
HAL Id: hal-01852576
https://hal.science/hal-01852576v1

Submitted on 16 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Singularity resolution in equality and inequality
constrained hierarchical task-space control by adaptive

non-linear least-squares
Kai Pfeiffer, Adrien Escande, Abderrahmane Kheddar

To cite this version:
Kai Pfeiffer, Adrien Escande, Abderrahmane Kheddar. Singularity resolution in equality and inequal-
ity constrained hierarchical task-space control by adaptive non-linear least-squares. IEEE Robotics
and Automation Letters, 2018, 3 (4), pp.3630-3637. �10.1109/LRA.2018.2855265�. �hal-01852576�

https://hal.science/hal-01852576v1
https://hal.archives-ouvertes.fr

Singularity resolution in equality and inequality constrained
hierarchical task-space control by adaptive non-linear least-squares

Kai Pfeiffer1,2, Adrien Escande1 and Abderrahmane Kheddar1,2

Abstract— We propose a robust method to handle kinematic
and algorithmic singularities of any kinematically redundant
robot under task-space hierarchical control with ordered equal-
ities and inequalities. Our main idea is to exploit a second order
model of the non-linear kinematic function, in the sense of the
Newton’s method in optimization. The second order information
is provided by a hierarchical BFGS algorithm omitting the
heavy computation required for the true Hessian. In the absence
of singularities, which is robustly detected, we use the Gauss-
Newton algorithm that has quadratic convergence. In all cases
we keep a least-squares formulation enabling good computation
performances. Our approach is demonstrated in simulation
with a simple robot and a humanoid robot, and compared to
state-of-the-art algorithms.

I. INTRODUCTION

Hierarchical (or strict priority-based) task-space schemes
are a popular approach for the control of kinematically
redundant robots, i.e. robots having more degrees of freedom
(DoF) than required to fulfil a given task [1]. For a task-space
error function that must be driven to zero, a linearized model
is built at the velocity or acceleration level, and solved in a
least-squares way. The null space of the linear model can be
used to satisfy at best a second task in the same way without
interfering with the first one. This generalizes to any number
of tasks, as long as some DoF’s are remaining [2].

While the approach has been long known for equality-
only tasks, it is only with the seminal work of [3] that a
full support of inequality tasks at any priority level has been
proposed. There, the resolution of the linearized problem is
done through a so-called cascade of constrained least-squares
programs (LSP): each level of the hierarchy is solved in
turn in a least-squares sense under the constraint of keeping
all previous levels at their optimal amount of violation. The
downside of this approach is a relatively high computation
cost because each LSP is redoing some work done by
the previous ones, and it is not possible to use a proper
warm-start to leverage the similarities between problems
in consecutive control iterations. A dedicated solver was
proposed in [4] and further improved in [5], enabling to solve
the same general hierarchical problem very efficiently.

The conjunction of a linear model and a hierarchical least-
squares resolution is however failing when approaching a
singularity: the Jacobian matrix of one of the tasks (kinematic
singularity case) or its projection onto the nullspace of

This research is supported in part by the CNRS-AIST-AIRBUS Joint
Research Program, and the EU H2020 COMANOID project.

1CNRS-AIST JRL (Joint Robotic Laboratory) UMI3218/RL, Japan
2CNRS-University of Montpellier, LIRMM UMR5506, Interactive Dig-

ital Human, France

higher-priority tasks (algorithmic singularity case) is becom-
ing nearly rank-deficient [1]; its inversion therefore yields
very high and unwanted joint velocities or accelerations,
leading to instabilities. The first kind of singularity typically
arises when a target is out of reach, while the second one is
a consequence of conflicts between tasks.

One way to handle singularities is to compute an approx-
imate solution to the linear problem with reasonable values.
This is most commonly achieved with damping, where a term
minimizing the solution norm is added to the least-squares.
It is introduced with a weight that can be either fixed by
the user or can be automatically adapted, for example using
the so-called manipulability factor [6] or some estimate of
the minimum singular value [7]. Another approach prohibits
infeasible end-effector targets by clamping and introducing a
more refined damping considering all the Jacobian’s singular
values w.r.t. the robot’s joints distinctively [8]. A very simple
method avoids the Jacobian inversion and uses its transpose
instead, with stable but worse convergence results [9].

Singularity handling has been mostly studied for equality
tasks only, and is still an open problem for a general
hierarchy including inequality tasks. This is why, despite
their efficiency, the solvers [4][5] have never been used
online on a real robot. To the best of our knowledge, the
only instance of a general hierarchy tackling singularities
is [10] where the authors propose an improved cascade of
LSP that includes fixed damping at every level. While faster
than [3], it is still suffering from the same drawback and from
the fact that tuning the damping weights can be difficult: too
low gains and the solution will be too large; too high gains
and the convergence will be hindered.

There is another way to look at the shortcomings of
the linear model with the least-squares resolution approach:
rather than approximating the solution, change the model to
better specify the solution we want. It can be indeed argued
that the linear model is not ‘good enough’ in the vicinity
of a singularity: the near rank deficiency of the Jacobian
matrix means that we are losing information in one direction.
Since the first derivative proves to be insufficient, we could
incorporate second-order information.

