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Abstract

In this note, we prove a law of large numbers for an infinite chemical reaction

network for phase transition problems called the stochastic Becker-Döring process.

Under a general condition on the rate constants we show the convergence in law

and pathwise convergence of the process towards the deterministic Becker-Döring

equations. Moreover, we prove that the non-equilibrium potential, associated to the

stationary distribution of the stochastic Becker-Döring process, approaches the rela-

tive entropy of the deterministic limit model. Thus, the phase transition phenomena

that occurs in the infinite dimensional deterministic model is also present in the finite

stochastic model.

Keywords: Becker-Döring; infinite-dimensional reaction network; law of large num-

bers; non-equilibrium potential; entropy.

AMS MSC 2010: 60J75; 60B12; 28D20.

1 Introduction

The Becker-Döring model represents time evolution of spatially homogeneous clusters

of particles. Cluster sizes change following two simple rules: they may grow by adding

particles one-by-one or shrink by losing particles one-by-one. Denoting a cluster of i ≥ 1

particles by Ci, we can summarize the model by a simple infinite reaction network:

C1 + Ci
ai−−−⇀↽−−−
bi+1

Ci+1 , i ≥ 1,

where ai and bi+1 are the size-dependent reaction rate constants. This model was orig-

inally formulated as an infinite set of ordinary differential equations, one for the evolu-

tion of the concentration of clusters of each size, denoted by ci(t), for t ≥ 0 and i ≥ 1:

dc1
dt

= −2J1(c)−

+∞
∑

i=1

Ji(c) ,

dci
dt

= Ji−1(c)− Ji(c) , i ≥ 2 ,

Ji(c) = aic1ci − bi+1ci+1 , i ≥ 1 .

(1)

We call the system (1) the deterministic Becker-Döring equations (DBD). This model

was used to represent phase transition phenomena in physics, chemistry, and more re-

cently gained in popularity in biology. The interested reader should refer to the surveys

[9, 17] for details.

*Departamento de Matemática, Universidad del Bío-Bío, Concepción, Chile – ehingant@ubiobio.cl
†PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France – romain.yvinec@inra.fr
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In this note, we deal with the stochastic counterpart of this model whose construc-

tion follows. Let (ai)i≥1 and (bi)i≥2 be strictly positive sequences. For n ≥ 1 and ρ > 0,

we define the state space

En
ρ =

{

(ci)i≥1 ∈ R
N : ∀i ≥ 1 , nρ ci ∈ N,

+∞
∑

i=1

ici = ρ
}

,

where R
N is the space of real sequences. An important fact is that En

ρ is a finite state

space, which can be made clearer with the following equivalent representation: c ∈ En
ρ

iff c = ( ρnx1, . . . ,
ρ
nxn, 0, . . .) with xi ∈ {1, . . . , ⌊ i

n⌋} and
∑n

i=1 ixi = n. Then, we define

the following infinitesimal generator as the operator An, on the set of borel function

ψ : RN → R, bounded on En
ρ , by

An(ψ)(c) =
n

ρ

+∞
∑

i=1

(

Ai(c)[ψ(c+
ρ
n∆i)− ψ(c)] +Bi+1(c)[ψ(c−

ρ
n∆i)− ψ(c)]

)

(2)

where the transition rates are

A1(c) = a1c1(c1 −
ρ
n ) , Ai(c) = aic1ci , i ≥ 2 , Bi(c) = bici , i ≥ 2 ,

and jump transitions ∆i = ei+1 − ei − e1 with (e1, e2, . . .) the canonical basis of RN, that

is eik = 1 if k = i and 0 otherwise. Remark that for any c ∈ En
ρ , if Ai(c) > 0 then

c+ ρ
n∆i ∈ Eρ

n, while if Bi+1(c) > 0 then c− ρ
n∆i ∈ En

ρ . Finally, fix (Ω,F ,P) a (sufficiently

large) probability space, denote by E the corresponding expectation and define the

following process:

Definition 1.1. For each n ≥ 1, the stochastic Becker-Döring process (SBD) is a pure

jump Markov process cn on (Ω,F ,P), with value in En
ρ , and infinitesimal generator An

given in Eq. (2).

Since Eρ
n is finite, given an initial law cin, n ∈ En

ρ , there exists a unique (in law) SBD

process cn with cn(0) = cin, n (in law). Moreover, by construction of En
ρ , this yields the

so-called mass conservation,
+∞
∑

i=1

icni (t) = ρ . (3)

The parameter n can be seen as the total number of particles, and n
ρ as a volume scal-

ing. We study the behavior of the SBD model when n goes to infinity. As the state space

grows together with n, this problem differs from standard results of chemical reaction

networks (see discussion). In the first part of our note, we deal with the convergence of

the time-dependent SBD process towards the solution of the DBD equations, as n→ ∞.

In the second part, we elucidate the asymptotic behavior as n → ∞ of the stationary

distribution of the SBD process, which is related to the relative entropy associated to

the DBD equations.

Summary. In Sec. 2 we introduce additional notations and our main results. In Sec.

3 we prove the Theorem 2.2 for the convergence in law of the SBD process. In Sec. 4,

we prove the Theorem 2.3 for pathwise estimates. In Sec. 5 we prove the Theorem 2.4

on the convergence of the stationary distribution. We discuss our results with respect

to the literature in section 6. Considered as appendix, in Sec. A we state a criterion for

weak compactness of (density) measures and in Sec. B a criterion for tightness of jump

processes. Both are used in the proof of Theorem 2.2.
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2 Main Results

We naturally embed the sequence of state-space En
ρ into the space

X =
{

(ci)i≥1 ∈ R
N : ‖c‖ :=

+∞
∑

i=1

ici < +∞
}

.

The space (X, ‖ · ‖) is complete and separable. For 0 < T ≤ +∞, we denote by

D([0, T [, X) the space of right continuous with left limit X-valued function on [0, T [.

Equipped with the Skorohod topology, the space D([0, T [, X) is Polish (see [8, Theorem

5.6]). Denote by X+ the non-negative cone of X . We assume the following on the

sequence of initial condition.

Hypothesis. The sequence of initial condition {cin,n} belonging to En
ρ is deterministic,

and there exists cin ∈ X+ such that

lim
n→+∞

‖cin,n − cin‖ = 0. (H1)

Remark, cin given in (H1) has consequently the same mass ρ, that is ‖cin‖ = ‖cin,n‖ =

ρ. In our first theorem for the convergence in law of the SBD process, we shall assume

that the coagulation reaction rates are linearly bounded.

Hypothesis. There exists a positive constant K such that

ai ≤ Ki, i ≥ 1. (H2)

For our second theorem for pathwise convergence of the SBD process, we shall

impose some monotonicity condition on both the coagulation and the fragmentation

reaction rates.

Hypothesis. There exists a positive constant K such that the reaction rate constants

satisfy

ai+1 − ai ≤ K, i ≥ 1,

bi − bi+1 ≤ K, i ≥ 2.
(H3)

Hypothesis (H3) implies that ai ≤ imax(K, a1), for all i ≥ 1, and it thus stronger than

hypothesis (H2). Before stating our limit theorems, we first need to recall the definition

of a solution to the DBD equations as stated in [3].

Definition 2.1. A (global) solution c = {ci} to the Deterministic Becker-Döring equa-

tions (1) is a function c := [0,+∞) → X such that

1. For all t ≥ 0, c(t) ∈ X+;

2. Each ci is continuous and supt≥0 ‖c(t)‖ < +∞;

3. For all t ≥ 0,

∫ t

0

+∞
∑

i=1

[aic1(s)ci(s) + bi+1ci+1(s)]ds < +∞;

4. And satisfies, for all t ≥ 0,

ci(t) = ci(0) +

∫ t

0

[Ji−1(c(s))− Ji(c(s))]ds, i ≥ 2,

c1(t) = c1(0)−

∫ t

0

[

J2(c(s)) +

+∞
∑

i=2

Ji(c(s))

]

ds.

3
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Importantly, by [3, Corollary 2.6, Proposition 3.1], a solution c to the DBD equations

is actually continuous from [0,+∞) to (X, ‖·‖) and preserve the mass, that is, if ‖c(0)‖ =

ρ, for all t ≥ 0
+∞
∑

i=1

ici(t) = ρ . (4)

Existence of global solution to Eq. (1), in the sense of Definition 2.1, have been es-

tablished in [3, Corollary 2.3] under the fairly general hypothesis (H2). This existence

result is optimal in the sense that without any extra hypothesis on the strength of bi
(nor extra-regularity on the initial condition) the DBD equations may not have solution

if hypothesis (H2) is not true (see [3, Theorem 2.7]). We can now state our first theorem.

Theorem 2.2. Under Hypothesis (H1) and (H2). If {cn} is the sequence of SBD pro-

cesses with cn(0) = cin, n then, the sequence {cn} is relatively compact in D([0,+∞), X)

and any limit point c is, almost surely, a solution to the DBD equations with initial con-

dition c(0) = cin.

Uniqueness of solution to Eq. (1) requires extra hypotheses, either on the initial

condition or on the constant rates (see for instance [3, Theorems 3.6 and 3.7]). When

uniqueness holds, it is a direct consequence of Theorem 2.2 that the full sequence {cn}

converges (in law) to the unique solution of the DBD system (1). To our knowledge, the

best uniqueness result with the largest class of coagulation rates was obtained in [15,

Theorem 2.1], under the hypothesis (H3). Under this hypothesis, we obtain our second

theorem.

Theorem 2.3. Under Hypothesis (H1) and (H3). If {cn} is the sequence of SBD pro-

cesses with cn(0) = cin, n and {c} the unique solution of the DBD equations satisfying

c(0) = cin then,

lim
n→+∞

E sup
t∈[0,T ]

‖cn(t)− c(t)‖ = 0.

