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ON THE HARBORTH CONSTANT OF C3 ⊕ C3n

P. GUILLOT, L. E. MARCHAN, O. ORDAZ, W. A. SCHMID, AND H. ZERDOUM

Abstract. For a finite abelian group (G,+, 0) the Harborth constant g(G) is
the smallest integer k such that each squarefree sequence over G of length k,
equivalently each subset of G of cardinality at least k, has a subsequence of
length exp(G) whose sum is 0. In this paper, it is established that g(G) = 3n+3
for prime n 6= 3 and g(C3 ⊕ C9) = 13.

1. Introduction

For (G,+, 0) a finite abelian group, a zero-sum constant of G is often defined
as the smallest integer k such that each set (or sequence, resp.) of elements of
G of cardinality (or length, resp.) at least k has a subset (or subsequence, resp.)
whose elements sum to 0, the neutral element of the group, and that possibly fulfills
some additional condition (typically on its size). We refer to the survey article [6]
for an overview of zero-sum constants of this and related forms. It is technically
advantageous to work with squarefree sequences, that is, sequences where all terms
are distinct, instead of sets.

Harborth [11] considered the constants that arise, for sequences and for square-
free sequences, when the additional condition on the subsequence is that its length
is equal to the exponent of the group. His original motivation was a problem on
lattice points. Considering these constants can be seen as an extension of the prob-
lem settled in the Theorem of Erdős–Ginzburg–Ziv [5] from cyclic groups to general
finite abelian groups.

The constant nowadays called the Harborth constant of G, denoted g(G), is the
constant that arises when considering squarefree sequences in the above mentioned
problem. That is, g(G) is the smallest integer k such that every squarefree sequences
over G of length at least k has a subsequence of length exp(G) that sums to 0. The
exact value of g(G) is only known for a few types of groups. We refer to the
monograph by Bajnok [1], in particular Chapter F.3, for a detailed exposition. We
recall some known results that are relevant for our current investigations.

1.1. Some known results. For G an elementary 2-group, that is, the exponent
of the group is 2, the problem admits a direct solution: there are no squarefree
sequences of length 2 that sum to 0, and it follows that g(G) = |G| + 1 as there
are no squarefree sequences of length strictly greater than the cardinality of G and
therefore the condition is vacuously true for these sequences. For elementary 3-
groups the problem of determining g(G) is particularly popular as it is equivalent
to several other well-investigated problems such as cap-sets and sets without 3-term
arithmetic progressions. Nevertheless, the exact value for elementary 3-groups is
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only known up to rank 6 (see [3] for a detailed overview and [15] for the result
for rank 6); recently Ellenberg and Gijswijt [4], building on the work of Croot,
Lev, and Pach [2], obtained a major improvement on asymptotic upper bounds for
elementary 3-groups.

If G is a cyclic group, then the problem again admits a direct solution: the only
squarefree sequence of length exponent is the one containing each element of the
group G and it suffices to check whether the sum of all elements of G is 0 or not.
More concretely, for n a strictly positive integer and Cn a cyclic group of order n,
one has:

g(Cn) =

{
n if n is odd

n+ 1 if n is even

For groups of rank two the problem of determining g(G) is wide open. It is know
that g(Cp ⊕ Cp) = 2p− 1 for prime p ≥ 47 and for p ∈ {3, 5, 7}. The latter is due
to Kemnitz [12], the former due to Gao and Thangadurai [8], with an additional
minor improvement from the original p ≥ 67 to p ≥ 47 in [7]. Furthermore, Gao
and Thangadurai [8] determined g(C4 ⊕ C4) = 9 and then made the following
conjecture:

g(Cn ⊕ Cn) =

{
2n− 1 if n is odd

2n+ 1 if n is even

Moreover, Ramos and some of the present authors [14] determined the value for
groups of the form C2 ⊕ C2n:

g(C2 ⊕ C2n) =

{
2n+ 3 if n is odd

2n+ 2 if n is even

Finally, Kiefer [13] (also see [1, Proposition F.104]) showed that g(C3 ⊕ C3n) ≥
3n + 3 for n ≥ 2, which for n odd, is larger by one then what might be expected
(we refer to Section 3.1 for further details).

1.2. Main result. In the current paper, we determine g(C3 ⊕ C3n) when n is a
prime number. It turns out that the bound by Kiefer is usually sharp, yet there is
one exception, namely n = 3. Specifically, we will show:

g(C3 ⊕ C3n) =

{
3n+ 3 if n 6= 3 is prime

3n+ 4 if n = 3

The proof makes use of various addition theorems, namely the Theorems of Cauchy–
Davenport, Dias da Silva–Hamidoune, and Vosper. These are applied to ‘projec-
tions’ of the set to the subgroup Cn of C3 ⊕ C3n. This is a reason why our in-
vestigations are limited to groups where n is prime. We also obtain some results
by computational means. In particular, we confirm the conjecture by Gao and
Thangadurai that we mentioned above for C6 ⊕ C6.

2. Preliminaries

The notation used in this paper follows [9]. We recall some key notions and
results. For a, b ∈ R the interval of integers is denoted by [a, b], that is, [a, b] =
{z ∈ Z : a ≤ z ≤ b}. A cyclic group of order n is denoted by Cn.

Let G be a finite abelian group; we use additive notation. There are uniquely
determined non-negative integers r and 1 < n1 | · · · | nr such that G ∼= Cn1

⊕ · · · ⊕
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Cnr
. The integer r is called the rank of G. Moreover, if |G| > 1, then nr is the

exponent of G, denoted exp(G); for a group of cardinality 1 the exponent is 1.
A sequence overG is an element of the free abelian monoid overG. Multiplicative

notation is used for this monoid and its neutral element, the empty sequence, is
denoted by 1. That is, for S a sequence over G, for each g ∈ G there exists a unique
non-negative integer vg such that S =

∏
g∈G gvg ; we call vg the multiplicity of g

in S. For each sequence S over G there exist not necessarily distinct g1, . . . , gℓ in
G such that S = g1 . . . gℓ; these elements are determined uniquely up to ordering.
The sequence S is called squarefree if vg ≤ 1 for each G, equivalently, all the gi are
distinct.

The length of S is ℓ =
∑

g∈G vg; it is denoted by |S|. The sum of S is
∑ℓ

i=1 gi =∑
g∈G vgg; it is denoted by σ(S). The support of the sequence S, denoted supp(S),

is the set of elements appearing in S, that is, supp(S) = {g ∈ G : vg > 0}. A
subsequence of S is a sequence T that divides S in the monoid of sequences, that
is T =

∏
i∈I gi for some I ⊂ [1, ℓ]. Moreover, T−1S denotes the sequence fulfilling

(T−1S)T = S.
Let G and G′ be two groups and let f be a map from G to G′. We denote

by f also the homomorphic extension of f to the monoid of sequences, that is, if
S = g1 . . . gℓ is a sequence over G, then f(S) = f(g1) . . . f(gℓ) is a sequence over
G′. Note that |S| = |f(S)| always holds, even if the map f is not injective. This
highlights a difference between working with sequences and working with sets. The
image of a squarefree sequence might not be squarefree anymore, but it always
has the same length as the original sequence. By contrast, for A ⊂ G a subset
f(A) = {f(a) : a ∈ A} can have a cardinality strictly smaller than A.

