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Abstract

This paper introduces a new definition of multiscale
neighborhoods in 3D point clouds. This definition, based on
spherical neighborhoods and proportional subsampling, al-
lows the computation of features with a consistent geomet-
rical meaning, which is not the case when using k-nearest
neighbors. With an appropriate learning strategy, the pro-
posed features can be used in a random forest to classify
3D points. In this semantic classification task, we show that
our multiscale features outperform state-of-the-art features
using the same experimental conditions. Furthermore, their
classification power competes with more elaborate classifi-
cation approaches including Deep Learning methods.

1. Introduction

In the past years, the interest in 3D scanning technolo-
gies has constantly grown in the computer vision com-
munity. The benefits of combining 3D and semantic in-
formation are fundamental for robotic applications or au-
tonomous driving. To assign the right label to every point
in a 3D scene, semantic classification algorithms need to
understand the geometry of the scene. Among the ways to
achieve such an understanding, two paradigms stand out. In

the first instance, the point cloud is segmented and then a
label is given to each segment [7, 19, 22]. The weakness of
this first strategy is that it depends on a prior segmentation
which does not use semantic information. In the second in-
stance, each point is considered individually and is given a
semantic label or class probabilities (see Figure 1) [9, 27].
Without any prior segmentation, classifying 3D points only
relies on the appearance of points neighborhoods. Thus, we
need a set of expressive features to describe the geometry
in a point neighborhood. Demantké et al. proposed a de-
scription based on local covariance [6]. To complement this
local shape description, Weinmann et al. added measures of
verticality and height distribution [28]. We could find more
complex descriptors in the literature like Spin Images [11]
or Fast Point Feature Histograms [21]. However, we chose
to use a multiscale approach with simple features, which
has been proven to be more expressive [9].

Standard machine learning techniques are used to clas-
sify 3D points described by geometric features. According
to Weinmann et al.’s extensive work [27], Random Forest
is the most suitable classifier. In that case, spatial relations
between points are ignored. Features can instead be used
as unary potentials in Markov Random Fields [14] to en-
sure spatial coherence in the classification. These two tech-
niques can also be combined by using class probabilities

Figure 1. Our 3D semantic classification framework: a set of features is computed for every point with our new multiscale spherical
neighborhood definition. These features are then used to classify each point independently.
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given by a standard classifier as unary potentials [24]. In
that case, the random fields can be seen as a subsequent se-
mantic segmentation, and the first point-wise classification
problem remains. We focus on this first classification, be-
cause the better its results are, the better further processing
will perform.

3D neural networks have recently been used for 3D Se-
mantic Segmentation. Huang et al. [10] used a 3D ver-
sion of fully convolutional neural networks (FCNN) to label
point clouds from voxel-wise predictions. An original Mul-
tilayer Perceptron (MLP) architecture, named Pointnet, has
been presented by Qi et al. [17], and is able to extract both
global and local features from a 3D point cloud. Its exten-
sion, Pointnet++ [18], achieves even better results by the ag-
gregation of local features in a hierarchical manner. 3D neu-
ral networks can also be combined with graph-based seg-
mentation methods to design more elaborate 3D semantic
segmentation algorithms. Tchapmi et al. [25] used a CRF
on 3D FCNN predictions to enforce global consistency and
provide fine-grained semantics. On the other hand, Lan-
drieu and Simonovsky [12] prefer to segment the cloud in
a Superpoint Graph first, and then use Pointnet architecture
and graph convolutions to classify each Superpoint. Even
though hand-crafted features rarely perform at the level of
Deep Learning architectures, our multiscale features com-
pete with most of these methods.

Although we propose a slightly different set of features
than Hackel et al. [9], the originality of our method lies in
the points neighborhood selection. In the case of 3D points
classification, the two most commonly used neighborhood
definitions are the spherical neighborhood [4] and the k-
nearest neighbors (KNN) [28]. For a given point P , the
spherical neighborhood comprises the points situated less
than a fixed radius from P , and the k-nearest neighbors
comprises a fixed number of closest points to P . We can
also add a third definition, which is mostly used for air-
borne lidar data [5,15], the cylindrical neighborhood which
comprises the points situated less than a fixed radius from
P , on a 2D projection of the cloud (frequently on the hor-
izontal plane). Whatever definition is chosen, the scale of
the neighborhood has to be determined. Using a fixed scale
across the scene is inadequate because most scenes contain
objects of various sizes. Weinmann et al. explored a way
to adapt the scale to each point of the cloud [27]. How-
ever, using a multiscale approach has proven to be more
effective, whether it is used with KNN [9, 16], with spher-
ical/cylindrical neighborhoods [4, 15] or with a combina-
tion of all neighborhood types [2]. The major drawback of
the multiscale neighborhoods is their computational time,
but Hackel et al. [9] suggested a simple and efficient solu-
tion to implement them, based on iterative subsamplings of
the cloud. However, their definition of multiscale neighbor-
hoods, using KNN, lacks geometrical meaning. Section 2.

