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Competitive interactions change the pattern of species co-occurrences under neutral dispersal

Introduction

Ecologists have devoted much effort to understanding the role of competitive interactions in shaping ecological communities (reviewed in Weiher and Keddy 1999[START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF][START_REF] Chave | Comparing classical community models: theoretical consequences for patterns of diversity[END_REF][START_REF] Hillerislambers | Rethinking community assembly through the lens of coexistence theory[END_REF]. Within the framework of competitive exclusion [START_REF] Gause | The struggle for existence[END_REF], a simple dominance hierarchy of competitive strengths (species A > species B > species C…) should eventually lead to a monoculture of the competitively superior species. But this is rarely seen in nature [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF]. Instead, most communities are characterized by a small number of common species (which may be competitively dominant), and a large number of rare species (which may be competitively inferior).

How are inferior competitors able to persist in a community? Proposed mechanisms include niche segregation [START_REF] Chesson | Mechanisms of maintenance of species diversity[END_REF], environmental heterogeneity [START_REF] Amarasekare | Competitive coexistence in spatially structured environments: a synthesis[END_REF], abiotic stress [START_REF] Bowker | Competition increases with abiotic stress and regulates the diversity of biological soil crusts[END_REF], disturbance [START_REF] Watt | Pattern and process in the plant community[END_REF][START_REF] Grime | Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[END_REF], and limited dispersal [START_REF] Hurtt | The consequences of recruitment limitation: reconciling chance, history and competitive differences between plants[END_REF][START_REF] Kerr | Local dispersal promotes biodiversity in a real-life game of rock-paperscissors[END_REF][START_REF] Hillerislambers | Rethinking community assembly through the lens of coexistence theory[END_REF]. These mechanisms may also explain the observed high diversity and co-existence of ecologically similar species [START_REF] Fox | The intermediate disturbance hypothesis should be abandoned[END_REF]. In this respect, [START_REF] Grime | Competitive exclusion in herbaceous vegetation[END_REF] highlighted the importance of context-dependent competitive strength, in which the ordering of species in a competitive hierarchy changes in different environments (Chamberlain et al. 2014, Gioria and[START_REF] Gioria | Resource competition in plant invasions: emerging patterns and research needs[END_REF].

If competitive strength is context-dependent, species richness and abundance should differentially co-vary with environmental factors that most limit reproduction, leading to segregated occurrences of competing species along the environmental gradient. [START_REF] Diamond | Assembly of species communities[END_REF] used examples of perfectly segregated species pairs ("checkerboard pairs") as evidence for competitive exclusion (Diamond 1975, p 387), although he did not explicitly invoke context-dependent competitive interactions. Subsequent null model analyses of species cooccurrence have frequently detected individual species pairs and assemblages in which there is less co-occurrence than expected by chance [START_REF] Gotelli | Species co-occurrence: a meta-analysis of J.M. Diamond's assembly rules model[END_REF][START_REF] Ulrich | Null model analysis of species associations using abundance data[END_REF], 2013). Following [START_REF] Diamond | Assembly of species communities[END_REF] approach, many authors have inferred past or present competitive exclusion from spatially segregated co-occurrence patterns (e.g. [START_REF] Pitta | Significant pairwise co-occurrence patterns are not the rule in the majority of biotic communities[END_REF][START_REF] Kennedy | Missing checkerboards? An absence of competitive signal in Alnusassociated ectomycorrhizal fungal communities[END_REF], but see [START_REF] Connor | The checkered history of checkerboard distributions[END_REF]. Comparing communities at different times, [START_REF] Zaplata | Increasing structure and species-driven phases in plant communities during early succession[END_REF] and [START_REF] Ulrich | Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession[END_REF] found that local plant assemblages became increasingly spatially segregated during early succession, and that these changes were associated with spatial variability in soil attributes.

Author-produced version of the article published in Oikos, 2017, 126 (1), 91-100.

The original publication is available at https://onlinelibrary.wiley.com/ doi:10.1111/oik.03392

Although empirical and statistical support for segregated and aggregated species pairs is widespread [START_REF] Lyons | Holocene shifts in the assembly of terrestrial plant and animal communities implicate increasing human impacts[END_REF], these community patterns are hard to generate from theoretical models. Only a few studies have so far evaluated whether and to what degree competition alone (without additional habitat effects like filtering) is able to produce a spatially segregated pattern of species occurrences (e.g. [START_REF] Wootton | Causes of species diversity differences: a comparative analysis of Markov models[END_REF]. With appropriate parameter settings, simple two-species [START_REF] Levin | Dispersion and population interactions[END_REF]) and three-species (Caraco and Whitham 1984) interaction models can predict aggregated or segregated occurrences. However, patterns of species aggregation and segregation are more difficult to generate for models of diffuse competition in multi-species assemblages [START_REF] Hastings | Can competition be detected using species co-occurrence data?[END_REF].