It is interesting to draw parallels between control and non-
linear least-squares optimization [11], [12]. For one task, the
least-squares minimization of a linear model corresponds
to the Gauss-Newton (GN-) method, while the damping
approach is akin to the Levenberg-Marquardt (LM-) algo-
rithm [13]. When the full second order information is used,
we get the Newton (N-) method. In fact, the three methods
have a ground commonality: they are all derived from the

second order Taylor approximation of the squared norm of a
non-linear function, only differing in whether the Hessian is
given analytically or by some approximation. Second order
derivatives are usually costly to compute, so that several
methods have been proposed to approximate them [14], [15],
the most widely used being the BFGS formula [16], derived
from the secant equation. Newton methods with Hessian
approximation are named Quasi-Newton (QN-) methods.

Neither the N-method nor the QN-method is specifically
designed to serve in multi-level hierarchies. In [17], a QN-
method using BFGS updates for the second order informa-
tion, weights its objectives to establish a non-strict hierarchy.
LM-algorithms like [18], [1] can be included into a strict
hierarchical scheme by damping and handing each objective
to a hierarchical least-squares solver like in [4], [5], though
missing the higher accuracy of the N-method.

In this paper we combine the (strict) hierarchy task-space
control scheme with the high accuracy and computation
speed of QN-methods: we propose a new singularity robust
method for prioritized inverse kinematics with any number
of hierarchical levels of equalities and inequalities, may they
be feasible or not, while encompassing numerical stability.
Our QN-approach outperforms current state of the art in
singularity robust inverse kinematics methods in terms of
accuracy while being computationally competitive.

II. SECOND ORDER INFORMATION IN A HIERARCHY

In this paper, we consider a robot with configuration q, and
a set of p geometric functions f(q), one for each priority
level. For each function we define a target or bound fd,
defining tasks f(q) = fd or f(q) ≤ fd, and the error
function e = fd − f . We derive a hierarchical velocity-
based controller minimizing those errors. The targets fd can
be time varying, but at each control iteration, we consider
them as constant (no feed-forward term).

At each control step k, we need to compute a velocity q̇.
The next state qk+1 is then integrated to

qk+1 = qk + ∆qk. (1)

with the increment ∆q = q̇∆t (∆t = 1).
In the following we will drop the index k for a better

reading (other indices k − 1, k + 1... are kept).
Given a single function f with Jacobian J , we can look

for ∆q yielding a given error decrease ∆e∗ with the relation

∆e∗ = −J∆q. (2)

For the sake of simplicity we take ∆e∗ = −e.
The required error decrease may not be achievable and we

solve the above using a linear least-squares

min
∆q

1

2
‖J∆q − e‖22 (3)

= min
∆q

1

2
eTe−∆qTJTe+

1

2
∆qTJTJ∆q. (4)

A solution is given by ∆q = J+e, where J+ is the Moore-
Penrose pseudo inverse. This formulation corresponds to the
GN-algorithm.

As discussed above, this approach is not robust in the
vicinity of singularities: J is almost loosing a rank and
∆q becomes very large. We now discuss how second order
information can be incorporated into the linear model.

Let’s define a scalar target function as follows [11]:

Φ(q) =
1

2
‖fd − f(q)‖22 =

1

2
‖e(q)‖22 =

1

2
eTe. (5)

Φ(q) is non-linear (quadratic, trigonometric functions) and
can only be handled by means of non-linear programming.
Yet, we can reformulate the problem to be approximated as
linear least-squares.

We approximate Φ(q) in a small neighbourhood ∆q of
point q by a second order Taylor series:

Φk+1(q + ∆q) ≈ Φ(q) + ∆qT∇Φ +
1

2
∆qT∇2Φ∆q (6)

= Φ(q)−∆qTJTe+
1

2
∆qT (JTJ+H)∆q.

We have the gradient

∇Φ(q) = −JTe (7)

and the Hessian

∇2Φ(q) = JTJ +H = JTJ +

dim(f)∑
i=1

ei∇2fi (8)

where H gathers the second order information (see next
section). ∆q can then be computed by

min
∆q

Φk+1(q + ∆q) (9)

= min
∆q

1

2
eTe−∆qTJTe+

1

2
∆qT (JTJ +H)∆q.

This corresponds to the Newton method applied to non-linear
least-squares [13]. We see that by neglecting the second order
term H , we get back to the GN formulation. Taking H as
a multiple of the identity yields the LM approach.

If H is positive definite, or approximated by a positive
definite matrix, we can take its Cholesky decomposition
H = RTR. This leads to the LSP

min
∆q

1

2

∥∥∥∥[JR
]

∆q −
[
e
0

]∥∥∥∥2

2

(10)

= min
∆q

1

2
‖J∆q − e‖22 +

1

2
‖R∆q‖22.

This is the approach we propose in this paper. It can be
seen as an augmentation of the GN formulation with the
second order information in R. R is obtained with the
Bunch-Kaufman decomposition LDLT [19] where the 1×1
blocks of the block diagonal matrix D have to be positive
and the 2 × 2 blocks need to be positive definite [20]. The
factorization RTR is then retrieved by R = D1/2LT .
The regularization ensures positive definiteness of R and
therefore the convexity of our problem.

