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Abstract: By enforcing invariance under S-duality in type IIB string theory compactified

on a Calabi-Yau threefold, we derive modular properties of the generating function of BPS de-

generacies of D4-D2-D0 black holes in type IIA string theory compactified on the same space.

Mathematically, these BPS degeneracies are the generalized Donaldson-Thomas invariants

with support on a fixed divisor D, at the large volume attractor point. For D irreducible, this

function is closely related to the elliptic genus of the superconformal field theory obtained

by wrapping M5-brane on D and is therefore known to be modular. Instead, when D is the

sum of n irreducible divisors Di, we show that the generating function acquires a modular

anomaly. We characterize it explicitly for arbitrary n by providing an explicit expression for

a non-holomorphic modular completion in terms of generalized error functions. As a result,

the generating function turns out to be a (mixed) mock modular form of depth n− 1.
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1. Introduction and summary

The degeneracies of BPS black holes in string vacua with extended supersymmetry possess

remarkable modular properties, which have been instrumental in recent progress on explaining

the statistical origin of the Bekenstein-Hawking entropy in [1] and many subsequent works.

Namely, the indices Ω(γ) counting — with sign — microstates of BPS black holes with

electromagnetic charge γ may often be collected into a suitable generating function which

exhibits modular invariance, providing powerful constraints on its Fourier coefficients and

enabling direct access to their growth. When the black holes can be realized as black strings

wrapped on a circle, a natural candidate for such a generating function is the elliptic genus of

the superconformal field theory supported by the black string, which is modular invariant by

construction [2, 3, 4]. Equivalently, one may consider the partition function of the effective

three-dimensional gravity living on the near-horizon geometry of the black string [5].

In most cases however, the BPS indices depend not only on the charge γ but also on the

moduli za at spatial infinity, due to the wall-crossing phenomenon: some of the BPS bound

states with total charge γ may only exist in a certain chamber in moduli space, and decay as

the moduli are varied across ‘walls of marginal stability’ which delimit this chamber. At strong

coupling where the black hole description is accurate, this phenomenon has a transparent

explanation in terms of the (dis)appearance of multi-centered black hole configurations, which

can be used to derive a universal wall-crossing formula [6, 7, 8, 9].

In the case of four-dimensional string vacua with N = 4 supersymmetry, where the BPS

index is sensitive only to single-centered 1/4-BPS black holes and to bound states of two

1/2-BPS black holes, the resulting moduli dependence is reflected in poles in the generating

function, requiring a suitable choice of contour for extracting the Fourier coefficients in a

given chamber [10, 11, 12]. Upon subtracting contributions of two-centered bound states, the

generating function of single-centered indices is no longer modular in the usual sense but it

transforms as a mock Jacobi form with specific ‘shadow’ — a property which is almost as

constraining as standard modular invariance [13].

In four-dimensional string vacua with N = 2 supersymmetry, the situation is much

more complicated, firstly due to the fact that the moduli space of scalars receives quantum

corrections, and secondly due to BPS bound states potentially involving an arbitrary number

of constituents, resulting in an extremely intricate pattern of walls of marginal stability. Thus,

it does not seem plausible that a single generating function may capture the BPS indices

Ω(γ, za) in all chambers. Nevertheless, modular invariance is still expected to constrain the

BPS indices — which are known in this context as generalized Donaldson-Thomas (DT)

invariants. In particular, D4-D2-D0 black holes in type IIA string theory compactified on a

generic compact Calabi-Yau (CY) threefold Y can be lifted to an M5-brane wrapped on a

divisor D ⊂ Y [2]. If the divisor D labelled by the D4-brane charge pa is irreducible, the

indices Ω(γ, za) are independent of the moduli of Y and their generating function is known

to be a holomorphic (vector valued) modular form of weight −1
2
b2(Y) − 1 [14, 3, 4]. But

if the divisor D is a sum of n effective divisors Di, the indices Ω(γ, za) do depend on the

Kähler moduli za, even in the large volume limit. In general however, the black string SCFT

is supposed to capture the states associated to a single AdS3 throat, while for generic values
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of the moduli multiple AdS3 throats can usually contribute [15, 16]. It is thus natural to

consider the modular properties of the generalized DT invariants Ω(γ, za) at the large volume

attractor point1

za∞(γ) = lim
λ→+∞

(−qa + iλpa) , (1.1)

where only a single AdS3 throat is allowed [17]. Following [18] we denote these invariants by

ΩMSW(γ) = Ω(γ, za∞(γ)) and call them Maldacena-Strominger-Witten (MSW) invariants. As

we discuss in Section 2, the DT invariants Ω(γ, za) can be recovered from the MSW invariants

ΩMSW(γ) by using a suitable version of the split attractor flow conjecture [19, 6], revisited

recently in [20].