A number of theoretical (Allesina andLevine 2011, Ulrich et al. 2014) and empirical [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF][START_REF] Ulrich | Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession[END_REF]) studies suggest that competitive intransitivity is an important mechanism that allows species to coexist within a single community in spite of strong competitive interactions. Intransitive competitive networks [START_REF] Gilpin | Limit cycles in competition communities[END_REF]) are formed by loops in the hierarchy of competitive strength. For example, in the he rock-scissors-paper game, the competitive hierarchy species A> species B> species C> species A forms a loop that can theoretically promote coexistence [START_REF] Huisman | Towards a solution of the plankton paradox: the importance of physiology and life history[END_REF][START_REF] Kerr | Local dispersal promotes biodiversity in a real-life game of rock-paperscissors[END_REF][START_REF] Laird | Competitive intransitivity promotes species co-existence[END_REF][START_REF] Ulrich | A consumer's guide to nestedness analysis[END_REF]. [START_REF] Ulrich | Matrix models for quantifying competitive intransitivity from species abundance data[END_REF] demonstrated that transitive and intransitive competitive hierarchies in ecological communities can be unequivocally translated into a stable state distribution of abundances by means of a Markov chain model [START_REF] Horn | Markovian properties of forest succession[END_REF]. This model predicts constant abundance distributions within a homogeneous environment and no spatial segregation of species occurrences among sites [START_REF] Ulrich | Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession[END_REF]. However, if competitive hierarchies differ among sites because of environmental conditions, species abundance distributions and co-occurrence patterns change. In this scenario, species segregation among sites is solely linked to environmental heterogeneity and not caused by the underlying competitive hierarchy [START_REF] Ulrich | Species interactions and random dispersal rather than habitat filtering drive community assembly during early plant succession[END_REF].

Models of context-dependent competition among sites and intransitive competitive

hierarchies within sites make different assumptions about equilibrium conditions. Context dependency explicitly includes environmental spatial and temporal variability [START_REF] Chamberlain | How context dependent are species interactions?[END_REF]) and thus applies to both equilibrium and non-equilibrium conditions. It does not make precise predictions about changes in species abundances and dominance orders in space.

In contrast, models of intransitivity are most relevant to equilibrium conditions and have so far been applied only to closed assemblages in which species compete locally and are not affected by migration (e.g., [START_REF] Allesina | A competitive network theory of species diversity[END_REF]. But some local communities are organized as an open metacommunity, which is defined by [START_REF] Gilpin | Metapopulation dynamics: empirical and theoretical investigations[END_REF] and [START_REF] Leibold | The metacommunity concept: a framework for multi-scale community ecology[END_REF] as a set of interacting local communities that are linked by the dispersal of multiple, potentially interacting species. For open metacommunities, it is unclear whether models of intransitivity will predict constancy in the richness (and abundances) of local assemblages. For example, [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF] reported that local dryland and grassland plant communities often contained intransitive loops, but that these competitive hierarchies explained little of the spatial variation in species richness. Interestingly, the frequency of intransitivity decreased with increasing habitat heterogeneity [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF] suggesting that species richness might be controlled by both intransitive networks and context-dependent competition.

In this study, we ask how competitive transitivity and intransitivity translate into dominance orders in a meta-community that incorporates dispersal and non-equilibrium dynamics at local scales. The neutral model framework [START_REF] Hubbell | The unified neutral theory of biogeography and biodiversity[END_REF] allows us to generate predictions of local abundance and species composition from a set of first principles (birth/death processes, dispersal, and speciation). These predictions can then be compared to patterns in real assemblages [START_REF] Gotelli | Null model analysis of species co-occurrence patterns[END_REF]McGill 2006, Rosindell et al. 2012).

In their original formulation, neutral models were based on assumptions of random dispersal and the ecological equivalence of species [START_REF] Hubbell | The unified neutral theory of biogeography and biodiversity[END_REF][START_REF] Chave | Neutral theory and community ecology[END_REF] (2) Does competition change the spatial or temporal variability in local richness?

(3) Does competitive intransitivity alone lead to species segregation across sites within a meta-community?

(4) Do diffuse and direct competitive interactions predict different patterns of species coexistence?