We turn now to the study of the behavior of the stationary distribution of the SBD

process, as n → ∞. The SBD process being a Markov chain in a finite state space, it

is clear that it has an unique invariant measure on each irreducible component of the

state space, that is on each En
ρ . Moreover, the SBD process has the detailed balance

property: it is reversible with respect to its invariant measure. To see that, let us define,

for any c ∈ En
ρ ,

Πn(c) =
1

Bz
n

n
∏

i=1

(nρQiz
i)

n
ρ ci

(nρ ci)!
e
−

n
ρ Qiz

i

, (5)

and Πn(c) = 0 for all c /∈ En
ρ , where Qi is defined by, for all i ≥ 1,

Q1 = 1, Qi =

i−1
∏

j=1

aj
bj+1

, i ≥ 2 ,

and where z > 0 is arbitrary and Bz
n is the following normalizing constant

Bz
n =

∑

c∈En
ρ

n
∏

i=1

(nρQiz
i)

n
ρ ci

(nρ ci)!
e
−

n
ρ Qiz

i

. (6)

On can easily check that Πn satisfies the reversibility condition: for all c ∈ En
ρ , for all

i ≥ 1,

Ai(c)Π(c) = Bi+1(c+
ρ
n∆i)Π(c +

ρ
n∆i) ,

4
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and thus Πn is the unique invariant distribution of the SBD process on En
ρ . To under-

stand the limiting behavior of the stationary distribution, it is convenient to write down

the so-called non-equilibrium potential, for c ∈ En
ρ ,

−
ρ

n
lnΠn(c) =

n
∑

i=1

{

−ci ln

(

n

ρ
Qiz

i

)

+
ρ

n
ln
n

ρ
ci! +Qiz

i

}

+
ρ

n
lnBz

n

Before stating our theorem on the limit of the stationary distribution, we first recall

the main results on the long term behavior of the DBD equations. From Eq. (1), it is

not difficult to see that any equilibrium of the DBD equations must be of the form cz,

defined by, for any z > 0,

czi := Qiz
i , i ≥ 1 .

Thus, there is a family of potential candidates for the equilibrium of the DBD equations.

Owing to the mass conservation Eq. (4), that holds for all finite times, it is natural to

expect the equilibrium to satisfy the same relation namely,

‖cz‖ = ρ. (7)

We naturally define the radius of convergence of the series ‖cz‖ =
∑+∞

i=1 iQiz
i,

zs :=
(

lim supQ
1/i
i

)−1

, (8)

and the supremum value of ‖cz‖, which leads to the notion of critical mass

ρs := sup
z<zs

‖cz‖ .

Indeed, by monotonicity of ‖cz‖ in z, either Eq. (7) has a unique solution z, or does

not have any solution, depending on the mass ρ being less or greater than the critical

threshold ρs, respectively. For any ρ < ρs, we define z(ρ) as the unique solution of

Eq. (7), that is

‖cz(ρ)‖ = ρ , z < zs . (9)

It turns out that a dichotomy occurs in the large time behaviour of the DBD equations,

which is at the corner stone of the phase transition phenomena of the Becker-Döring

model. Under some additional technical assumptions (see [3, 16]), if ρ ≤ ρs, any time-

dependent solution of the DBD equations converges strongly towards cz(ρ), as t → ∞.

However, if ρ > ρs, any time-dependent solution of the DBD equations converges to-

wards czs in the weak−∗ topology on X (pointwise convergence, component by compo-

nent). In the latter case, the steady-state czs has a mass strictly inferior than the initial

condition. The quantity ρ− ρs is interpreted as the mass which leaves the initial phase

and undergoes a phase transition.

The long-time results of the DBD equations are proved thanks to the help of the

following function H, that turns to be a Lyapunov for DBD equations, for any z > 0,

H(c|cz) =

+∞
∑

i=1

{

ci

(

ln
ci
Qizi

− 1

)

+Qiz
i

}

. (10)

The function H is also called the relative entropy, as, for z ≤ zs, and c ∈ X+, with

‖c‖ ≤ ρ, one have H(c|cz) = 0 if, and only if, c = cz , and H(c|cz) > 0 otherwise. We refer

to [6] for recent results and discussion of the use of entropy techniques for the DBD

equations.

Our theorem on the limit of the stationary distribution (5), as n → ∞, shows that a

similar dichotomy holds for the stationary state of SBD process.

5
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Theorem 2.4. Assume 0 < zs < +∞. Let {cn} a sequence belonging to En
ρ .

1. If 0 < ρ ≤ ρs, and if lim infi→+∞Q
1/i
i > 0 and cn → c ∈ X strongly, as n→ ∞, then

lim
n→+∞

−
ρ

n
lnΠn(cn) = H(c|cz(ρ)),

where cz(ρ) = {Qiz(ρ)
i} such that ‖cz(ρ)‖ = ρ.

2. If ρ > ρs, and if limQ
1/i
i exists, and cn ⇀ c ∈ X weak − ∗, then

lim
n→+∞

−
ρ

n
lnΠn(cn) = H(c|czs) ,

where czs = {Qiz
i
s} and ‖czs‖ = ρs.

3 Limit theorem: The general case

In this section we prove Theorem 2.2. We recall that the SBD process (see Definition

1.1) cn is a continuous-time Markov chain with value in a finite state-space, whose

infinitesimal generator is given by Eq. (2). We remind that, classically, for any Borel

function ψ : RN → R bounded on En
ρ , we have

ψ(cn(t))− ψ(cin,n)−

∫ t

0

Anψ(cn(s))ds (11)

is an L2-martingale starting from 0 whose previsible quadratic variation is

n

ρ

∫ t

0

+∞
∑

i=1

(

Ai(c
n(s))[ψ(cn(s) + ρ

n∆i)− ψ(cn(s))]2

+Bi+1(c
n(s))[ψ(cn(s)− ρ

n∆i)− ψ(cn(s))]2
)

ds. (12)

The proof of Theorem 2.2 follows a general scheme in infinite dimensional settings,

which we briefly sketch here:

(i) Moment estimates (Proposition 3.3): this is an important step as it provides a

superlinear moment, crucial to control the infinite sums that arise in the limit

n→ ∞.

(ii) Compactness (Proposition 3.4): we prove compactness in D([0,+∞), X) for the

Skorohod topology, using essentially the mass conservation (3) and moment esti-

mates from step (i).

(iii) Vanishing martingale (lemma 3.7): we classically control the sequence of martin-

gales through their predictable quadratic variation process and Doob’s inequality.

(iv) Continuity property (lemma 3.8): We use the classical fact (in the study of DBD

equations) that the integral form of the truncated version of the DBD equations

defines a continuous maps on C([0,+∞), X).

(v) Convergence of the truncation (lemma 3.9): the truncated version of the right-

hand side of the DBD is arbitrary close to the one of the original DBD, uniformly

with respect to the sequence of SBD processes. This estimate is possible thanks

to step (ii).

(vi) The final step combines steps (i), (iii), (iv) and (v) to show that any limit point of

the sequence of SBD processes satisfies the integral form of the DBD equations.

6
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3.1 Regularities results

In this section we collect some important estimates. The next two lemma concern

generalized moment propagation and the control of the fragmentation term, the latter

playing the role of a diffusive term. Analogous results are known in the deterministic

context, see [3, Theorem 2.2], and yield the important estimate in Lemma 3.2. Let

{gi} be an arbitrary real sequence, and consider the measurable function defined by

ψ(η) :=
∑+∞

i=1 giηi on En
ρ . Note that ψ is necessarily bounded on En

ρ . Hence, using the

martingale (11), we have, for all t ≥ 0, n ≥ 1 and N ≥ 2,

E

[

+∞
∑

i=N

gic
n
i (t)

]

+E

[

∫ t

0

+∞
∑

i=N

(gi+1 − gi)Bi+1(c
n(s))ds

]

= E

[

+∞
∑

i=N

gic
n
i (0)

]

+E

[

∫ t

0

{

gN (AN−1(c
n(s)) −BN (cn(s))) +

+∞
∑

i=N

(gi+1 − gi)Ai(c
n(s))

}

ds

]

. (13)

We deduce the following estimate.

Lemma 3.1. Let N ≥ 2 and {gi} be a non-negative non-decreasing sequence such that

for some positive constant K0 we have, for all i ≥ 1, ai(gi+1 − gi) ≤ K0gi. Then, if

sup
n≥1

E

[

+∞
∑

i=N

gic
n
i (0)

]

< +∞ ,

there exists, for each T > 0, a constant KT such that, for all n ≥ 1,

E

[

+∞
∑

i=N

gic
n
i (t)

]

+E

[

∫ T

0

{

gNBN (cn(s)) +

+∞
∑

i=N

(gi+1 − gi)Bi+1(c
n(s))

}

ds

]

≤ KT . (14)

The constant KT also depends on N , {gi}, K0, the mass ρ and the kinetic rate aN−1.

Proof. By Eq. (13) and the mass conservation Eq. (3), for all t ≥ 0,

E

[

+∞
∑

i=N

gic
n
i (t)

]

≤ E

[

+∞
∑

i=N

gic
n
i (0)

]

+ gNaN−1ρ
2t+K0ρ

∫ t

0

E

[

+∞
∑

i=N

gic
n
i (s)

]

ds. (15)

We first apply Grönwall lemma to bound uniformly in time on [0, T ] the left hand side of

Eq. (15). Then, we use this bounds into (13) to conclude on the bound (14). Note that

the (Fubini-Tonelli) inversion of expectation and time integral follows by the fact that

any right-continuous left-limit process is progressive.

Lemma 3.2. Under Hypothesis (H2), for each T > 0, there exists a constant KT , such

that,

sup
n≥1

E

[

∫ T

0

+∞
∑

i=1

{Ai(c
n(s)) + Bi+1(c

n(s))}ds

]

≤ KT (16)

Proof. Note that by Hypothesis (H2), with gi = i for all i ≥ 1, we have ai(gi+1−gi) ≤ Kgi.

Hence Eq. (16) readily follows from Lemma 3.1 with N = 2 and the mass conservation

Eq. (3).

