hierarchies 

differ among sites because of environmental conditions, species abundance distributions and 

co-occurrence patterns change. In this scenario, species segregation among sites is solely 

linked to environmental heterogeneity and not caused by the underlying competitive hierarchy 

(Ulrich et al. 2016).  

Models of context-dependent competition among sites and intransitive competitive 

hierarchies within sites make different assumptions about equilibrium conditions. Context 

dependency explicitly includes environmental spatial and temporal variability (Chamberlain 

et al. 2014) and thus applies to both equilibrium and non-equilibrium conditions. It does not 

make precise predictions about changes in species abundances and dominance orders in space. 

In contrast, models of intransitivity are most relevant to equilibrium conditions and have so 

far been applied only to closed assemblages in which species compete locally and are not 

affected by migration (e.g., Allesina and Levine 2011). But some local communities are 

Author-produced version of the article published in Oikos, 2017, 126 (1), 91-100. 
The original publication is available at https://onlinelibrary.wiley.com/ 

doi:10.1111/oik.03392



5 
 

organized as an open metacommunity, which is defined by Gilpin and Hanski (1991) and 

Leibold et al. (2004) as a set of interacting local communities that are linked by the dispersal 

of multiple, potentially interacting species. For open metacommunities, it is unclear whether 

models of intransitivity will predict constancy in the richness (and abundances) of local 

assemblages. For example, Soliveres et al. (2015) reported that local dryland and grassland 

plant communities often contained intransitive loops, but that these competitive hierarchies 

explained little of the spatial variation in species richness. Interestingly, the frequency of 

intransitivity decreased with increasing habitat heterogeneity (Soliveres et al. 2015) 

suggesting that species richness might be controlled by both intransitive networks and 

context-dependent competition.     

In this study, we ask how competitive transitivity and intransitivity translate into 

dominance orders in a meta-community that incorporates dispersal and non-equilibrium 

dynamics at local scales. The neutral model framework (Hubbell 2001) allows us to generate 

predictions of local abundance and species composition from a set of first principles 

(birth/death processes, dispersal, and speciation). These predictions can then be compared to 

patterns in real assemblages (Gotelli and McGill 2006, Rosindell et al. 2012).  

In their original formulation, neutral models were based on assumptions of random 

dispersal and the ecological equivalence of species (Hubbell 2001, Chave 2004, Etienne 2005, 

Etienne and Alonso 2005). Recent extensions of models of stochastic community dynamics to  

include asymmetric species interactions (Jabot 2010, Jabot and Chave 2011, Rosindell and 

Phillimore 2011) have paved the way for a more detailed analysis of context-dependent 

competitive effects. Such models including competitive interactions link the predictions from 

equilibrium based competitive theory with those from dispersal dynamics and population 

growth processes. Because these models do not incorporate environmental variability, 

empirical deviations from model predictions may implicate environmental factors influencing 

competitive hierarchies and context dependent competition. 

Existing non-neutral community models incorporate species-specific density dependent 

mortality (Jabot and Chave 2011) or environmentally determined speciation probabilities 

(Tittensor & Worm 2016), but do not incorporate direct competitive interactions between 

species. Here, we use a spatially explicit neutral dispersal model and incorporate density 

dependence and direct asymmetric competitive interactions between individual pairs of 

species. Our aim is to deduce which patterns of species co-occurrence are expected from 

competitive interactions alone. With this model, we address four questions: 

(1) Does competitive intransitivity increase local species richness?  
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(2) Does competition change the spatial or temporal variability in local richness?   

(3) Does competitive intransitivity alone lead to species segregation across sites within a 

meta-community? 

(4) Do diffuse and direct competitive interactions predict different patterns of species co-

existence?   