The above derivation can be conducted for each task in
the hierarchy (for inequality tasks, it simply requires the
introduction of a slack variable, see [3]). We thus end up
with a set of priority-ordered least-squares problems of the
form (10) that we can pass to the hierarchical solver [5].

The next section presents our approach to compute H .

III. QUASI-NEWTON SCHEME FOR HESSIAN
CALCULATION

A. Hessian calculation for single level with equalities only

The calculation of the second order derivatives ∇2fi in
H of (8) is of complexity O(d3), d is the number of the
robot’s DoF. We propose a faster method based on the BFGS
algorithm. Our computational complexity for H is O(d2).

The BFGS method iteratively computes an approximation
of the whole Hessian B, using only gradient information:

B=Bk−1 +
yyT

yT ∆qk−1
−B

k−1∆qk−1∆qk−1,TBk−1

∆qk−1,TBk−1∆qk−1
.

(11)
y is the difference between the current ∇Φ and the previous
gradient ∇Φk−1: y = ∇Φ−∇Φk−1.

The update B is positive definite if Bk−1 is also positive
definite and the curvature is greater than zero yT ∆qk−1 > ξ,
otherwise no update is done. In theory ξ = 0 but in practice
we choose a numerical threshold like ξ = 10−12.
Bk−1 needs to be initialized with a positive definite matrix

in the very first iteration k = 1, for example by

B0 = J0,TJ0 + µI. (12)

At the start, J0 is not available so we use J instead. This
resembles the true Hessian in (8). Since J and therefore also
JTJ might be close to singularity we fill the diagonal with
a weighted identity matrix to make B0 regular.

As in [18], we set µ = max(µ, 1
2‖e‖

2
2) with µ = 1 · 10−3

being a lower threshold to handle cases where the error is
very small but the task is still augmented.

For our actual least-squares formulation the BFGS update
B needs to be reduced by

H = B − JTJ (13)

in order to receive the desired value H . However, this results
in an indefinite matrix H which can lead to unstable or un-
smooth behaviour despite the regularization to a positive defi-
nite matrix. We therefore choose to not conduct this reduction
(for consistency, the initialization is also done without adding
JTJ). We observed that the QN-method is very forgiving
in terms of simplifications in the second order information.
As long as the second order information is positive definite
we will converge at least linearly. Unfortunately, with the
current formulation it is not possible to directly update H .

B. Hessian calculation for hierarchies with equalities only

Solving a p levels hierarchy can be expressed as solving
a sequence of constrained least-squares problems where the
violation wl of the objective of level l has to be minimized
without increasing the (fixed) violation w∗i of already mini-
mized objectives of higher priority i = 1, . . . , l − 1:

For l = 1, . . . , p :

min
∆q,wl

1

2
‖wl‖22 (14)

subject to Jl∆q − el = wl

Ji∆q − ei = w∗i , i = 1, . . . , l − 1

The corresponding Lagrange function for constrained opti-
mization can be formulated as follows:

Ll =
1

2
eTl el −∆qTJT

l el +
1

2
∆qTJT

l Jl∆q

+

l−1∑
i=1

(Ji∆q − ei −w∗i)
T
λi,l (15)

=
1

2
eTl el −∆qTJT

l el +
1

2
∆qTJT

l Jl∆q

+

l−1∑
i=1

(
∆qTJT

i − (ei +w∗i)T
)
λi,l

=
1

2
eTl el −

l−1∑
i=1

(ei +w∗i)
T
λi,l

+ ∆qT

(
−JT

l el +

l−1∑
i=1

JT
i λi,l

)
+

1

2
∆qTJT

l Jl∆q.

λ are the Lagrange multipliers where λi,l is the vector
of Lagrange multipliers indicating the conflict of level l
with level i. The following equivalence with the task slack
variable holds [4]:

λl,l = wl. (16)

(15) has the characteristics of a hierarchical version of the
GN-algorithm (4). Its gradient can be written as

∇Φ(q) = −JT
l el +

l−1∑
i=1

JT
i λi,l. (17)

This hierarchical GN-gradient is then used to compute yl,
and consequently Bl.

We only use the Lagrange multipliers of the current
iteration in the calculation of yl = (Jl − Jk−1

l)Tλl [13].
B0

l of level l is initialized as

B0
l = JT

l Jl +

l∑
i=1

max(µ,
1

2
‖ei‖22)I∗i . (18)

I∗ is an identity matrix where only diagonal entries are
occupied when the corresponding joint is on the kinematic
chain of the task. This prevents unnecessarily decreasing the
null-space of this task and allows better results with lower
priority tasks.

C. Hessian calculation for general hierarchies

When there are also inequality constraints, (14) becomes

For l = 1, . . . , p :

min
∆q,wl

1

2
‖wl‖22 (19)

subject to ll ≤ Jl∆q −wl ≤ ul

li ≤ Ji∆q −w∗i ≤ ui, i = 1, . . . , l − 1

where li and ui are lower and upper bounds, i = 1, . . . , p,
and an equality constraint is expressed by setting the cor-
responding lower and upper bound to the same value. In-
equality constraints can be handled by the so-called active-
set method (see [13]). A constraint is active when it holds as

an equality at the solution and inactive otherwise. The active
set contains all equalities and all active inequalities. Inactive
constraints do not impact the solution and can be ignored.
Between resolutions, the active set can change.

