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Abstract Computing a viability kernel consumes time and memory resources7

which increase exponentially with the dimension of the problem. This curse8

of dimensionality strongly limits the applicability of this approach, otherwise9

promising. We report here an attempt to tackle this problem with Graphics10

Processing Units (GPU). We design and implement a version of the viabil-11

ity kernel algorithm suitable for General Purpose GPU (GPGPU) computing12

using Nvidia's architecture, CUDA (Computing Uni�ed Device Architecture).13

Di�erent parts of the algorithm are parallelized on the GPU device and we14

test the algorithm on a dynamical system of theoretical population growth.15

We study computing time gains as a function of the number of dimensions and16

the accuracy of the grid covering the state space. The speed factor reaches up17

to 20 with the GPU version compared to the Central Processing Unit (CPU)18

version, making the approach more applicable to problems in 4 to 7 dimen-19
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sions. We use the GPU version of the algorithm to compute viability kernel of20

bycatch �shery management problems up to 6 dimensions.21

Keywords Viability kernel · Dynamic programming · CUDA · GPU · Fishery22

management23

Mathematics Subject Classi�cation (2000) 90B50 - Management Deci-24

sion Making, including Multiple Objectives · 90C39 - Dynamic Programming25

1 Introduction26

Viability theory provides mathematical and numerical tools and concepts for27

maintaining a dynamical system within a set of states (called the constraint28

set). This theory has numerous potential applications in food processing, �-29

nance, economics, environment (Sicard et al, 2012; Béné et al, 2001; Doyen30

et al, 2012; Bernard and Martin, 2013; Andrés-Domenech et al, 2014; Chapel31

et al, 2008, 2010; Mathias et al, 2015). A essential step in this approach lies in32

the computation of the viability kernel. This is the set of states for which there33

exists a control policy that keeps the system in the constraint set for some (�-34

nite or in�nite) time. Since the 90's, several algorithms have been developed35

to compute viability kernels in di�erent application �elds (Saint-Pierre, 1990;36

Bokanowski et al, 2006). Some of them are adapted to �nite horizon prob-37

lems (Djeridane and Lygeros, 2008), linear dynamics (Kaynama and Oishi,38

2013) or particular kinds of problems such as single output nonlinear control39

systems a�ne in the control (Turri� and Broucke, 2009; Mattioli and Artiou-40

chine, 2003). The concepts have been extended to the stochastic case (Doyen41

and De Lara, 2010; Rougé et al, 2013), in which dynamics includes random42

variables accounting for uncertainties. However, most of them are limited by43

their computational complexity. When the number of dimensions increases,44
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the required computation time and memory increase exponentially because45

they are mainly based on a grid covering the state space.46

This curse of dimensionality is a moot point in a number of domains,47

like data mining, numerical analysis (Donoho, 2000) and multiple approaches48

aim at mitigating it and at speeding up viability kernel computing. For in-49

stance, Bonneuil (2006) attempts to handle large dimensional state space with50

computing control policies on a given time horizon with simulated annealing.51

De�uant et al (2007) use Support Vector Machines for approximating viability52

kernels. Maidens et al (2009) try to overcome this curse by using Lagrangian53

methods, which do not call for a grid. It o�ers particularly interesting per-54

formances for linear dynamics. Designing new algorithms is a crucial way to55

reduce the curse of dimensionality, but existing technological solutions can56

also lead to important gains of time. Some programs like Vikaasa, used in57

by-cash �shery management, embed a multi-core implementation of viability58

kernel computation (Krawczyk et al, 2013). However, in recent years, another59

technical improvement arose which seems well adapted for the viability kernel60

problematic : the GPU parallel computing technology. Historically, GPUs are61

electronic components used in computer graphics hardware. They are getting62

more widely used to accelerate computations in many �elds (Mametjanov et al,63

2012; Cekmez et al, 2013; Sabo et al, 2014). Due to its architecture, the GPUs64

solution is advantageous for problems for which a parallel execution is possi-65

ble (Goldsworthy, 2014). It often exceeds the capacity of computing clusters66

in terms of performance and for a lower cost. Thus, NVIDA has created the67

CUDA platform to o�er tools and to allow programmers to use the parallel68

architecture of graphic cards. The basic point is to separate the program in69

two parts : the serial code executed by the host (the Central Processing Unit70

(CPU)), and the parallel code, executed in the GPU threads across multiple71

processing elements.72
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In this paper, we use the standard viability algorithm (Saint-Pierre, 1990)73