 

Materials and methods 

The dispersal-limited competition model 

The present study is based on a simulation platform for neutral modelling that was 

previously used to show that appropriately parameterized neutral models are able to generate 

segregated spatial distributions of species co-occurrence (Ulrich 2004) and that ground beetle 

meta-community structures are indistinguishable from neutral predictions (Ulrich and 

Zalewski 2007). In our original simulations, we use a square grid of 100 patches initially 

populated randomly by a total of 10,000 individuals belonging to 30 species. This placement 

procedure leads to a grid of patches with different maximum numbers of individuals per patch 

(carrying capacities) and a Poisson distribution of species richness. The grid of occupied 

patches represents the metacommunity, whereas each occupied patch represents a local 

community. In the following, we will interchangeably use the terms grid/metacommunity and 

patch/local community. The subsequent dynamics in each patch follows a zero-sum rule 

(Hubbell 2001), meaning that each local birth, death, immigration, or emigration (all 

probabilities set to 0.01) is immediately counterbalanced by a corresponding death, birth, 

emigration, or immigration. Any grid-wide species extinction is counterbalanced by a single 

point mutation speciation in a randomly selected patch. In contrast to Hubbell’s (2001) 

original formulation, this point mutation speciation ensures that the total number of species 

within the meta-community remains constant.  

In this study, we added two features to this neutral model. First, we followed Jabot and 

Chave (2011) and introduced death rates that are species-specific and incorporate interspecific 

density-dependence. The local death probability πi of an individual of species i in a 

community of j species is given by:  

�� =
��

���

∑ �

���




    (1) 

where di is the density of species i and δ is the density-dependence parameter. For δ  = 0, 

death probabilities are proportional to the observed abundance distribution and thus equal for 

all individuals. For  δ  < 0, the model penalizes abundant species (diffuse A) by higher local 
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death rates, and if δ  > 0, the model penalizes rare species (diffuse R). For  δ  = 1 species 

mortality rates are identical irrespective of abundance. This modification incorporates effects 

of diffuse (indirect) competition from the entire assemblage.  

Second, we incorporated the effects of direct pairwise competition on birth rates using the 

Markov chain approach of Ulrich et al. (2014). These authors showed that any j x j matrix C 

of pairwise species interaction effects can be translated into a unique column stochastic 

transition matrix P (cf. Fig. 1). The inner product PA0=A1 provides the vector of expected 

species abundances A1 after one time step, given initial abundances A0. Within a neutral 

model framework, birth probabilities are proportional to current abundances. Therefore, the 

inner product  

��
 = �� ∝ ��   (2) 

generates the vector Q, which (after normalization) contains the local birth probabilities of an 

individual in the community. In this way, our model incorporates effects of direct (pairwise) 

competition on birth rates and effects of indirect (diffuse) competition on death rates. In the 

absence of dispersal this model of competition yields three qualitative predictions for isolated 

local communities: 

(1) A fully transitive competitive hierarchy modulates abundances in favour of the 

stronger competitors by increasing their fecundity while leaving death probabilities 

unchanged (Fig 1). Because the respective transition matrix (P) generated from the 

matrix of competitive strength (C) describes an absorbing state (Fig. 1) (Ulrich et al. 

2014), this Markov model predicts that the final result of transitive competition is a 

monoculture of the strongest competitor, independent of the model settings.  

(2) An intransitive competitive hierarchy generates a non-absorbing ergodic transition 

matrix and therefore predicts coexistence of species (Fig. 1). Intransitivity might 

either increase or decrease the equilibrium species richness compared to the 

predictions of the simple neutral model.  

(3) Diffuse competition that penalizes death rates of less abundant species has the same 

effect as strong competitive hierarchy in favouring abundant species and accentuating 

dominance orders. Therefore it should increase the tendency of the model to generate 

a monoculture of the strongest competitor.   

Using stochastic simulations, we ask whether these predictions still hold in a spatially 

explicit model of an open metacommunity that incorporates dispersal. 

 

Simulation protocol 
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To assess the influence of interspecific competition on otherwise neutral communities, 

we created a factorial design of five binary model parameters. We crossed two levels of 

dispersal limitation (unconstrained = all cells are equally likely to be the target of dispersal, 

limited = only the adjacent cells (the Moore Neighbourhood) can reached in a single dispersal 

step), with two levels of migration rates (low, high), with two levels of diffuse competition 

penalizing either rare ( δ = 0.5) or abundant (δ = -0.5) species, and two levels of competitive 

interactions (intransitive, transitive; cf. electronic supplement S1A and S1B, respectively). 

