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Abstract

In this note, we prove a law of large numbers for an infinite chemical reaction
network for phase transition problems called the stochastic Becker-Doring process.
Under a general condition on the rate constants we show the convergence in law
and pathwise convergence of the process towards the deterministic Becker-Doring
equations. Moreover, we prove that the non-equilibrium potential, associated to the
stationary distribution of the stochastic Becker-Doring process, approaches the rela-
tive entropy of the deterministic limit model. Thus, the phase transition phenomena
that occurs in the infinite dimensional deterministic model is also present in the finite
stochastic model.

Keywords: Becker-Doring; infinite-dimensional reaction network; law of large num-
bers; non-equilibrium potential; entropy.
AMS MSC 2010: 60]75; 60B12; 28D20.

1 Introduction

The Becker-Doring model represents time evolution of spatially homogeneous clusters
of particles. Cluster sizes change following two simple rules: they may grow by adding
particles one-by-one or shrink by losing particles one-by-one. Denoting a cluster of : > 1
particles by C;, we can summarize the model by a simple infinite reaction network:

a; .
Ci+C=—=Ciy1, 121,
bit1

where a; and b;4; are the size-dependent reaction rate constants. This model was orig-
inally formulated as an infinite set of ordinary differential equations, one for the evolu-
tion of the concentration of clusters of each size, denoted by ¢;(t), for t > 0 and ¢ > 1:

dCl =

= = 2h(0) - ;Ji(c) :

de; .

d_Ct:Jifl(C)*Ji(C), 122, (1)
JZ(C) = a;C1¢; — bi+16i+1 5 ) Z 1.

We call the system (1) the deterministic Becker-Déring equations (DBD). This model
was used to represent phase transition phenomena in physics, chemistry, and more re-
cently gained in popularity in biology. The interested reader should refer to the surveys
[9] [17] for details.
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In this note, we deal with the stochastic counterpart of this model whose construc-
tion follows. Let (a;);>1 and (b;);>2 be strictly positive sequences. For n > 1 and p > 0,
we define the state space

+oo
5: = {(Ci)i21 ERN : Vi > 1,%@ eN, Zici = p},
=1

where RY is the space of real sequences. An important fact is that &, is a finite state
space, which can be made clearer with the following equivalent representation: ¢ € &,
iff ¢ = (Zx1,...,22,,0,...) with 2; € {1,...,[£|} and >, iz; = n. Then, we define
the following infinitesimal generator as the operator 4™, on the set of borel function
¢ : RY — R, bounded on g7, by

+oo
n

A @)(e) = 2 3 (As(lpte + 880 = 9] + Bua @lle — £20) = 9(@)]) @)

where the transition rates are
Ai(c) = arci(er — £), Ai(c) = aci¢,1> 2, Bi(c) = bici ,1 > 2,

and jump transitions A; = e;11 — e; — e; with (e, eq,...) the canonical basis of RY, that
is e;r = 1 if k = ¢ and 0 otherwise. Remark that for any ¢ € 5}}, if A;(¢) > 0 then
c+ £A; € &, while if Bi1(c) > 0 then ¢ — 2A; € £J. Finally, fix (2, F, P) a (sufficiently
large) probability space, denote by E the corresponding expectation and define the
following process:

Definition 1.1. For each n > 1, the stochastic Becker-Doring process (SBD) is a pure
Jjump Markov process ¢" on (2, F,P), with value in &}, and infinitesimal generator A"
given in Eq. ).

Since £F is finite, given an initial law ¢™" € &, there exists a unique (in law) SBD
process ¢ with ¢"*(0) = ¢™" (in law). Moreover, by construction of &, this yields the

so-called mass conservation,
+oo

D ik (t) =p. (3)

i=1

The parameter n can be seen as the total number of particles, and 2 as a volume scal-
ing. We study the behavior of the SBD model when n goes to infinity. As the state space
grows together with n, this problem differs from standard results of chemical reaction
networks (see discussion). In the first part of our note, we deal with the convergence of
the time-dependent SBD process towards the solution of the DBD equations, as n — oc.
In the second part, we elucidate the asymptotic behavior as n — oo of the stationary
distribution of the SBD process, which is related to the relative entropy associated to
the DBD equations.

Summary. In Sec. 2]we introduce additional notations and our main results. In Sec.
Blwe prove the Theorem [2.2] for the convergence in law of the SBD process. In Sec. (4]
we prove the Theorem for pathwise estimates. In Sec. Bl we prove the Theorem
on the convergence of the stationary distribution. We discuss our results with respect
to the literature in section[6l Considered as appendix, in Sec. [Alwe state a criterion for
weak compactness of (density) measures and in Sec. [Bla criterion for tightness of jump
processes. Both are used in the proof of Theorem
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2 Main Results

We naturally embed the sequence of state-space £ into the space

+oo
X ={(c)i>1 €RY : || = Zici < 400},
=1
The space (X,] - ||) is complete and separable. For 0 < T < +oo, we denote by

D([0,T[, X) the space of right continuous with left limit X-valued function on [0,77.
Equipped with the Skorohod topology, the space D([0,T[, X) is Polish (see [8, Theorem
5.6]). Denote by Xt the non-negative cone of X. We assume the following on the
sequence of initial condition.

Hypothesis. The sequence of initial condition {¢™ "} belonging to &, Is deterministic,
and there exists ¢™ € X such that

lim ||d™™ — ¢ = 0. (H1)
n—-+o0o
Remark, ¢ given in (HI) has consequently the same mass p, that is ||c*| = ||¢™ "] =

p. In our first theorem for the convergence in law of the SBD process, we shall assume
that the coagulation reaction rates are linearly bounded.

Hypothesis. There exists a positive constant K such that
a; < Ki, i>1. (H2)

For our second theorem for pathwise convergence of the SBD process, we shall
impose some monotonicity condition on both the coagulation and the fragmentation
reaction rates.

Hypothesis. There exists a positive constant K such that the reaction rate constants
satisfy
aiy1—a; < K, i>1,

bi—biy1 < K, 1>2.

(H3)

Hypothesis (H3) implies that a; < i max(K,a;), forall ¢ > 1, and it thus stronger than
hypothesis (H2). Before stating our limit theorems, we first need to recall the definition
of a solution to the DBD equations as stated in [3]].

Definition 2.1. A (global) solution ¢ = {¢;} to the Deterministic Becker-Déring equa-
tions () is a function ¢ := [0, +0c0) — X such that

1. Forallt >0, c(t) e X*;
2. Each ¢; is continuous and sup,> ||c(t)|| < 4o00;

t +00

3. Forallt >0, / Z[aicl (8)ei(s) + bip1cit1(8)]ds < +o0;
0 =1
4. And satisfies, for allt > 0,
t
ci(t) = ¢;(0) +/ [Ji—1(c(s)) — Ji(c(s)))ds, i >2,
0

t +oo
cr(t) = e1(0) — /0 [JQ(C(S)HZJZ-(C(S)) ds.
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Importantly, by [3, Corollary 2.6, Proposition 3.1], a solution c to the DBD equations
is actually continuous from [0, +o0) to (X, ||-||) and preserve the mass, that is, if ||¢(0)]| =
p, forallt >0

+oo
> ity =p. 4)
=1

Existence of global solution to Eq. (I), in the sense of Definition [2.1] have been es-
tablished in [3] Corollary 2.3] under the fairly general hypothesis (H2). This existence
result is optimal in the sense that without any extra hypothesis on the strength of b;
(nor extra-regularity on the initial condition) the DBD equations may not have solution
if hypothesis is not true (see [3, Theorem 2.7]). We can now state our first theorem.