which can be considered as a particular case of dynamic programming. To74

illustrate our work, the implemented algorithm is tested on a basic multidi-75

mensional model of population dynamics. In particular, we compare the com-76

putation time between the parallelized version and the sequential one. Finally,77

the algorithm is used to compute the viability kernel in a case of bycatch78

�shery management.79

2 Viability theory and dynamic programming80

2.1 Viability kernel81

We consider a discrete dynamics in which h is the function mapping the state82

and the control at time t with the state at the next time step t+ 1:83

x (t+ 1) = h (x (t) , u (t)) (1)

with x (t) ∈ X the set of states, u (t) ∈ U (x (t)) which is a �nite set of possible84

controls allowing the regulation of the dynamics and h (., .) : X × U → X ,85

associating a state x (t) ∈ X and a control u (t) ∈ U (x (t)) with a successor86

x (t+ 1) ∈ X . For example, it associates the closest grid point of the successor87

obtained with an Eulerian scheme de�ned with an appropriate local parameter.88

We want to assess the viability kernel V iabT (K); the set of initial states for89

which a control strategy exists to maintain the system inside K, the set of90

desirable states (the viability set), until T (a �nite horizon). This is rewritten91

in Eq.2 :92

V iabT (K) = {x0 ∈ K|∃ (u (0) , u (1) , ..., u (T − 1)) , ∀t ∈ {0, 1, ..., T} , x (t) ∈ K}

(2)
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with x (t) the state of the system at date t and u (t) the chosen control93

value at t, which maintains the system in the viability set K.94

Di�erent algorithms are available for computing this set. Because of the95

approximation of the dynamical system on a grid, these algorithms are sub-96

mitted to the dimensionality curse: the necessary time and memory increase97

exponentially with the number of dimensions of the problem. We choose to98

focus on a dynamic programming algorithm which is very standard and well99

suited for a parallel approach.100

2.2 Dynamic programming101

We assume that the dynamics of the system ful�ls the condition ensuring the102

convergence of the approximation to the actual kernel, when the resolution of103

the discretization tends to 0 (Saint-Pierre, 1990). The dynamic programming104

algorithm is a backward recursive algorithm and determines a value function105

: V (t, x) at date t. The seed value at T is :106

V (T, x) =


1 if x ∈ K

0 if x /∈ K
(3)

In this case, the value function directly determines the viability kernel. At T ,107

being viable is the property of belonging to the viability kernel. The linear108

recurrence relation is given by :109

∀t ∈ {0, T − 1} , V (t, x) =


max
u∈U(x)

V (t+ 1, h (x, u)) if x ∈ K

0 if x /∈ K
(4)
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Thus, at t = 0:110

V (0, x) =


1 if x ∈ V iabT (K)

0 if x /∈ V iabT (K)

(5)

The principles of dynamic programming are respected because, at each111

step time :112

- each point of the grid is a subproblem (V has to be computed for each point);113

- a value function has to be optimized independently for these points;114

The value function V takes only two values : 0 and 1. We are looking115

for initial states, for which the value function at time horizon T is 1. Eq.4116

is equivalent to say that the value function V (t, x) is equal to 1 if a control117

u ∈ U (x) exists, maintaining the system in the constraint set K. Otherwise,118

the value function V (t, x) equals to 0. The backward dynamic programming119

equation de�nes the value function V (x, t). By writing a max instead of a sup,120

we implicitly assume the existence of an optimal solution for each time t and121

state x. The algorithm involves two main steps:122

� For each point of the grid, we store all the successors (the point of the grid123

at the next time step) obtained for each choice of control (the possible set124

of actions at each point is supposed �nite).125

� The second part performs iterations of kernel approximations by progres-126

sively excluding points of the grid until reaching a �xed point or a prede-127

�ned number of time steps.128

Thus we have the algorithm Alg.1 as follows :129
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Algorithm 1 Detailed Dynamic Programming Viability Kernel Algorithm