Together with the four neutral scenarios of δ = 0 and P = I (I being the identity matrix), we 

considered a total of 24 + 4 = 20 parameter combinations. Because variability in the model 

output within parameter sets was low, we replicated each parameter combination only 10 

times.  

Transitive competitive interactions led to monocultures of the best competitors, although 

the time to complete competitive exclusion was very long for some parameter combinations 

(> 90,000 time steps). To ensure that the slowest- running model (diffuse competitive 

interactions and high dispersal rates; Table 1) reached equilibrium, we ran all models for 

92,000 time steps, which incorporated 1,010,000 birth/death, immigration/emigration, 

speciation/extinction events, that is approximately 100 cycles of complete turnover in species 

composition. Equilibrium conditions were defined by a change of < 1 species per single time 

step of the moving average of species richness in the grid. We further traced the decrease in 

average species richness among sites (SM) from the initial 27 to 30 species per site with the 

slope z of the semi-logarithmic regression model �� = �� − ���(�) where t denotes the time 

step of the model and S0 the initial species richness. The semi-logarithmic model provided the 

best linear fit to the decay of species richness through time.  

 

Analysing community structure and co-occurrences 

For each grid, we quantified the degree of species segregation (negative species 

associations) with the common C-score of species co-occurrences (a normalised count of the 

number of pairwise mutual exclusions among sites; Stone and Roberts 1990). Species spatial 

aggregation was quantified by the clumping score, which is a normalised count of the number 

of pairwise co-occurrences among sites (Ulrich and Gotelli 2013). Nestedness measures the 

ordered loss of species along a focal environmental or ecological gradient (Patterson and 

Atmar 1986, Ulrich et al. 2009) and is therefore distinct (although not mutually exclusive) 

from species turnover (Ulrich and Gotelli 2013). We quantified the degree of nestedness using 

the standard NODF (nestedness from overlap and decreasing fill) metric, which is a 
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normalized count of the degree of species overlap among the sequence of plots ordered 

according to decreasing species richness (Almeida-Neto et al. 2008). NODF ranges from zero 

(perfect species turnover) to 1 (perfect nestedness). Following the method of Baselga (2010), 

we assessed the degree of spatial species turnover among cells by the additive partitioning of 

the Sørensen metric βsor (a metric of dissimilarity in community composition) into a 

component representing the difference in species richness among sites (βnest) and a component 

representing the spatial turnover of species (βsim). Below we focus on this turnover component 

because it represents the compositional variation of communities after controlling for 

differences in richness.  

Metrics of species co-occurrences depend on matrix row (species) and column (sites) 

totals and cannot be compared directly. Therefore, we used a null model approach and 

compared observed scores with those obtained from 200 matrices randomly resampled by two 

different null algorithms. First, we resampled species incidences where placement 

probabilities were uniform for all grid cells (the equiprobable null model algorithm). In the 

second null model, placement probabilities were proportional to observed marginal 

occurrence totals (the proportional – proportional null model, Ulrich and Gotelli 2012). We 

did not use the popular fixed-fixed algorithm (Gotelli 2000) because it preserves the marginal 

totals of the matrix, which would lead to low variation in the NODF and lack of variation in 

the beta metrics.  

Neutral models of limited dispersal (e.g. Babak and He 2009) and biogeographic models 

of the mid-domain effect (Colwell and Lees 2000) predict that random processes can lead to a 

reduction of species richness near the boundaries of spatial domains. To estimate the size of 

this effect, we calculated the difference ∆S in richness between the 12 cells at each of the four 

grid corners and the 12 cells in the centre of the grid. Increases in species richness towards the 

centre of the spatial grid will yield a negative ∆S. To assess the spatial variability in species 

richness, we used Lloyd’s (1967) variance - mean ratio � =
��

��
−

�

�
+ 1, with µ and σ2 being 

the mean species richness and its variance, respectively. I = 1 is the expected value in the case 

of a Poisson random distribution, I < 1 indicates equitability in richness across the grid, and I 

> 1 indicates clumping.    