Theorem 2.2. Under Hypothesis (HI) and (H2). If {c"} is the sequence of SBD pro-
cesses with ¢"(0) = ¢™" then, the sequence {c"} is relatively compact in D([0, +o0), X)
and any limit point c is, almost surely, a solution to the DBD equations with initial con-
dition ¢(0) = ¢,

Uniqueness of solution to Eq. (I) requires extra hypotheses, either on the initial
condition or on the constant rates (see for instance [3, Theorems 3.6 and 3.7]). When
uniqueness holds, it is a direct consequence of Theorem [2.2] that the full sequence {c"}
converges (in law) to the unique solution of the DBD system (IJ). To our knowledge, the
best uniqueness result with the largest class of coagulation rates was obtained in [[15]
Theorem 2.1], under the hypothesis (H3). Under this hypothesis, we obtain our second
theorem.

Theorem 2.3. Under Hypothesis (HI) and (H3). If {¢"} is the sequence of SBD pro-
cesses with ¢"(0) = ¢™" and {c} the unique solution of the DBD equations satisfying
c(0) = ¢ then,
: n _
nBTooEtSEé%} l[¢"(t) = e(t)]| = 0.

We turn now to the study of the behavior of the stationary distribution of the SBD
process, as n — oo. The SBD process being a Markov chain in a finite state space, it
is clear that it has an unique invariant measure on each irreducible component of the
state space, that is on each 6;. Moreover, the SBD process has the detailed balance
property: it is reversible with respect to its invariant measure. To see that, let us define,
forany ce &7,

1 (2Qi) ng
Hn(C):ﬁnp(%Te pQ 5 (5)

n =1

and I1"(c) = 0 for all ¢ ¢ £}, where Q); is defined by, for all i > 1,

and where z > 0 is arbitrary and B} is the following normalizing constant

no(2QR o _ng
B = ZH(Q%—?! e p i (6)
P

(:ES[} i=1

On can easily check that II" satisfies the reversibility condition: for all ¢ € £}, for all
i>1,
A1(6>H(C) = Bi+1(C + %Az)H(C + %Az) y



E. Hingant & R. Yvinec - The Stochastic Becker-Déring Process

and thus II" is the unique invariant distribution of the SBD process on &;. To under-
stand the limiting behavior of the stationary distribution, it is convenient to write down
the so-called non-equilibrium potential, for ¢ € 5}},

n
P InII"(c) = Z {—ci In (EQizi) + P1n Eci! + Qizi} + p In B
n = p nop n

Before stating our theorem on the limit of the stationary distribution, we first recall
the main results on the long term behavior of the DBD equations. From Eq. (), it is
not difficult to see that any equilibrium of the DBD equations must be of the form c?,
defined by, for any z > 0,

cii=Qiz", i>1.

Thus, there is a family of potential candidates for the equilibrium of the DBD equations.
Owing to the mass conservation Eq. (4)), that holds for all finite times, it is natural to
expect the equilibrium to satisfy the same relation namely,

1]l = p. (7)
We naturally define the radius of convergence of the series ||c*|| = S5 iQ;27,
. 178\ !
Zg 1= (hmsup Q; ) , (8)

and the supremum value of ||¢*||, which leads to the notion of critical mass

pe = sup [lc°] .
z2<zs
Indeed, by monotonicity of ||c?|| in z, either Eq. (7) has a unique solution z, or does
not have any solution, depending on the mass p being less or greater than the critical
threshold ps, respectively. For any p < ps, we define z(p) as the unique solution of
Eq. (@, that is
1P| =p, 2<z. 9)

It turns out that a dichotomy occurs in the large time behaviour of the DBD equations,
which is at the corner stone of the phase transition phenomena of the Becker-Doring
model. Under some additional technical assumptions (see [3] [16]), if p < ps, any time-
dependent solution of the DBD equations converges strongly towards ¢*(?), as t — co.
However, if p > ps, any time-dependent solution of the DBD equations converges to-
wards c* in the weak — * topology on X (pointwise convergence, component by compo-
nent). In the latter case, the steady-state ¢*s has a mass strictly inferior than the initial
condition. The quantity p — ps is interpreted as the mass which leaves the initial phase
and undergoes a phase transition.

The long-time results of the DBD equations are proved thanks to the help of the
following function H, that turns to be a Lyapunov for DBD equations, for any z > 0,

+oo
H(c|c®) = Z {ci (111 Qc;l - 1) + szz} . (10)

i=1

The function H is also called the relative entropy, as, for z < z,, and ¢ € X, with
|le]l < p, one have H(c|c*) = 0 if, and only if, ¢ = ¢*, and H(c|c*) > 0 otherwise. We refer
to [6]] for recent results and discussion of the use of entropy techniques for the DBD
equations.

Our theorem on the limit of the stationary distribution (5), as n — oo, shows that a
similar dichotomy holds for the stationary state of SBD process.
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Theorem 2.4. Assume 0 < z; < +oc. Let {c"} a sequence belonging to £;'.
1. If0 < p < ps, and if liminf,; | QZW > 0 and ¢ — ¢ € X strongly, asn — oo, then

lim —2 InTI" (") = H(c|c*P),

n—-+oo n
where ¢*) = {Q;z(p)'} such that [|¢*")| = p.

2. If p > ps, and if lim Qg/i exists, and ¢ — c € X weak — *, then

lim — 21 " (") = H(c|c*),
n

n—-+oo

where ¢ = {Q;z!} and ||c**

= Ps.

3 Limit theorem: The general case

In this section we prove Theorem We recall that the SBD process (see Definition
[[.1) ¢ is a continuous-time Markov chain with value in a finite state-space, whose
infinitesimal generator is given by Eq. (2). We remind that, classically, for any Borel
function ) : RY — R bounded on 5;}, we have

Pl (8)) — (™) — / AT (5))ds (11)

is an L2-martingale starting from 0 whose previsible quadratic variation is

n [tIX
&Y (A @) + 280 — v @)

+ Bia (" (5)[U(c"(5) = £A:) = (" (5) )ds. (12)

The proof of Theorem follows a general scheme in infinite dimensional settings,
which we briefly sketch here:

(i) Moment estimates (Proposition [3.3): this is an important step as it provides a
superlinear moment, crucial to control the infinite sums that arise in the limit
n — Q.

(ii) Compactness (Proposition 3.4): we prove compactness in D([0,+o0), X) for the
Skorohod topology, using essentially the mass conservation (3) and moment esti-
mates from step (i).

(iii) Vanishing martingale (lemma [3.7): we classically control the sequence of martin-
gales through their predictable quadratic variation process and Doob’s inequality.

(iv) Continuity property (lemma [3.8): We use the classical fact (in the study of DBD
equations) that the integral form of the truncated version of the DBD equations
defines a continuous maps on C([0, +o0), X).

(v) Convergence of the truncation (lemma [3.9): the truncated version of the right-
hand side of the DBD is arbitrary close to the one of the original DBD, uniformly
with respect to the sequence of SBD processes. This estimate is possible thanks
to step (ii).

(vi) The final step combines steps (i), (iii), (iv) and (v) to show that any limit point of
the sequence of SBD processes satisfies the integral form of the DBD equations.
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3.1 Regularities results

In this section we collect some important estimates. The next two lemma concern
generalized moment propagation and the control of the fragmentation term, the latter
playing the role of a diffusive term. Analogous results are known in the deterministic
context, see [3, Theorem 2.2], and yield the important estimate in Lemma [3.21 Let
{g:} be an arbitrary real sequence, and consider the measurable function defined by
Y(n) = ;;Of gin; on £;. Note that ¢ is necessarily bounded on &;'. Hence, using the
martingale (I1), we have, forallt >0, n > 1and N > 2,
t +oo

+oo
Z Gi+1 — 9i)Biy1(c" =E Zgicy(o)]
+oo
/0 {gN(ANl(Cn(S)) — Bn(c"(s))) + Z(giJrl - gz)Az(Cn(S))} dS] . (13)
i=N

We deduce the following estimate.

+E

Zgz

+E

Lemma 3.1. Let N > 2 and {g;} be a non-negative non-decreasing sequence such that
for some positive constant Ky we have, foralli > 1, a;(g;+1 — 9i) < Kog;. Then, if

Zgz

there exists, for each T’ > 0, a constant K such that, foralln > 1,

sup E
n>1

< 400,

+oo
E | gic(t)
i=N

The constant K also depends on N, {g;}, Ko, the mass p and the kinetic rate ay_1.