Storing successors :


i = 0

K0 = K

store coordinates, ∀x ∈ K
store h (x, u) ,∀x ∈ K, ∀u ∈U (x)

Iterating kernel approximation :


repeat

Ki+1 =
{
x ∈ Ki|V (i+ 1, x) = 1

}
i = i+ 1

until Ki+1 = Ki OR Ki+1 = Ø OR i = T

V iabT (K) = Ki

2.3 Parallelizing dynamic programing algorithm130

Dynamic programming is well suited to parallelization in the two main parts.131

During the storing of successors, all succcessors x (t+ 1) of each state and132

each value of u, de�ned in Eq.1, can be computed separately. In the second133

part of the algorithm, it is possible to parallelize the update of the value134

function V (t, x) applied to each state (Eq.4). In both cases, computations are135

completely independent for one step of time. The parallelizing of all these136

calculations thus improves the performance in terms of computation time.137

Since GPUs have hundreds of processor cores running in parallel, they can be138

more e�cient than using traditional CPU architectures.139

3 Using GPU for computing viability kernels140

3.1 GPU architecture141

As they are widely used in many scienti�c computing �elds, graphics hardware142

programming for general purpose computing is well documented, this includes143

ways to write and debug the code (Langdon, 2011). Providing highly e�ective144

data parallelism, GPU cores contain multiple threads running at the same time145
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which can accelerate viability algorithms. The CUDA programming framework146

enables the use of all the cores belonging to the GPU for general purpose com-147

puting. Programs written in this paper use the C++ CUDA framework. A148

GPU computing view consists in splitting the input data between the di�er-149

ent threads, and performing operations on these pieces of data, independently150

and thus achieving parallelization. This kind of computing encourages to re-151

think programs to make this parallelization possible. Fig.1 illustrates the ar-152

chitecture of a GPU device which is seen as a grid housing blocks. Each block153

involves a number of threads performing the computations. The GPU device154

owns a global memory, each block has a memory shared by all of its threads,155

and each thread owns a smaller local memory. Here, we use the global memory156

to store big arrays of data with which all the threads can interact. In a block,157

a thread is indexed over 3 dimensions (a block can be shown as a cube of158

threads), thus the indexation has to be carefully done. Each thread and each159

block are indexed at their level. In our implementation, we want to get the ID160

threadID of each one-dimensional thread in a grid of 3D blocks. According to161

the CUDA framework writing convention , this ID is given by :162

threadID =threadIdx.i+ blockDim.i ∗ blockIdx.i+

gridDim.i ∗ blockIdx.j ∗ blockDim.i+ (6)

gridDim.i ∗ gridDim.j ∗ blockIdx.k ∗ blockDim.i

Here, threadIdx.imeans the coordinates i of threadIdx. gridDim contains163

the dimensions of the grid (the grid owns gridDim.i×gridDim.j×gridDim.k164

blocks), blockIdx contains the block indexes within the grid (in 3 dimensions165

: blockIdx.i, blockIdx.j and blockIdx.k), blockDim contains the dimensions166

of the block (a block contains blockDim.i× blockDim.j× blockDim.k threads167
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in 3 dimensions) and threadIdx contains the thread indexes within the block168

(in 3 dimensions too, but for simplicity, only one is used here : threadIdx.i).169

These variables are mainly used in assigning the work per block and thread.170

The maximum values in each dimension in both blockDim and gridDim are171

GPU-dependent. At least, the i component needs to be declared. By default,172

the value for the j and k components is 1.173

3.2 Overall strategy174

The organization of the algorithm is summed up in Fig. 2. The �gure shows the175

storing of trajectories and the iterating kernel approximation steps of Alg.1.176

