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ABSTRACT  

Community dynamics is influenced by multiple ecological processes such as environmental 

spatiotemporal variation, competition between individuals and demographic stochasticity. 

Quantifying the respective influence of these various processes and making predictions on 

community dynamics require the use of a dynamical framework encompassing these various 

components. We here demonstrate how to adapt the framework of stochastic community 

dynamics to the peculiarities of herbaceous communities, by using a short temporal resolution 

adapted to the time scale of competition between herbaceous plants, and by taking into 

account the seasonal drops in plant aerial biomass following winter, harvesting or 

consumption by herbivores. We develop a hybrid inference method for this novel modelling 

framework that both uses numerical simulations and likelihood computations. Applying this 

methodology to empirical data from the Jena biodiversity experiment, we find that 

environmental stochasticity has a larger effect on community dynamics than demographic 

stochasticity, and that both effects are generally smaller than observation errors at the plot 

scale. We further evidence that plant intrinsic growth rates and carrying capacities are 

moderately predictable from plant vegetative height, specific leaf area and leaf dry matter 

content. We do not find any trade-off between demographical components, since species with 

larger intrinsic growth rates tend to also have lower demographic and environmental 

variances. Finally, we find that our model is able to make relatively good predictions of multi-

specific community dynamics based on the assumption of competitive symmetry. 

  

KEYWORDS  

demographic stochasticity; environmental stochasticity; ecological modelling; plant 

functional trait; statistical inference 

 

1. INTRODUCTION 

Plant community dynamics is driven by intra- and interspecific interactions, and by 

environmental factors such as climatic conditions or soil composition. The way these 

processes influence community dynamics is of utmost importance for understanding 

community assembly (Ackerly 2003; Ejrnaes et al. 2006; Chase 2010), productivity (Mouquet 

et al. 2002) and stability (Sprugel 1991; Hector et al. 2010). Studies based on static 

descriptors of community structure have provided tests for predictions of ecological theories 

(Stubbs & Wilson 2004; Cornwell et al. 2006; Norden et al. 2009; Gonzalez et al. 2010). The 

next step is to quantitatively relate empirical observations to the underlying dynamical 
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processes (Jabot & Chave 2011; de Mazancourt et al. 2013). In this vein, a growing number 

of studies aim at building dynamical models of community dynamics based on explicit 

ecological processes, and at calibrating these models with field data (Lande et al. 2003; 

Beaumont 2010), thereby belonging to the more general trend towards a more predictive 

ecology (Mouquet et al. 2015).  

 

To build models of plant community dynamics, the framework of stochastic population 

dynamics is particularly appealing (Lande et al. 2003). This approach consists in modelling 

the joint effects of competitive interactions, demographic and environmental stochasticities on 

community dynamics. Although the role of environmental stochasticity in community 

dynamics has been recognized for a long time (Chesson & Warner 1981), it has been 

neglected in many recent analyses by community ecologists (Chisholm et al. 2014; 

Kalyuzhny et al. 2015). There is therefore a renewing interest in better taking into account 

this component of community dynamics in dynamical models (de Mazancourt et al. 2013, 

Kalyuzhny et al. 2015). 

 

This general framework has been mainly applied to easily countable organisms, such as 

animals (Lande et al. 2003) or trees (Chisholm et al. 2014, Kalyuzhny et al. 2015). To be 

applied to herbaceous plants, it has been proposed to model the dynamics of plant biomass 

instead of population sizes (de Mazancourt et al. 2013). But two additional specificities of 

herbaceous plant communities have been mainly overlooked in previous studies. First, the 

time scale of variation in competition between plants is short, due to the temporal variability 

of resources and to the rapid modification of vertical community structure following plant 

growth (Wilson and Tilman 1993, Silvertown et al. 2015). Second, herbaceous plant 

communities face frequent major disturbance events leading to sudden aerial biomass drops, 

such as winter mortality of aerial plant tissues or agricultural harvests by mowing or grazing 

(Jouven et al. 2006, Jabot and Pottier 2012). These disturbance events periodically reset aerial 

biomass to low levels, and therefore need to be taken into account in dynamical models of 

community dynamics. 

 

The present study aims at developing a model of stochastic dynamics for herbaceous plant 

communities based on biomass rather than population sizes, and at taking into account both 

the short temporal scale of between plant competition and the frequent biomass drops 

encountered by herbaceous plant communities. We detail an inference method to calibrate the 
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daily time step model parameters from biomass measurements in the field at seasonal time 

steps, coming from the Jena biodiversity experiment (Weigelt et al. 2010). This 

methodological development enables us to answer to four questions on herbaceous plant 

community dynamics: 1) what is the respective influence of demographic and environmental 

variabilities on community dynamics? 2) is there an equalizing trade-off between species 

intrinsic growth rates and their temporal stability as would be expected for species 

coexistence (Chesson 2000)? 3) are species demographical characteristics predictable from 

plant functional traits? 4) are multi-specific community dynamics predictable from species 

individual dynamics? 