If f is a group homomorphism, then σ(f(S)) = f(σ(S)). In particular, if f is
an isomorphism, then S has a zero-sum subsequence of length k if and only if f(S)
has a zero-sum subsequence of length k. Moreover, for g ∈ G and S = g1 . . . gl,
the sequence (g + g1) . . . (g + gℓ) is denoted by g + S. Note that S has a zero-sum
subsequence of length exp(G) if and only if g + S has a zero-sum subsequence of
length exp(G).

The set Σ(S) = {σ(T ) : 1 6= T | S} is the set of (nonempty) subsums of S. A
sequence is called zero-sum free if 0 /∈ Σ(S). Moreover, for a non-negative integer h,
let Σh(S) = {σ(T ) : T | S with |T | = h} denote the set of h-term subsums. These
notations are also used for sets with the analogous meaning.

Using this notation the definition of the Harborth constant can be stated as
follows: g(G) is the smallest integer k such that for each squarefree sequence S
over G with length |S| ≥ k one has 0 ∈ Σexp(G)(S). We also need the Davenport
constant D(G), which is defined as the smallest integer k such that for each sequence
S over G with length |S| ≥ k one has 0 ∈ Σ(S).

Let A and B be subsets of G. Then A+B denotes the set {a+b : a ∈ A, b ∈ B},
called the sumset of A and B; moreover A+̂B denotes the set {a + b : a ∈ A, b ∈
B, a 6= b}, called the restricted sumset of A and B. Note that A+̂A = Σ2(A).

We recall some well-known results on set-addition in cyclic groups of prime order.
We start with the classical Theorem of Cauchy–Davenport (see for example [10,
Theorem 6.2]).
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Theorem 2.1 (Cauchy–Davenport). Let p be a prime number and let A,B ⊂ Cp

be non-empty sets, then:

|A+B| ≥ min{p, |A|+ |B| − 1}

This yields immediately that for non-empty sets A1, . . . , Ah ⊂ Cp one has:

|A1 + · · ·+Ah| ≥ min
{
p,

h∑

i=1

|Ai| − (h− 1)
}

The associated inverse problem, that is, the characterization of sets where the
bound is sharp, is solved by the Theorem of Vosper (see for example [10, Theorem
8.1]).

Theorem 2.2 (Vosper). Let p be a prime number and let A,B ⊂ Cp. Suppose that

|A|, |B| ≥ 2 and |A+B| = |A|+ |B| − 1.

• If |A+B| ≤ p− 2, then A and B are arithmetic progressions with common

difference, that is there is some d ∈ Cp and there are a, b ∈ Cp such that

A = {a+ id : i ∈ [0, |A| − 1]} and B = {b+ id : i ∈ [0, |B| − 1]}.
• If |A+B| = p− 1, then A = {c− a : a ∈ Cp \B} for some c ∈ Cp.

We also need the analogue of the Theorem of Cauchy–Davenport for restricted
set addition. It is called the Theorem of Dias da Silva–Hamidoune (see for example
[10, Theorem 22.5]).

Theorem 2.3 (Dias da Silva–Hamidoune). Let p be a prime number. Let A ⊂ Cp

be a non-empty subset and let h ∈ [1, |A|]. Then:

|Σh(A)| ≥ min
{
p, h(|A| − h) + 1

}

We end this section with two technical lemmas. The first asserts that, except
for some corner-cases, the difference of an arithmetic progression in a cyclic group
of prime order is, up to sign, uniquely determined. We include a proof as we could
not find a suitable reference.

Lemma 2.4. Let p ≥ 5 be a prime number and let A ⊂ Cp be a set such that

|A| = k with 2 ≤ k ≤ p − 2. Assume that A is an arithmetic progression, that is,

there are some r, a ∈ Cp, such that A = {a + ir : i ∈ [0, k − 1]}. The difference

r is determined uniquely up to sign, that is, if there are some s, b ∈ Cp such that

A = {b+ is : i ∈ [0, k − 1]}, then s ∈ {r,−r}.

Proof. Since A is an arithmetic progression with difference r if and only if the the
complement of A in Cp is an arithmetic progression with difference r, we can assume

that |A| ≤ p−1
2 . Let e be some non-zero element of Cp.

As the problem is invariant under affine transformations, we can assume without
loss of generality that A = {0, e, 2e, . . . , (k− 1)e}. Suppose for a contradiction that
A = {a + ir : i ∈ [0, k − 1]} with a, r ∈ Cp and r /∈ {e,−e}. Without loss of

generality we can assume that r = r′e with r′ ∈ [2, p−1
2 ].

As

k − 1 < k − 1 + r′ ≤
p− 1

2
+

p− 1

2
− 1 = p− 2 < p,

it follows that (k − 1)e + r /∈ A. It follows that (k − 1)e is also the last element
of the arithmetic progression A when represented with respect to the difference r.
That is, (k − 1)e = a+ (k − 1)r.
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The same reasoning shows that, when removing the element (k − 1)e from A
then (k− 2)e is the last element of arithmetic progression A \ {(k− 1)e} both with
respect to the difference r and e. Consequently, (k − 2)e + r = (k − 1)e. Thus,
r = e. �

When trying to establish the existence of zero-sum subsequences whose length
is close to that of the full sequence, it can be advantageous to work instead with
the few elements of the sequence not contained in the putative subsequence. We
formulate the exact link in the lemma below.

Lemma 2.5. Let G be a finite abelian group. Let 0 ≤ r ≤ k. The following

statements are equivalent.

• Every squarefree sequence S over G of length k has a subsequence R of

length r with σ(S) = σ(R).
• Every squarefree sequence S over G of length k has a zero-sum subsequence

T of length k − r.

Proof. Let S be a squarefree sequence of length k. Now, let R be a subsequence of
length r with σ(R) = σ(S). Then the sequence T = R−1S is a sequence of length
k − r with sum σ(S) − σ(R) = 0. Conversely, let T be a zero-sum subsequence of
length k− r. Then the sequence R = T−1S is a sequence of length k − (k − r) = r
with sum σ(R) = σ(S)− σ(T ) = σ(S). �

3. Main result

As mentioned in the introduction our main result is the exact value of the Har-
borth constant for groups of the form C3 ⊕ C3n where n is prime.

Theorem 3.1. Let p be a prime number. Then

g(C3 ⊕ C3p) =

{
3p+ 3 for p 6= 3

3p+ 4 for p = 3

We start by establishing that those values are lower bounds for the Harborth
constant. Then, we establish the existences of the zero-sum subsequences that we
need under under several additional assumptions on the sequences. Finally, we
combine all these results.

3.1. Lower bounds. In this section we establish lower bounds for the Harborth
constant. We start with a general lemma. An interesting aspect of this lemma
is that it mixes constants for squarefree sequences and sequences; it improves the
result [14, Lemma 3.2], where instead of the Davenport constant the Olson constant
was used.