The steps are :177

- the initialization and setting of the GPU device (a);178

- the initialization of the model parameters (b). The user inputs these param-179

eters;180

- the initialization of CUDA parameters (number of blocks, number of threads181

by blocks in each dimension)(c);182

- the creation of empty arrays, which will contain controlled evolutions and183

the value function of each point using the CUDA instruction cudaMalloc184

(d);185

- the copy of parameters from host to the GPU device (e) using the CUDA186

instruction cudaMemcpy with the �ag cudaMemcpyHostToDevice;187

- the computation of successors of each point i.e. the storing of next point of188

the trajectory for each possible value of the control Alg.1. This operation is189

parallelized on the GPU and it is done in the �rst kernel function. Section190

3.3 detailed this part.191

- the iterating kernel approximation step of Alg.1. The value function of each192

point is calculated and ran until the stop condition is reached. It is paral-193
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lelized in the second kernel function on the GPU. Section 3.4 detailed this194

part.195

- the copy of results from the GPU memory to the CPU (f) using the CUDA196

instruction cudaMemcpy with the �ag cudaMemcpyDeviceToHost;197

- The clear of the memory of the GPU and the �nalization of the GPU device198

(g), using the CUDA instruction cudaFree;199

- the disallocation of the CPU memory (h).200

3.3 Parallelizing the computing and the storing of successors201

The input of the algorithm is the number of points by dimension and each202

dimension bound. The algorithm computes the coordinates of all the points203

and their index. It can be parallelized since each point is independent from204

the other. Thus, one thread on the GPU will compute the coordinates of one205

point.206

Now, we have to compute the all the successors of each point of the grid,207

when applying the di�erent values of the control (if the control can take con-208

tinuous values then it is discretized). We can thus suppose that the control209

takes nbControls values point of the grid. Then, on each thread, the coordi-210

nates of one state Xi are sent, and all the nbControls possible evolutions from211

this state are returned. Again, the number of threads is equal to the number212

of points of the grid. This treatment is summed up on Fig. 3. There are four213

steps in the GPU computation of the trajectories :214

- the inputs are the values of the discretized control, U = (u1, ..., unbControls)215

and the coordinates of all the points X = (X1, ..., XnbPoints). These coordi-216

nates were determined beforehand and remain in the GPU global memory;217

- this data is sent on threads, each thread holding the computation of all the218

controlled evolutions of only one point;219
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- each thread then sends back the result in the arrayH. This array contains the220

index of the controlled evolutions. Moreover, it contains -1 if the evolution221

doesn't belong to K. Thus, we store the index of i-th controlled evolution222

of X in H (X, i). As the number of threads is the same for each block, some223

threads can be super�uous on the last block;224

- once we get the controlled evolutions, we just have to copy them from the225

GPU to the CPU and we apply the second part of the dynamic program-226

ming algorithm.227

3.4 Parallelizing the iterating kernel approximation228

The second part of the algorithm computes the value function V for each point229

until the stopping condition is reached. As shown on Fig. 4, we parallelize this230

task. The global memory contains the value function array : v in which the231

value function V of each point is stored; the successors computed at the �rst232

step : H; and a boolean value : CheckChange which states if there is no233

change during the step. In this latter case, the algorithm stops. The current234

value function V is stored in a temporary array vTmp. The treatment below235

(Alg. 2) is applied to each thread (one point X by thread) :236

Algorithm 2 Update of the value function of X in the iterating kernel ap-
proximation.

If v(X)=1 (We check if the point is viable, i.e., if the value function applied
to it is equal to 1)

If ∀i ∈ [1, nbControls− 1] ,
(H (X, i) = −1) OR (H (X, i) ≥ 0 AND v (H (X, i)) = 0)

vTmp (X) = 0
CheckChange = CheckChange+ 1

End If
End If
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If the point is viable and if a viable successor exists, nothing is done, the237

point is still viable. But if none of its successors is viable, i.e. if none of its238

successors belongs to K (i.e., H (X, i) = −1) or if the value function V of the239

successors is equal to 0, then the point is considered non-viable : 0 is put in240

the appropriate cell of the array vTmp. This treatment represents the value241

function updating in dynamic programming. In this case, a change is made,242

then CheckChange is incremented. At the end of the step, the value function243

is transferred of vTmp to v and we check CheckChange. If it is equal to 0,244

the algorithm can stop. It happens after a su�cient number of iterations and245

we then get the approximation of the viability kernel.246

4 Results247

First, we test the GPU programming on a simple example of population dy-248

namics, in order to compare the performance with the sequential algorithm.249

Then, we use our parallel algorithm to treat a problem of bycatch �shery250

management up to 6 dimensions.251

4.1 A multi-dimensional population model252

One toy model is used here to evaluate the bene�ts of GPU programming. We253

consider the population model studied by Malthus and Verhulst. Malthusian254

ideas are the basis of the classical theory of population and growth (Ehrlich and255