The next result proves the existence of a finite super-linear moment, which allows

us to control the formation of large clusters and to obtain compactness properties.

Again, such bound is known for deterministic coagulation-fragmentation models, see

7
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for instance [15, 13]. We slightly improve the latter results, as no further assumption

on the initial condition is needed here. Denote by U the set of non-negative convex

functions φ, continuously differentiable with piecewise continuous second derivative,

such that φ(x) = x2

2 for x ∈ [0, 1], φ′ is concave, φ′(x) ≤ x for x ≥ 0, and

lim
x→+∞

φ(x)

x
= +∞. (17)

In appendix Sec. A we collect some properties related to the functions belonging to U .

Proposition 3.3. Under Hypothesis (H1), there exists φ ∈ U such that the sequence of

initial condition {cin,n} satisfies

sup
n≥1

+∞
∑

i=1

φ(i)cin, ni < +∞ . (18)

Moreover, under Hypothesis (H2), if {cn} is the sequence of SBD processes with cn(0) =

cin,n, for all T > 0, there exists a constant KT such that

sup
n≥1

E

[

sup
t∈[0,T ]

+∞
∑

i=1

φ(i)cni (t)

]

≤ KT . (19)

Proof. Let the punctual measure νn on [0,+∞) defined by, for any Borelian set A,

νn(A) =

+∞
∑

i=1

cin,ni δi(A).

In particular, for all n ≥ 1,
∫ +∞

0

xνn(dx) = ρ .

By hypothesis (H1), the set {x · νn} is relatively weakly compact in the space of Borel

measures on R
+ (recall that this topology is given by the sequential characterization

of convergence of measure against bounded continuous functions). Then, by Theorem

A.3 (with g(x) = x), there exists φ ∈ U such that Eq. (18) holds. We denote by K1

the constant arising in Eq. (18). Now, using Eqs. (11)-(12) with ψ given by ψ(η) =
∑+∞

i=1 φ(i)ηi for η ∈ En
ρ , we have (recall that for any n ≥ 1 we deal with finite sums) for

t ≥ 0

+∞
∑

i=1

φ(i)cni (t) +

∫ t

0

+∞
∑

i=1

Bi+1(c
n(s)) (φ(i + 1)− φ(i)− φ(1)) dt

=

+∞
∑

i=1

φ(i)cni (0) +

∫ t

0

+∞
∑

i=1

Ai(c
n(s)) (φ(i + 1)− φ(i)− φ(1)) dt+Mn

φ (t) , (20)

whereMn
φ is a square-integrable martingale starting from 0 and

E|Mn
φ (t)|

2 =
ρ

n
E

[

∫ t

0

+∞
∑

i=1

[Ai(c
n(s)) +Bi+1(c

n(s))](φ(i + 1)− φ(i)− φ(1))2ds

]

.

Since φ belongs to U , by Prop. A.1, φ(i + 1)− φ(i)− φ(1) ≥ 0 for all i ≥ 1 and there is a

positive constant K2 such that, for all i ≤ n,

φ(i + 1)− φ(i)− φ(1)

n
≤ K2.

8
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Then, we obtain

E|Mn
φ (t)|

2 ≤ ρK2E

[

∫ t

0

+∞
∑

i=1

[Ai(c
n(s)) +Bi+1(c

n(s))](φ(i + 1)− φ(i)− φ(1))ds

]

. (21)

From Eq. (20), since φ is non-negative, we deduce

E

∫ t

0

+∞
∑

i=1

Bi+1(c
n(s)) (φ(i + 1)− φ(i)− φ(1)) ds

≤ K1 +E

∫ t

0

+∞
∑

i=1

Ai(c
n(s)) (φ(i + 1)− φ(i)− φ(1)) ds,

which in Eq. (21) yields

E|Mn
φ (t)|

2 ≤ ρK1K2 + 2ρK2E

[

∫ t

0

+∞
∑

i=1

Ai(c
n(s))(φ(i + 1)− φ(i)− φ(1))ds

]

. (22)

Moreover, by hypothesis (H2), the mass conservation in (3) and Prop. A.1, for all t ∈

[0, T ],

E

[

∫ t

0

+∞
∑

i=1

Ai(c
n(s)) (φ(i + 1)− φ(i)− φ(1)) ds

]

≤ mKρ

∫ t

0

E

[

+∞
∑

i=1

cni (s)(iφ(1) + φ(i))

]

ds

≤ mKρ2φ(1)T +mKρ

∫ t

0

E

[

sup
τ∈[0,s]

+∞
∑

i=1

φ(i)cni (τ)

]

ds, (23)

where m is a constant depending on φ. Using Eq. (23) into Eq. (22), and Doob’s

inequality, there is a some positive constant K3 such that,

E sup
s∈[0,t]

|Mn
φ (s)| ≤ K3

(

1 +

∫ t

0

E

[

sup
τ∈[0,s]

+∞
∑

i=1

φ(i)cni (τ)

]

ds

)

. (24)

Now, we use again Eq. (20), but taking first supremum in time and then expectation,

which entails

E

[

sup
s∈[0,t]

+∞
∑

i=1

φ(i)cni (s)

]

≤ K1 +E

[

∫ t

0

+∞
∑

i=1

Ai(c
n(s)) (φ(i+ 1)− φ(i)− φ(1))

]

ds

+E sup
s∈[0,t]

|Mn
φ (s)|. (25)

We conclude using Eqs (23) and (24) into (25) and the Grönwall lemma.

3.2 Compactness

In this section, we use a tightness criterion for the sequence of SBD processes {cn} in

order to prove to the next proposition.

Proposition 3.4. Under Hypotheses (H1) and (H2), the sequence {cn} of SBD pro-

cesses with cn(0) = cin, n is relatively compact in D([0,+∞), X). Any limit point c satis-

fies (almost surely) points 1 to 3 of the Definition 2.1 of a solution to the DBD equations,

and is continuous from [0,+∞) to X .

9
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The compactness part of the proof is a direct application of a classical tightness

criteria [8, Chap. 3 Corollary 7.4], which consists in verifying two points: first, the

compact containment (lemma 3.5) and second, a control on the modulus of continuity

(lemma 3.6).

Lemma 3.5. For all ε > 0 and t ≥ 0, there exists a compact subset Γε,t such that

P
{

cn(t) /∈ Γc
ε,t

}

≤ ε.

Proof. Let ε > 0 and t ≥ 0. Fix T ≥ t and

Γε,T =

{

c ∈ X+ | ‖c‖ ≤ ρ,

+∞
∑

i=1

φ(i)ci ≤
KT

ε

}

,

where φ is given by Proposition 3.3 and KT is the constant in Eq. (19). Clearly, Γε,T is

a compact subset of X . Since by the mass conservation Eq. (3), ‖cn(t)‖ = ρ, we have

P
{

cn(t) /∈ Γc
ε,T

}

= P

{

+∞
∑

i=1

φ(i)ci(t) >
KT

ε

}

.

Then, by Chebychev’s inequality and Proposition 3.3,

P
{

cn(t) /∈ Γc
ε,T

}

≤ ε .

Let us define the modulus of continuity on X . For δ > 0 and T > 0, the set Πδ

denotes the set of all partitions {tk} of [0, T ] such that for some K we have 0 = t0 < t1 <

· · · < tK−1 < T ≤ tK with mink=0,...,K |tk+1 − tk| > δ, and we define

w(c, δ, T ) = inf
{tk}∈Πδ

max
k

sup
s,t∈[tk,tk+1[

‖ct − cs‖,

for all c ∈ D([0,+∞), X).

Lemma 3.6. For all T ≥ 0 and ε > 0, there exists δ > 0 such that

lim sup
n→+∞

P{w(cn, T, δ) ≥ ε} ≤ ε.

Proof. Fix T ≥ 0 and ε > 0. We define for each N ≥ 2, δ > 0 and c ∈ D([0, T [, X),

wN (c, δ, T ) = inf
{tk}∈Πδ

max
k

sup
s,t∈[tk,tk+1[

N
∑

i=2

i|ci(t)− ci(s)|.

which is the modulus of continuity of the components 2 to N seen as an R
N−1-valued

process equipped with the 1-norm (with a factor i). Fix N ≥ 2. The infinitesimal transi-

tion rate of {cn2 , . . . , c
n
N} is given by

λnN (t) :=
n

ρ

N+1
∑

i=2

[

Ai−1(c
n(s)) +Bi(c

n(s))
]

,

for all n ≥ 1 and t ≥ 0. We have

λnN (t) ≤
n

ρ
sup

i≤N+1
(ai−1 + bi)

N+1
∑

i=2

[

cn1 (s)c
n
i−1(s) + cni (s))

]

,

10
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Thus, by the mass conservation Eq. (3), there exists a constant KN depending on the

(N + 1) first rate constants and ρ such that λnN (t) ≤ KN
n
ρ for all t ≥ 0 and n ≥ 1.

Moreover, any transition jump satisifies

N
∑

i=2

i|cni (t)− cni (t
−)| ≤ 2N

ρ

n
.

Hence, by lemma B.1, there exists δ > 0 such that

lim sup
n→+∞

P{wN (cn, δ, T ) ≥ ε
2} ≤ ε

2 . (26)

Now, for all t, s ≤ T and n ≥ 1, we have

+∞
∑

i=N+1

i|cni (t)− cni (s)| ≤ 2 sup
j≥N+1

j

φ(j)
sup

u∈[0,T ]

+∞
∑

i=1

φ(i)cni (u),

and

|cn1 (t)− cn1 (s)| =

∣

∣

∣

∣

∣

+∞
∑

i=2

i(cni (t)− cni (s))

∣

∣

∣

∣

∣

≤

N
∑

i=2

i|cni (t)− cni (s)|+

+∞
∑

i=N+1

i|cni (t) − cni (s)| .