Lemma 3.2. Let G1, G2 be finite abelian groups with exp(G2) | exp(G1). Then

g(G1 ⊕G2) ≥ g(G1)⊕ D(G2)− 1.

Proof. Let S1 be a squarefree sequence over G1 of length g(G1) − 1 that has no
zero-sum subsequence of length exp(G1). Let S′

2 be a sequence over G2 of length
D(G2) − 1 that has no zero-sum subsequence. Suppose S′

2 =
∏

g∈G2
gvg . Since S′

2
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is zero-sumfree vg < exp(G2) ≤ exp(G1) for each g ∈ G2. Let {h1, . . . , hexp(G1)−1}
be distinct elements in G1, and let

S2 =
∏

g∈G2

(
vg∏

i=1

(g + hi)

)
.

Then, S2 is a squarefree zero-sum free sequence over G1 ⊕G2. To show our claim,
it suffices to show that S1S2 has no zero-sum subsequence of length exp(G1 ⊕G2).
Assume to the contrary that T | S1S2 is a zero-sum subsequence of length exp(G1⊕
G2). Let T = T1T2 with Ti | Si. Since exp(G1 ⊕G2) = exp(G1), it follows that T
is not a subsequence of S1, that is, T2 is not the empty sequence. Let

π :

{
G → G2

g = g1 + g2 7→ g2

where gi ∈ Gi is the unique elements such that g = g1 + g2, in other words it is
the projection on G2. Since σ(π(T1)) = 0, it follows that σ(π(T2)) = 0. Yet this
is a contradiction, as π(T2) is a non-empty zero-sum subsequence of S′

2, while by
assumption S′

2 has no non-empty zero-sum subsequence. �

Using this lemma in combination with the result for cyclic groups, yields the
following bound, which is given in [1, Proposition F.102].

Lemma 3.3. Let n1, n2 be strictly positive integers with n1 | n2. Then

g(Cn1
⊕ Cn2

) ≥

{
n1 + n2 − 1 if n2 is odd

n1 + n2 if n2 is even
.

In particular,

g(C3 ⊕ C3n) ≥

{
3n+ 2 if n is odd

3n+ 3 if n is even
.

Proof. By Lemma 3.2 we have g(Cn1
⊕ Cn2

) ≥ g(Cn2
) ⊕ D(Cn1

) − 1. The claim
follows using that

g(Cn2
) =

{
n2 if n2 is odd

n2 + 1 if n2 is even

and D(Cn1
) = n1 (see, e.g., [10, Theorem 10.2]). The claim for C3 ⊕C3n is a direct

consequence. �

The bound for g(C3 ⊕ C3n) can be improved for odd n. This was initially done
by Kiefer [13] (also see [1, Proposition F.104]). We include the argument, as our
construction is slightly different.

Lemma 3.4. Let G = C3 ⊕ C3n with an integer n ≥ 2. Then g(G) ≥ 3n+ 3.

Proof. To prove this lemma, it suffices to give an example of a squarefree sequence
of length 3n+2 that does not admit a zero-sum subsequence of length exp(G) = 3n.
Let G = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = 3 and ord(e2) = 3n. Let π′ and π′′ denote the
usual maps π′ : G → 〈e1〉 and π′′ : G → 〈e2〉.

Further, let T1 =
∏

g∈〈e2〉\{0,−e2,e2}
(e1 + g) and T2 = 0(e2)(2e2)(3e2)(−6e2).

Then T = T1T2 is a squarefree sequence and |T | = 3n− 3 + 5 = 3n+ 2.
To obtain the claimed bound, it suffices to assert that T does not have a zero-

sum subsequence of length 3n. Assume for a contradiction that T has a zero-sum
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subsequence R of length 3n. Clearly, one has σ(π′(R)) = σ(π′′(R)) = 0. Let
R = R1R2 with R1|T1 and R2|T2. Note that σ(π′(R)) = σ(π′(R1)) = |R1|e1.
Consequently, as σ(π′(R)) = 0 it is necessary that 3 divides |R1|. Moreover to
obtain |R| = 3n it is necessary that 3n − 5 ≤ |R1| ≤ 3n − 3. It follows that
|R1| = 3n− 3, that is, R1 = T1. Consequently |R2| = 3.

Now, σ(π′(R1)) = |R1|e1 = 0. Furthermore

σ(π′′(R1)) =
∑

h∈〈e2〉\{−e2,e2,0}

h =
( ∑

h∈〈e2〉

h
)
− (−e2 + e2 + 0),

which is also equal to 0, since the sum of all elements of the cyclic group 〈e2〉 is 0
(here it is used that 3n is odd). Thus, σ(R1) = 0, and it follows that: σ(R) = 0
if and only if σ(R2) = 0. However, T2 has no subsequence of length 3 with sum 0.
Thus T has no zero-sum subsequence of length 3n. �

It turns out that for n = 3, there is a better construction.

Lemma 3.5. One has g(C3 ⊕ C9) ≥ 13.

Proof. To prove this lemma, as exp(G) = 9, it suffices to give an example of a
squarefree sequence T of length 12 over G that does not admit any zero-sum sub-
sequence T1 of length 9. Let G = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = 3, and ord(e2) = 9.

Let us consider the following sequence:

T = R(e1 +R)(e2 +R)(e1 + e2 +R), with R = 0(3e2)(6e2),

This is a squarefree sequence of length 12 that satisfies σ(T ) = 0+0+3e2+3e2 = 6e2.
By Lemma 2.5 with k = 12 and r = 9, the sequence T has a zero-sum subsequence
of length 9 if and only if T has a subsequence T2 with |T2| = 3 = 12 − 9 and
σ(T ) = σ(T2) = 6e2. For a contradiction let us assume such a subsequence T2

exists. Let H = {0, 3e2, 6e2} and let π : G → G/H be the standard epimorphism.
One has G/H ∼= C3⊕C3, and this group is generated by f1 = π(e1) and f2 = π(e2).

Since σ(T2) = 6e2, one has that π(T2) is a zero-sum subsequence of π(T ) and
π(σ(T )) = π(6e2) = 0.

But, note that the only subsequences of π(T ) = 03f1
3f2

3(f1 + f2)
3
of length 3

which have sum zero are 03, f1
3, f2

3 and (f1 + f2)
3
. It remains to check if any of the

corresponding subsequences of T has sum 6e2. This is not the case. Concretely, we
have σ(03) = 0, σ(e31) = 0, σ(e32) = 3e2, and σ((e1+e2)

3) = 3e2. Thus, the sequence
T does not have any subsequence of length 3 with sum 6e2. This establishes the
claimed bound. �

3.2. Establishing the existence of zero-sum subsequence of length exp(G)
under various assumptions. Let us fix some notation that will be used through-
out the subsection. Let G = C3 ⊕ C3p with p ≥ 5 a prime number. We note that
G = H1 ⊕H2 where H1

∼= C2
3 is the subgroup of elements of order dividing 3 and

H2
∼= Cp is the subgroup of elements of order dividing p.
For i ∈ {1, 2}, let

πi :

{
G → Hi

g = h1 + h2 7→ hi

where hi ∈ Hi is the unique element such that g = h1+ h2. That is, πi denotes the
projection on the subgroup Hi.
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For a sequence S over G there exists a unique decomposition S =
∏

h∈H1
Sh

where Sh is the subsequence of elements of S with π1(g) = h. If S is squarefree
then for each h ∈ H1 the sequence π2(Sh) is a squarefree sequence over H2.