Materials and methods

The dispersal-limited competition model

The present study is based on a simulation platform for neutral modelling that was previously used to show that appropriately parameterized neutral models are able to generate segregated spatial distributions of species co-occurrence [START_REF] Ulrich | Species co-occurrences and neutral models: reassessing J. M. Diamond's assembly rules[END_REF]) and that ground beetle meta-community structures are indistinguishable from neutral predictions [START_REF] Ulrich | Are ground beetles neutral?[END_REF]. In our original simulations, we use a square grid of 100 patches initially populated randomly by a total of 10,000 individuals belonging to 30 species. This placement procedure leads to a grid of patches with different maximum numbers of individuals per patch (carrying capacities) and a Poisson distribution of species richness. The grid of occupied patches represents the metacommunity, whereas each occupied patch represents a local community. In the following, we will interchangeably use the terms grid/metacommunity and patch/local community. The subsequent dynamics in each patch follows a zero-sum rule [START_REF] Hubbell | The unified neutral theory of biogeography and biodiversity[END_REF], meaning that each local birth, death, immigration, or emigration (all probabilities set to 0.01) is immediately counterbalanced by a corresponding death, birth, emigration, or immigration. Any grid-wide species extinction is counterbalanced by a single point mutation speciation in a randomly selected patch. In contrast to [START_REF] Hubbell | The unified neutral theory of biogeography and biodiversity[END_REF] original formulation, this point mutation speciation ensures that the total number of species within the meta-community remains constant.

In this study, we added two features to this neutral model. First, we followed Jabot and Chave ( 2011) and introduced death rates that are species-specific and incorporate interspecific density-dependence. The local death probability π i of an individual of species i in a community of j species is given by:

= ∑ (1)
where d i is the density of species i and δ is the density-dependence parameter. For δ = 0, death probabilities are proportional to the observed abundance distribution and thus equal for all individuals. For δ < 0, the model penalizes abundant species (diffuse A) by higher local
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death rates, and if δ > 0, the model penalizes rare species (diffuse R). For δ = 1 species mortality rates are identical irrespective of abundance. This modification incorporates effects of diffuse (indirect) competition from the entire assemblage.

Second, we incorporated the effects of direct pairwise competition on birth rates using the Markov chain approach of [START_REF] Ulrich | Matrix models for quantifying competitive intransitivity from species abundance data[END_REF]. These authors showed that any j x j matrix C of pairwise species interaction effects can be translated into a unique column stochastic transition matrix P (cf. Fig. 1). The inner product PA 0 =A 1 provides the vector of expected (2) An intransitive competitive hierarchy generates a non-absorbing ergodic transition matrix and therefore predicts coexistence of species (Fig. 1). Intransitivity might either increase or decrease the equilibrium species richness compared to the predictions of the simple neutral model.

(3) Diffuse competition that penalizes death rates of less abundant species has the same effect as strong competitive hierarchy in favouring abundant species and accentuating dominance orders. Therefore it should increase the tendency of the model to generate a monoculture of the strongest competitor.

Using stochastic simulations, we ask whether these predictions still hold in a spatially explicit model of an open metacommunity that incorporates dispersal.

Simulation protocol
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To assess the influence of interspecific competition on otherwise neutral communities, we created a factorial design of five binary model parameters. We crossed two levels of dispersal limitation (unconstrained = all cells are equally likely to be the target of dispersal, limited = only the adjacent cells (the Moore Neighbourhood) can reached in a single dispersal step), with two levels of migration rates (low, high), with two levels of diffuse competition penalizing either rare ( δ = 0.5) or abundant (δ = -0.5) species, and two levels of competitive interactions (intransitive, transitive; cf. electronic supplement S1A and S1B, respectively).

Together with the four neutral scenarios of δ = 0 and P = I (I being the identity matrix), we considered a total of 2 4 + 4 = 20 parameter combinations. Because variability in the model output within parameter sets was low, we replicated each parameter combination only 10 times.

Transitive competitive interactions led to monocultures of the best competitors, although the time to complete competitive exclusion was very long for some parameter combinations (> 90,000 time steps). To ensure that the slowest-running model (diffuse competitive interactions and high dispersal rates; Table 1) reached equilibrium, we ran all models for 92,000 time steps, which incorporated 1,010,000 birth/death, immigration/emigration, speciation/extinction events, that is approximately 100 cycles of complete turnover in species composition. Equilibrium conditions were defined by a change of < 1 species per single time step of the moving average of species richness in the grid. We further traced the decrease in average species richness among sites (S M ) from the initial 27 to 30 species per site with the slope z of the semi-logarithmic regression model = -( ) where t denotes the time step of the model and S 0 the initial species richness. The semi-logarithmic model provided the best linear fit to the decay of species richness through time.