Thus,

‖cn(t)− cn(s)‖ ≤ 2

N
∑

i=2

i|cni (t)− cni (s)|+ 4 sup
j≥N+1

j

φ(j)
sup

u∈[0,T ]

+∞
∑

i=1

φ(i)cni (u) ,

so that

P{w(cn, δ, T ) ≥ ε} ≤ P{wN (cn, δ, T ) ≥ ε
2}

+P

{

4 sup
j≥N+1

j

φ(j)
sup

u∈[0,T ]

+∞
∑

i=1

φ(i)cni (u) ≥
ε
2

}

(27)

Using Eq. (26), Lemma 3.3 and Chebychev’s inequality into the above Eq. (27) we have

for all n ≥ 1,

P{w(cn, δ, T ) ≥ ε} ≤
ε

2
+

8

ε
sup
j≥N

j

φ(j)
KT (28)

where KT is the constant in Eq. (19). By property of φ in Eq. (17), we can choose N

large enough such that the second term in the right hand side of Eq. (28) is less than

ε/2, to conclude the proof.

Proof of Prop. 3.4. Using Lemma 3.5 and Lemma 3.6, we deduce from the tightness

criteria [8, Chap. 3 Corollary 7.4] that {cn} is relatively compact in D([0,+∞), X). Let

c be a limit point of {cn}. Then a subsequence, still denoted by {cn}, converges in

distribution to c. We shall prove that points 1 to 3 of Definition 2.1 are valid a.s. for

c. Since for all i ≥ 1, the map η 7→ ψ(η) = ηi is continuous from D([0,+∞), X) into

D([0,+∞),R) , each sequence {cni } converges in law to {ci}. Moreover, for all i ≥ 1,

and T > 0,

sup
t≤T

|cni (t)− cni (t
−)| ≤

ρ

n
→ 0 , n→ ∞ ,

which by [8, Chap. 3 Theorem 10.2] ensures all ci are almost surely continuous. Remark

that Fρ := {η ∈ D([0,+∞), X) | ηi(t) ≥ 0, ‖η(t)‖ ≤ ρ, for all t ≥ 0} is a close subset of

11
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D([0,+∞), X). Thus, by Portemanteau theorem, 1 = lim supP{cn ∈ F} ≤ P{c ∈ F}. We

prove that point 3 of Definition 2.1 holds using that, for all finite N ,

E

[

∫ t

0

N
∑

i=1

[aic1(s)ci(s) + bi+1ci+1(s)]ds

]

= lim
n→∞

E

[

∫ t

0

N
∑

i=1

[aic
n
1 (s)c

n
i (s) + bi+1c

n
i+1(s)]ds

]

≤ lim sup
n→∞

E

[

∫ t

0

∞
∑

i=1

[aic
n
1 (s)c

n
i (s) + bi+1c

n
i+1(s)]ds

]

<∞ , (29)

where the first line of Eq. (29) is a consequence of the convergence in law of {cn}

towards c, and the second line of Eq. (29) comes from Lemma 3.2. We conclude by the

monotone convergence theorem, that for all t ≥ 0,

E

[

∫ t

0

+∞
∑

i=1

[aic1(s)ci(s) + bi+1ci+1(s)]ds

]

< +∞.

We end the proof by (countable, i ≥ 1 and t ∈ N for instance) construction of a set

of probability 0 for which properties 1 to 3 of Definition 2.1 hold. Finally, the same

strategy as Eq. (29) shows that c also satisfies the inequality (using Proposition 3.3)

sup
t∈[0,T ]

+∞
∑

i=1

φ(i)ci(t) <∞ , a.s. (30)

Thus, the continuity of each ci and Eq. (30) yields that c is actually continuous from

[0,+∞) to X .

3.3 Identification of the limit

Thanks to Proposition 3.4 it remains to prove that any limit point c satisfies, almost

surely, point 4 of the Definition 2.1. To prepare the proof, let us introduce few notations.

We define, for η ∈ X ,

A1(η) := −2J1(η)−

+∞
∑

i=2

Ji(η), and Ai(η) := Ji−1(η)− Ji(η), i ≥ 2 ,

where we recall that Ji are defined in Eq. (1). We also define, for t ≥ 0 and η ∈

D([0,+∞), X),

Mi(η, t) := ηi(t)− ηi(0)−

∫ t

0

Ai(η(s))ds .

Thus, point 4 of Definition 2.1 is equivalent toMi(c, t) = 0, for all i ≥ 1 and t ≥ 0. Let ψi

the continuous function on X defined by ψi(η) = ηi. We define, for each i ≥ 1,

An
i (η) := Anψi(η) =

ρ

n
a1η1(2ei1 − ei2) +Ai(η) ,

where eik = 1 if i = k and 0 otherwise. We then finally define

Mn
i (t) := cni (t)− cni (0)−

∫ t

0

An
i (c

n(s))ds.

12
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Using the martingale representation Eq. (11)-(12), we deduce thatMn
i is an L2 martin-

gale starting from 0 and satisfies, for all i ≥ 2,

E
[

|Mn
i (T )|

2
]

= E

[

ρ

n

∫ T

0

(Ai−1(c
n(s)) + Bi(c

n(s)) +Ai(c
n(s)) +Bi+1(c

n(s))) ds

]

, (31)

and for i = 1,

E
[

|Mn
1 (T )|

2
]

= E

[

ρ

n

∫ T

0

+∞
∑

i=1

(1 + e1i) (Ai(c
n(s)) +Bi+1(c

n(s))) ds

]

. (32)

With these notations we have that for all i ≥ 1 and t ≥ 0,

Mi(c
n, t) =Mn

i (t) +
ρ

n

∫ t

0

a1c
n
1 (s)(2ei1 − ei2)ds , (33)

and we are ready to prove the

Lemma 3.7. For all i ≥ 1 and T > 0,

lim
n→+∞

E sup
t∈[0,T ]

|Mi(c
n, t)| = 0.

Proof. Using Eqs (31) and (32), and Lemma 3.2, we have, for T > 0 and all i ≥ 1,

E
[

|Mn
i (T )|

2
]

≤ 2
ρ

n
KT ,

where KT is the constant in Eq. (16). By Doob’s inequality,

E

[

sup
t∈[0,T ]

|Mn
i (t)|

]

≤ 2

√

2
ρ

n
KT . (34)

Using the mass conservation Eq. (3) and Eq. (34) into Eq. (33), we end the proof.

The next step is to show that the applications Mi are continuous. The case i = 1

yields an infinite sum and must be treated separately. Classically in the study of the

DBD equations, this infinite sum is truncated and an extra-moment helps to conclude.

We shall proceed similarly. Let us define, for N ≥ 3, and η ∈ D([0,+∞), X),

M̃N
1 (η, t) := η1(t)− η1(0)−

∫ t

0

[

2J1(η(s) +

N−1
∑

i=2

Ji(η(s))

]

ds.

Lemma 3.8. For all t ≥ 0 and N ≥ 3, the maps defined on D([0,+∞), X) by

η 7→ M̃N
1 (η, t) and η 7→Mi(η, t)

for i ≥ 2 are continuous at any c ∈ C([0,+∞), X).

Proof. Let η ∈ C([0,+∞), X) and {ηn} a sequence belonging to D([0,+∞), X) converg-

ing to η for the Skorohod topology. Hence, each sequence {ηni } converges to ηi in

D([0,+∞),R). Then, for all i ≥ 1, we have ηni (t) → ηi(t) as n→ +∞, for all t ≥ 0, by [8,

Chap. 3 Prop. 5.2]. Since ηni is bounded, by the dominated convergence theorem, the

sequences of time integrals
∫ t

0 η
n
i (s)ds and

∫ t

0 η
n
1 η

n
i (s)ds are converging to, respectively,

∫ t

0 ηi(s)ds and
∫ t

0 η1ηi(s)ds These conclude the proof as M̃N
1 andMi are finite sums.

We now show that the truncation M̃N
1 converges to M1, as N → ∞, along the se-

quence of SBD processes and any of its limit points.

13
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Lemma 3.9. We have the following two limits:

lim
N→+∞

sup
n≥1

E sup
t∈[0,T ]

|M1(c
n, t)− M̃N

1 (cn, t)| = 0,

and if c is a limit point of {cn},

lim
N→+∞

E sup
t∈[0,T ]

|M1(c, t)− M̃N
1 (c, t)| = 0.

Proof. Let T > 0, N ≥ 3. For all t ∈ [0, T ],

|M1(c
n, t)− M̃N

1 (cn, t)| ≤

∫ T

0

+∞
∑

i=N

[Ai(c
n(s)) +Bi+1(c

n(s))]ds. (35)

We shall first deal with the fragmentation term. From Eq. (13), taking gi = i and using

Hypothesis (H2) and the mass conservation (3), we get

E

∫ T

0

+∞
∑

i=N

Bi+1(c
n(s))ds ≤ E

+∞
∑

i=N

icni (0)

+E

∫ t

0

[

N(AN−1(c
n(s)) −BN (cn(s))) +Kρ

+∞
∑

i=N

icni (s)

]

ds. (36)

Note that from Eq. (11), we deduce that

+∞
∑

i=N

cni (t)−

+∞
∑

i=N

cni (0)−

∫ t

0

(AN−1(c
n(s))−BN (cn(s)))

is a martingale starting from 0. Hence we obtain, from Eq. (36),

E

∫ T

0

+∞
∑

i=N

Bi+1(c
n(s))ds ≤ E

+∞
∑

i=N

icni (0) +E

+∞
∑

i=N

icni (t) +KρE

∫ t

0

+∞
∑

i=N

icni (s)ds. (37)

Using the extra-moment estimate in (19), we deduce from Eq. (37),

E

∫ T

0

+∞
∑

i=N

Bi+1(c
n(s))ds ≤ KT sup

i≥N

i

φ(i)
(38)

for some new constant KT . Using Hypothesis (H2) and the extra-moment estimate

Eq. (19), the coagulation term is directly controlled by

E

∫ T

0

+∞
∑

i=N

Ai(c
n(s))ds ≤ KT sup

i≥N

i

φ(i)
(39)

for some new constant KT . The first part of the lemma is then proved using Eqs. (38)

and (39) into Eq. (35), letting N → ∞ and using the property of φ.