T +oo
E /0 {gNBN(Cn(S)) + Z(giﬂ — gi)BHl(C"(s))} d;| < Kr. (14)

=N

Proof. By Eq. (13) and the mass conservation Eq. (3), for all ¢ > 0,

+oo
Z gici' Z gici' Z gmf(s)] ds. (15)
i=N

We first apply Gronwall lemma to bound uniformly in time on [0, T'] the left hand side of
Eq. (I%). Then, we use this bounds into (13) to conclude on the bound (14). Note that
the (Fubini-Tonelli) inversion of expectation and time integral follows by the fact that
any right-continuous left-limit process is progressive. O

t
<E +9NGN—1PQt+K0P/ E
0

Lemma 3.2. Under Hypothesis (H2), for each T' > 0, there exists a constant Kr, such
that,

T +oo
| e ) + Bt ()| < K 16)

0 =1

Proof. Note that by Hypothesis (H2)), with g; = i for alli > 1, we have a;(g;+1—9:) < Kg;.
Hence Eq. (16) readily follows from Lemma [3.T]with N = 2 and the mass conservation
Eq. (3. O

The next result proves the existence of a finite super-linear moment, which allows
us to control the formation of large clusters and to obtain compactness properties.
Again, such bound is known for deterministic coagulation-fragmentation models, see
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for instance [15] [13]]. We slightly improve the latter results, as no further assumption
on the initial condition is needed here. Denote by U the set of non-negative convex
functions ¢, continuously differentiable with piecewise continuous second derivative,
such that ¢(z) = % for z € [0,1], ¢’ is concave, ¢'(z) < z for z > 0, and

lim M

r— 400 €T

= +o00. 17)

In appendix Sec. [Alwe collect some properties related to the functions belonging to /.

Proposition 3.3. Under Hypothesis (HI), there exists ¢ € U such that the sequence of
initial condition {c™"} satisfies

SuquS ) < oo, (18)

n>1

Moreover, under Hypothesis (H2), if {c"} is the sequence of SBD processes with ¢ (0) =
™0 forall T > 0, there exists a constant K1 such that

supE
n>1

sup qu 1 < K. (19)

te[0,T] ;=

Proof. Let the punctual measure v™ on [0, +00) defined by, for any Borelian set A,

+o0
VH(A) =D cMPi(A).

i=1

—+o0
/ xv™(dx) = p
0

By hypothesis (HI), the set {z - v"} is relatively weakly compact in the space of Borel
measures on RT (recall that this topology is given by the sequential characterization
of convergence of measure against bounded continuous functions). Then, by Theorem
[A3] (with g(z) = z), there exists ¢ € U such that Eq. (I8) holds. We denote by K;
the constant arising in Eq. ([@8). Now, using Eqs. (IID-(12) with ¢ given by ¢(n) =
+°° (i)n; for n € £, we have (recall that for any n > 1 we deal with finite sums) for

In particular, for all n > 1,

t Z O
t +oo
+ [ 30 B (o) (6l + 1) = ) — o(1))

00 t+oo
= 2000+ [ DA (6641 = 000) — o)+ MF0, @)

where M is a square-integrable martingale starting from 0 and

t+oo
BP0 = 78 | [ SAE 6 + B DI+ 1)~ 06) — 600

Since ¢ belongs to U, by Prop. [AT] ¢(i + 1) — ¢(i) — #(1) > 0 for all ¢ > 1 and there is a
positive constant K5 such that, for all i <n,

P(i+1) — (i) — ¢(1)

n

< Kos.
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Then, we obtain

t+oo
E|Mg(t)|* < piE / Ai(c"(s)) + Bipa(c"(s))](@(i + 1) — ¢(i) — ¢(1))ds| . (21)

From Eq. (20), since ¢ is non-negative, we deduce
t +oo
B [ 3 Bua(e'(s)) (0 + 1)~ o(0) — o(1) ds
0 =1

t +00
< K\ +E / ) (6 +1) — (i) — $(1)) ds,
which in Eq. (ZI) yields

E|M¢( )|2 < pK1K2 + 2pK2

t +00
/ A(e(5))(@li + 1) — (i) — ¢><1))ds] )

Moreover, by hypothesis (H2), the mass conservation in (@) and Prop. [A] for all ¢t €
(0,77,

t+oo
B| [ A6 6+ 1) - 600 —¢(1>>ds1
ngp/ Zc +¢<>>]
) t +oo .
<mKp ¢(1)T+pr/0 E Til[lol?s];(b(z)ci (7)1 ds, (23)

where m is a constant depending on ¢. Using Eq. (@23) into Eq. (22), and Doob’s
inequality, there is a some positive constant K3 such that,

E sup |Mg(s)] §K3< / sup qu ] ) : (24)

s€[0,t] T€[0,8] ;=1

Now, we use again Eq. (20), but taking first supremum in time and then expectation,
which entails

t +<>o
sup Z(b S]<K1+E / ) (@i +1) — ¢()—¢(1))]ds
s€(0,t] ;4
+E sup [Mj(s)]. (25)
s€[0,t]
We conclude using Egs (23) and (24) into and the Gronwall lemma. |

3.2 Compactness

In this section, we use a tightness criterion for the sequence of SBD processes {c¢"} in
order to prove to the next proposition.

Proposition 3.4. Under Hypotheses (HI) and (H2), the sequence {c"} of SBD pro-
cesses with ¢"(0) = ¢™" is relatively compact in D([0,+occ), X). Any limit point c satis-
fies (almost surely) points 1 to 3 of the Definition[2.1] of a solution to the DBD equations,
and is continuous from [0, +00) to X.
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The compactness part of the proof is a direct application of a classical tightness
criteria [8] Chap. 3 Corollary 7.4], which consists in verifying two points: first, the
compact containment (lemma [3.5) and second, a control on the modulus of continuity

(lemma [3.6).

Lemma 3.5. Foralle > 0 andt > 0, there exists a compact subset I'. ; such that

P {c"(t) ¢ T2, ) <e.
Proof. Lete >0andt > 0. FixT >t and
T T—{cex+|||c||<p +§¢(i)c-< KT}
T - 71‘:1 e 7

where ¢ is given by Proposition [3.3]and K is the constant in Eq. (I9). Clearly, I'. 7 is
a compact subset of X. Since by the mass conservation Eq. @), ||c"(¢)|| = p, we have

+o00 KT
P{c"(t)¢Iip} =P {Z P(i)ei(t) > —} .

5
Then, by Chebychev’s inequality and Proposition [3.3]

P{c"(t) ¢Tir} <e.
O

Let us define the modulus of continuity on X. For § > 0 and 7" > 0, the set Il
denotes the set of all partitions {¢;} of [0, T] such that for some K we have 0 =ty < t; <
e <tgo1 < T <tg with ming—q . x |tk+1 — tg| > J, and we define

.....

w(e,d,T) = inf max su ¢ — ¢
(©4,T) {tx}€lls & s,te[tk,rzk+1[|| ! <l

for all ¢ € D(]0, +00), X).

Lemma 3.6. Forall T > 0 and ¢ > 0, there exists 6 > 0 such that

lim sup P{w(c",T,§) > ¢} <e.

n—-+oo

Proof. Fix T > 0 and ¢ > 0. We define foreach N > 2, > 0 and c € D([0,T[, X),

N

N . .
w"(c,0,T)= inf max sup i|e;(t) — ¢i(s)].
( ) {tr}€lls k s,te[tk,tk+1[; lei(®) (s)]

which is the modulus of continuity of the components 2 to N seen as an RV~ l-valued
process equipped with the 1-norm (with a factor ¢). Fix N > 2. The infinitesimal transi-
tion rate of {c3,...,c%} is given by

N+1

37 (A () + Bilc™(5))],

n n
AR () ==
P =
foralln > 1 and ¢t > 0. We have
N+1

(1) < 2 s (ait+0) 3 [ ) () + e (5)],

10
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Thus, by the mass conservation Eq. (3), there exists a constant K depending on the
(N + 1) first rate constants and p such that A} (t) < Ky% forallt > 0 and n > 1.
Moreover, any transition jump satisifies

Do iler(t) — e ()] < 2N E.