 

2. METHODS 

 2.1. A new biomass-based model of plant stochastic community dynamics 

The model describes the dynamics of species aboveground biomass within a growing season 

and the way competition, demographic and environmental stochasticities affect species 

growth. In the following, we call "season" a temporal period during which plants are growing 

without experiencing a strong biomass decrease or removal (due to winter, harvests or 

consumption by herbivores). At the end of each season, the aboveground biomass is assumed 

to drop and this reduced biomass is used to initialize the species dynamics in the following 

season (Figure 1). A community is here defined as a group of plants of the same or of 

different species growing in the same plot p. The intra-seasonal dynamics of plant growth is 

modelled with a daily time step. The biomass of species i during season T in plot p after t days 

of growth, Bi(t,p,T),  is modelled with the following difference equation: 
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where rmi is the intrinsic growth rate of species i, Ki is its carrying capacity and αij is the inter-

specific competition coefficient describing the effect of species j on species i. Environmental 

stochasticity encompasses the inter-seasonal variability in species growth rates stemming 

from environmental variability. It is modelled through σeiuei(T)  where σei
2 is the 

environmental variance, and uei(T) are drawn from a normal distribution with zero mean and 

unit variance. For each species i, uei(T) are assumed to be constant across all plots p during 

season T. Demographic stochasticity encompasses intra-specific variability. It is incorporated 
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through σdiudi(T,p) where σdi
2 is the demographic variance, and udi(T,p)  are drawn from a 

normal distribution with zero mean and unit variance, and are thus assumed to vary across the 

plots p. Consequently, the growth rate of a given species is likely to differ across plots 

because of demographic stochasticity and across seasons because of both demographic and 

environmental stochasticities. The last logistic term represents intra- and inter-specific 

competition for resources which decreases the plant growth rate. This growth reduction due to 

competition increases as plants grow during the season.  

 

The biomass at the start of the growing season Bi(0,p,T) is used in the scaling of the 

demographic variance in equation (eq.1) as being a proxy of the number of growing 

individuals in season T. Bi(0,p,T) is assumed to be constant across seasons and equal to B0 = 2 

gm-2 for monocultures. This simplifying assumption is justified by the fact that the 

establishment of monoculture plots was generally well-advanced when biomass monitoring 

started (Roscher et al. 2004), so that biomass at the start of the growing season is primarily 

controlled by the height of mowing that was constant during the experiment. In species 

mixtures, B0 is equally divided between species. This simplifying assumption implies that we 

neglect possible competitive exclusions taking place progressively during the course of the 

experiment that would cause a progressive shift in relative covers between species in the 

plots, and consequently in initial relative biomass at the start of the growing season. We 

performed preliminary analyses considering the alternative assumption that Bi(0,p,T) is 

proportional to Bi(tend,p,T-1). We found that models based on this assumption failed to 

reproduce successive events of disappearance and recovery of some species that were 

observed in the experiment (data not shown). Still, intermediary assumptions of partial 

correlations between relative biomasses at the end of a growing season and biomasses at the 

start of the following season might be further studied in the future.  

Process stochasticity (both demographic and environmental) is included in the model through 

its effect on biomass growth rate rm, following the previous work of de Mazancourt et al. 

(2013). This model choice is the most straightforward, since variability in environmental 

conditions and intraspecific variability are known to affect plant growth rates (Raven et al. 

2005). An alternative model choice would have been to make process noise enter in the 

competition term. Although environmental conditions do affect interactions between plants 

(e.g., Maestre et al. 2009), we contend that it is a second order effect compared to their 

primary influence on plant growth rates. Besides, we assume in the model that environmental 

and demographic variables are constant during a season. This means that they represent the 
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average seasonal suitability for each species population. In the same vein, we assume that 

stochastic variables are independent across seasons. Indeed, there is no correlation between 

climatic variables in successive seasons, so that this is reasonable to assume that there is no 

correlation between the suitability of successive seasons. These model choices are economical 

ways to model variability across seasons, and we will show below that this relatively simple 

model does successively pass the model checking tests. Finally, we assume that there is no 

environmental variation among the different plots, so that differences between plots are solely 

attributable to demographic variability. This assumption is reasonable, since the among plot 

variability in soil characteristics is negligible, so that environmental variability is essentially 

due to climatic variability which is likely to be extremely similar among plots due to the 

limited spatial extension of the experiment. 

 

 2.2. Field data 

We used data from the long-term grassland biodiversity experiment in Jena (Weigelt et al. 

2010). In this dataset, 60 plant species were grown in monocultures from 2002 to 2010, with 

each monoculture replicated in 2 plots. In each monoculture plot, biomass was measured 

twice a year in June and September, in 2 samples per plot. Half of the monocultures (i.e 60 

plots) were given up in 2006. Additionally, 16 mixtures of 2, 4 and 8 plant species, 14 

mixtures of 16 plant species and 4 mixtures of all 60 plant species were grown from 2002 to 

2008. In each polyculture plot, biomass of all plant species was measured twice a year in June 

and September, in 4 samples per plot. After each biomass measurement, both monoculture 

and polyculture plots were mown (Weigelt et al. 2010). We therefore consider in the 

following that there are two growing seasons per year, from April to June, and from July to 

September (Figure 1). Data can be accessed on the Pangaea database 

(http://doi.pangaea.de/10.1594/PANGAEA.846321) 

 

 2.3. Inference based on monoculture data 

The daily time step model contains four parameters per species when applied to monoculture 

data (rmi, Ki, σei, σdi) as well as environmental and demographic seasonal variables uei(T) and 

udi(T,p). We present in the following how all these parameters and variables can be estimated 

using field biomass data of species grown in monoculture for several years, as in the Jena 

experiment. It is worth noting at this point that there is a mismatch of time scale between the 

modelled processes of plant growth occurring at a daily time step, and the available biomass 
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data collected at a seasonal time step, at the end of each growing season. This mismatch of 

time scales requires developing an adapted estimation method detailed below. 