Active set changes have to be considered due to the iter-
ative nature of the BFGS-algorithm (see (11)). The current
BFGS-update Bk−1

l of level l is a function of the old active
set Ak−1 since in a previous iteration k0, Bk0 was initialized
by Bk0

l = · · · +
∑l

i∈Ak0−1 · · · I∗i (see (20)). Without reini-
tialization, the new BFGS-update Bl would unnecessarily
occupy rank (or joints for a better visualization) of the
inactive inequalities. These joints then can not be used by
tasks on lower hierarchical levels, leading to a solution with
higher error norms of these tasks. Therefore, when the new
active set A differs from the old one Ak−1 the BFGS-
algorithm is reinitialized from the lowest level h, where an
active set change occurred, to the last level p by

Bk−1
l = Jk−1,T

l Jk−1
l +

l∑
i∈A

max(µ,
1

2
‖ei‖22)I∗i (20)

with l = h, · · · , p. Inactive constraints are neglected in the
summation. The following initialization

Bk−1
l = Jk−1,T

l Jk−1
l +

l∑
i∈A

max(µ,
1

2
‖λi,l‖22)I∗i (21)

with the Lagrange multipliers λ can lead to instability.
Especially when constraints are nearly parallel to each other
the Lagrange multipliers can grow unlimitedly. Therefore, it
is safer to use the physical task error.

IV. SWITCHING STRATEGY BETWEEN GN-ALGORITHM
AND QN-METHOD

The analytic expression for H becomes nil inherently
for

∑dim(f)
i=1 ei∇2fi = 0. This is not the case for BFGS

but has to be explicitly enforced. Additionally, the GN-
algorithm converges quadratically when close to a solution.
This is a very desirable quality over the possibly only
linear convergence of the QN-method. However, whether the
current state is in the proximity of a solution or not needs to
be measured accordingly. In this work we propose to observe
the model error Φ̃−Φ of the previous iteration. We have that

Φ(q+∆q)=Φ(q)−∆qTJTe+
1

2
∆qT(JTJ+H)∆q+O(∆q3)

which can be calculated by (5). We define Φ̃ as its approxi-
mated model. For the GN case we have

Φ̃(q + ∆q) = Φ(q)−∆qTJTe+
1

2
∆qTJTJ∆q

and for the QN-method we have

Φ̃(q+∆q)=Φ(q)−∆qTJTe+
1

2
∆qT (JTJ+RTR)∆q.

The approximation error is at least of order O(∆q3) since
the Taylor series of our non-linear model function is limited
to second order. However, the error will be dominated by
a O(∆q2) originating from the second order information

either being omitted (GN-method) or approximated (QN-
method). In practice it is sufficient to observe the quadratic
norm residual of the GN-algorithm or QN-method

ε =
1

2
‖w‖22 =

1

2
‖J∆q − e‖22. (22)

In case of the slack being zero, the least squares is solved
without residual

fd = f(q) + J∆q. (23)

However, the third order approximation error O(∆q3) might
still be present and we only have

fd ≈ f(q + ∆q). (24)

We switch from the QN- to the GN-method whenever ε
becomes smaller than a certain threshold ε (typically 10−12),
and from GN to QN when it becomes bigger.

Note that for the case of a GN-QN switch on level c we
reinitialize the BFGS from level c to the last level l.

V. TRUST REGION

The Taylor series represents the original function well
enough only in a small neighbourhood ∆ of the current
state q. This can be enforced by subjecting either the GN-
algorithm or the QN-method to a constraint of the form

‖∆q‖∞ < ∆ (25)

In practice, this trust region constraint is put on the very
first level of the hierarchy as −∆ ≤ ∆q ≤∆.

Choosing the trust region ∆ such that a well defined
Taylor approximation persists is a delicate process. Self-
tuning methods from pure optimization are difficult to trans-
fer to the robot control case. Most importantly, we cannot
recalculate solutions with different radii due to the real-time
constraint. An important point is also that to the best of our
knowledge none of these methods are specifically designed
for optimization with hierarchical constraints.

Therefore, we adapt the original trust region ∆ with the
following method:
• Loop through all variables i = 1, · · · , d of the solution

∆q and check if a single entry ∆qi changed its sign
compared to ∆qk−1

i .
• If so, ηi=min(η, ραi

dec·ηi), and increase αi by 1.
• If not, ηi=max(1, 1/ρinc·ηi), and decrease αi by 1.
• Change the trust region radius for joint i by ∆i =
−∆/ηi and ∆i = ∆/ηi.

η is an upper threshold with for example η = 106. ρdec =
ρinc = 1.2 are the trust region decrease or increase factors.
∆, ∆, η and α are vectors with d entries. η and α are
initialized with 1’s.

It is essential that the original trust region ∆ is already
chosen as well as possible. From our experience, for every
kinematic structure a radius can be found which leads to
good convergence for the wide range of applications we
tested. In this work, we set ∆ = 0.01[rad] or [m].