To establish the bound g(G) ≤ 3p + 3 we need to show that every squarefree
sequence of length 3p+3 overG has a zero-sum subsequence of length 3p. By Lemma
2.5 this is equivalent to establishing that every squarefree sequence of length 3p+3
over G has a subsequence R of length 3 with the same sum as S.

To obtain such a sequence of length 3 we typically first restrict our considerations
to subsequence for which π1(σ(S)) = π1(σ(R)); this condition can be established
via explicit arguments, as the group H1 is fixed and small. Then, using tools from
Additive Combinatorics recalled in Section 2, we show that among the sequences
with π1(σ(S)) = π1(σ(R)) there is one for which we also have π2(σ(S)) = π2(σ(R))
and thus satisfy σ(S) = σ(R) as needed.

We formulate a technical lemma that is a key-tool in our argument. Note that
for the proof of this lemma it is crucial that p is prime.

Lemma 3.6. Let S be a sequence of length 3p + 3 over G. Let S =
∏

h∈H1
Sh

where Sh is the subsequence of elements of S with π1(g) = h.

(1) If there exist distinct x, y, z ∈ H1 with x + y + z = π1(σ(S)) such that

Sx, Sy, Sz are all non-empty and |Sx| + |Sy| + |Sz| − 2 ≥ p, then S has a

zero-sum subsequence of length 3p.
(2) If there exist distinct x, y ∈ H1 with 2x + y = π1(σ(S)) such that |Sx| ≥ 2

and |Sy| ≥ 1 and 2|Sx|+ |Sy| − 4 ≥ p, then S has a zero-sum subsequence

of length 3p.
(3) If there exist x ∈ H1 with 3x = π1(σ(S)) such that |Sx| ≥ 3 and 3|Sx|−8 ≥

p, then S has a zero-sum subsequence of length 3p.

We use and combine the theorems of Cauchy–Davenport and Dias da Silva–
Hamidoune.

Proof. In each case we show that under the assumptions of the lemma, S has a
subsequence R of length 3 with the same sum. By Lemma 2.5 with k = 3p+3 and
r = 3 this establishes our claim.
(1). Let x, y, z ∈ H1 be distinct with x+ y+ z = π1(σ(S)). If gx divides Sx and gy
divides Sy and gz divides Sz, then gxgygz is a subsequence of S and π1(σ(gxgygz)) =
x+ y + z = π1(σ(S)).

Thus, to show that S has a subsequence R of length 3 it suffices to show that
there exist elements gx, gy and gz such that gx divides Sx and gy divides Sy and
gz divides Sz with π2(σ(gxgygz)) = π2(σ(S)).

Let Ω denote the set of all sequence gxgygz with gx | Sx, gy | Sy, gz | Sz. We
note that

{
π2(σ(R)) : R ∈ Ω

}
= supp(π2(Sx)) + supp(π2(Sy)) + supp(π2(Sz)).

From Theorem 2.1, the Theorem of Cauchy–Davenport,

| supp(π2(Sx)) + supp(π2(Sy)) + supp(π2(Sz))| ≥

min
{
p, | supp(π2(Sx))|+ | supp(π2(Sy))|+ | supp(π2(Sz))| − 2

}

As the sequence S is squarefree, for each h ∈ H1, the sequence π2(Sh) is squarefree
as well. Consequently, | supp(π2(Sh))| = |Sh|. Thus, if |Sx| + |Sy| + |Sz| − 2 ≥ p,
then supp(π2(Sx)) + supp(π2(Sy)) + supp(π2(Sz)) must be equal to the full group
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H2. In particular, there exits a sequence R ∈ Ω with π2(σ(R)) = π2(σ(S)), and
the proof is complete.

(2). Let x, y ∈ H1 be distinct with 2x + y = π1(σ(S)). If gxg
′
x | Sx and gy | Sy,

then gxg
′
xgy is a subsequence of S and π1(σ(gxg

′
xgy)) = 2x+ y = π1(σ(S)).

Let Ω denote the set of all sequence gxg
′
xgy with gxg

′
x divides Sx and gy and Sy.

We note that {π2(σ(R)) : R ∈ Ω} = Σ2(supp(π2(Sx))) + supp(π2(Sy)).
By the Theorems of Dias da Silva–Hamidoune and Cauchy–Davenport (see The-

orems 2.3 et 2.1) we get that, as p is assumed to be prime,
∣∣Σ2

(
supp(π2(Sx))

)
+supp

(
π2(Sy)

)∣∣ ≥ min
{
p, 2| supp(π2(Sx))|+| supp(π2(Sy))|−4

}
.

As in (1), if 2|Sx| + |Sy| − 4 ≥ p, then there exists some R ∈ Ω with π2(σ(R)) =
π2(σ(S)), and the proof is complete.

(3). Let x ∈ H1 be with 3x = π1(σ(S)). Let gxg
′
xg

′′
x be a subsequence of Sx of

length 3. Then gxg
′
xg

′′
x is a subsequence of S with π1(σ(gxg

′
xg

′′
x)) = 3x = π1(σ(S)).

Let Ω denote the set of all subsequence gxg
′
xg

′′
x of Sx. We note that

{
π2(σ(R)) : R ∈ Ω

}
= Σ3

(
supp(π2(Sx))

)
.

Similarly, by Theorem 2.1, the Theorem of Dias da Silva–Hamidoune, we get:
∣∣Σ3(supp(π2(Sx)))

∣∣ ≥ min
{
p, 3| supp(π2(Sx))| − 8

}
.

As in (1), if 3|Sx|−8 ≥ p, then there exists some R ∈ Ω with π2(σ(R)) = π2(σ(S)),
and the proof is complete. �

In the present context there exists essentially two types of sequences S over G of
length 3p+ 3: those for which π1(σ(S)) equals zero and those for which it is non-
zero. It is clear that this property is preserved under automorphisms of the group,
and when the length of the sequence is a multiple of 3 it is also preserved under
translations. We treat these two types of sequences separately. The latter type is
treated in Proposition 3.10. For the former type, two cases are distinguished: the
case where the support of π1(S) is the full group H1 (see Proposition 3.7) and the
cases where it is not (see Proposition 3.8).

Proposition 3.7. Let S be a squarefree sequence over G of length 3p + 3. If

σ(π1(S)) = 0 and supp(π1(S)) = H1, then S has a zero-sum subsequence of length

3p.