Hence, by lemma [B.1] there exists § > 0 such that

limsup P{w™ (c",5,T) > 5} < &. (26)

n—-+o0o

Now, forall¢t,s < T and n > 1, we have

+o0 ; oo
Z il (t) — c(s)] <2 sup I sup qu(z)cf(u),
i=N+1 j>N+1 (]) UE[O,T] i=1
and
+oo N +oo
et (8) = et ()| = | D iler(t) — <Dty =)+ Y dle(t) = es)].
i=2 i=2 i=N—+1
Thus,
J
c <2 i|c] +4 sup ——= sup @(7)
e (t) — (s)] ZI S+ swp oo ue[m;
so that

P{w(c",6,T) > e} < P{w™(c",5,T) > 5t

+P<{4 sup —— sup o(i)cl (u) > £ (27)
{ j>N+1 ¢ ) uelo,1] ; 2
Using Eq. 26), Lemma [3.3]and Chebychev’s inequality into the above Eq. (27) we have
foralln > 1,
8 J
P{w(c",0,T) > }< -+ — sup

2 >N ¢( /)
where K7 is the constant in Eq. (I9). By property of ¢ in Eq. (I7), we can choose N
large enough such that the second term in the right hand side of Eq. (28) is less than
/2, to conclude the proof. O

——Kr (28)

Proof of Prop. Using Lemma and Lemma [3.6] we deduce from the tightness
criteria [8 Chap. 3 Corollary 7.4] that {¢"} is relatively compact in D([0, +o0), X). Let
¢ be a limit point of {¢"}. Then a subsequence, still denoted by {c¢"}, converges in
distribution to c. We shall prove that points 1 to 3 of Definition [2.1] are valid a.s. for
c. Since for all ¢ > 1, the map n — v¥(n) = n; is continuous from D([0,+o0), X) into
D([0,+),R) , each sequence {c}} converges in law to {¢;}. Moreover, for all i > 1,
and T > 0,

sup |ef' (t) — el (t7)] < LN 0, n— oo,

¢t<T n
which by [8, Chap. 3 Theorem 10.2] ensures all ¢; are almost surely continuous. Remark
that F, .= {n € D([0,+00),X)|ni(t) > 0, |In(t)|]] < p, forallt > 0} is a close subset of

11
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D([0,+00), X). Thus, by Portemanteau theorem, 1 = limsup P{c" € F} <P{c € F}. We
prove that point 3 of Definition [2.T]holds using that, for all finite IV,

E /Zazcl $)ci(8) + bit1cit1(s )]d]
/Zwl -mme4

/ Z a;ct (s)ci' (s) + bipiciy (s )]ds] < oo, (29)

= lim E

n—00

< limsup E

n—oo

where the first line of Eq. is a consequence of the convergence in law of {c¢"}
towards ¢, and the second line of Eq. comes from Lemma[3.21 We conclude by the
monotone convergence theorem, that for all ¢ > 0,

< +00.

t +0o
E /Zazcl s)ci(8) + biyicivi(s)]ds

We end the proof by (countable, ¢ > 1 and ¢t € N for instance) construction of a set
of probability 0 for which properties 1 to 3 of Definition hold. Finally, the same
strategy as Eq. (29) shows that c also satisfies the inequality (using Proposition [3.3)

sup Zqﬁ i)e(t . @.S. (30)

te(0,T] ;=
Thus, the continuity of each ¢; and Eq. (30) yields that ¢ is actually continuous from

[0, 400) to X. O

3.3 Identification of the limit

Thanks to Proposition [3.4] it remains to prove that any limit point ¢ satisfies, almost
surely, point 4 of the Definition[2.T] To prepare the proof, let us introduce few notations.
We define, forn € X,

Ai(n) = =2J1(n ZJ , and A;(n) = Ji—a(n) — Ji(n), i>2,

where we recall that J; are defined in Eq. (I). We also define, for ¢t > 0 and 7 €
D(]0,+), X),

M;(n, t) = mi(t / Ai(n

Thus, point 4 of Definition 2.Tlis equivalent to M;(c,t) = 0, foralli > 1 and ¢ > 0. Let t;
the continuous function on X defined by v;(n) = 7;. We define, for each: > 1,

Al (n) == A"pi(n) = 501771(261'1 —ei2) + Ai(n),
where ¢;;, = 1 if i = k and 0 otherwise. We then finally define

Aﬁ@?#@*ﬁ@*AA%%w%

12
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Using the martingale representation Eq. (T1)-(12), we deduce that M is an L? martin-
gale starting from 0 and satisfies, for all ¢ > 2,

E[|M}(T)] =E

n

L / (Aim1 (™ () + Bi("(5)) + Ai(¢"(5)) + Bia1 (c"(5))) ds] , 31)
and fori =1,

E[|M(T)I’] =E

T +oo
. / 31+ ens) (Ai(e™(s)) + Bia (€"(5)) ds] D))
0 =1
With these notations we have that foralli > 1and ¢ > 0,
t
M;(e™,t) = M (t) + % / arct(s)(2ei1 — eiz)ds, (33)
0

and we are ready to prove the

Lemma 3.7. Foralli >1andT >0,

lim E sup |M;(c",t)| =0.
n—=+o0  4c(0,7T)

Proof. Using Eqgs (31) and (32), and Lemma[3.2] we have, for T > 0 and all 7 > 1,
p
E[|MM(T)?] < 28K
(82 (T)P] < 2L Kr,

where K7 is the constant in Eq. (I6). By Doob’s inequality,

sup [MP()]] < 24/22 K. (34)
t€[0,T) n

Using the mass conservation Eq. (3) and Eq. (34) into Eq. (33), we end the proof. O

E

The next step is to show that the applications M; are continuous. The case i = 1
yields an infinite sum and must be treated separately. Classically in the study of the
DBD equations, this infinite sum is truncated and an extra-moment helps to conclude.
We shall proceed similarly. Let us define, for N > 3, and n € D(]0, +00), X),

+ N-1
T (.t) = m0) = m(0) = [ [2J1(77(S)+ S Jitns)) | s

Lemma 3.8. Forallt > 0 and N > 3, the maps defined on D([0,+c0), X) by
0+ M (n,t) and i~ M;(n, )
fori > 2 are continuous at any ¢ € C([0,+00), X).

Proof. Letn € C([0,4+0c0), X) and {n™} a sequence belonging to D([0, +c0), X ) converg-
ing to n for the Skorohod topology. Hence, each sequence {n!'} converges to 7; in
D([0,+0),R). Then, for all i > 1, we have n}*(t) — n;(t) as n — +oo, for all ¢ > 0, by [8|
Chap. 3 Prop. 5.2]. Since 7} is bounded, by the dominated convergence theorem, the
sequences of time integrals fot N (s)ds and fg 1y (s)ds are converging to, respectively,
fot n;(s)ds and fg mni(s)ds These conclude the proof as MY and M; are finite sums. O

We now show that the truncation J\Zle converges to Mi, as N — oo, along the se-
quence of SBD processes and any of its limit points.

