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There is a widely used linearization technique in the theory of Sturm-Liouville problems with boundary and/or discontinuity conditions polynomially dependent on the eigenvalue parameter. One considers a Hilbert (or Pontryagin) space of the form L 2 ⊕ C k and constructs a self-adjoint operator in this space such that the eigenvalue problem for this operator and the original boundary value problem become equivalent, in the sense that their eigenvalues coincide, the eigenfunctions of the latter problem are in one-to-one correspondence with the first components of the eigenvectors of the former problem, and so on (see, e.g., [START_REF] Bartels | Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation[END_REF], [START_REF] Behrndt | Finite rank perturbations in Pontryagin spaces and a Sturm-Liouville problem with λ-rational boundary conditions, Indefinite inner product spaces, Schur analysis, and differential equations[END_REF], [START_REF] Guliyev | Essentially isospectral transformations and their applications[END_REF], and the references therein). Fulton [START_REF] Fulton | Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[END_REF]Remark 2.1] attributes this technique to Friedman [5, pp. 205-207]. The purpose of this short paper is to show that a straightforward generalization of this technique gives an explicit description of all minimal selfadjoint extensions of a densely defined, closed symmetric operator with deficiency indices (1, 1) (see below for definitions).

Let A be a densely defined, closed symmetric operator in a separable Hilbert space H with deficiency indices [START_REF] Bartels | Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation[END_REF][START_REF] Bartels | Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation[END_REF]. Let {C, Γ 0 , Γ 1 } be a boundary triplet for A * . This means that Γ 0 , Γ 1 : D(A * ) → C are two linear mappings such that abstract Green's identity

A * x, y H -x, A * y H = Γ 1 x • Γ 0 y -Γ 0 x • Γ 1 y, x, y ∈ D(A * )
holds and the mapping Γ : [START_REF] Schmüdgen | Unbounded self-adjoint operators on Hilbert space[END_REF]Chapter 14]. The domain of A then coincides with the kernel of Γ:

D(A * ) → C 2 , x → (Γ 0 x, Γ 1 x) is surjective [4],
D(A) = {x ∈ D(A * ) | Γ 0 x = Γ 1 x = 0}. ( 1 
)
If A is a self-adjoint operator in a Hilbert space H ⊃ H such that A ⊂ A, then A is called a self-adjoint extension of A. A self-adjoint extension A is called minimal if no nontrivial subspace of H H is reducing for A [10, Section 4],
or equivalently [START_REF] Schmüdgen | Unbounded self-adjoint operators on Hilbert space[END_REF]Lemma 5.17]

H = span A -λI -1 x x ∈ H, λ ∈ C \ R ,
where span denotes the linear span.

A holomorphic operator-valued function R(λ) on C \ R is called a generalized resolvent of A if R(λ) = P H A -λI -1

H

for some self-adjoint extension A, where P H is the orthogonal projection onto H. For every generalized resolvent there is a unique (up to unitary equivalence) minimal self-adjoint extension with this property (see [START_REF] Naimark | Spectral functions of a symmetric operator (Russian)[END_REF]Theorem 8]). On the other hand, there is a one-to-one correspondence between generalized resolvents R(λ) and functions ω(λ) holomorphic on the open upper half-plane C + with |ω(λ)| ≤ 1: for every x ∈ H the value y := R(λ)x satisfies the equation

A * y -λy = x
and the condition (ω(λ) -1) Γ 1 y -i (ω(λ) + 1) Γ 0 y = 0 (see [START_REF] Bruk | A certain class of boundary value problems with a spectral parameter in the boundary condition (Russian)[END_REF]). Denoting

f (λ) := iω(λ) + i 1 -ω(λ)
we obtain a one-to-one correspondence between generalized resolvents R(λ) and Herglotz-Nevanlinna functions f , i.e. functions holomorphic on C + with Im f (λ) ≥ 0 (cf. [13, Subsection 1.2]). The above condition then becomes

Γ 1 y + f (λ)Γ 0 y = 0. (2) 
The "Dirichlet" condition Γ 0 y = 0 corresponds to f = ∞. We will denote the generalized resolvent corresponding to f by R f (λ). It should be noted that complete parameterizations of all generalized resolvents in terms of Herglotz-Nevanlinna functions were first obtained independently by Naimark [START_REF] Naimark | On spectral functions of a symmetric operator (Russian)[END_REF] and Krein [START_REF] Krein | On Hermitian operators with deficiency indices one (Russian)[END_REF].