describes our definition of multiscale spherical neighbor-
hoods, which keeps the features undistorted while ensuring
sufficient density at each scale.

We chose to evaluate our multiscale spherical neighbor-
hoods definition on a semantic classification basis. The fea-
tures we use and our learning strategy are described in Sec-
tion 3. We conduct several experiments detailed in Section
4 on various datasets. First, we validate that our multiscale
features outperform state of the art features in the same ex-
perimental conditions on two small outdoor datasets. Then
we compare our classification results to more elaborate se-
mantic segmentation methods on three bigger datasets. The
parameters’ influence is eventually highlighted in the last
paragraph.

2. Multiscale Spherical Neighborhoods

Our new definition of multiscale neighborhoods is in-
spired by [9] with spherical neighborhoods instead of KNN.
This section highlights the differences between both defini-
tions. Let C ⊂ R3 be a point cloud, the spherical neighbor-
hood of point p0 ∈ R3 in C with radius r ∈ R is defined
by:

Sr(p0, C) =
{

p ∈ C ‖p− p0‖ 6 r
}

(1)

Figure 2. Behavior of multiscale neighborhoods defined with KNN
or with spherical neighborhoods.



Unlike KNN, this neighborhood corresponds to a fixed part
of the space as shown in Figure 2. This property is the key to
give a more consistent geometrical meaning to the features.
But, in that fixed part, the number of points can vary ac-
cording to the cloud density. As Hackel et al. [9] explained,
radius search should be the correct procedure from a purely
conceptual viewpoint but it is impractical if the point den-
sity exhibits strong variations. Two phenomena appear in
particular:

• Having too many points when the neighborhood scale
is too big or the density too high

• Having too few points when the neighborhood scale is
too small or the density too low

The first phenomenon has computational consequences as
getting a large number neighbors in a larger set of points
takes a lot of time. The computational cost of multiscale
features does not come from the fact that we have to com-
pute the features S times, where S is the number of scales.
The real limiting factor is the number of points contained
in the biggest scales. Furthermore, all those points are not
required to compute relevant features. Our features capture
a global shape in the neighborhood and do not need fine de-
tails. The solution proposed by Hackel et al. [9] to subsam-
ple the cloud proportionally to the scale of the neighborhood
can be adapted to the spherical definition. This solution bet-
ter suits the spherical neighborhoods than the KNN. With a
uniform density, the number of points in the neighborhood
becomes a feature itself, describing the neighborhood occu-
pancy rate. We chose to subsample the cloud with a grid, by
keeping the barycenter of the points comprised in each cell.
Let l ∈ R be the size of the grid cells, for any radius of a
neighborhood r ∈ R, we can control the maximum number
of points in our neighborhood with the parameter ρ = r

l .
If ρ is too low, we will not have enough points and the fea-
tures will not be discriminant, but the higher its value is, the
longer computations are.

The impact of the second phenomenon, caused by low
densities, should be limited by the use of multiple scales. As
illustrated in Figure 2, if the density is too low, the points
will remain the same after subsampling between two con-
secutive scales (neighborhood C). With spherical neighbor-
hoods, the small scale might not contain enough points for
a good description, but the large scale will deliver the in-
formation. In the same case, the KNN behave differently,
giving exactly the same information at both scales. Regard-
less of the neighborhoods, there is no information to get
from the data at the smaller scale. However, the KNN give
a false description of the smaller scale without any measure
of its reliability, whereas spherical neighbors give the num-
ber of points, which is an indication of the robustness of the
description.