Proof. To simplify the subsequent considerations, we note that we can assume that
σ(π2(S)) = 0 (so effectively σ(S) = 0). Indeed, it suffices to note that if, for any
h ∈ G, the shifted sequence h + S contains a zero-sum subsequence of length 3p,
then the sequence S contains a zero-sum subsequence of length 3p. There is some
h′ ∈ H2 such that (3p+ 3)h′ = −σ(π2(S)); note that as p and 3p+ 3 are co-prime,
the multiplication h 7→ (3p+ 3)h is an isomorphism on H2. Now, one can consider
h′ + S instead of S provided the additional condition σ(π1(S)) = 0 is not altered.
Since σ(π1(h

′ + S)) = |S|h′ + σ(π1(S)) and since |S|h′ = (3p + 3)h′ = 0, this is
indeed true and supp(π1(h

′ + S)) = H1 still holds.
Let H ′

1 be a cyclic subgroup of H1 and let g ∈ H1, and {x, y, z} = g + H ′
1 a

co-set. Since x + y + z = 0 = σ(π1(S)), it follows that if |SxSySz| − 2 ≥ p, then
from part (1) of Lemma 3.6, the result holds.

It remains to consider the case where for each co-set of H1 of cardinality three,
denoted {x, y, z}, one has |SxSySz| ≤ p+1. We note that this is only possible if for



10 P. GUILLOT, L. E. MARCHAN, O. ORDAZ, W. A. SCHMID, AND H. ZERDOUM

every co-set {x, y, z}, one has |SxSySz| = p+1. Indeed, H1 can be partitioned as the
disjoint union of three such co-sets, say, H1 = {x1, y1, z1}∪{x2, y2, z2}∪{x3, y3, z3}.
Then, on the one hand

|Sx1
Sy1

Sz1 | ≤ p+ 1, |Sx2
Sy2

Sz2 | ≤ p+ 1, |Sx3
Sy3

Sz3 | ≤ p+ 1,

yet on the other hand |Sx1
Sy1

Sz1 | + |Sx2
Sy2

Sz2 | + |Sx3
Sy3

Sz3 | = |S| = 3p + 3.
Therefore it is necessary that for each i ∈ [1, 3] one has|Sxi

Syi
Szi | = p+ 1.

Next we assert that this is only possible if each of the 9 sequences has the same
length. Let H1 = {x′

1, x
′
2, · · · , x

′
9} such that |Sx′

1
| ≥ |Sx′

2
| ≥ · · · ≥ |Sx′

9
|. Let

vi = |Sx′

i
|. Let j ∈ [1, 9] such that {x′

1, x
′
2, x

′
j} is a co-set and let i ∈ [1, 9] such that

{x′
8, x

′
9, x

′
i} is a co-set. Then one has v1 + v2 + vj = p+ 1 and v8 + v9 + vi = p+ 1.

It follows that (v1− v9)+ (v2− v8)+ (vj − vi) = 0. Hence (v1 − v9)+ (v2 − v8) =
vi − vj . Yet, as (v1 − v9) ≥ (vi − vj) we get v2 − v8 = 0; notice that v2 − v8 ≥ 0,
if v2 − v8 > 0, hence (v1 − v9) + (v2 − v8) ≥ (vi − vj) + (v2 − v8) > vi − vj , a
contradiction. Consequently, one has v2 = v3 = · · · = v8 = v, and this common
value is p+1

3 . Note that if this is not an integer, the proof is complete. So it can be

assumed that p+1
3 is an integer. It remains to show that v1 = v and v9 = v. There

exists a co-set of H1 of cardinality 3 that contains x′
9 and that does not contain x′

1,
so v9 + 2v = p+ 1 and thus v9 = p+1

3 . In the same way we get that v1 = v.
We now reconsider, for a co-set {x, y, z}, the cardinality of the set supp(π2(Sx))+

supp(π2(Sy))+supp(π2(Sz)). By Theorem 2.1, the Theorem of Cauchy–Davenport,
one has the lower bound min{p, | supp(π2(Sx))|+ | supp(π2(Sy))|+ | supp(π2(Sz))|−
2} = min{p, |Sx|+|Sy|+|Sz|−2} = p−1. If one has | supp(π2(Sx))+supp(π2(Sy))+
supp(π2(Sz))| ≥ p, then supp(π2(Sx)) + supp(π2(Sy)) + supp(π2(Sz)) = H2, and
we can conclude as previously.

Thus, it remains to consider the case that | supp(π2(Sx)) + supp(π2(Sy)) +
supp(π2(Sz))| = p− 1.

Now, this is only possible when

| supp(π2(Sx)) + supp(π2(Sy)) + supp(π2(Sz))| =

| supp(π2(Sx)) + supp(π2(Sy))| + | supp(π2(Sz))| − 1 =

| supp(π2(Sx))|+ | supp(π2(Sy))| − 1 + | supp(π2(Sz))| − 1.

Thus, | supp(π2(Sx)) + supp(π2(Sy))| = | supp(π2(Sx))|+ | supp(π2(Sy))| − 1. In
the same way, it follows that | supp(π2(Sx)) + supp(π2(Sz))| = | supp(π2(Sx))| +
| supp(π2(Sz))| − 1, and that | supp(π2(Sy)) + supp(π2(Sz))| = | supp(π2(Sy))| +
| supp(π2(Sz))| − 1.

The Theorem of Vosper, see Theorem 2.2, yields that π2(Sx), π2(Sy) are arith-
metic progressions with the same common difference, π2(Sx), π2(Sz) are arithmetic
progressions with the same common difference, and π2(Sy), π2(Sz) are arithmetic
progressions with the same common difference. From Lemma 2.4, it follows that
there is a common difference for all three π2(Sx), π2(Sy), π2(Sz). Indeed, one has
this for any pair of the 9 sets, as the argument can be applied for any co-set. Thus,
all 9 sets are arithmetic progressions with a common difference. Let us denote this
difference by e; of course, this is a generating element of H1.

If there is some h ∈ H1 such that π2(Sh) has a zero-sum subsequence of length
3, then in fact Sh has a zero-sum sequence of length 3. Since we assumed at the
start that σ(S) = 0, invoking Lemma 2.5 our claim is complete.
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Thus, we assume that for no h ∈ H1 the sequence π2(Sh) has a zero-sum subse-
quence of length 3. In particular π2(Sh) does not have (−e)e0, as a subsequence.

Thus, for each h ∈ H1 one has π2(Sh) =
∏sh+

p−2

3

j=sh
(je) with 0 ≤ |Sh| ≤ |Sh|+

p−2
3 <

p− 1. It is easy to see that:

Σ3(π2(Sh)) =
{
je : j ∈ [3|Sh|+ 3, 3|Sh| − 3 + (p− 2)]

}
.

For this set not to contain 0, we need 3|Sh| − 3+ (p− 2) < p. So 3|Sh| < 5, that
is |Sh| ∈ {0, 1}.