Analysing community structure and co-occurrences

For each grid, we quantified the degree of species segregation (negative species associations) with the common C-score of species co-occurrences (a normalised count of the number of pairwise mutual exclusions among sites; Stone and Roberts 1990). Species spatial aggregation was quantified by the clumping score, which is a normalised count of the number of pairwise co-occurrences among sites [START_REF] Ulrich | Pattern detection in null model analysis[END_REF]. Nestedness measures the ordered loss of species along a focal environmental or ecological gradient [START_REF] Patterson | Nested subsets and the structure of insular mammalian faunas and archipelagos[END_REF]Atmar 1986, Ulrich et al. 2009) and is therefore distinct (although not mutually exclusive) from species turnover [START_REF] Ulrich | Pattern detection in null model analysis[END_REF]. We quantified the degree of nestedness using the standard NODF (nestedness from overlap and decreasing fill) metric, which is a Metrics of species co-occurrences depend on matrix row (species) and column (sites) totals and cannot be compared directly. Therefore, we used a null model approach and compared observed scores with those obtained from 200 matrices randomly resampled by two different null algorithms. First, we resampled species incidences where placement probabilities were uniform for all grid cells (the equiprobable null model algorithm). In the second null model, placement probabilities were proportional to observed marginal occurrence totals (the proportional -proportional null model, Ulrich and Gotelli 2012). We did not use the popular fixed-fixed algorithm [START_REF] Gotelli | Null model analysis of species co-occurrence patterns[END_REF] because it preserves the marginal totals of the matrix, which would lead to low variation in the NODF and lack of variation in the beta metrics.

Neutral models of limited dispersal (e.g. [START_REF] Babak | A neutral model of edge effects[END_REF] and biogeographic models of the mid-domain effect [START_REF] Colwell | The mid-domain effect: geometric constraints on the geography of species richness[END_REF] predict that random processes can lead to a reduction of species richness near the boundaries of spatial domains. To estimate the size of this effect, we calculated the difference ∆S in richness between the 12 cells at each of the four grid corners and the 12 cells in the centre of the grid. Increases in species richness towards the centre of the spatial grid will yield a negative ∆S. To assess the spatial variability in species richness, we used [START_REF] Lloyd | Mean Crowding[END_REF] variance -mean ratio = -+ 1, with µ and σ 2 being the mean species richness and its variance, respectively. I = 1 is the expected value in the case SES values of simulated assemblages were moderately correlated with species richness of the meta-community for both the proportional null model (all r 2 > 0.47, P < 0.001) and the equiprobable null model (all r 2 > 0.20, P < 0.001). NES values performed better except for the clumping score -equiprobable null model (r 2 = 0.67, P < 0.001) and the C-scoreproportional null model (r 2 = 0.47, P < 0.001) combinations.

In both cases, the low equilibrium average richness of one to two species per cell generated by the transitive and diffuse R competition models were responsible for these correlations. Therefore, we used linear models and covariance analysis with NES as the dependent variable and average species richness and squared average richness per site as covariates to assess the effect of competition and dispersal on patterns of species cooccurrences. We note that the standardized effect sizes (proportional null model) of the Cscore and β sim were strongly positively correlated (r = 0.86), whereas the standardized effect sizes of the C-score and the clumping score were strongly negatively correlated (r = -0.76).

The standardized effect size of NODF was negatively correlated with the C-score (r -0.53), β sim (r =-0.64), and the clumping score (r = -0.30). The complete raw data used in the present study are contained in the electronic supplement S1B.

Results

In the pure neutral model, limited dispersal and low migration probability reduced the time to species equilibrium (Tab. 1, Fig. 2a,b). The logarithmic decay model explained on average 85% of the variability in richness and the model fit was independent of dispersal strength (Fig. 2b). Competitive effects reduced the fit of the exponential decay model (Fig. 2b) but edge effects were of minor importance (Fig. 2c) and did not significantly change between model settings (Tab. 1). Dispersal limitation significantly decreased average species richness in the pure neutral communities (Fig. 3a, Tab. 1). Spatial patterns of richness within the grid (Fig. 3b) matched a Poisson distribution.

Irrespective of the degree of dispersal limitation, transitive pairwise competition severely decreased average species richness per patch in comparison to the neutral expectation (Fig. 3a). The strongest competitor, as defined by the transition elements of the competition matrix P, often excluded all other species, resulting in a monoculture. Slopes of the species loss function were comparably steep (Fig. 2b), and edge effects of minor importance (Fig. 2c).
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In contrast, intransitive competitive interactions significantly increased species richness in comparison to the neutral expectation (Fig. 3a) and decreased the species richness decay slopes (Fig. 2a). Consequently, a generalized linear model (Tab. 2) identified the type of competition as being the most important driver of species richness. Transitive competition decreased the variability in species richness among grids, leading to a segregated pattern of richness (Fig. 3b). Neither transitive nor intransitive competition altered edge effects on species richness (Fig. 2c).