For comparison among model settings, we used the normalised effect sizes (NES = 

(observed – expected scores) / expected scores) and standardized effects sizes [SES = 

(observed – expected scores)/standard deviation of expectation]. Under the assumption of a 

normal distribution of errors, |SESscore| > 1.96 indicates approximate statistical significance at 
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p < 0.05 (two-tailed test). These measures of effect size allowed for comparisons among 

different model results, but they did not completely remove the influence of species richness: 

SES values of simulated assemblages were moderately correlated with species richness of the 

meta-community for both the proportional null model (all r2 > 0.47, P < 0.001) and  the 

equiprobable null model (all r2 > 0.20, P < 0.001). NES values performed better except for the 

clumping score – equiprobable null model (r2 = 0.67, P < 0.001) and the C-score – 

proportional null model (r2 = 0.47, P < 0.001) combinations.  

In both cases, the low equilibrium average richness of one to two species per cell 

generated by the transitive and diffuse R competition models were responsible for these 

correlations. Therefore, we used linear models and covariance analysis with NES as the 

dependent variable and average species richness and squared average richness per site as 

covariates to assess the effect of competition and dispersal on patterns of species co-

occurrences.  We note that the standardized effect sizes (proportional null model) of the C-

score and βsim were strongly positively correlated (r = 0.86), whereas the standardized effect 

sizes of the C-score and the clumping score were strongly negatively correlated (r = -0.76). 

The standardized effect size of NODF was negatively correlated with the C-score (r -0.53), 

βsim (r =-0.64), and the clumping score (r = -0.30). The complete raw data used in the present 

study are contained in the electronic supplement S1B. 

 

Results 

In the pure neutral model, limited dispersal and low migration probability reduced the 

time to species equilibrium (Tab. 1, Fig. 2a, b). The logarithmic decay model explained on 

average 85% of the variability in richness and the model fit was independent of dispersal 

strength (Fig. 2b). Competitive effects reduced the fit of the exponential decay model (Fig. 

2b) but edge effects were of minor importance (Fig. 2c) and did not significantly change 

between model settings (Tab. 1). Dispersal limitation significantly decreased average species 

richness in the pure neutral communities (Fig. 3a, Tab. 1). Spatial patterns of richness within 

the grid (Fig. 3b) matched a Poisson distribution.  

Irrespective of the degree of dispersal limitation, transitive pairwise competition severely 

decreased average species richness per patch in comparison to the neutral expectation (Fig. 

3a). The strongest competitor, as defined by the transition elements of the competition matrix 

P, often excluded all other species, resulting in a monoculture. Slopes of the species loss 

function were comparably steep (Fig. 2b), and edge effects of minor importance (Fig. 2c).  
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In contrast, intransitive competitive interactions significantly increased species richness 

in comparison to the neutral expectation (Fig. 3a) and decreased the species richness decay 

slopes (Fig. 2a). Consequently, a generalized linear model (Tab. 2) identified the type of 

competition as being the most important driver of species richness. Transitive competition 

decreased the variability in species richness among grids, leading to a segregated pattern of 

richness (Fig. 3b). Neither transitive nor intransitive competition altered edge effects on 

species richness (Fig. 2c).  

Pure neutral communities were more spatially aggregated, with lower spatial turnover in 

species richness than predicted by the equiprobable null model (Fig. 4a, b, c, electronic 

supplement Fig. S2Aa), but less spatially aggregated with more species turnover than 

predicted by the proportional null model (Fig. 5a, b, c, Fig. S2Ba). Neutral community 

dynamics did not generate significant patterns of nestedness (Figs. 4d, 5d, Fig. S2Ad, S2Bd).  

Pairwise (Tabs. 2, 3) and diffuse (Tab. 2) competition significantly altered species co-

occurrences compared to the neutral expectation. The C-score and clumping indices, but not 

βsim, were most sensitive to competition. Dispersal and competition explained between 5% 

and 75% of variance in co-occurrences depending on the two types of null expectation (Tab. 

2). Standardized effect sizes of the co-occurrence metrics (Figs. S2A, B) were highly 

significant for the majority of competition-dispersal combinations with respect to the 

equiprobable null model, while only 33 of the 2160 comparisons with the proportional null 

model were significant at the 5% error level (1.5%).  

