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ON EXTENSIONS OF SYMMETRIC OPERATORS

NAMIG J. GULIYEV

Abstract. We give an explicit description of all minimal self-adjoint exten-

sions of a densely defined, closed symmetric operator in a Hilbert space with
deficiency indices (1, 1).

There is a widely used linearization technique in the theory of Sturm–Liouville
problems with boundary and/or discontinuity conditions polynomially dependent
on the eigenvalue parameter. One considers a Hilbert (or Pontryagin) space of
the form L2 ⊕ Ck and constructs a self-adjoint operator in this space such that
the eigenvalue problem for this operator and the original boundary value problem
become equivalent, in the sense that their eigenvalues coincide, the eigenfunctions
of the latter problem are in one-to-one correspondence with the first components
of the eigenvectors of the former problem, and so on (see, e.g., [1], [2], [8], and the
references therein). Fulton [6, Remark 2.1] attributes this technique to Friedman
[5, pp. 205–207]. The purpose of this short paper is to show that a straightforward
generalization of this technique gives an explicit description of all minimal self-
adjoint extensions of a densely defined, closed symmetric operator with deficiency
indices (1, 1) (see below for definitions).

Let A be a densely defined, closed symmetric operator in a separable Hilbert
space H with deficiency indices (1, 1). Let {C,Γ0,Γ1} be a boundary triplet for A∗.
This means that Γ0, Γ1 : D(A∗) → C are two linear mappings such that abstract
Green’s identity

〈A∗x, y〉H − 〈x,A∗y〉H = Γ1x · Γ0y − Γ0x · Γ1y, x, y ∈ D(A∗)

holds and the mapping Γ: D(A∗) → C2, x 7→ (Γ0x,Γ1x) is surjective [4], [12,
Chapter 14]. The domain of A then coincides with the kernel of Γ:

D(A) = {x ∈ D(A∗) | Γ0x = Γ1x = 0}. (1)

If Ã is a self-adjoint operator in a Hilbert space H̃ ⊃ H such that A ⊂ Ã, then Ã

is called a self-adjoint extension of A. A self-adjoint extension Ã is called minimal

if no nontrivial subspace of H̃	H is reducing for Ã [10, Section 4], or equivalently
[12, Lemma 5.17]

H̃ = span

{(
Ã− λI

)−1
x

∣∣∣∣ x ∈ H, λ ∈ C \ R
}
,

where span denotes the linear span.
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A holomorphic operator-valued function R(λ) on C \ R is called a generalized
resolvent of A if

R(λ) = PH

(
Ã− λI

)−1∣∣∣∣
H

for some self-adjoint extension Ã, where PH is the orthogonal projection onto H.
For every generalized resolvent there is a unique (up to unitary equivalence) min-
imal self-adjoint extension with this property (see [10, Theorem 8]). On the other
hand, there is a one-to-one correspondence between generalized resolvents R(λ) and
functions ω(λ) holomorphic on the open upper half-plane C+ with |ω(λ)| ≤ 1: for
every x ∈ H the value y := R(λ)x satisfies the equation

A∗y − λy = x

and the condition

(ω(λ)− 1) Γ1y − i (ω(λ) + 1) Γ0y = 0

(see [3]). Denoting

f(λ) :=
iω(λ) + i

1− ω(λ)

we obtain a one-to-one correspondence between generalized resolvents R(λ) and
Herglotz–Nevanlinna functions f , i.e. functions holomorphic on C+ with Im f(λ) ≥
0 (cf. [13, Subsection 1.2]). The above condition then becomes

Γ1y + f(λ)Γ0y = 0. (2)

The “Dirichlet” condition Γ0y = 0 corresponds to f =∞. We will denote the gener-
alized resolvent corresponding to f by Rf (λ). It should be noted that complete pa-
rameterizations of all generalized resolvents in terms of Herglotz–Nevanlinna func-
tions were first obtained independently by Naimark [11] and Krein [9].

We are now ready to construct our minimal self-adjoint extension corresponding
to a Herglotz–Nevanlinna function f . This function has a unique representation of
the form [12, Appendix F]

f(λ) = h0λ+ h+

∫ +∞

−∞

(
1

t− λ
− t

1 + t2

)
dσ(t),

where h0 ≥ 0, h ∈ R, and ∫ +∞

−∞

dσ(t)

1 + t2
<∞

(the reader may refer to [7, Appendix A] for some examples of such representations).