The scales are defined by three parameters: the radius of
the smallest neighborhood r0, the number of scales S, and
the ratio between the radius of consecutive neighborhoods
ϕ. We can then define the neighborhood at each scale s ∈
{0, ..., S − 1} around point p0 ∈ R3 as:

Ns(p0) = Srs(p0, Cs) (2)

with rs = r0 ∗ ϕs being the radius at scale s and Cs being
the cloud subsampled with a grid size of rs/ρ.

Despite its similarity with the definition proposed by
Hackel et al. [9], our multiscale neighborhood definition
stands out with its geometrical meaning. With spherical
neighborhoods instead of KNN, the features always de-
scribe a part of the space of the same size at each scale.
Moreover, the number of points in the neighborhood is now
a feature itself adding even more value to this definition.
More than a theoretical good behaviour, this leads to better
feature performances, as shown in Section 4.

3. Point-wise Semantic Classification
3.1. Geometric and Color Features

For benchmarking purposes, we divide our features in
two sets described in Table 1. The first set does not use any
additional information like intensity, color, or multispectral

Table 1. Features used for classification.

Features Definitions

Sum of eigenvalues
∑

λi

Omnivariance
(∏

λi

) 1
3

Eigenentropy −
∑

λi ln(λi)

Linearity (λ1 − λ2)/λ1

Planarity (λ2 − λ3)/λ1

Sphericity λ3/λ1

Change of curvature λ3/(λ1 + λ2 + λ3)

Verticality (x2)
∣∣∣π
2
− angle(ei, ez)

∣∣∣
i∈(0,2)

Absolute moment (x6)
1

|N |

∣∣∣∑〈p− p0, ei〉k
∣∣∣
i∈(0,1,2)

Vertical moment (x2)
1

|N |
∑
〈p− p0, ez〉k

Number of points |N |

Average color (x3)
1

|N |
∑

c

Color variance (x3)
1

|N | − 1

∑
(c− c̄)2



measure, to keep previous work conditions [9, 27] in our
first experiment (Section 4.1). In the other experiments, ad-
ditional color features are used when available. We use co-
variance based features that simply derive from the eigen-
values λ1 > λ2 > λ3 ∈ R and corresponding eigenvectors
e1, e2, e3 ∈ R3 of the neighborhood covariance matrix de-
fined by:

cov(N ) =
1

|N |
∑
p∈N

(p− p̄)(p− p̄)T (3)

Where p̄ is the centroid of the neighborhood N . From the
eigenvalues, we can compute several features: sum of eigen-
values, omnivariance, eigenentropy, linearity, planarity,
sphericity, anisotropy, and change of curvature. How-
ever, among those commonly used features, we eliminate
anisotropy defined by (λ1 − λ3)/λ1 as it is strictly equiv-
alent to sphericity. We can notice that, thanks to the na-
ture of our neighborhoods, we do not need to normalize the
eigenvalues as in previous works. Their values do not vary
with the original point cloud density which means the fea-
tures that do not involve ratios, e. g. sum of eigenvalues,
omnivariance, and eigenentropy, make more sense. Our
feature set is completed by verticality that we redefined as
|π2 − angle(ei, ez)|. Unlike Hackel et al. [9], we keep the
verticality for the first and the last eigenvectors. The first
one encodes the verticality of linear objects, and the last
one the verticality of the normal vector of planar objects.
We also use first and second order moments around all three
eigenvectors, but in absolute value as the eigenvectors have
random orientations. Following our assumption that verti-
cal direction plays an important role, additional vertical mo-
ments are computed around the vertical vector ez in relative
value as the upward direction is always the same. Even-
tually, as explained in Section 2, the number of points in
a neighborhood completes our first set of features, which
contains 18 values at each scale. In Section 4.2, we use col-
ors as previous works did, because some objects like closed
doors or windows are indistinguishable in 3D. We chose
simple features, the mean and the variance of each color
channel, bringing the total number of features per scale to
24.

3.2. Learning Strategy

There are two setbacks when classifying a point cloud.
First, its size is generally huge, and then, the classes are
heavily unbalanced. To fix those problems, one can take a
subset of the training data, small enough to allow reason-
able training times, and balance the classes in that subset.
The scope of the results also depends on the test set. With
small datasets, the rest of the points are used as the test set,
even if they represent the same scene. The results from such
experiments would be questionable as a measure of the clas-
sification performances, however, they still may be used to

compare the descriptive power of different features. The re-
cent appearance of bigger point cloud datasets allowed the
separation of the training set and the test set. With such
point clouds, it is possible to get a relevant measure of how
well the classification generalizes to unseen data.