Type of competition and dispersal limitation interacted and caused specific patterns of 

co-occurrences (Tab. 3, Figs. 4, 5). High dispersal caused intransitive competitive 

communities to be significantly (P < 0.001)  more segregated (C-score) than neutral ones 

when compared to an equiprobable null model and less segregated when compared to the 

proportional null model expectation (Tab. 3, Figs. 4, 5). At low dispersal both null models 

detected trends towards aggregation in intransitive communities (Tab. 3). Irrespective of the 

null model transitive communities tended to have an aggregated and/or nested structure 

compared to their pure neutral counterparts (Tab. 3, Figs. 4, 5). This is in line with a higher 

species turnover among sites (βsim) at high dispersal rates (Tab. 3, Fig. 5) compared to the 

neutral expectation (proportional null model).    

Diffuse competition penalizing rare species (diffuse R) had on average similar effects on 

the spatial distribution of species than transitive competition (Figs. 4. 5), while diffuse A 

communities equalled intransitive ones qualitatively in behaviour.  
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Discussion 

In the tradition of the competitive exclusion principle (Gause 1934), a large number of co-

existing species is often attributed to weak competitive interactions (Gilpin 1975, Wootton 

2001, Liao et al. 2015). However, recent theoretical models (Huisman et al. 2001, Rojas-

Echenique and Allesina 2011), pointed to the possibility that intransitive competitive 

hierarchies (Vandermeer 2011, HilleRisLambers et al. 2012) might be an important 

mechanism allowing for species co-existence, although there is little empirical evidence so far 

(Reichenbach et al. 2007, Kraft et al. 2015, Soliveres et al. 2015). Our simulation corroborates 

these predictions. Even a weak degree of intransitive competition significantly increased 

average local richness above the pure neutral expectation (Tab. 2, Fig. 3). Therefore we argue 

that competitive intransitivity might be a neglected factor that increases local richness (Kraft 

et al. 2015, Soliveres et al. 2015). Further, our results suggest that increased species richness 

can occur purely from intransitive competition, and does not require environmental variability 

and associated differential habitat filter processes (Keddy 1992).  

Neutral community dynamics did not cause a modular pattern of species occurrence with 

regions of higher and lower richness (Fig. 3). We speculated (question 2) that competitive 

interactions in combination with low dispersal might cause a respective spatial patterning 

leading to a richness landscape within a homogeneous environment. This was not the case 

(Fig. 3).  Neutral as well as communities governed by intransitive and diffuse A competitive 

hierarchies (Fig. 3b) retained a Poisson random distribution of species richness among the 

grid cells. In contrast, transitive and diffuse R competition had a significant tendency of 

equalizing richness among cells within the overall species poor landscape (Fig. 3b). We note 

that this results might stem, at least partly, from a statistical bias due to the low number of 

species per cell. We also note that at equilibrium, spatial and temporal variability in richness 

are equivalent. Thus our results do also show that competition does not lead to increased 

temporal fluctuations of species richness in single grid cells.    

Since the seminal work of Diamond (1975), replicated patterns of negative species 

association (segregation) are often seen as evidence for interspecific competition (reviewed in 

Götzenberger et al. 2012) although many other reasons for species segregation are known 

(Blois et al. 2014.). Starting with Grime (1973), several authors (reviewed in Chamberlain et 

al. 2014 and Gioria and Osborne 2014) argued that context-dependent competitive strength in 

heterogeneous environments might be the major driver of species segregation among habitats, 

whereas trait differentiation and small-scale environmental variability allows for local co-

existence (e.g. Adler et al. 2013).  
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However, many studies of community assembly rules do not  refer to these mechanistic 

models of species interactions and often treat species spatial segregation as sufficient 

evidence for competition (e.g. Price et al. 2012). Here, we focused on the question of whether 

competitive effects alone permit species coexistence and generate non-random species 

associations. A related question is whether habitat heterogeneity and habitat filtering (Zobel 

1997) are primarily responsible for non-random species associations.  