Lui, 1997). This model is a simple dynamical system of population growth on a256

bounded space without any predator. The system state includes two variables :257

the size of the population and its evolution rate. Aubin and Saint-Pierre (2007)258

introduced a control on this evolution rate and adapted it to the management259

of renewable resources.260
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4.1.1 The model261

As we want to analyze the performances of the parallelized algorithm on multi-262

dimensional problems, we arti�cially increase dimensions of the system in263

adding some independent variables in order to study the behaviour of the264

program in di�erent dimensions. The new model is as follows : we considered265

n states xi representing the size of n populations, which all have the same evo-266

lution rate y (t) ∈ [d, e]. The size of the populations must remain in K = [a, b].267

The control is applied on the derivative of the evolution rate at each time step268

with the inertia bound c. The equations ruling the system in discrete time are269

:270

xi (t+ 1) = xi (t) + xi (t) y (t) , i ∈ {1, .., n} (7)

y (t+ 1) = y (t) + u (t) (8)

with −c ≤ u (t) ≤ +c. The set K = [a, b]
n× [d, e] is the viability constraint271

set. For the rest of this work, bounds for K are set as a = 0.2, b = 3, c = 0.5,272

d = −2, e = 2 . By default, the control is discretized in 5 values. Since the273

parallelization simply breaks down processes that are already independent in274

the usual algorithm, the discretization does not impact the accuracy of the275

results.276

The program is implemented in C++, using CUDA 5. The computer CPU277

is an Intel R© Xeon(R) CPU E5-2687W 0 @ 3.10 GHz x 16 and the GPU card278

is a Tesla K20C with a computing capability of 3.5 and 2496 CUDA cores.279
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4.1.2 Speed-up280

Here we show a comparison between the two versions of the program applied281

to this model. The speed-up S is a measure evaluating the performance of the282

parallelization:283

S =
Tseq
Tpar

(9)

where Tseq is the sequential algorithm execution time and Tpar the execu-284

tion time of the parallel one. The �rst one uses the usual algorithm; the second285

one uses the adapted algorithm to GPU computing.286

We �gure the evolution of the speed-up, in function of the size of the grid.287

In Fig. 5, we study the in�uence of grid re�nement in the case of a 4-dimension288

problem.289

First, according to Fig. 5a, we can see that the speed-up exceeds 5 in most290

cases of 4-dimension problems. It rises, using the whole GPU capacity but,291

then, the curve stagnates. The speed-up reaches a threshold when the GPU is292

fully loaded and where no more time gain is possible. On Fig. 5b, a comparison293

of elapsed times during the CPU and GPU version of the algorithm is shown.294

We notice that when the re�nement of the grid is high, the computation time295

increases signi�cantly in the CPU version.296

Fig. 6, shows speed-up isolines in function of the number of dimensions297

and the number of points by dimension. We observe that when we have a 2- or298

3-dimension problem, the speed-up is between 0 and 4. This is not signi�cantly299

time-saving, and the initialization of the GPU can be slower than the classic300

array �lling. However, when the number of dimensions grows, the speed-up301

increases up until 20 in 7 dimensions or more in 5 or 6 dimensions with a �ner302

discretization. The speed-up isolevels follow the total number of points of the303

grid for high-dimension problems (4 dimensions or more). In these problems,304
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the main part of the time is spent in the trajectories storing part (the iterating305

kernel approximation ends quickly because of the low accuracy of the grid).306

4.1.3 Parallelized parts307

Here, we compare the speed-up during the storing of successors and during the308

computation one between the CPU and the GPU versions of the algorithm. In309

the following �gure (Fig. 7), we study two di�erent sizes of problems (2 and 6310