13
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Lemma 3.9. We have the following two limits:

lim supE sup |M;(c", )*va(cnvt”:()a
N—=+oop>1  te0,7)

and if ¢ is a limit point of {¢"},

lim E sup |Mi(c,t) — MY (c,t)| = 0.
N—=+oo  tei0,1]

Proof. LetT >0, N > 3. Forall ¢t € [0,7],

T+<>o
My (e, 1) — BN (e, 1)) < / (9)) + Bisa (c"(s))]ds. (35)

We shall first deal with the fragmentation term. From Eq. (I3), taking ¢g; = ¢ and using
Hypothesis (H2) and the mass conservation (@), we get

T +o0 =
E/ Z Bit1(c"(s))ds <E Z ici' (0)
0 ;=N i=N

t
/
0

Note that from Eq. (I11), we deduce that

N(Ayx_1(c¢"(s)) — By(c" +Kpch ds. (36)

+oo +oo t
>0 =30 - [ (Anaa(e(s) = Bu(e(9)

is a martingale starting from 0. Hence we obtain, from Eq. (36),

t +oo

T +o0
E/ ZBZH ds<Ech —l—Ech +KpE/ ch )ds. (37)
0

Using the extra-moment estimate in (I9), we deduce from Eq. (37),

T +oo .
)
E B; ))ds < Kt su (38)
/ Z wle TEN 66

for some new constant K7. Using Hypothesis (H2) and the extra-moment estimate
Eq. (19), the coagulation term is directly controlled by

T+oo i
d K 39
B [, 2 A < K o @

for some new constant K. The first part of the lemma is then proved using Eqs. (38)
and into Eq. (39), letting N — oo and using the property of ¢.

The proof of the second part of the lemma goes along similar lines. Let ¢ a limit
point of {¢"}. We have

T+oo
|Mi (e, t) — MY (e, )] < / Ai(e(9)) + Biga(c(s)))ds.

14
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The coagulation term is controlled as previously, due to the control in Eq. (30). The
fragmentation term requires an extra step as follows. From Eq. (38), it is clear that, for
any R > N,

i
E/ Biy1(c"(s))ds < Kpsup —
OZ * @

i>N ¢
Thus, by convergence in law of ¢ towards ¢, we obtain, as n — oo,

E/ ZBz+1 ))ds < Kr sup E)
0

i>N @

Then, by monotone convergence theorem, as R — oo,

)
E/ Bit1(e(s))ds < Kr sup —
> m G

>N ¢

and we obtain the second limit of our lemma using Eq. (30). O

Proof of the Theorem[2.2 Let ¢ be a limit point of {¢"} in D([0, +oc), X). By Proposition
[B.4] cis almost surely continuous in time. Thus, by Lemma[3.8] for all ¢ > 0 and for each
i > 2, M;(c",t) converges in distribution to M;(c,t). Then, by Fatou’s lemma, for all
t>0,and > 2,

E|M;(c,t)| < liminf E|M;(c", )] =0,
n—-4o0o

where the last equality is due to lemma[3.7] Then, as t — M;(c,t) is continuous in time,
we have, almost surely, for all ¢t > 0 and ¢ > 2,

M;(e,t) = 0. (40)
We turn now to the case i = 1. For all ¢t > 0, we have
E[Mi(c,t)| < E[Mi(c,t) — M (c,t)| + E[M{ (¢, t) — M (c", )]
+ E| MY (", t) — My(c", t)| + E|My(c", t)|. (41)

The last term of the right hand side of Eq. (41I) goes to zero as n — +oo by Lemma[3.7]
Then, we observe that (taking only the expectation in c)

defined on D([0,400), X) is continuous at any n € C([0,4+00), X ). Then,

lim E[MN(c,t) — MM (<", t)| = 0.

n—-+oo

Finally, we first take the limit in n — +oco in Eq. (4I), and then in N, to obtain, by
Lemmal[3.9 forallt > 0,

E|Mi(c,t)| = 0.

From point 3. of the definition 2.1 ¢ — M;(c,t) is continuous in time and we have,
almost surely, for all ¢ > 0, My(c,t) = 0. Together with Eq. (@0Q), we conclude that c is
almost surely a solution of the DBD equations (IJ), in the sense of definition [2.1] O

15
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4 Limit theorem: Pathwise convergence

Let ¢" be the SBD process defined in Definition [T.T] and let ¢ be the unique solution
(under Hypothesis (H2)) to the DBD equations with initial condition ¢™. To prove our
Theorem we follow the proof in [15] of uniqueness of solutions to the DBD equa-
tions. For that we introduce some notations. We define

—+o0

B (t) =) [} (t) — (1),

=i
forallt > 0,i > 1and n > 1. Remark that by Eq. (3)-(4), we have |E!(t)| < 2p. Then,
from the DBD Eq. (I)) and the martingale given in Eq. (I11), we deduce that, for all ¢ > 2,

E!(t) — E(0) — /0 (Jic1(c™(8)) — Ji—1(c(s))) ds + ei2§\/0 ajct(s)ds

is a martingale. We aim to prove in this section that, forall > 1,

lim E sup |E”( ) =0 (42)

n——+00 te[0,T

Writing an equation on |E}(¢)| yields several problems around 0 from the lack of
smoothness. Hence we shall work with smooth functions ¢, sufficiently close to |- |. Let
¢ a continuously differentiable function on [—2p, 2p]. Applying Ito’s formula, we obtain,
forany N > 2,

ZsﬁE" - / (9)) i1 (c(s)))ds
/ { (5) [P (5) + £) = (BT ()]

+ Bi(c"(s)) [@(E] (s) — &) — (B} (5))] }ds +07(t), (43)

where O is an L?—martingale with

B0} ()P = "B / { (€ (5)) [o(B7 (5) + £) = 9B} ()]

+ Bi(c"(5)) [p(By(s) — ) — p(B(5)] }dS- (44)

We collect a first estimate in the next lemma for a certain class of functions.

Lemma 4.1. Assume hypothesis (H3), and let ¢ a non-negative convex function, con-
tinuously differentiable on [—2p, 2p|, having finite right and left second derivatives, such
(x) < |z|+¢ for all x € R. For any N > 2 and
T > 0, there exists a constants K’ independent on ¢, N, n and ¢ such that,

N N
B sup 3 e(E(0) < expu«(nsawm+1>T>{EZ|E?<o>
t€[0,T] i—2 .7
T T +oo
bE [ BR(0lde+ K9l + DB [ 3 (B0
0 0 =N+1

1
+ K (14 b3)Te + K[/ + Ll oo K + 2\/%K’Ils&”|oo}- (45)
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where || - || is the norm of the supremum on [—2p, 2p].

Proof. Let N > 2 and T > 0. Since ¢ is C' with finite right and left second derivatives,
by Taylor’s expansion, we deduce from Eq. (Z3) and the mass conservation Eq. (3), that,
forallt <T,

S GEN0) < 30 e + [ D2 (B it (€(6) = T ()l

2 t+ N
p p n n
LT+ 216 oo [ dir(€7(6) + Bl ()} ds +0X (1) 49)
i=2
We now write
Jic1(c™) = Jiz1(c) = aj—1cim1 (¢ — 1) + aj—ic} (B — EY) —b; (B} — EY4q) .
Then, by convexity of ¢, we have forall: > 2, s > 0,
@' (Bl (s)[Ji-1(c"(5)) = Ji1(c(8))] < ¢/ lo@i-1¢i=1(5)|cT (5) = 1(s)]
+ a1} (0(B1(s)) — 0(BE](s))) + bi (0(Efy 1 (s) — @(E'(s)) . (47)

Summing Eq. (47) from i = 2 to N and reordering sums yields to
N
S GBI (5) = Tima(e(5))] < (19 loo]ci (5) = ea(s)] Z aici(s
1=2
N-1
+arct (BT (s)) — an-1fe(ER(s) + Y (ai — ai_1)c} (s)p(E](s))
=2

N—1
+bN50(EJT\l/+1(5)) b290 E2 JF Z b 7b1+1 z+1(5))~ (48)
1=2
Using Hypothesis (H3), the mass conservation (@) and dropping non-positives terms
into Eq. (48) entails
N
DG EH NI (9) = Jima(e(s))] < max(K, an)pl¢ [ lef (5) = e (s)]

=2

+a1pp(EY(s)) + bne(ERia(s) + K(p+ 1) Z p(Ej'(s). (49)