If there is a co-set {x, y, z} such that |Sx| = |Sy| = |Sz| = 0, then clearly
π2(Sx)+π2(Sy)+π2(Sz) contains 0. Yet if there is no co-set {x, y, z} such that |Sx| =
|Sy| = |Sz | = 0, then there is a co-set {x′, y′, z′} such that |Sx′ |+ |Sy′ |+ |Sz′ | ≥ 2;
indeed, it suffices to note that by the former condition there must be at least
two elements h, h′ ∈ H1 with |Sh| ≥ 1 and |Sh′ | ≥ 1. However, this gives that

π2(Sx′) + π2(Sy′) + π2(Sz′) will contain (2 · p+1
3 + p−2

3 )e = pe = 0. Thus, the
argument is complete. �

For the next result, we keep the condition that σ(π1(S)) = 0, yet consider the
case supp(π1(S)) 6= H1 instead.

Proposition 3.8. Let S be a squarefree sequence over G of length 3p + 3. If

σ(π1(S)) = 0 and supp(π1(S)) 6= H1, then S has a zero-sum subsequence of length

3p.

Proof. Let h ∈ H1 such that |Sh| = 0; such an element exists by assumption. Now,
as recalled in Section 2, the sequence S contains a zero-sum subsequence T of length
3p then the sequence S − h contains T − h as a zero-sum subsequence of length
3p. Since supp(π1(−h+ S)) = −h+ supp(π1(S)) it follows from h /∈ supp(π1(S))
that 0 /∈ supp(π1(−h + S)). Thus, by translation, it can be assumed without loss
of generality that |S0| = 0.

Thus, we can consider −h + S instead of S provided the additional condition
σ(π1(S)) = 0 is not altered. Since σ(π1(−h+ S)) = |S|(−h) + σ(π1(S)) and since
|S|h = (3p+ 3)h = 0, this is indeed true.

Now, we distinguish cases according to the cardinality of | supp(π1(S))|. By
assumption it is strictly less than |H1| = 9.

Suppose that | supp(π1(S))| = 8. We note that there exists exactly 8 co-sets of
cardinality 3 that do not contain 0. Each non-zero element is contained in exactly
3 of them. Thus there exists as co-set {x, y, z} such that |SxSySz| ≥

3
8 |S| =

9p+9
8 .

The existence of the required subsequence now follows from part (1) of Lemma 3.6
as (9p+ 9)/8 > p+ 1 for p ≥ 5.

Suppose that | supp(π1(S))| = 7. Let −x ∈ H1 be the non-zero element such that
|S−x| = 0. We note that there are 4 co-sets of cardinality 3 that contain x, and 3
of those contain neither −x nor 0. It thus follows that there exists a co-set {x, y, z}

such that such that |SxSySz | ≥ |Sx| +
1
3 (|S

−1
x S|) = (p + 1) + 2|Sx|

3 > p+ 1. Using
part (1) of Lemma 3.6 again, the existence of the required subsequence follows.

Suppose that | supp(π1(S))| = 6. Let g, h ∈ H1 be the two non-zero elements
such that |Sg| = |Sh| = 0. If g = −h, then there is a co-set {x, y, z} with respect

to the subgroup {0, g,−g} such that |SxSySz| ≥
1
2 |S| =

3p+3
2 > p + 1 (note that

the two co-sets other than {0, g,−g} itself cover the 6 remaining elements of H1).
Again, from part (1) of Lemma 3.6 the argument is complete.
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If g 6= −h, then for one of the two co-sets {−g,−g + h,−g − h} and {−h,−h+
g,−h− g} one has |SxSySz| ≥ |S−g−h|+

1
2 |Sg+hS| = (3p+3−|Sg+h|+ |S−g−h|)/2;

note that both co-sets contains −g − h and union of the two co-sets contains all
element ofH1\{0, g, h} except for g+h. Since |Sg+h| ≤ p, it follows that |SxSySz| >
p+ 1 and again from part (1) of Lemma 3.6 the argument is complete.

Suppose that | supp(π1(S))| ≤ 5. In this case there exists some h ∈ H1 such

that |Sh| ≥
1
5 |S| =

3p+3
5 . If p > 5, by applying part (3) of Lemma 3.6 to Sh, then

we can complete the proof; for p ≥ 11 this is direct and for p = 7 we observe that
one has |Sh| ≥ 5. It remains to consider the special case p = 5. The part (3) of
Lemma 3.6 can be applied if there exists some h ∈ H1 with |Sh| = 5. Thus assume
that |Sh| ≤ 4 for all h ∈ H1. This implies | supp(π1(S))| = 5 since otherwise there
would exist some h ∈ H1 with |Sh| ≥ 18/4 > 4.

Let {h1, . . . , h5} ⊂ H1 such that |Shi
| 6= 0 for each i ∈ [1, 5]. Since g(C2

3 ) = 5, as
recalled in the Introduction, there exist distinct i, j, k ∈ [1, 5] such that hi+hj+hk =
0. This is equivalent to {hi, hj , hk} ⊂ H1 being a co-set. Now, |Shi

Shj
Shk

| =
|S|−2max{|Sh| : h ∈ H1} ≥ 18−2 ·4 = 10. Again we can apply part (1) of Lemma
3.6 to complete the argument. �

Remark 3.9. For p sufficiently large a shorter argument is available. There exists
some h ∈ H1 such that |Sh| ≥

1
8 |S| =

3p+3
8 . We can apply part (3) of Lemma 3.6

if 3|Sh| − 8 ≥ p. This is true provided that 3 · 3p+3
8 − 8 ≥ p, which is equivalent to

p
8 − 55

8 ≥ 0. Hence for p ≥ 55 we can complete the argument in this way.

We now turn to the case σ(π1(S)) 6= 0.

Proposition 3.10. Let S be a squarefree sequence over G of length 3p + 3. If

σ(π1(S)) 6= 0, then S has a zero-sum subsequence of length 3p.

Proof. Let c = σ(π1(S)). Without loss of generality, one can assume that |Sc| is
maximal among all |Sh| for h ∈ H1. The argument is the same as in the proof of
Proposition 3.8.

Notice that |S|
9 = 3p+3

9 = p+1
3 and thus |Sc| ≥

p+1
3 . Let us show that |Sc| >

p+1
3 .

If for each h ∈ H1 one has |Sh| = p+1
3 , then σ(π1(S)) = p+1

3

∑
h∈H1

h. Yet∑
h∈H1

h = 0, which contradicts σ(π1(S)) = c 6= 0. Thus |Sh| 6=
p+1
3 for some

h ∈ H1, and thus |Sc| >
p+1
3 .

The strategy of the proof is again to apply Lemma 3.6. To this end we need to
find subsequence of π1(S) of length 3 that have sum c.

One possibility is to consider such subsequence formed by elements from the the
cyclic subgroup of C = {−c, 0, c} only. Thus the subsequences of this subgroup of
length 3 which have sum c are: 02c and (−c)20 and c2(−c). This approach works
if sufficiently many elements from the sequence S are contained in this subgroup.
This is detailed in case 1 below.

Another possibility is to consider subsequences of the form ch(−h) with h /∈ C.
While not phrased explicitly in this form, the distinction of subcases in case 2
corresponds to the number (counted without multiplicity) of distinct subsequences
of this form in π1(S).