We found strong evidence that competitive effects alone are indeed able to influence the 

geometry of species occurrences (Tab. 3, Figs. 4, 5, S2A, B). However, there was no simple 

rule or consistent directional change caused by species interactions. Instead, the spatial pattern 

depended on both the type of species interaction and the level of dispersal. Specifically, 

intransitive competition increased species turnover and decreased clumping when compared 

to the predictions of a neutral model with unlimited dispersal (Tab. 3). However, the opposite 

pattern - decreased species turnover and increased clumping - emerged when compared to the 

predictions of a neutral model with limited dispersal (Tab. 3). It seems that dispersal 

limitation and intransitivity are both able to generate small scale clusters of communities with 

distinct species composition. That means from co-occurrence analysis alone we cannot draw 

simple (simplified) conclusions about the effect of competitive interactions on the patterns of 

species co-occurrences (cf. Kraft et al. 2015 for a similar conclusion).     

Soliveres et al. (2015) recently reported a pattern of nested community structure 

associated with intransitive competitive hierarchies in dryland plant assemblages. However, it 

remained unclear whether this effect was due to environmental heterogeneity or due to the 

internal dynamics of species interactions. Our results partly corroborate Soliveres et al. 

(2015): transitive competition increased the degree of meta-community nestedness relative to 

a neutral assemblage (Tab. 3, Figs. 4, 5). This trend is not biased by low species richness 

because the NES transformation effectively removed the richness effect on the NODF metric. 

The influence of intransitive competition on the degree of nestedness is less clear. Although 

we observed the trend Soliveres et al. (2015) reported, statistical corroboration was weak 

(Tab. 3).  Nevertheless, our results suggest that negative species interactions alone might 

suffice for a trend towards nested community structure. 

Magnitude and direction of effect sizes in null model analyses depend on the choice of 

the algorithm and therefore on the underlying assumption about the constraints applied to 

randomization (Gotelli and Ulrich 2012). Different null model approaches frequently lead to 

contradictory effect sizes making the interpretation of pattern challenging. In the present case 

the effect sizes of the C-score of the two null models were partly contradictory (Figs. 4, 5), 
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yielding a pattern of aggregation when compared to the equiprobable expectation, but a 

pattern of segregation when compared to the proportional null model.  

In the present case, we used the liberal equiprobable null model, the more conservative 

(proportional) null model, and the pure neutral model (Rosindell et al. (2012)) as standards for 

comparison. Specifically, we compared patterns generated by three neutral mode ls with and 

without competition. The three different null models served to control for differences in 

species abundances, species richness, and matrix fill. Only this combination allowed for an 

unequivocal interpretation of the results.  

Recently, Rosindell et al. (2012) argued that neutral models provide process based 

adequate standards for ecological patterns. However, the major drawback of neutral modelling 

is the sensitivity to parameter settings, and the fact that those parameters cannot be estimated 

in a non-circular way from the presence-absence matrix. The simplest neutral models are 

based on at least four free parameters: species pool size, dispersal limitation, birth rate, and 

speciation rate. Additionally, total spatial extent and associated edge effects might influence 

the outcome (Babak and He 2009). Thus we argue that process-based neutral models may be 

just as sensitive to model structure as traditional null model analysis. Whether empirical data 

are compared to a neutral model or a null model, a thorough sensitivity analysis with different 

model variation may be necessary to fully understand the results.  

One useful distinction that emerged here is the idea that the null model reveals non-

random patterns above and beyond those generated by matrix constraints such as row and 

column totals, matrix size, or matrix fill. To tease apart mechanisms of habitat filtering, 

species interactions, or dispersal limitation requires additional data and additional tests on the 

spatial pattern of occupied and unoccupied sites, and on the habitat structure of those sites 

(Blois et al. 2014). In contrast, the neutral model formulation explicitly models random 

dispersal and a lack of species interactions, though often with a zero-sum constraint imposed. 

If the parameters for such a model can be estimated independently of the co-occurrence data, 

the neutral model can also be used to generate an expectation for comparison with real data. 

Alternatively, the neutral model predictions can themselves be compared to the predictions of 

a null model (Ulrich 2004, Gotelli and McGill 2006). Neither approach by itself is complete, 

but the combination of null and neutral modelling may be the best way forward.      