In Section 4.1, we compare our multiscale features to
state of the art features [9,27] in the same experimental con-
ditions. The same number of points is randomly picked in
each class to train a classifier, and this classifier is tested on
the rest of the cloud. We go further than previous works by
computing our results several times with different training
sets. We cannot ensure that the comparison is valid without
checking the distribution of results on a large number of tri-
als. The quality of our multiscale features can be assessed
more reliably in these conditions.

On bigger datasets, we use a different learning strategy.
We iteratively add points to the training set with a trial and
error procedure. A classifier is trained on a set of points T
from the training clouds U , then the classifier is tested on
U , and we randomly add some of the misclassified points
to T . After some iterations, the classifier is used on the
test clouds. The experiments in Section 4.2 use this learn-
ing strategy, which only consists in a smart choice of the
training points. We can’t use this strategy on small datasets,
because the test scene is the same as the training scene and
our classification would show overfitted results.

4. Experiments
4.1. State of the art features comparison

The goal of our first experiment is to assess the perfor-
mances of our multiscale features against other state-of-the-

Table 2. Average IoU (with standard deviation) on Rue Madame
(top) and Rue Cassette (bottom) datasets. Results for [9] and [27]
are converted from corresponding articles.

Class Ours [9] [27]

Facade 98.22% (±0.11) 97.06% 91.81%
Ground 96.62% (±0.18) 96.29% 84.88%

Cars 95.37% (±0.43) 89.09% 55.48%
Motorcycles 61.55% (±2.22) 47.44% 9.44%
Traffic Signs 67.43% (±8.67) 33.96% 4.90%
Pedestrians 77.86% (±3.32) 24.13% 1.63%

Mean 82.84% 58.89% 31.68%

Facade 97.27% (±0.20) 93.89% 86.65%
Ground 97.77% (±0.20) 96.99% 95.75%

Cars 84.94% (±1.54) 80.88% 47.31%
Motorcycles 58.99% (±3.27) 51.33% 17.12%
Traffic Signs 12.71% (±3.81) 18.58% 14.29%
Pedestrians 35.31% (±3.80) 24.69% 9.06%
Vegetation 71.48% (±1.94) 51.40% 24.63%

Mean 65.50% 54.08% 35.30%



art features [9, 27], thus, we keep the same experimental
conditions as Weinmann et al. [27] and Hackel et al. [9].
We use the Paris-Rue-Madame dataset [23], a 160-meter
street scan containing 20 million points and the Paris-Rue-
Cassette dataset [26], a 200-meter street scan containing 12
million points. To focus the comparison on the features, we
use a random forest classifier trained on 1000 random points
per class for each dataset as previous works did. We chose
the parameters S = 8, r0 = 0.1m, ϕ = 2 and ρ = 5. The
first three parameters were chosen so that the scales of our
neighborhoods cover a range from the smallest object size
to the order of magnitude of a facade and the last parameter
ρwas chosen empirically (see Section 4.3). With an average
personal computer setup (32 GB RAM, Intel Core i7-3770;
3.4 GHz), our feature extraction took about 319 seconds on
Rue Cassette, which is the same order of magnitude as the
method in [9] (191s) and way faster than the method in [27]
(23000s).

For consistency, we chose to use the classes "Intersection
over Union" metric in all our experiments. Thus, we convert
the class F1 scores given in [9, 27] with the equation :

F1 =
2TP

2TP + FP + FN
(4)

IoU =
TP

TP + FP + FN
=

F1

2− F1
(5)

where TP, FP, and FN respectively denote true posi-
tives, false positives, and false negatives for each class. As
stated in Section 3.2, we reproduce our results 500 times
to ensure the validity of the comparison despite the ran-
dom factor in the choice of the training set. In Table 2,
we report the average class IoU to compare with previous
results and the standard deviations to prove the consistency
of the classification. The performances of our multiscale
features exceed previous results by 24 mean IoU points on
Rue Madame and 11 mean IoU points on Rue Cassette. We
can also note that our results do not vary much, the stan-
dard deviations being limited to a few percents even for the
hardest classes with fewer points.