 

The sampling procedure used to collect biomass data generates an observation error. We 

model this observation error with a lognormal distribution, meaning that observed biomass 

Bi
obs(T,p,s) of species i in season T, plot p, sample s, is the real biomass Bi(T,p) in season T, 

plot p, plus a random variable representing observation error: 

   ( ) ( ) ),,(),(ln),,(ln spTupTBspTB oioii
obs
i ⋅+= σ    (eq.2) 

where σoi
 2 is the observation variance, and uoi(T,p,s) are independent normal variables with 

zero mean and unit variance. The real biomass is therefore estimated as the average of 

observed log-transformed biomass across samples: 

   ( )







= ∑

=

∧ sN

s

obs
i

s
i spTB

N
pTB

1

),,(ln
1

exp),(     (eq.3) 

where Ns is the number of samples harvested in a plot. Note that we used here the notation 

),( pTBi

∧
 to designate our estimates of the true values Bi(T,p). We keep this convention for 

estimates in the following of this paragraph. The full model including the dynamical model 

(eq. 1) and the observation process (eq. 2) therefore contains five parameters per species (rmi, 

Ki, σei, σdi, σoi) when applied to monoculture data. 

 

The observation variance is estimated as the empirical variance of observed biomass across 

samples: 
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The estimated real biomass data ),(pTBi

∧
according to equation 3 (eq.3) are then used in the 

following. It is important to note that our estimates of observation variance are based on the 

measured biomass variability among different samples of a same plot. Consequently, this 

intra-plot variability is likely to be partly due to demographic variability at the sample scale. 

Following de Mazancourt et al. (2013), we made the pragmatic choice to neglect this 

demographic variability at the sample scale, since we do not have ways to disentangle the 

respective roles of observation and demographic noises at this scale. Our estimates of 

demographic variability described below are thus to be understood as estimates of 

demographic variability at the plot scale. 
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The carrying capacity Ki of species i is assumed to be linearly related to the maximal biomass 

of species i across seasons, and is therefore estimated as:  

     ),(max
,

pTBaK i
pT

i

∧∧
⋅=                (eq.5) 

In the following, a will be arbitrarily fixed to 2. We checked that alternative choices for a did 

not change the results qualitatively by repeating the analyses with values of a equal to 1.5 and 

3 (data not shown).  

 

We then estimated the intra-seasonal growth rates ri(T,p) of species i for plot p and season T , 

defined as: 
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For a given value of ri(T,p), the biomass dynamics can be estimated with the following 

difference equation (see eq. 1): 
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We used an optimization algorithm to estimate ),( pTri

∧
 that minimizes the difference between 

the simulated and real biomass at the end of the growing season ),(),,60( pTBTpB i
sim
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− .  
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This equation (eq. 8) is obtained by writing down the probability of generating the estimated 

intra-seasonal growth rates ),(pTri

∧
from random draws of uei(T) and udi(T,p) in normal 

distributions with zero mean and unit variance. 

Author-produced version of the article published in  Journal of theoretical biology, 2016, 399, 53-61. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jtbi.2016.03.043



9 
 

The set of model parameters (rmi, σei, σdi) are estimated as: 

   { } ),,(maxarg,,
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 rrLr dieimidieimi σσσσ     (eq.9) 

Finally the estimation of environmental and demographic variables uei(T) and udi(T,p) is based 

on a maximum likelihood procedure. Let 
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           (eq.10) 

Maximisation of the likelihood function enables to estimate )(Tu ei

∧
. The demographic values 

,.)(Tu di

∧
 are then deduced from (eq.6). All optimization procedures were performed with the 

“optim” R function using the Nelder and Mead (1965) algorithm. In the following, we do not 

distinguish the notation of estimated values from that of true values to keep the notations 

simple. 

 

 2.4. Model checking 

To assess the ability of our model to reproduce observed biomass dynamics in monocultures, 

we performed several model checks. First, we assessed, for each of the 60 species in 

monocultures, whether fitted values of environmental variables uei(T), demographic variables 

udi(T,p) and observation errors uoi(T,p,s) significantly deviated from normal distributions 

using a Kolmogorov-Smirnov test. Second, we simulated the monospecific biomass dynamics 

using our stochastic model with fitted parameters (rmi, Ki, σei, σdi, σoi) and variables (uei, udi, 

uoi) randomly drawn in normal distribution with zero mean and unit variance and compared 

the outputs of these simulations with observed biomass dynamics to assess whether 

systematic deviations between the two were present. More precisely, for each of the 60 

species, we simulated virtual data, following the Jena experimental setup: each monoculture 

was replicated in two plots, and two subsamples by plot were harvested during 17 seasons. 
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Each such monoculture simulation was replicated 100 times, and for each replication, the 

average and standard deviation of community biomass across plots, subsamples and seasons 

were computed. The ability of the model to reproduce the observed values of these indicators 

for species i was assessed through the p-value pi computed as the rank of the observed value 

within the set of simulated values. The model was considered to pass the model checking test 

when the p-value was comprised between 0.025 and 0.975. 