The proof of the second part of the lemma goes along similar lines. Let c a limit

point of {cn}. We have

|M1(c, t)− M̃N
1 (c, t)| ≤

∫ T

0

+∞
∑

i=N

[Ai(c(s)) +Bi+1(c(s))]ds.

14
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The coagulation term is controlled as previously, due to the control in Eq. (30). The

fragmentation term requires an extra step as follows. From Eq. (38), it is clear that, for

any R > N ,

E

∫ T

0

R
∑

i=N

Bi+1(c
n(s))ds ≤ KT sup

i≥N

i

φ(i)
.

Thus, by convergence in law of cn towards c, we obtain, as n→ ∞,

E

∫ T

0

R
∑

i=N

Bi+1(c(s))ds ≤ KT sup
i≥N

i

φ(i)
.

Then, by monotone convergence theorem, as R → ∞,

E

∫ T

0

∞
∑

i=N

Bi+1(c(s))ds ≤ KT sup
i≥N

i

φ(i)
,

and we obtain the second limit of our lemma using Eq. (30).

Proof of the Theorem 2.2. Let c be a limit point of {cn} in D([0,+∞), X). By Proposition

3.4, c is almost surely continuous in time. Thus, by Lemma 3.8, for all t ≥ 0 and for each

i ≥ 2, Mi(c
n, t) converges in distribution to Mi(c, t). Then, by Fatou’s lemma, for all

t ≥ 0, and i ≥ 2,

E|Mi(c, t)| ≤ lim inf
n→+∞

E|Mi(c
n, t)| = 0 ,

where the last equality is due to lemma 3.7. Then, as t 7→Mi(c, t) is continuous in time,

we have, almost surely, for all t ≥ 0 and i ≥ 2,

Mi(c, t) = 0. (40)

We turn now to the case i = 1. For all t ≥ 0, we have

E|M1(c, t)| ≤ E|M1(c, t)− M̃N
1 (c, t)|+E|M̃N

1 (c, t)− M̃N
1 (cn, t)|

+E|M̃N
1 (cn, t)−M1(c

n, t)|+E|M1(c
n, t)|. (41)

The last term of the right hand side of Eq. (41) goes to zero as n → +∞ by Lemma 3.7.

Then, we observe that (taking only the expectation in c)

η → E|M̃N
1 (c, t)− M̃N

1 (η, t)|

defined on D([0,+∞), X) is continuous at any η ∈ C([0,+∞), X). Then,

lim
n→+∞

E|M̃N
1 (c, t)− M̃N

1 (cn, t)| = 0.

Finally, we first take the limit in n → +∞ in Eq. (41), and then in N , to obtain, by

Lemma 3.9, for all t ≥ 0,

E|M1(c, t)| = 0 .

From point 3. of the definition 2.1, t 7→ M1(c, t) is continuous in time and we have,

almost surely, for all t ≥ 0, M1(c, t) = 0. Together with Eq. (40), we conclude that c is

almost surely a solution of the DBD equations (1), in the sense of definition 2.1.
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4 Limit theorem: Pathwise convergence

Let cn be the SBD process defined in Definition 1.1, and let c be the unique solution

(under Hypothesis (H2)) to the DBD equations with initial condition cin. To prove our

Theorem 2.3, we follow the proof in [15] of uniqueness of solutions to the DBD equa-

tions. For that we introduce some notations. We define

En
i (t) =

+∞
∑

j=i

[cnj (t)− cj(t)] ,

for all t ≥ 0, i ≥ 1 and n ≥ 1. Remark that by Eq. (3)-(4), we have |En
i (t)| ≤ 2ρ. Then,

from the DBD Eq. (1) and the martingale given in Eq. (11), we deduce that, for all i ≥ 2,

En
i (t)− En

i (0)−

∫ t

0

(Ji−1(c
n(s)) − Ji−1(c(s))) ds+ ei2

ρ

n

∫ t

0

a1c
n
1 (s)ds

is a martingale. We aim to prove in this section that, for all i ≥ 1,

lim
n→+∞

E sup
t∈[0,T ]

|En
i (t)| = 0 (42)

Writing an equation on |En
i (t)| yields several problems around 0 from the lack of

smoothness. Hence we shall work with smooth functions ϕ, sufficiently close to | · |. Let

ϕ a continuously differentiable function on [−2ρ, 2ρ]. Applying Ito’s formula, we obtain,

for any N ≥ 2,

N
∑

i=2

ϕ(En
i (t)) =

N
∑

i=2

ϕ(En
i (0))−

∫ t

0

N
∑

i=2

ϕ′(En
i (s))Ji−1(c(s)))ds

+
n

ρ

∫ t

0

N
∑

i=2

{

Ai−1(c
n(s))

[

ϕ(En
i (s) +

ρ
n )− ϕ(En

i (s))
]

+Bi(c
n(s))

[

ϕ(En
i (s)−

ρ
n )− ϕ(En

i (s))
]

}

ds+ON
ϕ (t) , (43)

where ON
ϕ is an L2−martingale with

E|ON
ϕ (t)|2 =

n

ρ
E

∫ t

0

N
∑

i=2

{

Ai−1(c
n(s))

[

ϕ(En
i (s) +

ρ
n )− ϕ(En

i (s))
]2

+Bi(c
n(s))

[

ϕ(En
i (s)−

ρ
n )− ϕ(En

i (s))
]2

}

ds . (44)

We collect a first estimate in the next lemma for a certain class of functions.

Lemma 4.1. Assume hypothesis (H3), and let ϕ a non-negative convex function, con-

tinuously differentiable on [−2ρ, 2ρ], having finite right and left second derivatives, such

that there exists ε > 0 for which |x| ≤ ϕ(x) ≤ |x| + ε for all x ∈ R. For any N ≥ 2 and

T > 0, there exists a constants K ′ independent on ϕ, N , n and ε such that,

E sup
t∈[0,T ]

N
∑

i=2

ϕ(En
i (t)) ≤ exp(K ′(‖ϕ′‖∞ + 1)T )

{

E

N
∑

i=2

|En
i (0)|

bNE

∫ T

0

|En
N+1(t)|dt+K ′(‖ϕ′‖∞ + 1)E

∫ T

0

+∞
∑

i=N+1

|En
i (t)|dt

+K ′(1 + bN )Tε+K ′‖ϕ′‖∞T
1

n
+
ρ

n
‖ϕ′′‖∞K

′ + 2

√

ρ

n
K ′‖ϕ′′‖∞

}

. (45)
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where ‖ · ‖∞ is the norm of the supremum on [−2ρ, 2ρ].

Proof. Let N ≥ 2 and T > 0. Since ϕ is C1 with finite right and left second derivatives,

by Taylor’s expansion, we deduce from Eq. (43) and the mass conservation Eq. (3), that,

for all t ≤ T ,

N
∑

i=2

ϕ(En
i (t)) ≤

N
∑

i=2

ϕ(En
i (0)) +

∫ t

0

N
∑

i=2

ϕ′(En
i (s))[Ji−1(c

n(s))− Ji−1(c(s))]ds

+
ρ2

n
a1‖ϕ

′‖∞T +
ρ

n
‖ϕ′′‖∞

∫ t

0

N
∑

i=2

{Ai−1(c
n(s)) +Bi(c

n(s))} ds+ON
ϕ (t) (46)

We now write

Ji−1(c
n)− Ji−1(c) = ai−1ci−1 (c

n
1 − c1) + ai−1c

n
1

(

En
i−1 − En

i

)

− bi
(

En
i − En

i+1

)

.

Then, by convexity of ϕ, we have for all i ≥ 2, s ≥ 0,

ϕ′(En
i (s))[Ji−1(c

n(s))− Ji−1(c(s))] ≤ ‖ϕ′‖∞ai−1ci−1(s)|c
n
1 (s)− c1(s)|

+ ai−1c
n
1

(

ϕ(En
i−1(s))− ϕ(En

i (s))
)

+ bi
(

ϕ(En
i+1(s))− ϕ(En

i (s))
)

. (47)

Summing Eq. (47) from i = 2 to N and reordering sums yields to

N
∑

i=2

ϕ′(En
i (s))[J

n
i−1(c

n(s)) − Ji−1(c(s))] ≤ ‖ϕ′‖∞|cn1 (s)− c1(s)|

N−1
∑

i=1

aici(s)

+ a1c
n
1ϕ(E

n
1 (s))− aN−1c

n
1ϕ(E

n
N (s)) +

N−1
∑

i=2

(ai − ai−1)c
n
1 (s)ϕ(E

n
i (s))

+ bNϕ(E
n
N+1(s)) − b2ϕ(E

n
2 (s)) +

N−1
∑

i=2

(bi − bi+1)ϕ(E
n
i+1(s)). (48)

Using Hypothesis (H3), the mass conservation (3) and dropping non-positives terms

into Eq. (48) entails

N
∑

i=2

ϕ′(En
i (s))[J

n
i−1(c

n(s)) − Ji−1(c(s))] ≤ max(K, a1)ρ‖ϕ
′‖∞|cn1 (s)− c1(s)|

+ a1ρϕ(E
n
1 (s)) + bNϕ(E

n
N+1(s)) +K(ρ+ 1)

N
∑

i=2

ϕ(En
i (s)). (49)

Note that using the mass conservation (3)-(4), we deduce that cn1 −c1 = −E2−
∑+∞

i=2 E
n
i ,

so that

|cn1 (s)− c1(s)| ≤ |En
2 (s)|+

+∞
∑

i=2

|En
i (s)| ≤ 2

N
∑

i=2

ϕ(En
i (s)) +

+∞
∑

i=N+1

|En
i (s)| , (50)

as |x| ≤ ϕ(x). Since En
1 = cn1 − c1 + En

2 and ϕ(x) ≤ |x|+ ε, we have, by Eq. (50),

ϕ(En
1 (s)) ≤ ε+ |En

1 (s)| ≤ ε+ 3

N
∑

i=2

ϕ(En
i (s)) +

+∞
∑

i=N+1

|En
i (s)|. (51)

17



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Yvinec, R., Hingant, E. (2018). The Becker-Döring process: law of large numbers and

non-equilibrium potential. preprint, 1-28.