As a conclusion, the low standard deviation validates
the random selection of the training set and legitimates the
comparison of the different sets of features. Our multiscale
features thus proved to be superior to state of the art fea-
tures. The difference between Hackel et al.’s multiscale fea-
tures [9] and ours may seem like an implementation detail,

with radius neighborhoods instead of KNN. However, the
results prove that the type of local neighborhood definition
has a great impact on the robustness of the features.

4.2. Results on large scale data

Our second experiment shows how our classification
method generalizes to unseen data. As shown in Table 4,
we chose three large scale datasets from different environ-
ments and acquisition methods. With these datasets, we use
the smart choice of training points described in Section 3.2
and a random forest classifier. This simple classification al-
gorithm is designed to focus on the point-wise descriptive
power of our features, we called it RF_MSSF for "Random
Forest with Multi-Scale Spherical Features."

Table 4. Dataset characteristics

Name S3DIS Semantic3D Paris-Lille-3D

Environment Indoor Outdoor Outdoor
Acquisition Cameras Fixed lidar Mobile lidar

Colors Yes Yes No
Points 273M 4009M 140M

Covered area 6000m2 110000m2 55000m2

Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)
[1] was acquired by 3D cameras and covers six large-scale
indoor areas from three different buildings for a total of
6000m2 and 273 million points. To keep the same exper-
imental conditions as Tchapmi et al. [25], we use the fifth
area as the test set and train on the rest of the data. Original
annotation comprises 12 semantic elements which pertain
to the categories of structural building elements (ceiling,
floor, wall, beam, column, window, and door) and com-
monly found furniture (table, chair, sofa, bookcase, and
board). A clutter class exists as well for all other elements.
This last class has no semantic meaning like the "unclas-
sified" points in the other datasets and will not be consid-
ered during training and testing. As the object scales in
this dataset are smaller than the object scales in a street,
we adapt the parameters to S = 8, r0 = 0.05m, ϕ = 2,
and ρ = 5. The classifier is trained on 50000 sample points
chosen with the procedure described in Section 3.2. Ta-
ble 3 shows that our classification method outperforms the

1As Pointnet was evaluated in a k-fold strategy in the original paper,
we obtained the results on this particular split from the authors.

Table 3. IoU per class on S3DIS dataset

Method ceiling floor wall beam column window door chair table bookcase sofa board mean

PointNet [17] 1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 41.7
SEGCloud [25] 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 49.5
SPGraph [12] 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 58.5

RF_MSSF (ours) 95.9 96.4 67.6 0.0 11.9 48.3 28.8 64.4 68.9 58.6 33.9 22.3 49.8



Table 5. IoU per class on Semantic3D dataset (Fold 5)

Method man-made natural high low buildings hard scanning cars meanterrain terrain vegetation vegetation scape artefacts

TMLC-MSR [9] 89.8 74.5 53.7 26.8 88.8 18.9 36.4 44.7 54.2
DeePr3SS [13] 85.6 83.2 74.2 32.4 89.7 18.5 25.1 59.2 58.5

SnapNet [3] 82.0 77.3 79.7 22.9 91.1 18.4 37.3 64.4 59.1
SEGCloud [25] 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3 61.3
SPGraph [12] 97.4 92.6 87.9 44.0 93.2 31.0 63.5 76.2 73.2

RF_MSSF (ours) 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6 62.7

Table 6. IoU per class on Paris-Lille-3D dataset (Fold: Paris)

Method ground building signage bollard trash cans barriers pedestrians cars vegetation mean

RF_MSSF (ours) 99.1 90.5 66.4 62.6 5.8 52.1 5.7 86.2 84.7 61.5

deep learning architectures of [17,25] but is unable to com-
pete with the cutting edge algorithm of Landrieu and Si-
monovsky [12].

Semantic3D [8] is an online benchmark comprising sev-
eral fixed lidar scans of different outdoor places. This
is currently the dataset with the highest number of points
(more than 4 billion), and the greatest covered area (around
110000m2). We kept the parameters used in previous out-
door experiment: S = 8, r0 = 0.1m, ϕ = 2, and ρ = 5. Ta-
ble 5 provides our results on the reduced-8 challenge. Our
classification method ranked second at the time of the sub-
mission. Once again, it beats several deep learning architec-
tures and is only outperformed by the same algorithm [12].
We can notice that our results exceed Hackel et al. re-
sults [9] by a large margin, consolidating the conclusion in
Section 4.1.