Algorithm 1 Lexicographic second order augmentation
Input: B,J ,J−, e,λ,A, cA,∆q

1: y = 0, R = 0
2: if t = 0 or cA > −1 then BcA

= 0

3: for all i ∈ A do
4: if cA > −1 and i ≥ cA then Bi = Jk−1,T

i Jk−1
i

5: for all j ≥ i and j ∈ A do
6: yj = yj + (JT

i − JT
−,i)λi,j

7: if cA > −1 and i ≥ cA and j ∈ A then
8: Bj += max(µ, 1

2‖ei‖
2)I∗i

9: if t = 0 then Ri =
√
Bi

10: else if 1
2‖wi‖2 > ε then

11: if yT
i ∆q > ξ then

12: Bi = Bi +
yiy

T
i

yT
i ∆q

− Bi∆q∆qT Bi

∆qTBi∆q

13: Ri = LDLT(Bi − JT
i Ji)

return R, B

VI. VALIDATION

An algorithm overview for the calculation of R named
LexLSAUG2 (Lexicographical Least Squares Augmented
with 2nd order information) is given in Alg. 1. The trust
region constraint is on level 0 and is not handled in this
algorithm. Any underlined variable contains the values from
all levels. Bi contains B from level i to the last level l.
cA shows the lowest level where a change of the active set
occurred. cA is set to −1 if there is no change of the active
set. LDLT gives back the regularized LDLT decomposition
of the input matrix.

We assess our method GN-QN (which solves with LexLSI
[5] the problem (19) possibly augmented by LexLSAUG2) in
simulations with two different robots, and compare with three
solvers that resolve singularities in hierarchical problems:

1) the GN-algorithm without any Hessian augmentation
2) the hierarchical least squares with adaptive damping

(ADLS) described in [1] for hierarchies with any num-
ber of levels of equalities. When having one level of
equalities, it is equivalent to the LM-algorithm. The
maximum damping is set to 2 while the threshold for
the minimum singular value is 0.5.

3) the constant damping hierarchical quadratic program-
ming (DHQP) described in [10], which handles both
equalities and inequalities. For equalities only problems
DHQP is identical to ADLS with constant damping. The
damping is set to 2.

A. Test bench

We tested our method with 20 different test cases. Their
length is limited to 25000 iterations.

The test cases T1 to T19 are performed on a 2D
4 DoF robot with two end-effectors (see Fig. 1). It
possesses a translational DoF at its base and three
revolute joints, one at the base and two at its ‘shoulder’
enabling the two arms to rotate. All links are of

Fig. 1. Robot for T1 (left) and T2 (right) for GN-QN. The robot can
translate along the long axis of the black slider. The other joints are revolute.
The green end-effector is tracking the green target while the blue end-
effector is tracking the blue target. In both frames, the targets are at their
turning points [2, 2][m] (blue ball) and [−2, 2][m] (green ball). The robot
is able to just reach the blue target for T1 while for T2 both targets remain
unreachable. This is due to the position of the shoulder being bound inside
the white box.

length 1[m]. Their task hierarchy then looks as follows:
Hierarchy A (T1, T3 to T19) and B (T2) (2D robot)

0) 4 trust region limits ∆ ≤ Iq̇ ≤∆ (GN and GN-QN)
or 4 velocity limits q̇

vl
≤Iq̇≤q̇vl (DHQP)

1) 2 equality constraints on blue end-effector as follows:
Jef2 q̇ = f ef2

d

2) 2 equality constraints on green end-effector as fol-
lows: Jef3 q̇ = f ef3

d

3) Minimal norm solution q̇ = 0
For hierarchy B, an inequality constraint on the white end-

effector / ’shoulder’ Jef1 q̇ ∈ f
ef1
d is added between level 0

and 1 of hierarchy A.
For ADLS, the joint velocity constraint is omitted since

inequalities can not be handled. The initial robot configura-
tion is [0, 0][m] for the free flyer and [−π/2, 0, 0][rad] for
the revolute joints.

The end-effectors at the tip of the arms must track two
targets oscillating diagonally with amplitude [2, 2][m] and
crossing at [0, 0][m]. This means that for T1 the targets
are just reachable for the robot in the corner cases. For
T3, the targets oscillate with amplitude [2, 3][m]. For T2
an additional inequality constraint (hierarchy B) is imposed
on the position of the shoulder. The constraint box reaches
from [−1, 0][m] to [1, 1][m].

For T4 to T8, we use static targets for level 1 and 2 at
[0, y][m] and [x, 1][m] with (x, y) equal to (1, 2), (1+ ε, 2+
ε), (1− ε, 2− ε), (1 + 10, 2 + 10) and (1− 0.25, 2− 0.25).
The three first case are slight variations to test robustness
with ε = 0.001[m] (1/1000 of the link length) such that both
targets are either just out of reach or just in reach. The two
last cases test for targets well out of reach or fully reachable.

For T9, both targets change their position randomly within
[±2,±1000][m] at each of the first 12500 iterations, and then
are static at [−1.9,−422][m] and [−1.5, 299][m] respectively
for the rest of the test. This test shows that the second-order
approximation can deal with highly noisy targets.

For T10 to T14, the targets are at [t, y][m] and [−2, 2][m]
where t increases linearly by 0.001 with the number of
iterations, and y takes the same value as for T4 to T8.

For T15 to T19, the first target is at [0, y][m], with y
defined as above, while the second target oscillates as in T1.