E. Hingant & R. Yvinec – The Stochastic Becker-Döring Process

Combining Eqs. (51) and (50) into (49), we deduce that there exists a constant K ′

independent on ϕ, N , n and ε, such that, for all s ≥ 0,

N
∑

i=2

ϕ′(En
i (s))[J

n
i−1(c

n(s)) − Ji−1(c(s))] ≤ bNϕ(E
n
N+1(s)) + a1ρε

+K ′(‖ϕ′‖∞ + 1)

(

N
∑

i=2

ϕ(En
i (s)) +

+∞
∑

i=N+1

|En
i (s)|

)

. (52)

Taking supremum in time, then expectation, we deduce from (52) and (46) that there

exists a constant (again denoted by K ′) independent on ϕ, N , n and ε, such that, for all

t ∈ [0, T ]

E sup
s∈[0,t]

N
∑

i=2

ϕ(En
i (s)) ≤ E

N
∑

i=2

ϕ(En
i (0)) +K ′(‖ϕ′‖∞ + 1)

∫ t

0

E sup
s∈[0,τ ]

N
∑

i=2

|En
i (τ)|dτ

+ bNE

∫ t

0

|En
N+1(s)|ds+K ′(‖ϕ′‖∞ + 1)E

∫ t

0

+∞
∑

i=N+1

|En
i (s)|ds +E sup

s∈[0,t]

|ON
ϕ (s)|

+K ′(1 + bN)Tε+K ′‖ϕ′‖∞T
1

n
+
ρ

n
‖ϕ′′‖∞

∫ t

0

N
∑

i=2

{Ai−1(c
n(s)) +Bi(c

n(s))} ds . (53)

We observe that by Doob’s inequality and Eq. (44), we have

E

[

sup
t∈[0,T ]

|ON
ϕ (t)|

]

≤ 2

√

√

√

√

ρ

n
‖ϕ′‖2∞E

∫ T

0

N
∑

i=2

{Ai−1(cn(s)) +Bi(cn(s))} ds (54)

Using Lemma 3.2, we deduce from Eq. (53)-(54) that

E sup
s∈[0,t]

N
∑

i=2

ϕ(En
i (s)) ≤ E

N
∑

i=2

ϕ(En
i (0)) +K ′(‖ϕ′‖∞ + 1)

∫ t

0

E sup
s∈[0,τ ]

N
∑

i=2

|En
i (τ)|dτ

+ bNE

∫ t

0

|En
N+1(s)|ds+K ′(‖ϕ′‖∞ + 1)E

∫ t

0

+∞
∑

i=N+1

|En
i (s)|ds

+K ′(1 + bN )Tε+K ′‖ϕ′‖∞T
1

n
+
ρ

n
‖ϕ′′‖∞KT + 2

√

ρ

n
KT ‖ϕ′′‖∞ ,

where KT is the constant in (16). We conclude that Eq (45) holds by the Grönwall

lemma.

To be able to pass in the limit n goes to +∞ and then ε to 0 into Eq. (45), we need

the next lemma:

Lemma 4.2. Under Hypothesis (H3), we have the following limits

lim
N→+∞

sup
n≥1

E sup
t∈[0,T ]

+∞
∑

i=N+1

|En
i (t)| = 0 (55)

lim
N→+∞

sup
n≥1

bNE

∫ T

0

|En
N+1(t)|dt = 0 (56)
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Proof. We first observe that

+∞
∑

i=N

|En
i (t)| ≤

+∞
∑

j=N

j
∑

i=N

(cnj (t) + cj(t)) ≤ 2

+∞
∑

j=N

jcnj (t) + 2

+∞
∑

j=N

jcj(t) . (57)

From Prop. 3.3, there exists φ ∈ U and a constant KT such that

E



 sup
t∈[0,T ]

+∞
∑

j=N

jcnj (t)



 ≤ sup
i≥N

i

φ(i)
KT , (58)

Similarly, by [13, Theorem 2.5 and 4.1], there exists φ̃ ∈ U such that

sup
t∈[0,T ]

+∞
∑

i=1

φ̃(i)ci(t) < KT ,

for some new constant KT . Thus, we also have

sup
t∈[0,T ]

+∞
∑

i=1

ici(t) ≤ sup
i≥N

i

φ̃(i)
KT . (59)

Using Eqs. (58)-(59) into Eq. (57), together with the properties of φ and φ̃ in U , we

deduce that Eq. (55) holds.

We now prove the second limit of the lemma. By Hypothesis (H3), we obtain

E

∫ T

0

bN

+∞
∑

i=N+1

cni (t)dt ≤ E

∫ T

0

+∞
∑

i=N+1

bic
n
i (t)dt+KE

∫ T

0

+∞
∑

i=N+1

icni (t)dt.

Hence, by (58) and the estimate obtained in Eq. (38), the right hand side goes to 0

uniformly in n, as N to +∞. Moreover, from point 2 and 3 of Definition 2.1,

lim
N→∞

∫ T

0

+∞
∑

i=N+1

bici(t)dt+KE

∫ T

0

+∞
∑

i=N+1

ici(t)dt = 0 .

which allows us to conclude that Eq. (56) holds.

Proof of the Theorem 2.3. We are now ready to prove our theorem. We first construct a

sequence of function {ϕε} satisfying hypothesis of Lemma 4.1 together with uniformly

bounded first derivative. For instance, we can define ϕε(x) =
1
2εx

2 + ε
2 for |x| ≤ ε and

ϕε(x) = |x| for |x| ≥ ε. Thus |ϕ′
ε‖∞ ≤ 1. By Lemma 4.1 with ϕε in Eq. (45), using

Hypothesis (H1), we have

lim
ε→0

lim
n→0

E sup
t∈[0,T ]

N
∑

i=2

ϕε(E
n
i (s)) ≤ exp(2K ′T )

{

sup
n≥0

bNE

∫ T

0

|En
N+1(s)|ds

+ 2K ′ sup
n≥1

∫ T

0

E

+∞
∑

i=N

|En
i (s)|

}

. (60)

Then, using Eqs. (55) and (56) into Eq. (60) we have

lim
N→+∞

lim
ε→0

lim
n→0

E sup
t∈[0,T ]

N
∑

i=2

ϕε(E
n
i (s)) = 0. (61)
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Since ϕε(x) ≥ |x| for all x ≥ 0, for each i ≥ 2, there exists N large enough such that

E sup
t∈[0,T ]

|En
i (t)| ≤ E sup

t∈[0,T ]

N
∑

i=2

ϕε(E
n
i (t)) .

Thus, we deduce from Eq (61) that Eq. (42) holds for any i ≥ 2. For i = 1, we have

|En
1 (t)| ≤ |cn1 (t)− c1(t)|+ |En

2 (t)| ≤ 2|En
2 (t)|+

N
∑

i=2

|En
i (t)|+

+∞
∑

i=N+1

|En
i (t)| .

Hence from Eq. (55) and Eq. (42) for i ≥ 2, we conclude that Eq (42) holds for i = 1 as

well. Finally, we easily deduce

lim
n→+∞

E sup
t∈[0,T ]

|cni (t)− ci(t)| ≤ lim
n→+∞

E sup
t∈[0,T ]

|En
i (t)− En

i+1(t)| = 0 .

Since

E sup
t∈[0,T ]

‖cn(t)− c(t)‖ ≤ E sup
t∈[0,T ]

N
∑

i=1

i|cni (t)− ci(t)|+ sup
i≥N

i

φ(i)
KT + sup

i≥N

i

φ̃(i)
KT ,

where φ and φ̃ follows from Eqs. (58) and (59), we conclude that

lim
n→+∞

E sup
t∈[0,T ]

‖cn(t)− c(t)‖ = 0 ,

which ends the proof.

5 Stationary measure

In this section, we prove Theorem 2.4. We start by some algebraic manipulations of the

non-equilibirum potential given in Eq. (10). We recall that zs is defined in Eq. (8). One

has, for any c ∈ En
ρ , and z ≤ zs,

−
ρ

n
lnΠn(c) =

n
∑

i=1

{

−ci ln

(

n

ρ
Qiz

i

)

+
ρ

n
ln
n

ρ
ci! +Qiz

i

}

+
ρ

n
lnBz

n

=
n
∑

i=1

{

ci

(

ln
ci
Qizi

− 1

)

+Qiz
i

}

+Rn(c) +
ρ

n
lnBz

n

= H(c|cz)−

∞
∑

i=n+1

Qiz
i +Rn(c) +

ρ

n
lnBz

n

(62)

(with convention 0 ln 0 = 0), where we recall that H is the relative entropy of the DBD

equations, given in Eq. (10), and the term Rn is given by

Rn(c) =
ρ

n

n
∑

i=1

{

ln
n

ρ
ci!−

n

ρ
ci ln

n

ρ
ci +

n

ρ
ci

}

.

The proof of Theorem 2.4 is based on continuity properties of H and the convergence to

0 of each remaining term in Eq. (62), along appropriate sequences. We divide the proof

in three lemmas. Let us start with a lemma about continuity properties of the functional

H, mainly from [3].

Lemma 5.1. Assume 0 < zs < +∞.
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1. If 0 < z < zs and lim infi→+∞Q
1/i
i > 0, then H(·|cz) is finite and sequentially

strongly continuous on X .

2. If z = zs and limQ
1/i
i exists, then H(·|czs) is finite and sequentially weak − ∗ con-

tinuous on X .

Proof. Point 1. Note that we may rewrite

H(c|cz) = G(c) − ρ ln z −

+∞
∑

i=1

ici lnQ
1/i
i +

+∞
∑

i=1

Qiz
i ,

where G(c) =
∑+∞

i=1 ci(ln ci− 1). By [3, Lemma 4.2], G is finite and sequentially weak−∗

continuous on X , hence also strongly continuous on X . As z < zs,
∑+∞

i=1 Qiz
i < ∞.