The case where D is the sum of two irreducible divisors was first studied in [17], and

more recently in [21, 22], where it was shown that the generating function of MSW invariants

is a mock modular form, with a specific non-holomorphic completion obtained by smoothing

out the sign function entering in the bound state contributions, recovering the prescription

of [23, 17]. The goal of this paper is to extend this result to the general case where D
is the sum of n irreducible divisors Di, where n can be arbitrarily large. In such generic

situation, we characterize the modular properties of the generating function hp,µ of MSW

invariants and find an explicit expression for its non-holomorphic completion ĥp,µ. in terms of

the generating functions hpi,µi
associated to the n constituents, multiplied by certain iterated

integrals introduced in [24, 25], which generalize the usual error function appearing with

n = 2. This result implies that in this case hp,µ is a (mixed, vector valued) mock modular

form of depth n−1, in the sense that its shadow is itself a mock modular form of lower depth

(with the depth 1 case reducing to the standard mock modular forms introduced in [23, 26]).

In order to establish this result, we follow the same strategy as in our earlier works [21, 22]

and analyse D3-D1-D(-1) instanton corrections to the metric on the hypermultiplet moduli

space MH in type IIB string theory compactified on Y, at arbitrary order in the instanton

expansion. After reducing on a circle and T-dualizing, this moduli space is identical to the

vector multiplet moduli space in type IIA string theory compactified on Y × S1, where it

receives instanton corrections from D4-D2-D0 black holes winding around the circle. In either

case, each instanton contribution is weighted by the same generalized DT invariant Ω(γ) which

counts the number of BPS black hole microstates with electromagnetic charge γ. The modular

properties of the generalized DT invariants are fixed by requiring that the quaternion-Kähler

(QK) metric on MH admits an isometric action of SL(2,Z), which comes from S-duality in

type IIB, or equivalently from large diffeomorphisms of the torus appearing when viewing

type IIA/Y × S1 as M-theory on Y × T 2 [27]. This QK metric is most efficiently described

using a contact structure on the associated twistor space, a CP 1-bundle over MH [28, 29], the

latter being specified by a set of gluing conditions determined by the DT invariants [27, 30],

which can themselves be expressed in terms of the MSW invariants.

An important quantity appearing in this twistorial formulation2 is the so called contact

1Here pa and qa are D4 and D2-brane charges, respectively, and the index of q is raised with help of the

inverse of the metric κab = κabcp
a with κabc being the triple intersection numbers of Y.

2A familiarity with the twistorial formulation is not required for the present work. Here we use only

two equations relevant for the twistorial description of D-instantons: the integral equation (3.2) for certain

Darboux coordinates, which appears also in the study of four-dimensional N = 2 gauge theory on a circle
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potential eϕ, a real function on MH related to the Kähler potential on Z, and afforded by

the existence of a continuous isometry unbroken by D-instantons. On the type IIB side, eϕ

can be identified with the four-dimensional dilaton 1/g24. When expressed in terms of the

ten-dimensional type IIB axio-dilaton τ = c0+i/gs, it becomes a complicated function having

a classical contribution, a one-loop correction, and a series of instanton corrections expressed

as contour integrals on the CP 1 fiber. The importance of the contact potential stems from

the fact that the existence of an isometric action of SL(2,Z) on MH restricts it to be a

non-holomorphic modular form of weight (−1
2
,−1

2
) in the variable τ [27]. As a result, this

imposes a very non-trivial constraint on the instanton contributions to eϕ which can be used

to deduce the modular properties of generating functions of DT invariants, order by order in

the instanton expansion. This strategy was used in [21] at two-instanton order to characterize

the modular behavior of the generating function of MSW invariants in the case of a divisor

equal to the sum of n = 2 irreducible divisors. In this paper we generalize this result to all n,

by analyzing the instanton expansion to all orders. Below we summarize the main steps and

the main results which we find on this way.

1. First, we show that the contact potential eϕ in the large volume limit, where the Kähler

parameters of the CY are sent to infinity, can be expressed (see (3.24)) through another

(complex valued) function G (3.22) on the moduli space, which we call the instanton

generating function. In particular, its instanton expansion, i.e. the expansion in powers

of DT invariants, is captured by a simple sum over unrooted trees (see (3.25) and (3.26)).