If h0 > 0 then we consider the Hilbert space H̃ := H ⊕ L2(R; dσ) ⊕ C with inner
product given by

〈x̃, ỹ〉H̃ := 〈x0, y0〉H +

∫ +∞

−∞
x1(t)y1(t) dσ(t) +

x2y2
h0

for

x̃ =

x0x1
x2

 , ỹ =

y0y1
y2

 ∈ H̃,
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and define the operator

Ãx̃ :=

 A∗x0
tx1(t)− Γ0x0

Γ1x0 + hΓ0x0 +
∫ +∞
−∞

(
x1(t)− t

1+t2 Γ0x0

)
dσ(t)


with

D(Ã) := {x̃ ∈ H̃ | x0 ∈ D(A∗), tx1(t)− Γ0x0 ∈ L2(R; dσ), x2 = −h0Γ0x0}.

If h0 = 0 then we set H̃ := H⊕ L2(R; dσ), and define Ã by

Ãx̃ :=

(
A∗x0

tx1(t)− Γ0x0

)
and

D(Ã) :=

{
x̃ ∈ H̃

∣∣∣∣ x0 ∈ D(A∗), tx1(t)− Γ0x0 ∈ L2(R; dσ),

Γ1x0 + hΓ0x0 +

∫ +∞

−∞

(
x1(t)− t

1 + t2
Γ0x0

)
dσ(t) = 0

}
.

The extension Ã is canonical (i.e. H̃ = H) if and only if f is a real constant (or∞).

Theorem. For each Herglotz–Nevanlinna function f the operator Ã defined above
is a minimal self-adjoint extension of the operator A with the corresponding gener-
alized resolvent Rf (λ).

Proof. We will consider the case h0 > 0; the other case can be proved similarly. To

prove the self-adjointness, let ỹ, z̃ ∈ H̃ be such that

〈Ãx̃, ỹ〉H̃ = 〈x̃, z̃〉H̃ (3)

for all x̃ ∈ D(Ã). Taking into account (1) and setting x1(t) ≡ 0 = x2 we obtain

〈Ax0, y0〉H = 〈x0, z0〉H, x0 ∈ D(A).

Hence y0 ∈ D(A∗) and z0 = A∗y0. By surjectivity of Γ, there exists x0 ∈ D(A∗)
with Γ0x0 = 0 and Γ1x0 = 1. Then for this x0 and x1(t) ≡ 0 the equality (3) gives
y2 = −h0Γ0y0. Setting x0 = 0 in (3) we get∫ +∞

−∞
x1(t)(ty1(t)− Γ0y0 − z1(t)) dσ(t) = 0

for all x1(t) ∈ L2(R; dσ) with tx1(t) ∈ L2(R; dσ). Since such functions are dense
in L2(R; dσ), we obtain ty1(t) − Γ0y0 = z1(t) ∈ L2(R; dσ). Finally choosing x0 ∈
D(A∗) with Γ0x0 = 1, the equality (3) yields

z2 = Γ1y0 + hΓ0y0 +

∫ +∞

−∞

(
y1(t)− t

1 + t2
Γ0y0

)
dσ(t).

Thus ỹ ∈ D(Ã) and Ãỹ = z̃.

To see that the generalized resolvent corresponding to Ã is Rf (λ), it suffices to
check that if

ỹ =

y0y1
y2

 =
(
Ã− λI

)−1x0
0


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then y0 satisfies (2), and this is straightforward. Finally, to check the minimality,
we need to verify that the linear span of all ỹ of this form with all possible values

of x ∈ H and λ ∈ C \ R is dense in H̃. To this end, let z̃ ∈ H̃ be orthogonal to all
such ỹ, i.e.

〈z̃, ỹ〉H̃ = 〈z0, y0〉H +

∫ +∞

−∞
z1(t)

Γ0y0

t− λ
dσ(t)− z2Γ0y0 = 0

for all y0 ∈ D(A∗). Surjectivity of Γ implies z0 = 0 and∫ +∞

−∞

z1(t)

t− λ
dσ(t) = z2, λ ∈ C \ R.

Now the Stieltjes–Perron inversion formula [12, Theorem F.2] applied to the regular
complex Borel measure z1 dσ yields z1(t) = 0 for dσ-a.e. t and consequently z2 =
0. �
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