dimensions) and we return speed-ups in function of the number of points by311

dimension. Elapsed times during the two parallelized parts are also returned.312

On Fig.7a, we see that the elapsed time during the iterating kernel approx-313

imation is now higher than the one for storing the successors for 2-dimensions314

problems (for problems with more than 3000 points per dimension for the CPU315

version, or 1600 points per dimension for the GPU version). For problems in 3316

dimensions or more (like 6 dimensions in Fig7c), storing successors time is still317

higher than iterating kernel approximation time. The time for storing succes-318

sors exponentially increases with the number of dimensions and parallelizing319

this part of the algorithm is very e�cient.320

The speed-ups of the storing of trajectories and iterating kernel approx-321

imation are calculated separately here. As shown on Fig.7b and Fig.7d the322

speed-up increases up to 27 in 2 dimensions and 34 in 6 dimensions for the323

storing of trajectories, and up to 15 in 2 dimensions and 3.7 in 6 dimensions324

for the iterating kernel approximation.325

For a small problem with a low discretization, the time taken by the two326

algorithms is negligible, but we observe that the speed-up is below one (up to327

400 points by dimension in the 2D-problem, and 11 points by dimension in328

the 6D-problem). The mandatory initialization of the CUDA device explains329

the less successful results of the GPU version in smaller problems.330
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Moreover, we notice that the parallelization of the storing of successors is331

more e�cient whatever the number of dimensions. Actually, memory exchanges332

(reading the value function array in the global memory from each thread at333

each step) in the second part alter the performance of the parallelization.334

Thus, the speed-up of the iterating kernel approximation falls down to 3.7 in335

6 dimensions. Since the time elapsed during this step is small compared to the336

time elapsed during the storing of trajectories, its impact is not signi�cant on337

the global speed-up.338

4.2 Application to a bycatch �shery339

We illustrate our results on a multidimensional bycatch �shery model. This340

model is an extension of the one studied by Krawczyk et al (2013) from 3341

dimensions to 6 dimensions. We study the in�uence of the number of bycatch342

species on the �shery management.343

4.2.1 The two-species dynamics344

The model of Krawczyk is reminded here. There are two ecologically inde-345

pendent populations of �sh x and y, harvested by a single �eet. The �shery346

focuses on harvesting the target stock x. We de�ne a catchability coe�cient qx347

determining the quantity of biomass that each unit of e�ort extracts, relative348

to the total size of the biomass at the time. Thus, the harvest rate at time t349

is:350

hx (t) = qxe (t)x (t) (10)

The product of qx and e (t) is generally termed the level of �shing mortality351

and it is expressed as a proportion of biomass.352
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A linear bycatch production function is used :353

hy (t) = αhx (t) (11)

where the constant α, 0 < α < 1 is the bycatch to target harvest ratio.354

The respective population dynamics are then described by :355

x (t+ 1) = x (t) + rxx (t)

(
1− x (t)

Lx

)
− qxe (t)x (t) (12)

y (t+ 1) = y (t) + ryy (t)

(
1− y (t)

Ly

)
− αqxe (t)x (t) (13)

where rx , ry, Lx and Ly are all positive constants. By convention, rx and356

ry represent the intrinsic growth rates, and Lx and Ly are the environment357

carrying capacities, of x and y, respectively. According to Krawczyk, the nu-358

merical values for the bycatch species are chosen to have a bycatch stock less359

productive and less valuable than the target stock.360

We suppose that the e�ort e can be controlled:361

e (t+ 1) = e (t) + u (t) , u (t) ∈ [umin, umax]362

The speed at which the regulator can change �shing intensity is bounded363

by umin and umax. The �shing �eet's pro�t is given by :364

πxy (t) = pxhx (t) + pyhy (t)− ce (t)− C (14)

where py represents the unit prices of y, px the unit price of x The marginal365

cost of the �shing e�ort is c and C is a �xed cost. We de�ne the viability366

constraints set K :367
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K =

{
(x, y, e, u) : x (t) ≥ Lx

10
, y (t) ≥ Ly

10
, πxy (t) ≥ 0, e (t) ∈ [emin, emax]