Note that using the mass conservation (3)-), we deduce that ¢} —c¢; = —FEs — :;05 Er,
so that
+oo N “+o00
et (s) = er(s)] < [Bp(s)| + D EP(s) <2 @(EMs) + > |EMs),  (50)
i=2 i=2 i=N+1
as |z| < ¢(z). Since E? = ¢! — ¢; + EY and p(z) < |z| + €, we have, by Eq. (50),
N “+o0
P(E(s)) Se+|EP(s) <e+3) @(E's)+ Y [EMs)l- (51)
i=2 i=N+1
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Combining Eqgs. (5I) and into (49), we deduce that there exists a constant K’
independent on ¢, N, n and ¢, such that, for all s > 0,

N
Z o' (B ()[4 (" (5)) = Jima(c(s))] < bvep(ER 41(s)) + arpe

N +oo
+ K (¢l +1) <Z<P(E?(S))+ > IEZ‘(S)I>- (52)

i=N+1

Taking supremum in time, then expectation, we deduce from and (46) that there
exists a constant (again denoted by K’) independent on ¢, N, n and ¢, such that, for all
te€0,T]

N
B sip 3 0(E(5) < BY p(B(0) + K¢+ 1) / B sup 3 E()dr
s€[0,t] ;55 i—2 s€(0,7] ;55

+oo
+ 0B [ B0+ K0 o+ 0B [ S Bl + B swp [0X()
i=N+1 s€[0,t]

/ / / 1 1 n n
+E(1+bn)Te + K¢ T~ +§||90 ||oo/0 Z:{Ai—l(c (s)) + Bi(c"(s))} ds . (53)

We observe that by Doob’s inequality and Eq. (44), we have

E | sup |07(t)]

te[0,T]

<2 gnso'nzoE/O E{Az (e () + Bi(e ()} ds  (54)

Using Lemma[3.2] we deduce from Eq. (53)-(54) that

N N

E sup 3 @(Br(s) <ES 9(E0) + K'(|¢' | +1) / B S| (e

s€(0,t] ;55 i—2 s€[0,7] ;55

+oo
+bNE/ B 1 (5)]ds + K (||| o + DE / S |BR(s)lds
1=N+1

1
+ K (14 b3)T + K@/l T~ + 2l oo K + 24/ 2 Kl 0"

where Kr is the constant in (I6). We conclude that Eq holds by the Groénwall
lemma. O

To be able to pass in the limit n goes to 400 and then ¢ to 0 into Eq. (43), we need
the next lemma:

Lemma 4.2. Under Hypothesis (H3), we have the following limits

—+oo
lim supE sup EMt)=0 (55)
N—+oopn>1 tE[OT]Z-:;r1| ( |
T
1 E EY =
NiTooi‘iIibN / [ER 41 (t)]dt =0 (56)
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Proof. We first observe that

, .
Z|E" |<ZZ ) +ci(t) <2 ey +2chj (57)
j=N1i=N j=N

From Prop. [3.3] there exists ¢ € U and a constant K7 such that

sup Z jC < sup —=Kr, (58)

telo, T]] N i>N ¢( )

Similarly, by [13| Theorem 2.5 and 4.1], there exists ¢ € U such that

for some new constant K. Thus, we also have

+oo
sup ic;(t) < sup —KT (59)
te[0,7] ; i>N (1)

Using Egs. (58)-(R9) into Eq. (57), together with the properties of ¢ and q} in U, we
deduce that Eq. (55) holds.
We now prove the second limit of the lemma. By Hypothesis (H3), we obtain

T +o© T +o©
/bN Z dt<E/ > bick( dt+KE/ > ic(tydt

1=N+1 1=N+1 i=N-+1

Hence, by (58) and the estimate obtained in Eq. (38), the right hand side goes to 0
uniformly in n, as N to +oo. Moreover, from point 2 and 3 of Definition [2.1]

T +oo T +oo
lim > bici(t)dt + KE / > iei(t)dt =0
N=eeJo i=N+1 0 j=N+1

which allows us to conclude that Eq. holds. O

Proof of the Theorem[2.3. We are now ready to prove our theorem. We first construct a
sequence of function {¢.} satisfying hypothesis of Lemma [4.1] together with uniformly
bounded first derivative. For instance, we can define ¢.(z) = 3-22 + § for |z| < ¢ and
we(x) = |z| for |x| > e. Thus |¢L|lec < 1. By Lemma [4.1] with . in Eq. (45), using
Hypothesis (HI), we have

T
lim lim E su ) <exp(2K'T subE/ E% . (s)|ds
Jm te[opT]lz;% p( ){n>l()) N | N+1( )l
T +©
+2K/Sup/ E El(s . (60)
oup [ B Y 180
Then, using Egs. (55) and (56) into Eq. we have
N
lim lim lim E sup Z(pa(Ef(s)) =0. (61)

N—+o00e—=0n—0 tE[O T] —
3
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Since ¢.(z) > |z| for all z > 0, for each i > 2, there exists N large enough such that

N
E sup |E]'(t)] <E sup ngg m(t)) .
te[0,T] t€[0,T] =

Thus, we deduce from Eq (61) that Eq. (42) holds for any ¢ > 2. For : = 1, we have

N “+o0
[BF(O] < [0 (1) = es(B)] + [B5 (1) < 21B5 (1) + D |EFOI+ Y B )]
=2 i=N+1

Hence from Eq. (55) and Eq. for : > 2, we conclude that Eq holds for i =1 as
well. Finally, we easily deduce

lim E sup |¢f(t) —ci(t)| < lim E sup |Ef'(t) — Ef'(t)]=0.

n—-+oo te[0,7T] n—-4o0o te[0,7T]
Since
) 1
E sup ||c"(t) —c(t)|| <E sup Z el (t) — ¢i(t)] + sup —= K7 + sup =— K,
t€[0,T] te(0,7) = i>N (i) i>N (i)

where ¢ and qg follows from Egs. (58) and (59), we conclude that

lim E sup |c —c(t)]| =0,
Jim B s (1) ()]

which ends the proof. O

5 Stationary measure

In this section, we prove Theorem [2.4] We start by some algebraic manipulations of the
non-equilibirum potential given in Eq. (I0). We recall that z, is defined in Eq. (8). One
has, forany c € £7, and z < z;,

_P InIl"(c) = Z {Ci In <2Qizi> + P Eci! + Qizi} + P In B
n — p n o p n
n Ci . P .
= > {ei(ln==—1)+Qiz" p + Ru(c) + =In B (62)
=1 Q-ZZ n
= H(c|c?) Z Qiz" + Ry(c) + L ln B
i=n+1

(with convention 0Iln0 = 0), where we recall that 7 is the relative entropy of the DBD
equations, given in Eq. (I0), and the term R,, is given by

n
R,(c) = P g {ln 2ci! — ﬁci In ﬁci + Eci} .
ne= 1 p p " pp

The proof of Theorem [2.4]is based on continuity properties of # and the convergence to
0 of each remaining term in Eq. (62), along appropriate sequences. We divide the proof
in three lemmas. Let us start with a lemma about continuity properties of the functional
‘H, mainly from [3]].

Lemma 5.1. Assume 0 < z, < +o0.
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1. If 0 < z < zs and liminf;_, | Qz/i > 0, then H(-|c*) is finite and sequentially
strongly continuous on X.

2. If z = z; and lim Qi/i exists, then H(-|c**) is finite and sequentially weak — * con-
tinuous on X.

Proof. Point 1. Note that we may rewrite
+oo ) +oo )
H(c|c®) = G(c) — plnz — Zici ang/Z + Z Qiz",
i=1 i=1

where G(c) = Z:;Of ¢i(ln¢; —1). By [3l Lemma 4.2], G is finite and sequentially weak —
continuous on X, hence also strongly continuous on X. As z < zj, Z:;Olo Qi7" < oo.
Next, {In(Q./")} is bounded as 0 < liminf Q}’* < 27! = limsup @}/* < +oc. Thus, ¢

3
Z:;Olo ic; In Q; /% is finite and strongly continuous on X, and so is H. The Point 2 is a
consequence of [3, Proposition 4.5]. O

Now we state an intermediate Lemma which proves that the sum R,, in the non-
equilibrium potential goes to 0.