Let vC = |S0ScS−c|.
Case 1: vC ≥ p + 3. If |S−c| = 0, then |S0| + |Sc| = vC ≥ p + 3. Thus, |S0| ≥ 3
and |Sc| ≥ 1. Thus |Sc|+ 2|S0| = |Sc|+ |S0|+ |S0| ≥ p+ 3+ 2 = p+ 5. From part
(2) of Lemma 3.6 applied with x = 0 and y = c, the claim follows.
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If |S0| ≤ 1, then |S−c| ≥ 2 and thus 2 · |Sc|+ |S−c| ≥ vC − 1 + |Sc| ≥ p+ 4. The
claim follows from part (2) of Lemma 3.6, applied with x = c and y = −c.

If |S−c| ≥ 1 and |S0| ≥ 2, and one of |Sc|+2|S0| ≥ p+4 or 2|Sc|+ |S−c| ≥ p+4
are true, then the claim follows from part (2) of Lemma 3.6; notice that c+2 ·0 = c
and 2c+ (−c) = c. Thus, assume |Sc|+ 2|S0| ≤ p+ 3 and 2|Sc|+ |S−c| ≤ p+ 3.

Summing the two inequalities, it follows that 3|Sc|+2|S0|+ |S−c| ≤ 2p+6. Since
vC = |Sc|+ |S0|+ |S−c| ≥ p+ 3, it follows that vC = p+ 3 and |Sc| = |S−c|. Since
|Sc| ≥

vC
3 = p+3

3 , which is not an integer, it follows that in fact |Sc| ≥
p+4
3 . Yet,

then 2|Sc|+ |S−c| = 3|Sc| ≥ p+ 4, and the claim follows again.

Case 2: vC ≤ p+2. The setH1\C, can be partitioned into three subsets of size two,
each containing an element and its inverse, say H1 \C = {g1,−g1, g2,−g2, g3,−g3}.
Possibly exchanging the role of gi and −gi, one can assume that for each i ∈ [1, 3]
one has |Sgi | ≥ |S−gi |. In addition, by renumbering if necessary, one can assume
that |S−g1 | ≥ |S−g2 | ≥ |S−g3 |. Adopting this convention we get that |S−g3 | > 0
implies that in fact all six sequence Sh for h ∈ H1\C are non-empty. However, note
that we do not know if, say, |Sg1 | ≥ |Sg2 |; we only know |Sg1 | ≥ |S−g1 | ≥ |S−g2 |
and |Sg2 | ≥ |S−g2 |.
Case 2.1: |S−g3 | > 0. Let i ∈ {1, 2, 3} such that |SgiS−gi | is maximal among

|Sg1S−g1 |, |Sg2S−g2 |, and |Sg3S−g3 |. Thus |SgiS−gi | ≥
3p+3−vC

3 .
Hence

|Sc|+ |Sgi |+ |S−gi | ≥
3p+ 3− vC

3
+ |Sc| = (p+ 1) +

(
|Sc| −

vC
3

)
.

Thus, |Sc| + |Sgi | + |S−gi | ≥ p + 1 with equality if and only if |Sc| = vC
3 and

|Sgi | + |S−gi | =
3p+3−vC

3 . If equality does not hold, then the claim follows from
part (1) of Lemma 3.6 as one has |Sc|+ |Sg1 |+ |S−g1 | > p+ 1.

Thus assume that one has equality, that is, assume |Sc| =
vC
3 and |Sgi |+ |S−gi | =

3p+3−vC
3 .

The former implies that |Sc| = |S−c| = |S0| and since |Sc| ≥
p+2
3 (recall the

argument at the very beginning of the proof) while vC ≤ p+2 (this is the assumption

of Case 2) we get that in fact vC = p+2, and thus |Sc|
3 = p+2

3 . Furthermore, we can

now infer that |Sgi |+ |S−gi | =
2p+1

3 . Yet since |Sgi | ≤ |Sc|, this is only possible if

|Sgi | =
p+2
3 and |S−gi | =

p−1
3 . The same holds true for each of g1, g2, g3. Therefore,

one has

c = σ(π1(S)) =
p+ 2

3

(
c+(−c)+0+g1+g2+g3

)
+
p− 1

3
(−g1−g2−g3) = g1+g2+g3.

Now, we can apply part (1) of Lemma 3.6 with g1, g2, g3; note that |Sg1 |+ |Sg2 |+

|Sg3 | = 3 · p+2
3 = p+ 2. (In fact it can be seen that g1 + g2 + g3 = c is impossible.

To assert this would be another way to conclude the argument.)
Case 2.2: |S−g2 | > 0 and |S−g3 | = 0. One has |Sg1S−g1Sg2S−g2 | = 3p+ 3− vC −
|Sg3 | ≥ 3p + 3 − vC − |Sc|. Let i ∈ {1, 2} such that |SgiS−gi | is maximal among
|Sg1S−g1 | and |Sg2S−g2 |. Then,

|Sc|+ |Sgi |+ |S−gi | ≥
3p+ 3− vC − |Sc|

2
+ |Sc| = p+ 1 +

p+ 1− vC + |Sc|

2
.

Now, since vC ≤ p+2 and |Sc| ≥
p+2
3 ≥ 2, it follows that |Sc|+ |Sgi |+ |S−gi| ≥ p+2

and one can apply part (1) of Lemma 3.6 with c, gi,−gi.
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Case 2.3: |S−g1 | > 0 and |S−g2 | = |S−g3 | = 0. One has |Sg1S−g1 | = 3p+3− vC −
|Sg2Sg3 | ≥ 3p+3−vC−2 · |Sc|. Thus, |Sc|+ |Sg1 |+ |S−g1 | ≥ 3p+3−vC−|Sc|. Since
vC ≤ p+2 and |Sc| ≤ p, it follow that |Sc|+ |Sg1 |+ |S−g1 | ≥ p with equality if and
only if vC = p + 2 and |Sc| = p. If equality does not hold, the claim follows from
part (1) of Lemma 3.6 with c, g1,−g1. Thus, we assume vC = p + 2 and |Sc| = p.
If |S−c| 6= 0, then the claim follows from part (2) of Lemma 3.6 with x = c and
y = −c, as 2|Sc| + |S−c| ≥ p + 4. If |S−c| = 0, then |S0| = vC − |Sc| = 2 and the
claim follows from part (2) of Lemma 3.6 with x = 0 and y = c as 2|S0|+|Sc| = p+4
and we are done again.
Case 2.4: |S−g1 | = |S−g2 | = |S−g3 | = 0. One has |Sg1Sg2Sg3 | = 3p+3−vC ≥ 2p+1
If |Sc| = p, then we can assume vC ≤ p + 1 (see the argument at the end of the
preceding case). Thus, in this case |Sg1Sg2Sg3 | ≥ 2p + 2. It follows that for each
i ∈ {1, 2, 3}, one has |Sgi | ≥ 2, and thus 2|Sgi | + |Sgj | ≥ 2 + (2p+ 2 − p) = p + 4,
for each choice of distinct i, j ∈ {1, 2, 3}.

If |Sc| ≤ p− 1, then it follows that for each i ∈ {1, 2, 3}, one has|Sgi | ≥ 2p+1−
2(p− 1) = 3, and thus 2|Sgi |+ |Sgj | ≥ 3+ (2p+1− (p− 1)) = p+5, for each choice
of distinct i, j ∈ {1, 2, 3}.