Next, {ln(Q
1/i
i )} is bounded as 0 < lim inf Q

1/i
i ≤ z−1

s = lim supQ
1/i
i < +∞. Thus, c 7→

∑+∞
i=1 ici lnQ

1/i
i is finite and strongly continuous on X , and so is H. The Point 2 is a

consequence of [3, Proposition 4.5].

Now we state an intermediate Lemma which proves that the sum Rn in the non-

equilibrium potential goes to 0.

Lemma 5.2. Let {cn} a sequence belonging to En
ρ for each n ≥ 1. We have

lim
n→+∞

n
∑

i=1

ρ

n

(

ln
n

ρ
cni !−

n

ρ
cni ln

n

ρ
cni +

n

ρ
cni

)

= 0.

Proof. By Stirling’s formula, there exists K > 0 such that for all N ≥ 2

0 ≤ lnN !−N lnN +N ≤ K lnN .

Hence, for all i such that n
ρ c

n
i ≥ 2

0 ≤
ρ

n

(

ln
n

ρ
cni !−

n

ρ
cni ln

n

ρ
cni +

n

ρ
cni

)

≤ K
ρ

n
ln
n

ρ
cni (63)

We define, for all i ≥ 1,

uni =















ρ
n

(

ln n
ρ c

n
i !−

ρ
nc

n
i ln

n
ρ c

n
i + n

ρ c
n
i

)

, if n
ρ c

n
i ≥ 2,

ρ
n , if n

ρ c
n
i = 1,

0, else.

(64)

Since for all i, cni ≤ ρ, we have by Eqs. (63) and (64), that for all i, uni → 0 as n → +∞.

Moreover, again by Eqs. (63) and (64), we can check that uni ≤ Kcni for all i ≥ 1. Thus,

using the mass conservation
∑n

i=1 ic
n
i = ρ, we deduce that, for all N ≥ 1, and n ≥ N ,

Rn =

n
∑

i=1

uni ≤

N
∑

i=1

uni +K

n
∑

i=N

cni ≤

N
∑

i=1

uni +
K

N
ρ.

Taking the limit in n→ +∞ and then N → +∞ ends the proof.

In the last lemma, we control the convergence of the normalizing constant Bz
n. We

recall that z(ρ) is defined in Eq. (9).

Lemma 5.3. Assume 0 < zs < +∞.
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1. If ρ ≤ ρs, and lim infi→+∞Q
1/i
i > 0, we have, for z = z(ρ),

lim
n→+∞

ρ

n
lnBz(ρ)

n = 0.

2. If ρ > ρs and limQ
1/i
i exists, we have, for z = zs,

lim
n→+∞

ρ

n
lnBzs

n = 0.

Proof. For any z > 0, we have by Eq. (6) that

Bz
n ≤

∑

C∈Nn

n
∏

i=1

(nρQiz
i)Ci

(Ci)!
e
−

n
ρ Qiz

i

= 1 ,

hence ρ
n lnBz

n ≤ 0 which entails

lim sup
n→+∞

ρ

n
lnBz

n ≤ 0.

For z ≤ zs, and for any xn ∈ En
ρ , as Π(x

n) ≤ 1, we deduce from Eq. (62) that

ρ

n
lnBz

n ≥ −H(xn|cz)−Rn(x
n) +

∞
∑

i=n+1

Qiz
i . (65)

Suppose first that ρ ≤ ρs. Then z(ρ) ≤ zs, and we can find xn ∈ En
ρ such that xn → cz(ρ)

strongly (in norm) in X . Indeed, consider xni = ρ
n⌊

n
ρ c

z(ρ)
i ⌋ for i ≤ n − 1 and xnn =

1
n

(

ρ−
∑n−1

i=1 ix
n
i

)

. Clearly, xn converges componentwise (thus weak−∗) to cz(ρ). More-

over, ‖xn‖ = ρ = ‖cz(ρ)‖ thus xn also converges strongly (in norm) to cz, see for instance

[3, Lemma 3.3]. By Lemma 5.1 we have H(xn|cz(ρ)) → H(cz(ρ)|cz(ρ)) = 0. As cz(ρ) ∈ X ,
(

Qi (z(ρ))
i
)

is summable and
∑∞

i=n+1Qi (z(ρ))
i
→ 0 as n → ∞. And by Lemma 5.2,

as xn ∈ En
ρ for each n, Rn(x

n) → 0 as n → ∞. Thus, we deduce from Eq. (65) that

lim infn→∞
ρ
n lnB

z(ρ)
n ≥ 0.

Now take ρ > ρs. Consider x
n
i = ρ

n⌊
n
ρ c

zs
i ⌋ for i ≤ n − 1 and xnn = 1

n

(

ρ−
∑n−1

i=1 ix
n
i

)

.

Then, xn ∈ En
ρ and weak−∗ converges towards czs . Again, by Lemma 5.1 and Lemma 5.2,

we deduce from Eq. (65) that lim infn→∞
ρ
n lnBzs

n ≥ 0, which concludes the proof.

We now conclude by the proof of theorem 2.4.

Proof of theorem 2.4. Suppose first 0 < ρ ≤ ρs. Choosing z = z(ρ) ≤ zs, in Eq. (62), we

deduce from Lemma 5.1, Lemma 5.2 and Lemma 5.3 that

lim
n→+∞

−
ρ

n
lnΠn(cn) = H(c|cz(ρ)) .

Similarly, for ρ > ρs, choosing z = zs in Eq. (62), gives, with Lemma 5.1, Lemma 5.2 and

Lemma 5.3 that

lim
n→+∞

−
ρ

n
lnΠn(cn) = H(c|czs) .
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6 Discussion

In this section, we discuss our main results with respect to the literature. Both Theo-

rems 2.2 and 2.3 are a kind of law of large numbers. However, their proof differs from

the standard proof of the finite dimensional setting for continuous time Markov chain

that converges to a solution of an ordinary differential equation, see the work by Kurtz

in [11, Theorem 2.11] and [12, Theorem 2.2]. Indeed, under either hypothesis (H2) or

(H3), the right-hand side of the limiting DBD system (1) may not be Lipschitz and the

Kurtz strategy cannot be applied. In the proof of Theorem 2.3, we used monotonicity

and convex properties to circumvent the lack of Lipschitz property. These arguments

are essential in the proof of uniqueness of solution of the DBD equations, see [15, 14].

In the proof of Theorem 2.2, we used careful moment estimates and appropriate topo-

logical arguments. Again, the moment estimates were inspired from known results for

the DBD equations [3, 15].

To be complete, let us mention that there are, up to our knowledge, two previous

results for the law of large numbers on te SBD process. The first one is given by Jeon

in [10], who proves a compactness result in l2(R), under linearly bounded coefficients

(rather than in X). The focus of the work by Jeon was on more general coagulation-

fragmentation models though, and on gelling solutions (that may arise in finite time

for some coagulation-fragmentation models). The second work is by Sun in [18], who

proves a strong law of large numbers (in the spirit of Kurtz theorem) using bounded

kinetics rates. In such case, the right-hand side of the DBD system (1) is clearly Lips-

chitz on X . Then Sun was able to prove a functional central limit theorem, in a Hilbert

subspace of l2(R). Our result in Theorem 2.2 needs that ai to be O(i), consistently with

existence theorems for DBD equations (1), see [3]. We achieved the proof thanks to a

new super-linear moment in Proposition 3.3. Such moments are well-known in general

coagulation-fragmentation equations and seems to be derived for the first time in the

stochastic context. Then, in Theorem 2.3, we state a pathwise convergence with as-

sumption on the kinetic rates that are related to the uniqueness of the solution to DBD.

Hence, we fit the stochastic theory of the Becker-Döring model to the most general

results of existence and uniqueness available for the deterministic problem.

Limits of non-equilibrium potential are known to be related to relative entropy in

general complex balanced stochastic chemical reaction networks, see for instance [2,

1]. We have thus extended theses results for an infinite chemical reaction network,

that is detailed balance. Importantly, we have made the connection with the long-time

behavior of the deterministic system. A challenge that remains is to investigate the

interplay between the two limits n→ ∞ and t→ ∞, simultaneously.

A Criterion for weak compactness of density measures

A function between two topological spaces is said to be proper if the preimage of any

compact set is compact. We said a family F of Borel measure on a complete separable

metric space E is uniformly bounded if, supν∈F ν(E) < +∞, and uniformly tight if, for

any ε > 0, there exists a compact Kε of E such that supν∈F ν(E − Kε) < ε. We recall

that the weak convergence of measure is the convergence of integrals against bounded

continuous on E. For convenience reader, we write below a version of the Prohorov’s

theorem (see [4, Theorem 8.6.2]).

Theorem A.1 (Prohorov). Let F a family of Borel measure on a complete separable

metric space. The following conditions are equivalent
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1. F is relatively sequentially weakly compact.

2. F is uniformly bounded and tight.

The aim of this section, is to state an alternative criterion of weak compactness,

based on a refined version of the De La Vallé Poussin’s theorem, see [7, Proposition

I.1.1] and [14, Theorem 2.8]. We introduce a set of functions that have remarkable

properties when conjugate to the structure of Becker-Döring equations and provide

important estimates, see for instance [15].

Definition A.2. We denote by U the set of non-negative convex functions φ, continu-

ously differentiable with piecewise continuous second derivative, such that φ(x) = x2

2

for x ∈ [0, 1], φ′ is concave, φ′(x) ≤ x for x > 0, and

lim
x→+∞

φ(x)/x = +∞.