 

 2.5. Assessing the need for the current level of model complexity 

We also considered three degraded versions of the model, in order to demonstrate that the 

current level of model complexity is necessary to satisfactorily model the empirical 

observations in monocultures. The first alternative model neglects demographic variance, and 

assumes that σdi = 0 for all species i. The second alternative model further neglects 

environmental variance and assumes that σei = 0 for all species i. The third alternative model 

further assumes that the three remaining model parameters (rm, K, σo) are constant across 

species. Likelihood formula for these alternative models were derived (Table S1) and model 

selection was performed via AIC computations (Table S2). Theses analyses confirmed that 

the full model clearly outperformed these degraded versions based on the monoculture data 

(Table S2), so that we do not longer consider these alternative models in the remaining 

analyses. 

 

 2.6. Quantifying the sources of biomass variability 

For each species, we assessed the effects of environmental stochasticity, demographic 

stochasticity and observation error on observed biomass variances. To do this, we simulated 

monoculture biomass dynamics using fitted parameters (rmi, Ki, σei, σdi, σoi) and variables (uei, 

udi, uoi) randomly drawn in normal distribution with zero mean and unit variance in a virtual 

plot sampled once during 1000 seasons. This biomass time series was used to compute the 

reference biomass variance Vref. We then replicated this procedure, shutting down 

sequentially observation error, which generates variability between samples (and plots and 

years), and demographic stochasticity, which generates variability between plots (and years),. 

The contributions of the three sources of variability to observed biomass variability were then 

computed as the relative decrease in biomass variance caused by the suppression of these 

sources of variability in the simulations. More precisely, the effect of observation error was 

computed as Σo = (Vref - Ve+d) / Vref, where Ve+d stands for the biomass variance in 

simulations with environmental and demographic stochasticity only. The effect of 
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demographic stochasticity was computed as Σd = (Ve+d - Ve) / Vref, where Ve stands for the 

biomass variance in simulations with environmental stochasticity only. The effect of 

environmental stochasticity was finally computed as Σe = Ve / Vref. This asymmetry in our 

way to compute these three variance components stems from the assumed nested structure of 

these three sources of variability. 

 

 2.7. Analyzing species demographical characteristics 

We assessed whether species with larger intrinsic growth rates rmi have also larger 

demographic σdi² and environmental σei² variances by correlation analyses. We also assessed 

whether species demographical characteristics (rmi, Ki, σei, σdi) could be predicted from three 

functional traits: plant vegetative height, specific leaf area (SLA) and leaf dry matter content 

(LDMC). Trait data were extracted from the LEDA trait database (Kleyer et al., 2008). When 

multiple entries for a given species were available, we used average values. 

 

 

 2.8. Predicting multi-specific community dynamics based on the assumption of 

competitive symmetry 

We finally assessed whether knowledge of species individual demographical characteristics 

was sufficient to predict the multi-specific community dynamics in mixtures. Predictions in 

mixtures were based on the assumption of competitive symmetry, meaning that the 

coefficients αij in equation 1 were fixed to 1. This assumption is rather strong, but it represents 

a first step in order to predict complex community dynamics, in the spirit of neutral 

community models (Rosindell et al. 2011) and their extensions (Jabot and Chave 2011, 

Kalyuzhny et al. 2015). All other species demographical parameters (rmi, Ki, σei, σdi, σoi) were 

set to their estimates from monoculture data (see section 2.3).  

 

We performed several sets of predictions for mixtures to assess the gain in prediction 

accuracy brought by several components of species demography. In the first set of 

simulations, we used the values of environmental variables )(Tu ei

∧
estimated from monoculture 

data. The demographic and observation variables, udi(T,p) and uoi(T,p,s) are however likely to 

vary from one plot to another. We therefore run 100 simulations for each mixture with 

udi(T,p) and uoi(T,p,s) randomly drawn in normal distributions with zero mean and unit 

variance, and using the same sampling protocol as in the Jena experiment (see section 2.2). 

Author-produced version of the article published in  Journal of theoretical biology, 2016, 399, 53-61. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jtbi.2016.03.043



12 
 

This set of simulation incorporates the observed temporal synchrony or asynchrony between 

species in their responses to environmental variability, since we used the empirically 

estimated values of environmental variables )(Tu ei

∧
. We additionally performed a second set 

of simulations using environmental variables uei(T) randomly drawn in normal distributions 

with zero mean and unit variance. In this second set of simulations, species are therefore 

assumed to respond independently to environmental variability, and the observed temporal 

synchrony/asynchrony between species is randomized.  

 

For each set of simulations, we computed the average B  and standard deviation σB of 

community biomass across seasons and subsamples, as well as the Simpson's concentration 

index defined as: 

     ∑
=

=
N

i
bip

1

2
λ               (eq.11) 

Where bip is the average proportion of community biomass attributable to species i. 