Fig. 2. T20 screenshots for GN-QN, from left to right: HRP2 reaching
for the target on its top left (out of reach, both CoM tasks are active), then
the target is in reach (the left hand task is switched to the GN-algorithm)
and finally the target is out of reach again in HRP2’s far right bottom.
The accompanying video also shows how the robot tries to stay as long as
possible in the smaller (green) CoM bounding box on the last level as it is
tracking the target (made possible by switching to the GN-algorithm when
the target is in reach, and which can not be observed for DHQP).

T10 to T19 show that our method is capable of tracking
static and dynamic targets at the same time while interchang-
ing their priority and testing for robustness.

T20 shows that our method is scalable to any number of
DoF. The robot HRP-2Kai with 38 DoF is standing in a
stable position in a cluttered aircraft workspace environment
(see accompanying video). Both feet and the left hand are
given fixed positions either on the ground or grabbing a pole
in front of the robot. On the next level the centre of mass
(CoM) projection is asked to remain in a rectangle a bit larger
than the polygon spanned by the feet. The right hand is then
used to track a target swinging from the robot’s far top left
to its far right bottom. At the lowest priority level, we give
a smaller polygon for the CoM projection, corresponding
to the feet only. The hierarchy then looks as follows:

Hierarchy C (T20) (HRP-2Kai)
0) 38 trust region limits ∆ ≤ Iq̇ ≤∆ (GN and GN-QN)

or 38 velocity limits q̇
vl
≤ Iq̇ ≤ q̇vl (DHQP)

1) 38 joint limits q̇
jl
≤ Iq̇ ≤ q̇jl

2) 18 in-reach equality constraints (translation, rotation)
on left, right foot and left hand: Jlfq̇ = f lf

d , Jrfq̇ =
f rf
d , Jlhq̇ = f lh

d

3) 3 inequality constraints on the CoM: Jcq̇ ∈ f c1
d

4) 3 in/out-of-reach equality constraints (translation, oscil-
lating target in 3D-space) on right hand: Jrhq̇ = f rh

d

5) 3 stricter inequality constraints on the CoM: Jcq̇ ∈ f c2
d

6) Minimal norm solution q̇ = 0

B. Evaluation criteria

The main problem that can arise near a singularity is
oscillations. We measure the presence of oscillations by
tracking the change of sign between iterations for each
component, and summing the amplitude of the change.

Σ =

25000∑
k=2

d∑
i=1

{
|∆qki | if sgn(∆qki) 6= sgn(∆qk−1

i)
0 otherwise

A low Σ means few or no oscillations.

We also integrate the normed error of the equality with
highest priority (‘ef2’ task for hierarchy A and B, ‘rh’ task for
hierarchy C) over time and then normalize it by the smallest
value of all solvers for this test case (Ξ). The performance
of the other tasks is not considered since bad convergence of
a task with high priority can lead to better convergence of a
task with lower priority, then lacking of any relevance. Since
the joint velocity constraint is omitted for ADLS and thus
allowing for way faster convergence from the initial position
to the targets its performance on Ξ is not considered (grey).
For static test cases, the iteration where every entry of the
solution vector becomes smaller than 10−6[rad] or [m] is
noted (Ψ).

C. Evaluation
The evaluation results of all test cases are given in Table I.

Our method is stable (low Σ) and performs best in terms of
convergence (Ξ ≈ 1). While DHQP and ADLS seem to be
unstable for many test cases, it is very important to mention
that the damping can be tuned in such a way that Σ = 0[rad]
(possibly with very high damping terms for T10 to T15, and
thus with very slow convergence). Because this has to be
done on a per-case basis, and after running a test, in our
work the damping is chosen such that Σ = 0[rad] for T1.
These values are applied for all the other test cases to enable
a fair comparison for the convergence of T1, T2 and T20.

The test cases show the following qualities of our method:
• Stability in the presence of singularities

– when the target is far away (T7, T9, T10, T11, T12,
T13, T14, T18)

– when the target is at the border of reachability (T1,
T4, T5, T6, T10, T11, T12, T15, T16, T17)

• Fast and good convergence properties
• Stable for all test cases without the need for damping

tuning.
• Works for inequalities (T2, T20)
• Scalable, applicable for any number of DoF (T20)
• Strong self-regulating capabilities (T9)
• The hierarchy is not disturbed as it is the case with the

damping term which introduces a model discontinuity
when the rank of a matrix changes and the damping is
not applied in the same null-space (T15, T16).

More detailed results for T1 are given in Fig. 3 showing
the task error norms. GN-QN tracks the level 1 target very
well due to the switching to the GN-algorithm allowing for
quadratic convergence. This behaviour can also be observed
at times for ADLS when the damping term becomes zero.
For level 2, DHQP and ADLS have lower task error norms
at times but this is due to their worse convergence of level 1,
putting the level 2 end-effector closer to its target. In general,
DHQP converges the worst due to the constantly present
damping.

The GN-algorithm is unstable with a high Σ = 574[rad].
It shows that the GN-algorithm alone is not a safe method
for a real world robot application.