}
(15)

The safe minimum biomass levels are set to one tenth of each �sh pop-368

ulation's unexploited level, as commonly implemented in �sheries worldwide369

(Krawczyk et al, 2013).370

4.2.2 The n-species dynamics371

We propose to extend this model to treat n-species dynamics in order to il-372

lustrate the bene�ts of the GPU computation of the viability kernel. The373

dynamics of the target species remains unchanged (Eq.2). We suppose here374

that we have n bycatch species yi. Moreover, we assume that these species are375

at the same trophic level, competitively sharing the same food resource (Eker-376

hovd and Steinshamm, 2014; Rice et al, 2013). The bycatch species growth is377

limited by the common carrying capacity Ly. The discrete dynamics becomes:378

yi (t+ 1) = yi (t) + ryi
yi (t)

1−

n−1∑
k=1

yk (t)

Ly

− αiqxe (t)x (t) , ∀i ∈ [1, n− 1]

(16)

ryi
is the intrinsic growth rate. αi denotes the bycatch to target harvest379

ratio, a measure of how highly coupled the production relationship is. Each380

bycatch stock yi is a by-product of the production process. A linear bycatch381

production function is used :382

hyi
(t) = αihx (t) (17)
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We assume here that the sum of all bycatch harvest ratios αi is equal to α383

de�ned in the previous section :384

n−1∑
i=1

αi (t) = α (18)

For reasons of simplicity, we suppose that all the αi are equal :385

αi =
α

n
(19)

As before, economic sustainability requires that the activity remains prof-386

itable. The �shing �eet's pro�t is given by :387

πxy (t) = pxhx (t) +

n−1∑
i=1

pyi
hyi

(t)− ce (t)− C (20)

Then, we have the viability constraint set K :388

K =

{
(x, y1, ..., yn−1, e, u) : x (t) ≥

Lx

10
, ∀i ∈ [1, n− 1] , yi (t) ≥

Ly

10n
, πxy (t) ≥ 0, e (t) ∈ [emin, emax]

}
(21)

In the following, we study dynamics with 1, 2, 3 or 4 bycatch species, which389

means dynamics with 3, 4, 5 or 6 dimensions respectively (including the �shing390

e�ort and the target species biomass).391

4.2.3 Results392

We use the parameters calibrated by Krawczyk (Krawczyk et al, 2013) and393

summed up in the Table 1.394

With only one bycatch species, a similar shape of the viability kernel is395

obtained than the one in the previous study (Krawczyk et al, 2013). This396
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viability kernel is presented in Fig.8. For the following �gures, the biomasses397

are scaled between 0.1 and 1.398

The bounds of the �gure are the constraint domain K. From each state399

contained inside the viability kernel, it exists at least a control strategy keeping400

the �shery in K. The states outside of the viability kernel are not viable, there401

is no control strategy satisfying the bio-economic constraints. For these states,402

the �shery is facing a "crisis" situation.403

Now, bycatch species are added to the environment. For one bycatch species,404

41.9% of states are inside the viability kernel. It decreases until less than 7%405

for four bycatch species.406

The Fig.9 shows 3D slices of the 4D kernel for di�erent �shing e�ort val-407

ues. It represents the biomass of the target species and the biomass of the408

bycatch species required to be viable to satisfy the ecological constraints while409

maintaining the pro�tability of the �shery. A small �shing e�ort needs big410

available stock of the target biomass in order to conserve the system prof-411

itability. A mean �shing e�ort leads to a large slice of the viability kernel412

according to the target biomass. Finally, keeping a big �shing e�ort requires a413

mean target species stock to not deplete the bycatch populations. The results414

are displayed for 4D problems, but they can be extended to higher dimension415

problems.416

Finally, we show on Fig.10 the number of states belonging to the viability417

kernel for a 6D problem with a grid of 20 points by dimension. The biggest418

viability kernel is obtained when the starting population of bycatch species are419

equal to
Ly

n (the o�set is set by the grid step which is nearly 15.3 here). The420

environment is then completely �lled with balanced increasing the possibility421

of sustainability. For larger initial populations, the environment is overloaded,422