Thus, if there is a choice of i, j such that 2gi + gj = c, applying part (2) of
Lemma 3.6, yields the claimed result as 2|Sgi |+ |Sgj | ≥ p+ 4.

By inspection we can see that indeed there always is such a choice. To wit, for
d an element in H1 such that H1 = 〈c〉 ⊕ 〈d〉 we note that

{{g1,−g1}, {g2,−g2}, {g3,−g3}} = {{d,−d}, {c+ d,−c− d}, {c− d,−c+ d}}.

There are eight possibilities for the set {g1, g2, g3} (note that the order of the
elements is not relevant), and for each of these eight choices we find a relation of
the form 2 · gi + 1 · gj + 0 · gk = c with {i, j, k} = {1, 2, 3}. Specifically:

• 2 · d+ 1 · (c+ d) + 0 · (c− d) = c
• 1 · d+ 0 · (c+ d) + 2 · (−c+ d) = c
• 0 · d+ 1 · (−c− d) + 2 · (c− d) = c
• 1 · d+ 0 · (−c− d) + 2 · (−c+ d) = c
• 2 · (−d) + 0 · (c+ d) + 1 · (c− d) = c
• 0 · (−d) + 2 · (c+ d) + 1 · (−c+ d) = c
• 1 · (−d) + 2 · (−c− d) + 0 · (c− d) = c
• 1 · (−d) + 2 · (−c− d) + 0 · (−c+ d) = c

The claim is established. �

3.3. Proof of Theorem 3.1. To establish our main result we combine the partial
results obtained thus far.

By Lemmas 3.3 and 3.4 we know that g(C3 ⊕ C3n) ≥ 3n+ 3 for each n ≥ 2.
Now, assume that p ≥ 5 is prime. We want to show that g(C3 ⊕ C3p) ≤ 3p+ 3.

Let S be a squarefree sequence of length 3p+ 3 over C3 ⊕ C3p. We need to show
that S has a zero-sum subsequence of length 3p. We continue to use the maps π1

and π2 introduce in the preceding subsection.
If σ(π1(S)) 6= 0, then S has a zero-sum subsequence by Proposition 3.10. If

σ(π1(S)) = 0, then S has a zero-sum subsequence either by Proposition 3.7 or by
Proposition 3.8.

Thus, in any case, S has a zero-sum subsequence of length 3p and therefore
g(C3 ⊕ C3p) ≤ 3p + 3. In combination with the lower bound this implies that
indeed g(C3 ⊕ C3p) = 3p+ 3 for each prime p ≥ 5.
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It remains to determine the value of g(C3 ⊕ C6) and of g(C3 ⊕ C9). We know
by Lemmas 3.3 and 3.5 that the respective values are lower bounds. To show that
these values are the exact values of the Harborth constant we used an algorithm
for determining the Harborth constant that we discuss in the last section.

4. An algorithm for determining the Harborth constant and some
computational results

For the description of the algorithm we use the language of sets rather than
that of sequences, as the description feels slightly more natural. To determine the
Harborth constant of G means to find the smallest k such that each subset of G
of cardinality k has a subset of cardinality exp(G) with sum 0. We outline the
algorithm we used below.

In the first step, all subsets of G of cardinality exp(G) with sum 0 are constructed
(see Remark 4.1 for some details on this). If the subsets of cardinality exp(G) with
sum 0 happen to be all the subsets of G of cardinality exp(G), then this means that
the Harborth constant is exp(G). If not, then we consider all subsets of G that are
direct successors of a set of cardinality equal to exp(G) with sum 0; in other words,
we extend each subset of cardinality exp(G) with sum 0 in all possible ways to a
subset of cardinality exp(G) + 1. Thus, we obtain all subsets of G of cardinality
exp(G) + 1 that contain a subset of cardinality exp(G) with sum 0. If the subsets
of G obtained in this way are all subsets of G of cardinality exp(G) + 1, then we
have established that the Harborth constant of G is exp(G) + 1. If not, then we
continue as above until for some k the set of subsets of cardinality k obtained in
this way coincides with the set of all subsets of cardinality k of G.

Below we detail the steps of the algorithm a bit more. However, a more complete
investigation of the algorithmic problem will be presented elsewhere, and we gloss
over more technical aspects here.

4.1. The steps of the algorithm.

Input: A finite abelian group G of order n and exponent e.
Output: g(G), the Harborth constant of the group G.

• [Initialization] Let Z(e) denote the collection of all subsets of G of cardi-
nality e that have sum 0. Set k = e.

• [Check] If |Z(k)| =
(
n
k

)
, then return g(G) = k and end. Else, increment k

to k + 1.
• [Extend] Let Z(k) denote the collection of all subsets of cardinality k of G
that have subset that is in Z(k − 1). Go to [Check].

We add some further explanations and remarks.

Remarks 4.1.

(1) The group intervenes only in the step [Initialization]. (The rest of the
algorithm operates merely with subsets of a given ambient set.) To find
all subsets of cardinality e with sum 0, we browse all subsets of cardinality
e − 1. For each of these sets, we check if the inverse of the e − 1 elements
belongs to the set; if it does not, we add it to the set to obtain a set of
cardinality e and sum 0. For this step the subsets of G are represented by
a bitmap.
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(2) For the latter parts of the algorithm in addition to the representations as
bitmaps a judiciously chosen numbering of the subsets of G is used. In
particular, the numbering is chosen in such a way that for every subset its
cardinal is at least as large as the cardinal of all its predecessors. This is
useful as in this way at each step, our search can be efficiently limited to
the

(
n

k

)
subsets of a given cardinal k instead of having to consider all 2n

subsets at each step.
(3) The subsets of cardinality k that are not in Z(k) are all the subsets of G of

cardinality k that have no zero-sum subset of e elements. Thus, in the final
step before the algorithm terminates we effectively have all the subsets of
G of cardinality g(G)− 1 that have no zero-sum subset of e elements. That
is, the algorithm can be immediately modified to solve the inverse problem
associated to g(G) as well.

(4) The algorithm is valid for any finite abelian group. With the hardware
at out disposal it is possible to compute the Harborth constant for finite
abelian groups of order up to about 45. The main limiting factor is memory.
In order to increase the size of accessible groups, we are currently working
on a more efficient subset-representation based on data compression.

(5) The fact that e is equal to the exponent of the group is not relevant for the
algorithm. It can be directly modified to compute related constants.

We end by mentioning two further computational results.

Proposition 4.2.

(1) g(C6 ⊕ C6) = 13.
(2) g(C3 ⊕ C12) = 15.

The former confirms the conjecture by Gao and Thangadurai, mentioned in the
introduction, g(Cn ⊕ Cn) = 2n + 1 for even n in case n = 6. The latter shows
that g(C3 ⊕ C3n) = 3n + 3 also holds for n = 4, which supports the idea that
g(C3 ⊕ C3n) = 3n+ 3 might hold for n that are not prime as well.
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