For T2, the task error norms are given in Fig. 4. GN-
QN and DHQP track the level 2 target very well with slight

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
GN-QN 0.3 / 1 0.06 / 1 0.3 / 1. 0 / 1.-201 0 / 1-169 0 / 1-171 0 / 1-162 0 / 1-210 0.1 / 1-13k 0.02 / 1
DHQP 0 / 2.4 0.3 / 1. 284 / 1.1 0 / 1.3-15k 0 / 1.4-17k 0 / 1.3-10k 828 / 21 0 / 1.1-280 470 / 10 808 / 4.8
ADLS 0 / 0.5 - 4 · 106 / 10 0 / 0.3-15k 0 / 0.5-17k 0 / 0.3-10k 105 / 30 0 / 0.1-29 3 · 103 / 1.1 105 / 600
GN 574 / 1. 155 / 1.2 547 / 1 0 / 1-169 103 / 1.2 0 / 1-163 103 / 21 0 / 1-205 551 / 10 912 / 1.02

T11 T12 T13 T14 T15 T16 T17 T18 T19 T20
GN-QN 0 / 1 10−6 / 1 0 / 1 0 / 1 0.03 / 1 0 / 1 0.1 / 1 0 / 1 0.02 / 1 0.7 / 1
DHQP 809 / 4.6 806 / 4.8 743 / 1. 693 / 2.1 7.4 / 1.4 12 / 1.3 1.9 / 1.3 605 / 1. 0 / 1. 0.2 / 1.1
ADLS 105 / 600 105 / 600 105 / 1.4 105 / 600 4.6 / 0.4 6.5 / 0.5 1.9 / 0.3 105 / 1.4 0 / 0.1 -
GN 821 / 1.01 955 / 1 966 / 1. 849 / 1 775 / 1. 696 / 1. 890 / 1. 971 / 1. 516 / 1 2000 / 1.

TABLE I
TABLE ENTRIES ARE OF FOLLOWING FORM: Σ / Ξ - Ψ (ONLY FOR STATIC CASES AND WHEN SMALLER THAN 25000); RED COLOURED ENTRIES MEAN

THAT THE TEST CASE WAS UNSTABLE (HIGH Σ). BLUE COLOURED ENTRIES MEAN THAT THIS SOLVER PERFORMED BEST FOR THIS TEST CASE.

Fig. 3. Hierarchy T1, norm of task errors for level 1 and 2 with different
methods.

Fig. 4. T2, norm of task errors for level 1, 2 and 3 for GN-QN and DHQP.

advantage for GN-QN. The inequality constraint is violated
at some instances for both methods at a low amplitude. For
level 3, DHQP has a lower task error norm at times but this
is due to the worse convergence of level 2, putting the level 3
end-effector closer to its target.

For the static test cases T4 to T8, GN-QN behaves in
a stable manner while DHQP becomes unstable when the
targets are at [0, 2 + 10][m] and [1 + 10, 1][m]. Especially,
DHQP converges exponentially whereas the solution of GN-
QN decreases much faster to numerical zero by switching to
the GN-algorithm.

For T9 and GN-QN, the robot does not follow the random

Fig. 5. T20, norm of task error for the right hand on hierarchy level 3.
GN-QN moves closer to the target than DHQP.

Fig. 6. T20, control loop times in [ms]. The maximum loop times are
4.5[ms] for GN-QN, 4.0[ms] for LexLSI and 0.5[ms] for LexLSAUG2.
The maximum number of active set iterations in LexLSI is 49.

noise of the targets. This is due to the trust region adaptation
method.

For T10 to T14, GN-QN is stable while DHQP is only
stable in the beginning and becoming unstable as the robot
moves away from the second target.

For T15 to T16, it can be seen (video) how the hierarchy is
violated by DHQP. The first end-effector is reaching for the
target at [0, 2][m] and [0, 2 + 0.001] respectively. The robot
is kinematically able to reach [0, 2]. While for GN-QN the
first three joints do not move since they are fully occupied
by the level 1 task, for DHQP these joints visibly move as
they are involved in the achievement of the level 2 task.

For T20, both GN-QN and DHQP track the target in a
stable manner. Fig. 5 shows the better convergence of GN-
QN of the right hand (the remaining tasks are not shown
since they are either converged onto their targets or within
their prescribed bounds, for both methods). Especially when
the target is in reach GN-QN has near zero task error norm
due to the switching to the GN-algorithm. DHQP only gets
into the proximity of the reachable target.

Fig. 7. T20, map of activity (light gray) and QN-method (dark gray).

The activation of the tasks and whether they are augmented
or not is shown in Fig. 7. If a task is augmented it also means
that it is active.

The computation speed on an Intel Core i7-4720HQ CPU
@ 2.60GHz with 8 GB of RAM is given in Fig. 6. The
computation times lay usually well below 1[ms] even when
several tasks are augmented with second order information.
However, there are some peaks up to 4.5[ms], especially
when either the right hand or the CoM task are switched to
the QN-method and a lot of active set iterations take place in
LexLSI. This number of iterations seems too large, and we
are investigating it. We do not have an optimized version of
DHQP for fair comparison, but for a similar size of problem
and similar hardware, [10] reports a computation time of
about 3[ms]. This is coherent with the timing difference
reported in [4] between a dedicated solver and a cascade
of LSP.