causing the depletion of bycatch species. When the initial populations are423
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smaller, the ecological sustainability requirement restricts the number of viable424

states.425

5 Discussion and conclusion426

The GPU parallelization provides signi�cantly faster viability kernel computa-427

tions and tackles problems with a higher number of dimensions or more precise428

discretization than a sequential algorithm.429

However, a huge storage space is required to save all the coordinates and all430

the successors for high-dimension dynamical problems. For example, in C++,431

storing one coordinate in double-precision �oating-point format required 8432

bytes (64 bits). Then, storing the coordinates of 100 millions points in a 8-433

dimension problem (10 points per dimension) requires 6.4Gb. Moreover the434

successors multiplied this value by the number of possible values of the control.435

Because of this size, it is impossible to send all the data at once. Instead, we436

cut the problem in smaller parts : computing the coordinates for some grid437

points and then computing the successors g (x, u) for these points, the result438

is then saved. The process then continues with other grid points until all the439

whole grid has been processed. This reduces the need for memory.440

This parallelized version may be improved with other tools (like STXXL441

in C++ to use large arrays) and using the mapped memory, which is based442

on some pointers to the RAM. Further improvements could be achieved by443

associating multi-CPUs and multi-GPUs architectures, the �rst ones cutting444

the problem in small parts and the second ones solving the subproblems.445

The parallelization approach proposed here opens up perspectives in terms446

of parallelization for other viability problems. Then, revisiting other viabil-447

ity approaches such as an extension to stochastic dynamics (Doyen and De448

Lara, 2010) or algorithms such as support vector machine algorithm (De�uant449
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et al, 2007) could also lead to signi�cant improvements of e�ciency. Finally,450

the parallelization of the viability kernel algorithm provides a tool for the451

management of socio-ecosystems as illustrated with the management of the452

multi-species bycatch �shery.453
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Fig. 1 GPU device architecture. The device is composed of a grid of threads blocks. Each
level posseses its own memory. The parallelized tasks, like computation of controlled evolu-
tions and computations of the value function, are made separately on the threads. A grid of
3x2x2 blocks of 4x2x1 threads is shown.
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a) GPU Device initializationa) GPU Device initialization

b) Model parameters initialization
c) CUDA parameters initalization
d) Arrays of controlled evolution 

and value function initialization

b) Model parameters initialization
c) CUDA parameters initalization
d) Arrays of controlled evolution 

and value function initialization
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and GPU device finalization
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Fig. 2 Organization of the algorithm. Steps a,b,c,d,e,f,g and h are explained in 3.2. Kernel
functions are detailed in 3.3 and in 3.4.
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Fig. 5 E�ect of grid re�nement on the speed-up in a 4-dimensions problem. The elapsed
time during the two versions of the algorithm are shown in (b).
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Fig. 7 Comparison of the storing of trajectories and the iterating kernel approximation
elapsed times and speed-up between the GPU and CPU versions of the algorithm. Two sizes
of problems are shown : 2-dimension problem (a) and (b), and 6-dimension problem (c) and
(d).
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Fig. 8 Viability kernel for the 3D �shery model (with one bycatch species).Viability kernel
for the 3D �shery model (with one bycatch species). The blue surface symbolizes the zero-
pro�t surface. Having a positive pro�t (being above the blue surface) is a property of the
viability constraint set K.
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Fig. 9 3D slices of the 4D kernel for di�erent initial values of the �shing e�ort e.
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Fig. 10 Number of states of the grid belonging to the viability kernel for a 6D problem.
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Name Variable Value

Target carrying capacity Lx 600
Target growth rate rx 0.4
Target unit price px 4

Target catchability coe�cient qx 0.5
Bycatch common carrying capacity Ly 300

Bycatch growth rate ryi 0.2
Bycatch unit price pyi

1.9
Bycatch harvest ratio αyi

0.2
Marginal cost c 10
Fixed cost C 150

Maximum e�ort emax 1
Minimum e�ort emin 0.1

Maximum e�ort variation umax 0.01
Minimum e�ort variation umin −0.01

Table 1 Parameters of the bycatch �shery. The parameters for all the bycatch species i are
the same.