 

For each mixture, the distribution across replicates ofB , σB and λ was compared with 

observed values and the ability of the model to reproduce community dynamics was assessed 

through the p-value computed as the rank of the observed value within the set of simulated 

values. For each species richness level, we defined an aggregated indicator Ndev, which 

describes the proportion of mixtures for which the p-value is smaller than 0.025 or higher than 

0.975. Moreover the average of B , σB and λ across replicates were computed and  the 

correlation between predicted averages and observed values across mixtures was quantified.  

 

Finally, the overall discrepancy between observed values in mixtures and predicted averages 

is not necessarily indicative of a failure of the assumption of competitive symmetry. Indeed, it 

may be due solely to demographic stochasticity and observation errors, which are averaged 

out in predicted averages but not in observed values. We therefore computed the correlation 

coefficient across mixtures between the predicted average and one simulation value randomly 

picked among the 100 replicates for each mixture, R2
samp. This procedure is repeated 100 

times and the validity of the assumption of competitive symmetry is assessed through the p-

value, computed as the rank of the correlation coefficient between observed and predicted 

values within the set of R2samp obtained through the sampling procedure. The assumption of 

competitive symmetry is rejected when the p-value is smaller than 0.025 or larger than 0.975. 
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All R scripts are available on Github (https://github.com/thlohier/SGCDM). 

 

3. RESULTS 

 3.1. Model checking and inference based on monoculture data 

Our model passed most model checking tests successfully. Indeed, only two out of the 60 

species had not normally distributed environmental variables uei according to the 

Kolmogorov-Smirnov test (Figure 2A): Geranium pratense and Luzula campestris. And only 

one species had not normally distributed demographic variables udi according to the 

Kolmogorov-Smirnov test (Fig.2.B): Trifolium fragiferum. Model failure for G. pratense was 

likely due to the relatively large between plot variability that lead to a shrinked distribution of 

environmental variables. Model failure for L. campestris and T. fragiferum can be explained 

by the fact that they were frequently not found in the plots: L. campestris was not found for 

for 8 of the 14 seasons and T. fragiferum was found in only one of the two plots in which it 

was sown. Moreover C. pratensis was not found for 13 of the 14 seasons. These four species 

were thus excluded from the subsequent analyses. Model failure was also detected for three 

additional species on other model checks (Figure 2, Table S4). These species were however 

kept in the subsequent analyses because model failure was more marginal in these cases. For 

the remaining 56 species, we were able to estimate the four species demographical parameters 

(rmi, Ki, σei, σdi) (Table 1). 

 

 3.2. Sources of biomass variability 

Our analysis revealed that the variance in community biomass σB
2 was mainly due to 

observation error with an average proportion of explained variance equal to 44%, followed by 

environmental stochasticity (34%) and demographic stochasticity (22%). More precisely, 

observation error was the main cause of biomass variance for 30 out of the 56 species, while 

environmental stochasticity was the main cause for 22 out of the 56 species (Table 1). We 

further detected variations in this hierarchy depending on the functional group considered, 

with the effect of environmental stochasticity being especially large for grasses, especially 

low for legumes, and intermediate for tall and small herbs. In contrast, the effect of 

observation error was more consistently large, while the one of demographic stochasticity 

more consistently low across the different functional groups (Figure 3). 

 

 3.3. Analysis of species demographical characteristics 
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 Overall, we did not find any support for the idea of an equalizing trade-off in the plant 

demographical components. Intrinsic growth rates (rm) tended to be negatively correlated with 

environmental (σe²), demographic (σd²) and observation (σo²) variance while observation 

variance tended to be positively correlated with environmental and demographic variance 

(Table S5). The correlations were weak when the functional types were not distinguished (R2 

close to 0.3). But we observed a significant negative correlation between rm and σe as well as 

between rm and σo for grass species (R2 = 0.62 and R²=0.40 respectively). There was also a 

significant negative correlation between rm and σo for small herbs, between rm and σe for 

legumes and between σd and σo for grasses and tall herbs (R2 > 0.4).  

 

We found that some plant demographical characteristics (rm and K) were moderately 

predictable from the functional traits examined. When all plant functional groups were 

considered, both intrinsic growth rate rm and carrying capacity K were positively correlated 

with plant height and LDMC, and negatively with plant SLA (Table 2). Four of these 

correlations were significant (rm – Height, rm – SLA, K – SLA, K – LDMC), and one 

marginally significant (K – Height). However, depending on the functional group considered, 

the link between plant functional traits and these demographical parameters varied: plant 

height and LDMC were mostly influential for grasses, while SLA mostly influenced herbs 

and legumes. In contrast, the plant functional traits examined had little explanatory power on 

both environmental and demographic variances, neither on observation errors (Table 2). 

 

 3.4. Predicting multi-specific community dynamics based on the assumption of 

competitive symmetry 

We obtained a good predictive ability of multi-species community dynamics under the 

assumption of competitive symmetry (Figure 4), with coefficient of determinations between 

predicted and observed values equal to 0.65 and 0.60 for biomass averages and standard 

deviations, and to 0.75 for community composition (Simpson’s concentration index). We 

further found that our predictive ability tended to decrease when considering mixtures of 

increasing diversity (Figure 4, Table 3). Surprisingly, we found that taking into account the 

observed asynchrony between species in their response to environmental variations did not 

improve our predictive ability of these summary statistics (Supplementary Table S6). 