Our work has influence on the interpretation of observed patterns of species co-

occurrences in field studies. Many authors  (e.g. Gotelli and McCabe 2002, Götzenberger  et 

al. 2012, Connor et al. 2013) have interpreted non-random segregation as evidence for 

competitive interactions (but see Ulrich and Gotelli 2010, Blois et al. 2014), whereas positive 
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associations (aggregation) have usually been interpreted in terms of habitat filtering and 

facilitation (e.g. Götzenberger  et al. 2012, Vaz et al. 2015). Our results identified clear trade-

offs between the type of competitive interactions and the degree of dispersal: competitive 

interactions can generate species aggregation, and segregation may stem from dispersal 

limitation alone. Possibly, some reported effects of competition on the geometry of species 

occurrences might require reassessment. Consequently, future empirical work on the spatial 

structure of meta-communities needs to include independent information on dispersal ability 

and resource utilization, as well as information on habitat heterogeneity, for a proper 

interpretation of co-occurrence patterns.     
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Table 1. In the pure neutral model migration probability and the degree of dispersal limitation 

influenced final mean species richness, the spatial variability in richness, the edge effect of 

the lattice, and the slope of the logarithmic decrease model. Given are partial η2 values of a 

general mixture linear model. Significant parametric p(F) < 0.001 in bold.  

 

Factor 
Degrees of 

freedom 
Mean species 

richness 
Lloyd Edge Slope 

Migration probability 1 0.61 0.39 0.00 0.89 
Dispersal limitation 2 0.31 0.42 0.01 0.88 
Migration×Dispersal 2 0.46 0.30 0.03 0.87 
Mean species richness 1 - 0.34 0.01 0.81 
Error 53         

r2 (whole model)   0.74 0.51 0.08 0.93 
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Table 2. Main effects general linear modelling of normalized effect sizes of C-score, clumping βsim, and NODF (partial η2 scores) identified 1 

particularly pairwise competitive interactions to influence average species richness, spatial variability in richness (Lloyd index), and patterns of 2 

co-occurrence. Significant parametric p(F) < 0.001 in bold. 3 

 4 

Factor 
Degrees 

of 
freedom 

Mean 

species 

richness 

Lloyd Equiprobable null model Proportional null model 

 

C-score Clumping βsim NODF C-score Clumping βsim NODF 

Migration probability 1 0.07 0.04 0.06 0.02 0.01 0.01 0.03 <0.01 <0.01 <0.01 

Dispersal limitation 2 0.03 0.02 0.04 0.01 <0.01 <0.01 0.02 0.01 0.01 <0.01 

Diffuse competition 2 0.46 0.20 0.10 0.01 <0.01 0.05 0.01 0.02 <0.01 0.01 

Pairwise competition 2 0.84 0.01 0.42 0.06 0.01 0.02 0.03 0.08 <0.01 0.04 
Mean species richness 1 - 0.54 0.05 0.11 0.01 0.30 0.24 0.04 0.04 0.09 
Squared mean species richness 1 - 0.49 <0.01 0.08 0.01 0.25 0.24 0.05 0.03 0.13 

Error 530                     

r2 (whole model)   0.86 0.86 0.75 0.61 0.06 0.65 0.66 0.24 0.23 0.23 

  5 
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Table 3. Tukey post hoc significances p(F) for pairwise competitive model comparisons (unequal slope covariance analysis with average final 6 

species richness and squared richness as covariates) for models without diffuse competition (δ = 0) with high migration probability and unlimited 7 

dispersal (HU) and low migration probability and limited dispersal (LL). Normalized effects sizes (NES) entered the models as dependent 8 

variable. First NES < second NES in white (black letters), first NES > second NES in grey with white letters.  9 

 10 

Comparison Equiprobable null model Proportional null model 

 

C-
score Clumping βsim NODF C-score Clumping βsim NODF 

HH 

Neutral - Transitive 0.02 0.001 <0.001 <0.001 <0.001 0.87 <0.001 0.005 

Neutral - Intransitive <0.001 0.84 <0.001 0.11 <0.001 <0.001 0.21 0.002 

Transitive - Intransitive <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.94 