Pure neutral communities were more spatially aggregated, with lower spatial turnover in species richness than predicted by the equiprobable null model (Fig. 4a, b, c, electronic supplement Fig. S2Aa), but less spatially aggregated with more species turnover than predicted by the proportional null model (Fig. 5a, b, c, Fig. S2Ba). Neutral community dynamics did not generate significant patterns of nestedness (Figs. 4d, 5d, Fig. S2Ad,S2Bd).

Pairwise (Tabs. 2, 3) and diffuse (Tab. 2) competition significantly altered species cooccurrences compared to the neutral expectation. The C-score and clumping indices, but not β sim , were most sensitive to competition. Dispersal and competition explained between 5% and 75% of variance in co-occurrences depending on the two types of null expectation (Tab.

2). Standardized effect sizes of the co-occurrence metrics (Figs. S2A, B) were highly significant for the majority of competition-dispersal combinations with respect to the equiprobable null model, while only 33 of the 2160 comparisons with the proportional null model were significant at the 5% error level (1.5%).

Type of competition and dispersal limitation interacted and caused specific patterns of co-occurrences (Tab. 3,Figs. 4,5). High dispersal caused intransitive competitive communities to be significantly (P < 0.001) more segregated (C-score) than neutral ones when compared to an equiprobable null model and less segregated when compared to the proportional null model expectation (Tab. 3,Figs. 4,5). At low dispersal both null models detected trends towards aggregation in intransitive communities (Tab. 3). Irrespective of the null model transitive communities tended to have an aggregated and/or nested structure compared to their pure neutral counterparts (Tab. 3,Figs. 4,5). This is in line with a higher species turnover among sites (β sim ) at high dispersal rates (Tab. 3, Fig. 5) compared to the neutral expectation (proportional null model).

Diffuse competition penalizing rare species (diffuse R) had on average similar effects on the spatial distribution of species than transitive competition (Figs. 4. 5), while diffuse A communities equalled intransitive ones qualitatively in behaviour.
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Discussion

In the tradition of the competitive exclusion principle [START_REF] Gause | The struggle for existence[END_REF], a large number of coexisting species is often attributed to weak competitive interactions [START_REF] Gilpin | Limit cycles in competition communities[END_REF][START_REF] Wootton | Causes of species diversity differences: a comparative analysis of Markov models[END_REF][START_REF] Liao | Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events[END_REF]. However, recent theoretical models (Huisman et al. 2001, Rojas-Echenique andAllesina 2011), pointed to the possibility that intransitive competitive hierarchies [START_REF] Vandermeer | Intransitive loops in ecosystem models: From stable foci to heteroclinic cycles[END_REF][START_REF] Hillerislambers | Rethinking community assembly through the lens of coexistence theory[END_REF]) might be an important mechanism allowing for species co-existence, although there is little empirical evidence so far [START_REF] Reichenbach | Mobility promotes and jeopardizes biodiversity in rock-paperscissors games[END_REF][START_REF] Kraft | Plant functional traits and the multidimensional nature of species co-occurrence[END_REF][START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF]. Our simulation corroborates these predictions. Even a weak degree of intransitive competition significantly increased average local richness above the pure neutral expectation (Tab. 2, Fig. 3). Therefore we argue that competitive intransitivity might be a neglected factor that increases local richness [START_REF] Kraft | Plant functional traits and the multidimensional nature of species co-occurrence[END_REF][START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF]. Further, our results suggest that increased species richness can occur purely from intransitive competition, and does not require environmental variability and associated differential habitat filter processes [START_REF] Keddy | Assembly and response rules: two goals for predictive community ecology[END_REF].

Neutral community dynamics did not cause a modular pattern of species occurrence with regions of higher and lower richness (Fig. 3). We speculated (question 2) that competitive interactions in combination with low dispersal might cause a respective spatial patterning leading to a richness landscape within a homogeneous environment. This was not the case (Fig. 3). Neutral as well as communities governed by intransitive and diffuse A competitive hierarchies (Fig. 3b) retained a Poisson random distribution of species richness among the grid cells. In contrast, transitive and diffuse R competition had a significant tendency of equalizing richness among cells within the overall species poor landscape (Fig. 3b). We note that this results might stem, at least partly, from a statistical bias due to the low number of species per cell. We also note that at equilibrium, spatial and temporal variability in richness are equivalent. Thus our results do also show that competition does not lead to increased temporal fluctuations of species richness in single grid cells.