 

In these comparisons between predicted and observed community dynamics, predictions are 

computed from averages over 100 simulated community dynamics, while observed values are 

Author-produced version of the article published in  Journal of theoretical biology, 2016, 399, 53-61. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jtbi.2016.03.043



15 
 

based on single realizations of this dynamics and single realizations of observation errors. We 

therefore assessed whether the discrepancy between observations and predictions was due to 

model error or whether it may only be due to demographic stochasticity and observation error 

using two complementary tests. First, we assessed for each mixture, whether observed values 

fell within the distribution of the 100 simulated values. We found that only about one fifth of 

mixtures significantly deviated from the simulated distributions (Ndev in Table 3). Second, to 

obtain a more synthetic picture of the magnitude of model error, we assessed whether the 

coefficient of determination between observed and predicted values across communities 

significantly deviated from the null distribution based on simulated communities. Using this 

approach, our model was not rejected regarding its predictions on biomass averages and 

standard deviations, but it was rejected regarding its predictions on community composition 

(Simpson’s concentration index) that overestimated the species abundance evenness of the 

communities. 

 

 

4. DISCUSSION 

The analysis of stochastic community dynamics has been mainly carried on easily countable 

organisms (Lande et al. 2003, Chisholm et al. 2014, Kalyuzhny et al. 2015). The present study 

aimed at extending such analyses to herbaceous plants which are easier to monitor in terms of 

aerial biomass, which experience inter-individual competition at short time scales, and which 

suffer from sudden seasonal collapses due to winter mortality or agricultural management. 

We therefore proposed a novel model of stochastic community dynamics, inspired by the 

recent work of de Mazancourt et al. (2013). We further developed an original inference 

method based on both numerical simulations and likelihood computing so as to tackle the 

mismatch of time scales between modelled processes occurring at a daily time step and field 

observations gathered at a seasonal time step (Figure 1). This inference method further has the 

advantage of being very flexible, so that alternative modelling assumptions can be easily 

explored within the same quantitative framework. 

 

Our simple model was sufficient to reproduce most observed monoculture data of the Jena 

biodiversity experiment (Figure 2). We further found that we could predict multi-specific 

community dynamics with a relatively good precision using species demographical 

parameters estimated from monoculture data and assuming competitive symmetry, the fact 

that intraspecific and interspecific competitions have the same magnitude (Figure 4, Table 3). 
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Still, further improvements of our predictive ability should be sought in relaxing this 

simplifying assumption of competitive symmetry. In particular, the fact that our model 

predictions overestimated the species abundance evenness of the communities indicates that 

some level of asymmetry cannot be ignored to fully understand the dynamics of these 

herbaceous communities. This result is in accord with previous knowledge on plant 

competitive asymmetry (Begon, 1984, Cannell et al., 1984). It further provides clues on how 

to proceed to improve the model in the future. For instance, competitive asymmetry between a 

pair of plant species might be predicted from their difference in functional trait values, so that 

plant functional traits may be included in the model, as drivers of competition coefficients. 

 

Our approach further revealed that environmental stochasticity had a larger impact on 

population temporal variance than demographic stochasticity (Figure 3). The importance of 

environmental stochasticity on community dynamics has recently received a renewed interest 

(Chisholm et al. 2014, Kalyuzhny et al. 2015). Our results are perfectly in line with these 

findings in other types of plant communities. While environmental variability is likely to 

foster species coexistence by favoring in turn different sets of species (Chesson and Warner 

1981), our analysis revealed that it was unlikely to be involved in an equalizing trade-off 

among species between their intrinsic growth rate and their temporal stability. Indeed, we 

found the contrary result that species with larger growth rates also tended to have both lower 

demographic variance and lower environmental variance (Table S5). 

 

We finally found that the plant functional traits examined only had modest predictive ability 

of the species demographical characteristics (Table 2). This result recalls the recent findings 

of Kraft et al. (2015) on pairwise competition between annual plants. As previously argued, 

plant functional traits may however be informative on the competitive strength between pairs 

of species. This clearly constitutes a promising perspective to improve the present state of 

modelling of the stochastic dynamics of herbaceous plant communities.  

 

More generally, among the growing literature on stochastic community dynamics (Freckleton 

et al. 2000; Keith et al. 2008; Loreau and de Mazancourt 2008; Chase et al. 2010; Fowler et 

al. 2012), our approach is original in that it jointly uses simulation-based and analytical 

inference methods to study more complex models of stochastic community dynamics than 

those commonly used. By using more detailed and realistic representations of biological 
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processes, such hybrid inference approaches should contribute to the development of complex 

models of ecosystem dynamics (Evans et al. 2013) that can be informed by field data. 
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TABLES 

Table 1. Species demographical characteristics estimated from monoculture data including 

the intrinsic growth rate (rm), the carrying capacity (K), the environmental (σe), demographic 

(σd) and observation (σo) standard deviations as well as the relative effects of environmental 

(Σe) and demographic (Σd) stochasticities and observation error (Σo) on community biomass 

variance.  