 

LL 

Neutral - Transitive <0.001 <0.001 0.007 <0.001 <0.001 <0.001 0.11 <0.001 

Neutral - Intransitive <0.001 0.18 0.95 0.82 0.01 <0.001 0.80 0.07 

Transitive - Intransitive <0.001 <0.001 0.004 <0.001 <0.001 0.28 0.04 0.02 

  11 
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Figure 1. Fully transitive (a) and intransitive (b) competitive strength matrices (as defined by Laird and Schamp 2006 and Ulrich et al. 2014) of 12 

five species can be unequivocally transformed into respective column stochastic transition matrices (entries denote probability levels of 13 

transition) by the algorithm derived in Ulrich et al. (2014). The latter provide estimates of temporal changes in abundances (A0, A1, …) and 14 

equilibrium abundances (the dominant eigenvector EV1 of the transition matrix). 1s in the competitive strength matrix indicate competitive 15 

superiority. For example, in panel (b) species a (in rows) is superior to all species except species e. Matrix multiplication of the associated 16 

transition matrix with the abundance vectors now returns species abundances in the next generations. The dominant eigenvector of this matrix 17 

predicts species abundances at equilibrium. In this model of an isolated local community, intransitivity predicts increased equilibrium species 18 

richness. 19 

 20 

 21 
  22 

Competitive strength matrix EV1

(a)

Species a b c d e Species a b c d e A0 A1

a 1 1 1 1 1 a 1 1 0.5 0.3 0 15 38 1

b 0 1 1 1 1 b 0 0 0.5 0.3 0 20 3.5 0

c 0 0 1 1 1 c 0 0 0 0.3 0 5 1 0

d 0 0 0 1 1 d 0 0 0 0 0 3 0 0

e 0 0 0 0 1 e 0 0 0 0 0 1 0 0

(b)

Species a b c d e Species a b c d e

a 1 1 1 1 0 a 0 1 0.5 0.3 0 15 23 0.6

b 0 1 1 1 1 b 0 0 0.5 0.3 0.3 20 3.8 0.4

c 0 0 1 1 1 c 0 0 0 0.3 0.3 5 1.3 0.3

d 0 0 0 1 1 d 0 0 0 0 0.3 3 0.3 0.2

e 1 0 0 0 1 e 1 0 0 0 0 1 15 0.6

Transition matrix Abundance vectors
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Figure 2. Average slope of the exponential species decay curve (a), and the respective coefficient of determination r2 (b), and the effect of grid 23 

edges (c) for neutral models with high migration probability and unlimited dispersal (HU, grey) and low migration probability and limited 24 

dispersal (LL, dark grey) for neutral communities (light grey) and for neutral communities with additional transitive and intransitive competition 25 

hierarchies, and diffuse competition penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation.    26 
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Figure 3. Average species richness (a), and the spatial variability in richness as quantified by the index of Lloyd (b) for neutral models with high 29 

migration probability and unlimited dispersal (HU, grey) and low migration probability and limited dispersal (LL, dark grey) for neutral 30 

communities (light grey) and for neutral communities with additional transitive and intransitive competition hierarchies, and diffuse competition 31 

penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation.    32 
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Figure 4. Normalized effects sizes NES (equiprobable null model) the C-core (a), the clumping score (b), βsim (c), and NODF (d) for neutral 37 

models with high migration probability and unlimited dispersal (HU, grey bars) and low migration probability and limited dispersal (LL, dark 38 

grey) for neutral communities (light grey) for those with additional transitive and intransitive competition hierarchies, and diffuse competition 39 

penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation obtained from 10 replicates each.    40 
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 47 
Figure 5. Normalized effects sizes NES (proportional null model) the C-core (a), the clumping score (b), βsim (c), and NODF (d) for neutral 48 

models with high migration probability and unlimited dispersal (HU, grey bars) and low migration probability and limited dispersal (LL, dark 49 

grey) for neutral communities (light grey) for those with additional transitive and intransitive competition hierarchies, and diffuse competition 50 

penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation obtained from 10 replicates each.    51 
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