Since the seminal work of [START_REF] Diamond | Assembly of species communities[END_REF], replicated patterns of negative species association (segregation) are often seen as evidence for interspecific competition (reviewed in Götzenberger et al. 2012) although many other reasons for species segregation are known [START_REF] Blois | A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary[END_REF]. Starting with [START_REF] Grime | Competitive exclusion in herbaceous vegetation[END_REF], several authors (reviewed in [START_REF] Chamberlain | How context dependent are species interactions?[END_REF][START_REF] Gioria | Resource competition in plant invasions: emerging patterns and research needs[END_REF][START_REF] Gioria | Resource competition in plant invasions: emerging patterns and research needs[END_REF] argued that context-dependent competitive strength in heterogeneous environments might be the major driver of species segregation among habitats, whereas trait differentiation and small-scale environmental variability allows for local coexistence (e.g. [START_REF] Adler | Trait-based test of coexistence mechanisms[END_REF].
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However, many studies of community assembly rules do not refer to these mechanistic models of species interactions and often treat species spatial segregation as sufficient evidence for competition (e.g. [START_REF] Price | Small-scale grassland assembly patterns differ above and below the soil surface[END_REF]. Here, we focused on the question of whether competitive effects alone permit species coexistence and generate non-random species associations. A related question is whether habitat heterogeneity and habitat filtering [START_REF] Zobel | Competitive strength matrices used in the present study, B: Complete raw data. Electronic supplement S2: Standardized effect sizes (SES) of the co-occurrences metrics[END_REF]) are primarily responsible for non-random species associations.

We found strong evidence that competitive effects alone are indeed able to influence the geometry of species occurrences (Tab. 3, Figs. 4, 5, S2A, B). However, there was no simple rule or consistent directional change caused by species interactions. Instead, the spatial pattern depended on both the type of species interaction and the level of dispersal. Specifically, intransitive competition increased species turnover and decreased clumping when compared to the predictions of a neutral model with unlimited dispersal (Tab. 3). However, the opposite pattern -decreased species turnover and increased clumping -emerged when compared to the predictions of a neutral model with limited dispersal (Tab. 3). It seems that dispersal limitation and intransitivity are both able to generate small scale clusters of communities with distinct species composition. That means from co-occurrence analysis alone we cannot draw simple (simplified) conclusions about the effect of competitive interactions on the patterns of species co-occurrences (cf. [START_REF] Kraft | Plant functional traits and the multidimensional nature of species co-occurrence[END_REF] for a similar conclusion). [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF] recently reported a pattern of nested community structure associated with intransitive competitive hierarchies in dryland plant assemblages. However, it remained unclear whether this effect was due to environmental heterogeneity or due to the internal dynamics of species interactions. Our results partly corroborate [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF]: transitive competition increased the degree of meta-community nestedness relative to a neutral assemblage (Tab. 3,Figs. 4,5). This trend is not biased by low species richness because the NES transformation effectively removed the richness effect on the NODF metric.

The influence of intransitive competition on the degree of nestedness is less clear. Although we observed the trend [START_REF] Soliveres | Intransitive competition is widespread in plant communities and maintains species richness[END_REF] reported, statistical corroboration was weak (Tab. 3). Nevertheless, our results suggest that negative species interactions alone might suffice for a trend towards nested community structure.

Magnitude and direction of effect sizes in null model analyses depend on the choice of the algorithm and therefore on the underlying assumption about the constraints applied to randomization [START_REF] Ulrich | A null model algorithm for presence -absence matrices based on proportional resampling[END_REF]. Different null model approaches frequently lead to contradictory effect sizes making the interpretation of pattern challenging. In the present case the effect sizes of the C-score of the two null models were partly contradictory (Figs. 4,5),
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In the present case, we used the liberal equiprobable null model, the more conservative (proportional) null model, and the pure neutral model [START_REF] Rosindell | The case for ecological neutral theory[END_REF]) as standards for comparison. Specifically, we compared patterns generated by three neutral mode ls with and without competition. The three different null models served to control for differences in species abundances, species richness, and matrix fill. Only this combination allowed for an unequivocal interpretation of the results.

Recently, [START_REF] Rosindell | The case for ecological neutral theory[END_REF] argued that neutral models provide process based adequate standards for ecological patterns. However, the major drawback of neutral modelling is the sensitivity to parameter settings, and the fact that those parameters cannot be estimated in a non-circular way from the presence-absence matrix. The simplest neutral models are based on at least four free parameters: species pool size, dispersal limitation, birth rate, and speciation rate. Additionally, total spatial extent and associated edge effects might influence the outcome [START_REF] Babak | A neutral model of edge effects[END_REF]. Thus we argue that process-based neutral models may be just as sensitive to model structure as traditional null model analysis. Whether empirical data are compared to a neutral model or a null model, a thorough sensitivity analysis with different model variation may be necessary to fully understand the results.

One useful distinction that emerged here is the idea that the null model reveals nonrandom patterns above and beyond those generated by matrix constraints such as row and column totals, matrix size, or matrix fill. To tease apart mechanisms of habitat filtering, species interactions, or dispersal limitation requires additional data and additional tests on the spatial pattern of occupied and unoccupied sites, and on the habitat structure of those sites [START_REF] Blois | A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary[END_REF]. In contrast, the neutral model formulation explicitly models random dispersal and a lack of species interactions, though often with a zero-sum constraint imposed.