One can obtain the following useful properties for the functions in U :

Proposition A.1. Let φ ∈ U . Then, φ is increasing, non-negative, and there exists

m > 0 and K > 0 such that, for all i ≥ 1

(i + 1)(φ(i + 1)− φ(i)− φ(1)) ≤ m(iφ(1) + φ(i)),

φ(i + 1)− φ(i)− φ(1) ≥ 0,

φ′′(i) ≤ φ′′(0), φ′(i) ≤ iφ′′(i), φ(i) ≤ iφ′(i), and φ(i)/i2 ≤ K.

(66)

Proof. The first line in Eq. (66) follows from [13, Lemma 3.2]. The second line follows

from the convexity inequality φ(i+1)−φ(i) ≥ φ(1)−φ(0) ≥ 0. The third line also follows

directly from convexity properties.

We state our alternative criterion of weak compactness in the following Theorem.

Theorem A.3. Let {νn} be a sequence of Borel measure on a complete separabale

metric space E and g be a non-negative proper continuous function. The sequence of

density measure {g · νn} is relatively weakly compact, if and only if, {g · νn} is uniformly

bounded and there exists φ ∈ U such that

sup
n≥1

∫

E

φ ◦ g νn < +∞ . (67)

Proof. Assume that {g ·νn} is uniformly bounded such that Eq. (67) is satisfied for some

φ ∈ U . Let R > 0 and define the compact K = g−1[0, R], then

∫

E−K

g(x)νn(dx) ≤ sup
y>R

y

φ(y)

∫

E

φ(g(x))νn(dx) .

Since φ ∈ U , the right hand side goes to 0 has R → ∞, uniformly in n according to

Eq. (67). Thus the sequence is uniformly tight. By the Prohorov theorem A.1, the

sequence is relatively weakly compact.

Now assume {g ·νn} is relatively weakly compact, or equivalently, {g ·νn} is uniformly

bounded and tight. We will follow the construction of φ proposed in [7, Proposition I.1.1]

for uniform integrability. Define for each νn and k ≥ 0, Mn
k := νn({k ≤ g < k + 1}). By

construction ofMn
k it follows that

∑

k≥0

kMn
k ≤

∫

E

g(x)νn(dx).
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Since the sequence {g ·νn} is uniformly bounded,
∑

k≥0 kM
n
k is also uniformly bounded,

and we deduce

sup
n≥0

∑

k≥1

(k + 1)Mn
k < +∞. (68)

Let i ≥ 1. Since g is proper, the set Ki = {g ≤ i} is compact, and

∑

k≥i

(k + 1)Mn
k =

∑

k≥i

∫

{k≤g<k+1}

(k + 1)νn(dx) ≤ 2

∫

E−Ki

g(x)νn(dx). (69)

The function g is continuous, hence bounded on the compacts. Thus, for any compact

K, there exists i0 such that K ⊂ Ki0 and thus E −Ki0 ⊂ E −K. By uniform tightness,

and Eq. (69), for all m ≥ 0, there exists Nm such that

sup
n≥0

∑

k≥Nm

(k + 1)Mn
k <

1

(m+ 3)3
.

Moreover the sequence {Nm} can be chosen such that N0 ≥ 2, N1 ≥ N0 and Nm+1 −

Nm ≥ Nm −Nm−1 for all m ≥ 2. We define the sequence 5

αk =

{

2 , 0 ≤ k ≤ N0 − 1 ,

m+ 3 , Nm ≤ k < Nm+1 .

for all k ≥ 0. Thus, we have

∑

k≥1

αk+1(k + 1)Mn
k =

N0−1
∑

k=1

αk+1(k + 1)Mn
k +

∑

m≥0

Nm+1−1
∑

k=Nm

αk+1(k + 1)Mn
k

≤ 3

N0−1
∑

k=1

(k + 1)Mn
k +

∑

m≥0

1

(m+ 3)2
,

and thanks to Eq. (68), it yields

sup
n≥0

∑

k≥1

αk+1(k + 1)Mn
k < +∞. (70)

Now, we define the function p on R+ by

p(t) =































t 0 ≤ t ≤ 1

1

N0 − 1
t+

N0 − 2

N0 − 1
1 ≤ t ≤ N0

1

Nm+1 −Nm
t+

(

m+ 2−
Nm

Nm+1 −Nm

)

Nm ≤ t ≤ Nm+1, ∀m ∈ N.

and, for all y ≥ 0,

φ(y) =

∫ y

0

p(t) dt.

Hence, for x ≤ 1, φ(x) = x2/2 ≤ x/2. Let k ≥ 1. It exists m ≥ 0 such that Nm ≤ k + 1 <

Nm+1. Hence for all t ≤ k + 1, as p is increasing, p(t) ≤ p(Nm+1) = m+ 3 = αk+1. Thus

for all k ≥ 1 we have φ(k + 1) ≤ (k + 1)αk+1. Then, we obtain,

∫ ∞

0

φ(g(x))νn(dx) ≤

∫

{g(x)<1}

φ(g(x))νn(dx) +
∑

k≥1

∫

{k≤g(x)<k+1}

φ(k + 1)νn(dx)

≤
1

2

∫ ∞

0

g(x)νn(dx) +
∑

k≥1

(k + 1)αk+1M
n
k .

25



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Yvinec, R., Hingant, E. (2018). The Becker-Döring process: law of large numbers and

non-equilibrium potential. preprint, 1-28.

E. Hingant & R. Yvinec – The Stochastic Becker-Döring Process

By hypothesis on {g · νn} and the uniform bound (70), we obtain

sup
n≥0

∫ ∞

0

φ(g(x))νn(dx) < +∞.

The fact that φ belongs to U is easily checked by construction.

B Tightness criterion for jump processes

Let E be a Polish space and d a complete metric that metrizes the topology on E, and

D([0,+∞), E) the space of right continuous with left limit E-valued functions defined

on [0,+∞) equipped with the Skorohod topology. For δ > 0 and T > 0, the set Πδ is

the set of all partitions {ti} of [0, T ] such that for some N we have 0 = t0 < t1 < · · · <

tN−1 < T ≤ tN with mini=0,...,N |ti+1 − ti| > δ. For any x ∈ D([0,+∞), E), the modulus

of continuity is defined by

w(x, δ, T ) = inf
{ti}∈Πδ

max
i

sup
s,t∈[ti,ti+1[

d(xt, xs),

The following lemma is classical for jump processes, but we prove it here for the con-

venience reader.

Lemma B.1. Let {Xn} be a sequence of pure jump Markov processes on E whose

(stochastic) transition rate is given by (λnt )t≥0, for each n ≥ 1. If there exists a positive

sequence {αn} such that

lim
n→+∞

αn = 0,

and, almost surely,

sup
t≥0

λnt ≤ α−1
n and d(Xn

t , X
n
t−) ≤ αn,

then, for all T > 0 and η > 0, there exists δ > 0 such that

lim
n→+∞

P{w(Xn, T, δ) ≥ η} ≤ η.

Proof of Lemma B.1. Let (Fn
t )t≥0 the natural filtration associated to (Xn

t )t≥0. We define

(Nn
t )t≥0 the counting process given by the jump times of (Xn

t )t≥0. Namely,

Nn
t =

∑

k≥0

1t≥τn
k
,

where the random sequence {τnk }k≥0 is defined by, for each n ≥ 1, τn0 = 0 and

τnk+1 = inf{t | t > τnk , X
n
t 6= Xn

t−}.

Hence (Nn
t )t≥0 is a conditional Poisson process with stochastic intensity (λnt )t≥0 (see [5,

Chap 2 Defintion D1]). In particular,

P{Nn
t −Nn

s = k | Fs} = E






exp

(

−

∫ t

s

λnσdσ

)

(

∫ t

s
λnσdσ

)k

k!






.

Fix T > 0 and η > 0. Consider the partition ti = i∆t for i = 0, 1, . . . , N of [0, T ] for some

∆t (to be chosen later). For all δ < ∆t, we have {ti} ∈ Πδ. We define

Y n
i = sup

s,t∈[ti,ti+1[

d(Xn
t , X

n
s ) .
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Then, we have

P{w(Xn, δ, T ) ≥ η} ≤ P{∃i Y n
i ≥ η} ≤ N max

i
P{Y n

i ≥ η}. (71)

We aim to bound P{Y n
i ≥ η} for each i. Let i ∈ {0, . . . , N}. By hypothesis, any jump size

of (Xn
t )t≥0 is less than αn. Thus, in a time interval [ti, ti+1[, we need strictly more than

⌊ η
αn

⌋ jumps so that Y n
i ≥ η. Thus,

P{Y n
i ≥ η} ≤ P

{

Nn
ti+1

−Nn
ti ≥

⌊

η

αn

⌋}

≤ E






e−

∫ ti+1

ti
λn
σdσ

∑

k≥⌊ η
αn

⌋

(

∫ ti+1

ti
λnσdσ

)k

k!






.

Since x 7→ e−x
∑

k≥⌊ η
αn

⌋
xk

k! is a non-decreasing function on R+, we have

P{Y n
i ≥ η} ≤ e−α−1

n ∆t
∑

k≥⌊ η
αn

⌋

(

α−1
n ∆t

)k

k!

The right hand side of this above inequality is the probability that a Poisson random

variable with intensity α−1
n ∆t is greater than

⌊

η
αn

⌋

. Thus, by Chernoff’s inequality, one

may obtain, for all x ∈ R,

P{Y n
i ≥ η} ≤ exp

(

−x

⌊

η

αn

⌋

+ α−1
n ∆t(ex − 1)

)

.

Choosing the minimizing value x = ln(αn
⌊ η

αn
⌋

∆t ), we get

P{Y n
i ≥ η} ≤ exp

(

⌊

η

αn

⌋

(

1−
∆t

αn⌊
η
αn

⌋
+ ln

∆t

αn⌊
η
αn

⌋

))

.

The term in the above exponential is negative as soon as ∆t 6= αn⌊
η
αn

⌋. Then

lim
n→+∞

P{Y n
i ≥ η} = 0

and by Eq. (71) we conclude that for δ < ∆t,

lim
n→+∞

P{w(Xn, T, δ) ≥ η) = 0,

which ends the proof.
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