Lemma 5.2. Let {¢"} a sequence belonging to &, for eachn > 1. We have
- n n n n
lim L <1n—c?! — —ci'ln—c] + —c?) =
p p p

Proof. By Stirling’s formula, there exists K > 0 such that forall N > 2
0<InN!'—=NImnN+N<KInN.

Hence, for all 7 such that %c? > 2

0<? (m e — L Zen 4 2cy) <KZmZen (63)
n\ et p noop

We define, forall: > 1,

2 (1n%c?! — Lcp In 2t + %c?) , i > 2,

ui =4 £ if 2er =1 (64)
n’ p T ’
0, else.

Since for all 4, ¢ < p, we have by Egs. (63) and (64), that for all 4, u} — 0 as n — +oc.
Moreover, again by Eqs. (63) and (64), we can check that u}* < K¢! for all i > 1. Thus,
using the mass conservation Z?:l ic]’ = p, we deduce that, forall N > 1, and n > N,

n N n N K
Rn:Zu? < ZuerKZcf SZu?wLNp.
i=1 i=1 i=N i=1

Taking the limit in n — 400 and then N — +o0 ends the proof. |

In the last lemma, we control the convergence of the normalizing constant B?. We
recall that z(p) is defined in Eq. (@).

Lemma 5.3. Assume 0 < z, < +o0.
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1. If p < ps, and liminf;_, o QZW > 0, we have, for z = z(p),

lim 2Bz =o.

n—+oco N

2. If p > ps and lim sz exists, we have, for z = z,,

lim 2B =o.

n—+oo n

Proof. For any z > 0, we have by Eq. that

n (ne.,i\Ci n ;
B"ZLS Z H%S_;Qiz :15

CeNm =1

hence £ In B;; < 0 which entails

lim sup Ly BZ <0.

n—+oco T

For z < z,, and for any z™ € £7, as [1(z") < 1, we deduce from Eq. (62)) that

In B} > —H(a"|c*) — Ro(z") + Y Qiz'. (65)
1=n—+1

Suppose first that p < p,. Then z(p) < z,, and we can find " € £/ such that 2" — ¢*(*)

strongly (in norm) in X. Indeed, consider z7 = ;%L%cf(p )
1 1

- (p — Z?;l zx?) Clearly, " converges componentwise (thus weak — %) to ¢*(#). More-

| fori < n—1andal! =

over, ||z"|| = p = ||c*”)|| thus z™ also converges strongly (in norm) to ¢*, see for instance
3, Lemma 3.3]. By Lemma 5.1l we have H(z"|c*(")) — H(c*(P)|c*(P) = 0. As ¢*?) € X,
(Qi (z(p))i) is summable and } ° ., Q; (2(p))" — 0 as n — co. And by Lemma [5.2
as 2" € &) for each n, R,(2™) — 0 as n — oo. Thus, we deduce from Eq. that
liminf, o 210 B;” > 0.

Now take p > p,. Consider 7' = £|%¢*| fori < n —1and z;; = 1 (p - Z?;ll z:c?)
Then, 2™ € 5;1 and weak—* converges towards c*s. Again, by Lemmal5.T]and Lemmal5.2]
we deduce from Eq. that liminf,, . f; In BZs > 0, which concludes the proof. a

We now conclude by the proof of theorem [2.4]

Proof of theorem[2.4. Suppose first 0 < p < ps. Choosing z = z(p) < z,, in Eq. (62), we
deduce from Lemmal5.1] Lemmal5.2land Lemma [5.3] that

lim —2 In 1" (") = H(c|c*P).
n

n—-+oo

Similarly, for p > ps, choosing z = z; in Eq. (62)), gives, with Lemma[5.7] Lemma[5.2]land
Lemma [5.3] that

lim —2mn " (c") = H(c|c*) .
n

n—-+oo

22



E. Hingant & R. Yvinec - The Stochastic Becker-Déring Process

6 Discussion

In this section, we discuss our main results with respect to the literature. Both Theo-
rems 2.2l and [2.3] are a kind of law of large numbers. However, their proof differs from
the standard proof of the finite dimensional setting for continuous time Markov chain
that converges to a solution of an ordinary differential equation, see the work by Kurtz
in [11], Theorem 2.11] and [12, Theorem 2.2]. Indeed, under either hypothesis or
(H3), the right-hand side of the limiting DBD system (I) may not be Lipschitz and the
Kurtz strategy cannot be applied. In the proof of Theorem we used monotonicity
and convex properties to circumvent the lack of Lipschitz property. These arguments
are essential in the proof of uniqueness of solution of the DBD equations, see [15} [14].
In the proof of Theorem we used careful moment estimates and appropriate topo-
logical arguments. Again, the moment estimates were inspired from known results for
the DBD equations [3] [15].

To be complete, let us mention that there are, up to our knowledge, two previous
results for the law of large numbers on te SBD process. The first one is given by Jeon
in [10], who proves a compactness result in /?(R), under linearly bounded coefficients
(rather than in X). The focus of the work by Jeon was on more general coagulation-
fragmentation models though, and on gelling solutions (that may arise in finite time
for some coagulation-fragmentation models). The second work is by Sun in [18], who
proves a strong law of large numbers (in the spirit of Kurtz theorem) using bounded
kinetics rates. In such case, the right-hand side of the DBD system (1) is clearly Lips-
chitz on X. Then Sun was able to prove a functional central limit theorem, in a Hilbert
subspace of /?(R). Our result in Theorem [2.2] needs that a; to be O(i), consistently with
existence theorems for DBD equations (1)), see [3]. We achieved the proof thanks to a
new super-linear moment in Proposition [3.3] Such moments are well-known in general
coagulation-fragmentation equations and seems to be derived for the first time in the
stochastic context. Then, in Theorem we state a pathwise convergence with as-
sumption on the kinetic rates that are related to the uniqueness of the solution to DBD.
Hence, we fit the stochastic theory of the Becker-Doring model to the most general
results of existence and uniqueness available for the deterministic problem.

Limits of non-equilibrium potential are known to be related to relative entropy in
general complex balanced stochastic chemical reaction networks, see for instance [2,
1. We have thus extended theses results for an infinite chemical reaction network,
that is detailed balance. Importantly, we have made the connection with the long-time
behavior of the deterministic system. A challenge that remains is to investigate the
interplay between the two limits n — oo and t — oo, simultaneously.

A Criterion for weak compactness of density measures

A function between two topological spaces is said to be proper if the preimage of any
compact set is compact. We said a family F of Borel measure on a complete separable
metric space E is uniformly bounded if, sup,c» ¥(E) < 400, and uniformly tight if, for
any ¢ > 0, there exists a compact K. of E such that sup, . v(E — K.) < €. We recall
that the weak convergence of measure is the convergence of integrals against bounded
continuous on E. For convenience reader, we write below a version of the Prohorov’s
theorem (see [4, Theorem 8.6.2]).

Theorem A.1 (Prohorov). Let F a family of Borel measure on a complete separable
metric space. The following conditions are equivalent
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1. F is relatively sequentially weakly compact.
2. F is uniformly bounded and tight.

The aim of this section, is to state an alternative criterion of weak compactness,
based on a refined version of the De La Vallé Poussin’s theorem, see [7, Proposition
I.1.1] and [14] Theorem 2.8]. We introduce a set of functions that have remarkable
properties when conjugate to the structure of Becker-Doring equations and provide
important estimates, see for instance [15].

Definition A.2. We denote by U the set of non-negative convex functions ¢, continu-

2
ously differentiable with piecewise continuous second derivative, such that ¢(z) = %
forxz € [0,1], ¢ is concave, ¢'(x) < z for z > 0, and

lim ¢(z)/x = 4o0.