We are now ready to construct our minimal self-adjoint extension corresponding to a Herglotz-Nevanlinna function f . This function has a unique representation of the form [12, Appendix F]

f (λ) = h 0 λ + h + +∞ -∞ 1 t -λ - t 1 + t 2 dσ(t),
where h 0 ≥ 0, h ∈ R, and

+∞ -∞ dσ(t) 1 + t 2 < ∞
(the reader may refer to [START_REF] Gesztesy | On matrix-valued Herglotz functions[END_REF]Appendix A] for some examples of such representations). If h 0 > 0 then we consider the Hilbert space H := H ⊕ L 2 (R; dσ) ⊕ C with inner product given by x, y

H := x 0 , y 0 H + +∞ -∞ x 1 (t)y 1 (t) dσ(t) + x 2 y 2 h 0 for x =   x 0 x 1 x 2   , y =   y 0 y 1 y 2   ∈ H,
and define the operator

A x :=    A * x 0 tx 1 (t) -Γ 0 x 0 Γ 1 x 0 + hΓ 0 x 0 + +∞ -∞ x 1 (t) -t 1+t 2 Γ 0 x 0 dσ(t)    with D( A) := { x ∈ H | x 0 ∈ D(A * ), tx 1 (t) -Γ 0 x 0 ∈ L 2 (R; dσ), x 2 = -h 0 Γ 0 x 0 }.
If h 0 = 0 then we set H := H ⊕ L 2 (R; dσ), and define A by

A x := A * x 0 tx 1 (t) -Γ 0 x 0 and D( A) := x ∈ H x 0 ∈ D(A * ), tx 1 (t) -Γ 0 x 0 ∈ L 2 (R; dσ), Γ 1 x 0 + hΓ 0 x 0 + +∞ -∞ x 1 (t) - t 1 + t 2 Γ 0 x 0 dσ(t) = 0 . The extension A is canonical (i.e. H = H) if and only if f is a real constant (or ∞).
Theorem. For each Herglotz-Nevanlinna function f the operator A defined above is a minimal self-adjoint extension of the operator A with the corresponding generalized resolvent R f (λ).

Proof. We will consider the case h 0 > 0; the other case can be proved similarly. To prove the self-adjointness, let y, z ∈ H be such that

A x, y H = x, z H (3) 
for all x ∈ D( A). Taking into account (1) and setting x 1 (t) ≡ 0 = x 2 we obtain Ax 0 , y 0 H = x 0 , z 0 H , x 0 ∈ D(A).

Hence y 0 ∈ D(A * ) and z 0 = A * y 0 . By surjectivity of Γ, there exists x 0 ∈ D(A * ) with Γ 0 x 0 = 0 and Γ 1 x 0 = 1. Then for this x 0 and x 1 (t) ≡ 0 the equality (3) gives y 2 = -h 0 Γ 0 y 0 . Setting x 0 = 0 in (3) we get

+∞ -∞ x 1 (t)(ty 1 (t) -Γ 0 y 0 -z 1 (t)) dσ(t) = 0 for all x 1 (t) ∈ L 2 (R; dσ) with tx 1 (t) ∈ L 2 (R; dσ). Since such functions are dense in L 2 (R; dσ), we obtain ty 1 (t) -Γ 0 y 0 = z 1 (t) ∈ L 2 (R; dσ). Finally choosing x 0 ∈ D(A * ) with Γ 0 x 0 = 1, the equality (3) yields z 2 = Γ 1 y 0 + hΓ 0 y 0 + +∞ -∞ y 1 (t) - t 1 + t 2 Γ 0 y 0 dσ(t).
Thus y ∈ D( A) and A y = z.

To see that the generalized resolvent corresponding to A is R f (λ), it suffices to check that if

y =   y 0 y 1 y 2   = A -λI -1   x 0 0   then y 0 satisfies (2)
, and this is straightforward. Finally, to check the minimality, we need to verify that the linear span of all y of this form with all possible values of x ∈ H and λ ∈ C \ R is dense in H. To this end, let z ∈ H be orthogonal to all such y, i.e. 

  z, y H = z 0 , y 0 H + +∞ -∞ z 1 (t) Γ 0 y 0 t -λ dσ(t) -z 2 Γ 0 y 0 = 0 for all y 0 ∈ D(A * ). Surjectivity of Γ implies z 0 = 0 and +∞ -∞ z 1 (t) t -λ dσ(t) = z 2 , λ ∈ C \ R.Now the Stieltjes-Perron inversion formula [12, Theorem F.2] applied to the regular complex Borel measure z 1 dσ yields z 1 (t) = 0 for dσ-a.e. t and consequently z 2 = 0.