VII. CONCLUSION

We proposed a new robust method to deal with singular-
ities in prioritized inverse kinematics control schemes. We
showed that we are able to solve any robotic setup with any
number of hierarchical levels of equalities and inequalities,
may they be feasible or not, while most importantly, ensuring
numerical stability. Thereby, our approach provides higher
accuracy w.r.t current state-of-the-art methods. Furthermore,
it allows the use of the fastest off-the-shelf hierarchical least-
squares solvers.

Our approach borrows much inspiration from constrained
optimization: the Quasi-Newton method avoids the expen-
sive calculation of the analytic Hessian while being stable,
highly accurate with at least linear convergence. Due to our
adaptation method, we switch reliably to the quadratically
converging GN-algorithm whenever a problem becomes fea-
sible. Thereby, the GN-algorithm and the QN-method are
solved by the same fast state of the art hierarchical linear
least-squares solver due to proper reformulation.

We observed that the QN-method is very forgiving in
terms of simplifications in the second order information (we
omitted the reduction of the Hessian by JTJ). As long
as the second order information is positive definite we will
converge at least linearly. However, it would be desirable to
either directly update H or even its decomposition R like
in [21] in order to improve the convergence behaviour and
save computation time.

Our ongoing work is dedicated to extending our method
to dynamic control.

REFERENCES

[1] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tions on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[2] B. Siciliano and J.-J. E. Slotine, “The general framework for managing
multiple tasks in high redundant robotic systems,” in International
Conference on Advanced Robotics, 1991, pp. 1211 – 1216 vol.2.

[3] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of
redundant manipulators: generalizing the task priority framework to
inequality tasks,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–
792, 2011.

[4] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[5] D. Dimitrov, A. Sherikov, and P.-B. Wieber, “Efficient resolution
of potentially conflicting linear constraints in robotics,” Aug. 2015,
submitted to IEEE TRO (05/August/2015). [Online]. Available:
https://hal.inria.fr/hal-01183003

[6] Y. Nakamura and H. Hanafusa, “Inverse Kinematic Solutions With
Singularity Robustness for Robot Manipulator Control,” J. Dyn. Sys.,
Meas., Control, vol. 108, no. 3, pp. 163–171, 1986.

[7] A. A. Maciejewski and C. A. Klein, “Numerical filtering for the
operation of robotic manipulators through kinematically singular con-
figurations,” Journal of Robotic Systems, vol. 5, no. 6, pp. 527–552,
1988.

[8] S. R. Buss and J.-S. Kim, “Selectively damped least
squares for inverse kinematics,” Journal of Graphics Tools,
vol. 10, no. 3, pp. 37–49, 2005. [Online]. Available:
https://doi.org/10.1080/2151237X.2005.10129202

[9] W. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” IEEE Conference on Decision and Control, vol. 23, no.
December, pp. 1359–1363, 1984.

[10] A. Herzog, N. Rotella, S. Mason, F. Grimminger, S. Schaal,
and L. Righetti, “Momentum control with hierarchical inverse
dynamics on a torque-controlled humanoid,” Autonomous Robots,
vol. 40, no. 3, pp. 473–491, Mar 2016. [Online]. Available:
https://doi.org/10.1007/s10514-015-9476-6

[11] A. S. Deo and I. D. Walker, “Adaptive non-linear least squares for
inverse kinematics,” in IEEE International Conference on Robotics
and Automation, vol. 1, May 1993, pp. 186–193.

[12] P.-B. Wieber, A. Escande, D. Dimitrov, and A. Sherikov,
“Geometric and numerical aspects of redundancy,” in Geometric and
Numerical Foundations of Movements, 2017. [Online]. Available:
https://hal.inria.fr/hal-01418462

[13] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

[14] J. E. Dennis, Jr., D. M. Gay, and R. E. Walsh, “An adaptive
nonlinear least-squares algorithm,” ACM Trans. Math. Softw.,
vol. 7, no. 3, pp. 348–368, Sep. 1981. [Online]. Available:
http://doi.acm.org/10.1145/355958.355965

[15] P. L. Toint, “On large scale nonlinear least squares calculations,” Siam
Journal on Scientific and Statistical Computing, vol. 8, 05 1987.

[16] C. G. Broyden, “The Convergence of a Class of Double-rank Miniza-
tion Algorithms,” Journal of the Mathematics and its Applications,
vol. 6, pp. 76–90, 1970.

[17] J. Zhao and N. I. Badler, “Inverse kinematics positioning using
nonlinear programming for highly articulated figures,” ACM Trans.
Graph., vol. 13, no. 4, pp. 313–336, Oct. 1994. [Online]. Available:
http://doi.acm.org/10.1145/195826.195827

[18] T. Sugihara, “Solvability-unconcerned inverse kinematics by the lev-
enbergmarquardt method,” IEEE Transactions on Robotics, vol. 27,
no. 5, pp. 984–991, October 2011.

[19] J. R. Bunch, L. Kaufman, and B. N. Parlett, “Decomposition of a
symmetric matrix,” Numerische Mathematik, vol. 27, no. 1, pp. 95–
109, 1976.

[20] J. J. Moré and D. C. Sorensen, “On the use of directions of negative
curvature in a modified newton method,” Mathematical Programming,
vol. 16, no. 1, pp. 1–20, 1979.

[21] R. Fletcher, “A new low rank quasi-Newton update scheme for
nonlinear programming,” IFIP TC7 Conference, no. August, pp. 275–
293, 2006.