Tr—+00
One can obtain the following useful properties for the functions in /:

Proposition A.1. Let ¢ € U. Then, ¢ is increasing, non-negative, and there exists
m > 0 and K > 0 such that, foralli > 1

(i + 1) (i +1) = ¢(i) — ¢(1)) < mid(1) + (i),
¢(i+1) = o(i) — o(1) 2 0, (66)
¢"(i) < ¢"(0), ¢'(i) < id" (i), ¢(i) <1i¢'(i), and ¢(i)/i* < K.

Proof. The first line in Eq. (66) follows from [13, Lemma 3.2]. The second line follows

from the convexity inequality ¢(i+ 1) — (i) > ¢(1) — ¢(0) > 0. The third line also follows
directly from convexity properties. O

We state our alternative criterion of weak compactness in the following Theorem.

Theorem A.3. Let {v"} be a sequence of Borel measure on a complete separabale
metric space E and g be a non-negative proper continuous function. The sequence of
density measure {g-v"} is relatively weakly compact, if and only if, {g-v"} is uniformly
bounded and there exists ¢ € U such that

sup/¢ogyn<+oo. (67)
n>1 JE

Proof. Assume that {g-v"} is uniformly bounded such that Eq. is satisfied for some
¢ € U. Let R > 0 and define the compact K = ¢~1[0, R], then

g(x)v"(dz) < sup —— (25 dz) .
E-K y>R¢

Since ¢ € U, the right hand side goes to 0 has R — oo, uniformly in n according to
Eq. 67). Thus the sequence is uniformly tight. By the Prohorov theorem [A1] the
sequence is relatively weakly compact.

Now assume {g-v"} is relatively weakly compact, or equivalently, {g-»"} is uniformly
bounded and tight. We will follow the construction of ¢ proposed in [7, Proposition I.1.1]
for uniform integrability. Define for each v" and k > 0, M}’ :=v"({k < g <k+1}). B
construction of M} it follows that

Z/{:M,?S/Eg(x)un(dx).

k>0
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Since the sequence {g-v"} is uniformly bounded, ), ., kM} is also uniformly bounded,
and we deduce -
sup » (k4 1) My < +o0. (68)
n>0 E>1

Let ¢ > 1. Since g is proper, the set K; = {g < i} is compact, and

S+ 1)Mp =)

/ (k+ 1™ (dx) < 2/ g(z)v™(dz). (69)
k>i k> Y {k<g<k+1}

E-K;

The function ¢ is continuous, hence bounded on the compacts. Thus, for any compact
K, there exists ¢ such that K C K;, and thus E — K;, C E — K. By uniform tightness,
and Eq. (69), for all m > 0, there exists N,, such that

sup Z (k+ 1M} <

"0 o (m+3)%°

Moreover the sequence {N,,} can be chosen such that Ny > 2, Ny > Ny and N,,,11 —
Ny, > Ny, — N,,,_1 for all m > 2. We define the sequence 5

2, 0<k<No—1,
A =
g m+3, Ny <k<Npi1.

for all £ > 0. Thus, we have

No—1 Npyp1—1

Zak+1(k + )M = Z ap1(k+ )M + Z Z agy1 (B + 1) My

k>1 k=1 m>0 k=N,
No—1 1

<3N (kDM + Y ———,
k=1 m>0 (m + 3)
and thanks to Eq. (68), it yields
sup Zak+1(k + )M < +o0. (70)

n>0 E>1

Now, we define the function p on R by

t 0<t<1
1 Ny —2
_ t 1<t< N,
PO =9 No—1" TN -1 ==
- t+ +2 _ Nm N,, <t <N, VYm €N
m — m X -~ m ) m .
Nerl*Nm Nerl*Nm i

and, for all y > 0,
Y
P(y) = / p(t) dt.
0
Hence, for x < 1, ¢(z) = 22/2 < /2. Let k > 1. It exists m > 0 such that N,,, <k +1 <
Npot1. Hence for all t < k + 1, as p is increasing, p(t) < p(Nym+1) = m + 3 = ag41. Thus
for all k > 1 we have ¢(k + 1) < (k + 1)ag+1. Then, we obtain,

/0 " bl (da) < /{ ICCCTECERDS ok + 1)v(dx)

k>1 /{kgg(z)<k+1}

% /OOO g(z)v"™(dx) + Z(k‘ + Dag1 My .

k>1

<
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By hypothesis on {g - v} and the uniform bound (70), we obtain

sup/O d(g(x))v™(dx) < 4o0.

n>0

The fact that ¢ belongs to U is easily checked by construction. |

B Tightness criterion for jump processes

Let F be a Polish space and d a complete metric that metrizes the topology on F, and
D([0,+0), E) the space of right continuous with left limit F-valued functions defined
on [0, +00) equipped with the Skorohod topology. For § > 0 and T > 0, the set II; is
the set of all partitions {¢;} of [0, 7] such that for some N we have 0 = t; <t; < -+ <
N |tit1 — ti| > d. For any « € D([0,+c0), E), the modulus

.....

of continuity is defined by

w(z,6,T)= inf max sup d(z,zs),
{t}ells & g vty ti

The following lemma is classical for jump processes, but we prove it here for the con-
venience reader.

Lemma B.1. Let {X"} be a sequence of pure jump Markov processes on E whose
(stochastic) transition rate is given by (\}');>o, for each n > 1. If there exists a positive
sequence {«, } such that

lim a, =0
n—-+oo n ’

and, almost surely,

sup A\ < o, b and d(X], X)) < an,
t>0

then, for all'T > 0 and n > 0, there exists § > 0 such that

lim P{w(X",T,0) >n} <n.

n—-+o0o

Proof of Lemmal[B.1l Let (F;'):>o the natural filtration associated to (X}*);>o. We define
(N{)¢>0 the counting process given by the jump times of (X}*);>o. Namely,

N = Z L,

k>0
where the random sequence {7} }x>¢ is defined by, for each n > 1, 7’ = 0 and
T = inf{t|t >, X' # X[}

Hence (N]");>0 is a conditional Poisson process with stochastic intensity (A\}');>o (see [5]
Chap 2 Defintion D1]). In particular,

(S xzdo) ’

t
P{N)—N}=k|F;} =E |exp (—/ )\Zda) o

Fix T > 0 and n > 0. Consider the partition ¢; = iAt fori = 0,1,..., N of [0, T] for some
At (to be chosen later). For all § < At, we have {¢;} € II;. We define

Y'"= sup d(X],XD).

K2
st€[ts tiga
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Then, we have
P{w(X",6,T) 2 n} <P{3i V" > n} < NmaxP{Y;" > n}. (71)

We aim to bound P{Y;” > n} for each i. Let i € {0,..., N}. By hypothesis, any jump size
of (X}")¢>0 is less than «,. Thus, in a time interval [t;, ¢;+1[, we need strictly more than
| 2= | jumps so that Y;* > . Thus,

P{Y/ >y} <P {N&l ~ NP> LH}

(S5 Apdo) ’

— [l A do
sEje > il

k2| ]

. —_ k . . .
Since x e "), o EN 77 is a non-decreasing function on R, , we have
> gk ] H
_ k
(o T AL)

P{Y >} <emon'A0 N} x

k2| 3%
The right hand side of this above inequality is the probability that a Poisson random
variable with intensity «, ! At is greater than {f—J . Thus, by Chernoff’s inequality, one
may obtain, for all x € R,

P{Y" > n} <exp (x {iJ +a, tAt(e” — 1)) -

Qn

Lo

At

At At
P{K"ZW}SGXI)(L%J (1_anL§;J +1nanL§;J>>.

The term in the above exponential is negative as soon as A; # | ;- |. Then

Choosing the minimizing value z = In(a, ), we get

lim P{Y">n} =0

n—-+oo
and by Eq. (ZI) we conclude that for § < At,
. n S —
lim P{w(X",T,8) > ) =0,

which ends the proof. O
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