 

Species r m K σe σd σo Σe Σd Σo 

Grasses 

Alo.pra 0.074 1011.494 0.018 0.008 0.228 0.6 0.2 0.19 

Ant.odo 0.06 668.109 0.025 0.015 0.463 0.35 0.17 0.48 

Arr.ela 0.083 1510.984 0.013 0.008 0.279 0.46 0.24 0.3 

Ave.pub 0.067 1267.008 0.022 0.006 0.432 0.52 0.08 0.41 

Bro.ere 0.081 2039.401 0.015 0.009 0.379 0.37 0.21 0.41 

Bro.hor 0.057 964.486 0.024 0.02 0.834 0.07 0.09 0.84 

Cyn.cri 0.06 1134.767 0.026 0.011 0.488 0.36 0.2 0.44 

Dac.glo 0.038 289.6 0.022 0.012 0.443 0.64 0.18 0.17 

Fes.pra 0.059 1502.602 0.026 0.014 0.445 0.26 0.35 0.39 

Fes.rub 0.064 1250.319 0.018 0.015 0.38 0.56 0.33 0.11 

Hol.lan 0.04 367.476 0.026 0.011 0.588 0.53 0.23 0.24 

Phl.pra 0.092 1269.795 0.009 0.008 0.198 0.25 0.24 0.51 

Poa.pra 0.067 714.514 0.012 0.008 0.295 0.22 0.12 0.66 

Poa.tri 0.063 510.719 0.011 0.021 0.435 0.22 0.14 0.64 

Tri.fla 0.05 837.552 0.019 0.014 0.546 0.82 0.06 0.12 

Small herbs 

Aju.rep 0.029 68.62 0.009 0.016 0.476 0.08 0.33 0.58 

Bel.per 0.023 162.489 0.02 0.011 0.926 0.07 0.05 0.88 

Gle.hed 0.076 940 0.01 0.008 0.262 0.29 0.11 0.6 

Leo.aut 0.083 1549.742 0.014 0.005 0.234 0.57 0.2 0.22 

Leo.his 0.068 718 0.017 0.007 0.296 0.47 0.32 0.22 

Pla.lan 0.059 459.972 0.018 0.007 0.437 0.08 0.42 0.5 

Pla.med 0.067 1383.776 0.021 0.016 0.484 0.7 0.07 0.23 

Pri.ver 0.074 869.573 0.019 0.005 0.266 0.02 0.06 0.91 

Pru.vul 0.055 652.037 0.019 0.01 0.611 0.24 0.18 0.58 

Ran.rep 0.048 656.356 0.019 0.021 0.995 0.21 0.15 0.64 

Tar.off 0.044 445.021 0.021 0.012 0.603 0.47 0.08 0.45 

Ver.cha 0.078 880.468 0.02 0.003 0.439 0.55 0.14 0.31 

Tall herbs 
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Ach.mil 0.069 1229.282 0.017 0.005 0.148 0.76 0.15 0.09 

Ant.syl 0.053 1113.886 0.025 0.016 0.565 0.2 0.21 0.59 

Cam.pat 0.03 968.599 0.035 0.008 0.646 0.36 0.06 0.58 

Car.car 0.046 721.216 0.013 0.013 0.353 0.19 0.44 0.37 

Cen.jac 0.001 4.1 0 0 NA 0.67 0.17 0.15 

Cir.ole 0.072 1506.494 0.018 0.007 0.212 0.4 0.28 0.32 

Cre.bie 0.061 696.114 0.017 0.011 0.32 0.38 0.14 0.48 

Dau.car 0.078 1225.749 0.015 0.006 0.202 0.35 0.22 0.43 

Gal.mol 0.068 1129.696 0.02 0.012 0.162 0.35 0.33 0.32 

Her.sph 0.053 705.614 0.002 0.024 0.683 0.06 0.1 0.84 

Kna.arv 0.047 603.754 0.018 0.016 0.831 0.64 0.14 0.22 

Leu.vul 0.059 692.424 0.022 0.01 0.271 0.58 0.27 0.15 

Pas.sat 0.04 478.295 0.021 0.018 0.645 0.41 0.11 0.48 

Pim.maj 0.099 2446.728 0.011 0.01 0.634 0.39 0.28 0.33 

Ran.acr 0.037 499.6 0.028 0.015 0.628 0.55 0.22 0.24 

Rum.ace 0.047 936.789 0.023 0.013 0.569 0.12 0.33 0.55 

San.off 0.063 590.141 0.015 0.008 0.252 0.08 0.51 0.41 

Tra.pra 0.058 749.989 0.015 0.019 0.493 0.19 0.23 0.58 

Legumes 

Lat.pra 0.079 1186.744 0.014 0.008 0.243 0.55 0.16 0.29 

Lot.cor 0.073 824.344 0.012 0.008 0.215 0.26 0.36 0.38 

Med.lup 0.07 1558.09 0.022 0.011 0.206 0.11 0.2 0.68 

Med.var 0.075 853.241 0.012 0.013 0.328 0.39 0.35 0.26 

Ono.vic 0.014 42.213 0.002 0.018 0.315 0.11 0.11 0.79 

Tri.cam 0.08 941.01 0.004 0.01 0.285 0.41 0.14 0.45 

Tri.dub 0.068 547.478 0.016 0.005 0.397 0.14 0.51 0.34 

Tri.hyb 0.023 176.49 0.024 0.009 0.471 0.06 0.05 0.88 

Tri.pra 0.028 405.337 0.023 0.026 0.358 0.01 0.33 0.65 

Tri.rep 0.07 1125.347 0.023 0.004 0.201 0.23 0.4 0.37 

Vic.cra 0.047 959.132 0.028 0.017 0.949 0.05 0.36 0.59 

 

*Full species names corresponding to each code are given in Table S3.
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Table 2. Correlations between demographical parameters including the intrinsic growth rate 

(rm), the carrying capacity (K), the environmental (σe), demographic (σd) and observation (σo) 

standard deviations and three plant functional traits: plant height, specific leaf area (SLA) and 

leaf dry matter content (LDMC). The correlations were computed either for all species 

together or separately for each functional group. Significance at the 0.05 level are indicated in 

bold.  