If the parameters for such a model can be estimated independently of the co-occurrence data, the neutral model can also be used to generate an expectation for comparison with real data.

Alternatively, the neutral model predictions can themselves be compared to the predictions of a null model (Ulrich 2004, Gotelli and[START_REF] Gotelli | Null versus neutral models: what's the difference?[END_REF]. Neither approach by itself is complete, but the combination of null and neutral modelling may be the best way forward.

Our work has influence on the interpretation of observed patterns of species cooccurrences in field studies. Many authors (e.g. [START_REF] Gotelli | Species co-occurrence: a meta-analysis of J.M. Diamond's assembly rules model[END_REF], Götzenberger et al. 2012[START_REF] Connor | The checkered history of checkerboard distributions[END_REF] associations (aggregation) have usually been interpreted in terms of habitat filtering and facilitation (e.g. Götzenberger et al. 2012[START_REF] Vaz | Plant species segregation in dune ecosystems emphasises competition and species sorting over facilitation[END_REF]. Our results identified clear tradeoffs between the type of competitive interactions and the degree of dispersal: competitive interactions can generate species aggregation, and segregation may stem from dispersal limitation alone. Possibly, some reported effects of competition on the geometry of species occurrences might require reassessment. Consequently, future empirical work on the spatial structure of meta-communities needs to include independent information on dispersal ability and resource utilization, as well as information on habitat heterogeneity, for a proper interpretation of co-occurrence patterns. Author-produced version of the article published in Oikos, 2017, 126 (1), 91-100.

The original publication is available at https://onlinelibrary.wiley.com/ doi:10.1111/oik.03392

species abundances A 1

 1 after one time step, given initial abundances A 0 . Within a neutral model framework, birth probabilities are proportional to current abundances. vector Q, which (after normalization) contains the local birth probabilities of an individual in the community. In this way, our model incorporates effects of direct (pairwise) competition on birth rates and effects of indirect (diffuse) competition on death rates. In the absence of dispersal this model of competition yields three qualitative predictions for isolated local communities:(1) A fully transitive competitive hierarchy modulates abundances in favour of the stronger competitors by increasing their fecundity while leaving death probabilities unchanged (Fig1). Because the respective transition matrix (P) generated from the matrix of competitive strength (C) describes an absorbing state (Fig.1)[START_REF] Ulrich | Matrix models for quantifying competitive intransitivity from species abundance data[END_REF]), this Markov model predicts that the final result of transitive competition is a monoculture of the strongest competitor, independent of the model settings.

  of a Poisson random distribution, I < 1 indicates equitability in richness across the grid, and I > 1 indicates clumping. For comparison among model settings, we used the normalised effect sizes (NES = (observed -expected scores) / expected scores) and standardized effects sizes [SES = (observed -expected scores)/standard deviation of expectation]. Under the assumption of a normal distribution of errors, |SES score | > 1.96 indicates approximate statistical significance at

Figure 1 .Figure 2 .Figure 3 .

 123 Figure 1. Fully transitive (a) and intransitive (b) competitive strength matrices (as defined by Laird and Schamp 2006 and Ulrich et al. 2014) of 12 five species can be unequivocally transformed into respective column stochastic transition matrices (entries denote probability levels of 13 transition) by the algorithm derived in Ulrich et al. (2014). The latter provide estimates of temporal changes in abundances (A0, A1, …) and 14 equilibrium abundances (the dominant eigenvector EV1 of the transition matrix). 1s in the competitive strength matrix indicate competitive 15 superiority. For example, in panel (b) species a (in rows) is superior to all species except species e. Matrix multiplication of the associated 16 transition matrix with the abundance vectors now returns species abundances in the next generations. The dominant eigenvector of this matrix 17 predicts species abundances at equilibrium. In this model of an isolated local community, intransitivity predicts increased equilibrium species 18 richness. 19 20

  Author-produced version of the article published inOikos, 2017, 126 (1), 91-100.The original publication is available at https://onlinelibrary.wiley.com/ doi:10.1111/oik.03392 normalized count of the degree of species overlap among the sequence of plots ordered according to decreasing species richness[START_REF] Almeida-Neto | A consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification[END_REF]. NODF ranges from zero (perfect species turnover) to 1 (perfect nestedness). Following the method of Baselga (2010),we assessed the degree of spatial species turnover among cells by the additive partitioning of

	the Sørensen metric β sor (a metric of dissimilarity in community composition) into a
	component representing the difference in species richness among sites (β nest ) and a component
	representing the spatial turnover of species (β sim ). Below we focus on this turnover component
	because it represents the compositional variation of communities after controlling for
	differences in richness.