Paris-Lille-3D [20] is a recent dataset that was acquired
with a Mobile Laser Scanning system in two cities in
France: Lille and Paris. Overall, the scans contain more

than 140 million points on 2 km of streets, covering a
55000m2 area, which is much bigger than other mobile
mapping datasets like Rue Madame and Rue Cassette. This
dataset, fully annotated by hand, comprises 50 classes un-
equally distributed in three scenes Lille1, Lille2, and Paris.
Following the authors’ guideline, we designed 10 coarser
classes defining meaningful groups: Unclassified, Ground,
Building, Signage, Bollard, Trash cans, Barriers, Pedestri-
ans, Cars, and Vegetation. We provide an "XML" file in
supplementary materials, which maps original classes to our
coarse classes. Among our ten classes, the first one Unclas-
sified will be ignored during training and test. We choose to
train our classifier on the two scenes Lille1 and Lille2 and
to use Paris as the test fold. This dataset does not include
colors, so we only use our first set of features and choose the
parameters used in the other outdoor environments: S = 8,
r0 = 0.1m, ϕ = 2, and ρ = 5. Our results are shown in
Table 6. Although this dataset is recent and does not have
any other baseline result for now, we find it very interesting

Figure 3. Examples of classified scenes in S3DIS dataset (left) with groundtruth (right)



Figure 4. Examples of classified scenes in Semantic3D.net dataset (left) with groundtruth (right)

Figure 5. Examples of classified scenes in Paris-Lille-3D dataset (left) with groundtruth (right)

because of its cross-city split. We see that our classifier can
transfer knowledge from one city to another and is partic-
ularly efficient on buildings. This is remarkable given that
Lille and Paris architectural styles are very different.

Figures 3, 4, and 5 show some examples of classified
scenes. First, we can notice that the classification has no
object coherence as some unstructured patches appear, for
example on the columns in Figure 3 or on the facades in
Figure 5. This highlights the particularity of our method to
focus on points independently, not using any segmentation
scheme. Another very interesting pattern appears on the

second scene in Figure 5: when a car is close to a tree, it is
misclassified and we can actually see the influence area of
the tree on the car. We can assume that the classifier relies
more on the large scales to distinguish those two particular
classes.

Overall, our classification algorithm ranks among the
best approaches, beating nearly every other elaborate
method apart from Superpoint Graphs [12] on these
datasets. However, this has to be considered in light of the
fact that we do not use any segmentation or regularization
process and only focus on the descriptive power of our fea-



Figure 6. Influence of the parameter ρ on classification perfor-
mances and computation speed on Paris-Lille-3D dataset

tures. We proved that our features beat state-of-the-art fea-
tures in terms of classification performances, and that they
could, alone, compete with complex classification schemes,
including deep learning methods.

4.3. Density parameter influence

We eventually evaluate the influence of the parameter ρ
in our classification method. As a reminder, this parameter
controls the number of subsampled points that a neighbor-
hood can contain. A high value means better features but
slower computations. In this experiment, we chose to use
Paris-Lille-3D for two reasons. First, we want to focus on
the 3D descriptors and, thus, do not need color information.
Then, the results generalize well because they are cross-city,
tested on Paris after being trained on Lille. With the param-
eters previously used on this dataset, we compute average
IoU scores across all classes for different values of ρ. Fig-
ure 6 shows the evolution of the results along with the fea-
tures computation speed for every split of the dataset. We
can note that average IoU scores rise quickly up to ρ = 3
and do not increase a lot for higher values of ρ. Depending
on the application, one can choose to optimize the results or
the processing speed with this parameter. Although our per-
formances could be slightly increased with a higher ρ value,
we chose to keep ρ = 5 in our work because it is a trade-off
between performance and computation speed.

5. Conclusion
This paper presents a 3D point cloud semantic classifi-

cation approach articulated around new multiscale features.
The use of spherical neighborhoods instead of KNN in-
creases the discriminating power of our features, leading
to better performances than state-of-the-art features in the
same experimental conditions. We also showed that the per-
formances of our algorithm are consistent on three datasets
acquired with different technologies in different environ-

ments. Eventually, we proved that our approach outper-
forms recent and complex classification schemes, includ-
ing deep learning methods, on large scale datasets. Deep
learning is becoming the standard for several classification
tasks, but there is room for improvements with handcrafted
methods. Furthermore, the ideas that come up from such
methods, like our new multiscale neighborhood definition,
could benefit other frameworks including deep learning.
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