 

  Height SLA LDMC 

  R p-value R p-value R p-value 

rm 

 

All 0.28 0.044 -0.40 0.003 0.23 0.102 

Grass 0.39 0.167 -0.14 0.616 0.34 0.217 

Small herb 0.31 0.361 -0.47 0.122 0.13 0.712 

Tall herb -0.01 0.976 -0.49 0.038 -0.04 0.889 

Legumes 0.14 0.69 -0.54 0.11 0.09 0.814 

K 

 

All 0.26 0.063 -0.45 0.00 0.31 0.023 

Grass 0.36 0.204 -0.35 0.205 0.45 0.095 

Small herb 0.03 0.923 -0.46 0.133 0.05 0.888 

Tall herb -0.16 0.534 -0.48 0.042 0.01 0.966 

Legumes -0.08 0.818 -0.76 0.011 0.22 0.542 

σe 

 

All -0.17 0.224 0.27 0.047 0.06 0.687 

Grass -0.49 0.072 0.09 0.745 -0.17 0.554 

Small herb 0.01 0.977 0.17 0.592 0.28 0.409 

Tall herb -0.04 0.861 0.4 0.104 -0.36 0.162 

Legumes -0.37 0.295 0.4 0.251 0.13 0.728 

σd 

All -0.18 0.186 0.08 0.572 -0.10 0.461 

Grass -0.51 0.062 0.32 0.252 -0.17 0.552 

Small herb -0.18 0.594 -0.27 0.392 0.17 0.627 

Tall herb 0.24 0.345 0.15 0.548 -0.06 0.829 

Legumes -0.16 0.656 0.14 0.699 -0.54 0.111 

σo 

All -0.19 0.168 0.17 0.225 -0.05 0.727 

Grass -0.48 0.083 0.19 0.494 0.03 0.911 

Small herb -0.37 0.266 -0.09 0.779 -0.01 0.985 

Tall herb 0.38 0.117 0.48 0.045 0.00 0.992 
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Legumes -0.16 0.649 -0.3 0.4 0.19 0.595 
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Table 3. Assessment of model predictive ability in species mixtures. R² between observed 

and predicted values, proportion of mixtures Ndev significantly deviating from model 

predictions and overall deviation significance p from predictions for the studied summary 

statistics. Results regarding the community biomass average (B ) and standard deviation (σB) 

across seasons and subsamples as well as the Simpson's concentration index (λ) are reported 

both for all the empirical mixtures, and for each diversity level separately.  

 

 All  2 species 4 species 8 species 16 species 

B  

 

R2 0.65 0.86 0.65 0.75 0.49 

Ndev 0.21 3/16 2/11 1/10 2/3 

p 0.02 0.48 0.33 0.43 0.45 

σB 

R2 0.60 0.61 0.69 0.70 0.43 

Ndev 0.13 3/16 1/11 0/10 1/3 

p 0.31 0.17 0.20 0.49 0.49 

λ 

R2 0.75 0.57 0.01 0.01 0.54 

Ndev 0.31 6/16 3/11 3/10 0/3 

p 0.00 0.01 0.00 0.04 0.37 
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FIGURES 

Figure 1. Model description and relationships with data used for calibration. Only end of 

season biomass Bi(t=60,T) is known. 
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Figure 2. Model checking results. Normality test p-values of environmental variables uei (A), 

demographic variables udi (B) and observation variables uoi (C) obtained for each species. 

And model checking p-values based on biomass averages (D) and standard deviations (E) 

obtained for each species. The solid blue lines represent the one-tail 0.05 threshold for the 

first three panels, and the two-tail 0.025 and 0.975 thresholds for the last two panels. 
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Figure 3. Effects of observation error (Σo), environmental (Σe) and demographic (Σd) 

stochasticities on the variance of community biomass σB
2 for (A) grasses; (B) small herbs; (C) 

tall herbs; (D) legumes. 

Author-produced version of the article published in  Journal of theoretical biology, 2016, 399, 53-61. 
The original publication is available at http://www.sciencedirect.com/ doi : 10.1016/j.jtbi.2016.03.043



29 
 

Figure 4. Comparison between predicted and observed multi-species community dynamics, 

based on their log-transformed average biomassB (panel A), their log-transformed standard 

deviation σB (panel B) and their Simpson's concentration index λ (panel C). Black circles, red 

squares, blue diamonds and green triangles represent respectively 2-, 4-, 8- and 16-species 

mixtures. Solid lines represent the y=x function. 
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