  Author-produced version of the article published inOikos, 2017, 126 (1), 91-100.The original publication is available at https://onlinelibrary.wiley.com/ doi:10.1111/oik.03392 p < 0.05 (two-tailed test). These measures of effect size allowed for comparisons among different model results, but they did not completely remove the influence of species richness:

  have interpreted non-random segregation as evidence for competitive interactions (but seeUlrich and Gotelli 2010, Blois et al. 2014), whereas positiveAuthor-produced version of the article published inOikos, 2017, 126 (1), 91-100.The original publication is available at https://onlinelibrary.wiley.com/ doi:10.1111/oik.03392

Table 1 .

 1 In the pure neutral model migration probability and the degree of dispersal limitation influenced final mean species richness, the spatial variability in richness, the edge effect of the lattice, and the slope of the logarithmic decrease model. Given are partial η 2 values of a general mixture linear model. Significant parametric p(F) < 0.001 in bold.

			Author-produced version of the article published in Oikos, 2017, 126 (1), 91-100.
				The original publication is available at https://onlinelibrary.wiley.com/
							doi:10.1111/oik.03392
	Factor	Degrees of freedom	Mean species richness	Lloyd	Edge	Slope
	Migration probability	1	0.61	0.39	0.00	0.89
	Dispersal limitation	2	0.31	0.42	0.01	0.88
	Migration×Dispersal	2	0.46	0.30	0.03	0.87
	Mean species richness	1	-	0.34	0.01	0.81
	Error	53			
	r	2 (whole model)		0.74	0.51	0.08	0.93

Table 2 .

 2 Main effects general linear modelling of normalized effect sizes of C-score, clumping β sim , and NODF (partial η 2 scores) identified 1 particularly pairwise competitive interactions to influence average species richness, spatial variability in richness(Lloyd index), and patterns of 2

									Author-produced version of the article published in Oikos, 2017, 126 (1), 91-100.
										The original publication is available at https://onlinelibrary.wiley.com/
													doi:10.1111/oik.03392
	3	co-occurrence. Significant parametric p(F) < 0.001 in bold.						
	4											
				Degrees	Mean							
		Factor	of	species	Lloyd	Equiprobable null model			Proportional null model
				freedom	richness							
							C-score	Clumping	β sim	NODF	C-score	Clumping	β sim	NODF
		Migration probability	1	0.07	0.04	0.06	0.02	0.01	0.01	0.03	<0.01	<0.01 <0.01
		Dispersal limitation	2	0.03	0.02	0.04	0.01	<0.01 <0.01	0.02	0.01	0.01	<0.01
		Diffuse competition	2	0.46	0.20	0.10	0.01	<0.01	0.05	0.01	0.02	<0.01	0.01
		Pairwise competition	2	0.84	0.01	0.42	0.06	0.01	0.02	0.03	0.08	<0.01	0.04
		Mean species richness	1	-	0.54	0.05	0.11	0.01	0.30	0.24	0.04	0.04	0.09
		Squared mean species richness	1	-	0.49	<0.01	0.08	0.01	0.25	0.24	0.05	0.03	0.13
		Error	530								
		r	2 (whole model)		0.86	0.86	0.75	0.61	0.06	0.65	0.66	0.24	0.23	0.23
	5											

Table 3 .

 3 Tukey post hoc significances p(F) for pairwise competitive model comparisons (unequal slope covariance analysis with average final 6 species richness and squared richness as covariates) for models without diffuse competition (δ = 0) with high migration probability and unlimited 7 dispersal (HU) and low migration probability and limited dispersal (LL). Normalized effects sizes (NES) entered the models as dependent 8 variable. First NES < second NES in white (black letters), first NES > second NES in grey with white letters.

	9								
	10								
	Comparison	Equiprobable null model			Proportional null model	
		C-score	Clumping	β sim	NODF C-score Clumping	β sim	NODF
						HH			
	Neutral -Transitive	0.02	0.001	<0.001 <0.001 <0.001	0.87	<0.001 0.005
	Neutral -Intransitive	<0.001	0.84	<0.001	0.11	<0.001	<0.001	0.21	0.002
	Transitive -Intransitive	<0.001	<0.001	<0.001 <0.001 <0.001	<0.001	<0.001	0.94
						LL			
	Neutral -Transitive	<0.001	<0.001	0.007 <0.001 <0.001	<0.001	0.11	<0.001
	Neutral -Intransitive	<0.001	0.18	0.95	0.82	0.01	<0.001	0.80	0.07
	Transitive -Intransitive	<0.001	<0.001	0.004 <0.001 <0.001	0.28	0.04	0.02
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