The modularity of the contact potential requires G to be a modular function of weight

(−3
2
, 1
2
).

2. Expressing the DT invariants Ω(γ, za) through the moduli independent MSW invariants

ΩMSW(γ) using the tree flow formula of [20], and rearranging the expansion of G as an

expansion in powers of ΩMSW(γ), each order of this expansion, similarly to the standard

Jacobi forms, can be represented as a sum of products of certain indefinite theta series

and holomorphic generating functions hpi,µi
of ΩMSW(γ) (see (4.2)). Thus, modular

properties of the theta series fix the modular properties of these generating functions.

3. In order for a theta series to be modular, its kernel must satisfy a certain differential

equation [33], which we call Vignéras’ equation. By construction, the kernels appear-

ing in our problem are given by iterated contour integrals on the CP 1 fiber of the

twistor space, multiplied by the so-called ‘tree indices’ gtr,n coming from the expression

of Ω(γ, za) in terms of ΩMSW(γ). We evaluate the twistorial integrals in terms of the gen-

eralized error functions of [24, 25], and show that the resulting kernels satisfy Vignéras’

equation away from certain loci where they have discontinuities. Furthermore, we prove

that the discontinuities corresponding to walls of marginal stability cancel between the

integrals and the tree indices. But there are additional discontinuities coming from cer-

tain moduli independent contributions to the tree index. They spoil Vignéras’ equation

[31]; and the expression for the contact potential (3.20) in terms of these Darboux coordinates. Note that

the contact potential was recently extended to the context of gauge theories and interpreted there as a

supersymmetric index [32]. These two equations lead to (3.15) and (3.24), respectively, which can be taken

as the starting point of our analysis.
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at the multi-instanton level so that the theta series is not modular. In turn, this implies

that hpi,µi
are also not modular.

4. However, it turns out to be possible to construct a non-holomorphic completion of hp,µ
by adding to it a series of non-linear terms (see (5.1)). The non-holomorphic functions

Rn, fixing the completion, are determined by the condition that the expansion of G
rewritten in terms of ĥp,µ gives rise to non-anomalous theta series. Equivalently, one

can work with functions ĝn appearing in the expansion (5.2) of the generating function

of DT invariants hDT
p,q in terms of ĥp,µ. Then the modularity imposes certain recursive

equations on them.

5. Using these equations, we find that ĝn can be represented either in an iterative form

(5.7), or more explicitly as a sum (5.17) over rooted trees with valency ≥ 3 at each

vertex (known as Schröder trees), where g
(0)
n are certain combinations of sign functions

(5.12), whereas En are smooth solutions of the Vignéras’ equation constructed out of

the generalized error functions. The functions Rn are then also given by a sum over

Schröder trees (5.18) in terms of exponentially decreasing and non-decreasing parts of

En. These equations represent the main result of this work.

Thus, we have found a modular completion of the generating function of the MSW in-

variants for an arbitrary divisor, i.e. decomposable into a sum of any number of irreducible

divisors. The result is expressed through sums of products of generalized error functions la-

belled by trees of various types. For the reader’s convenience, in Fig. 1 we list the various

trees which appear in our construction, up to n = 4 .

The organization of the paper is as follows. In section 2 we review the known results

about DT invariants, their expression in terms of MSW invariants, and specialize them to

the case of D4-D2-D0 black holes in type IIA string theory on a Calabi-Yau threefold. In

section 3 we present the twistorial description of the D-instanton corrected hypermultiplet

moduli space in the dual type IIB string theory, evaluate the contact potential in the large

volume approximation expressing it through a function G, and provide an instanton expansion

for this function via unrooted labelled trees. Then in section 4 we obtain a theta series

decomposition for each order of the expansion of G in MSW invariants and analyze the

modular properties of the resulting theta series, which leads us to conclude that they possess

a modular anomaly thereby implying a modular anomaly for the generating functions hp,µ.

In section 5 we construct the non-holomorphic completion ĥp,µ, for which the anomaly is

cancelled, and determine its explicit form. Section 6 is devoted to discussion of the obtained

results. Finally, several appendices contain details of our calculations and proofs of various

propositions. Besides, in the last appendix we provide explicit results for various functions

appearing in our construction up to order n = 4.

2. BPS indices and wall-crossing

In this section, we review some aspects of BPS indices in theories with N = 2 supersymmetry,

including the tree flow formula relating the moduli-dependent index Ω(γ, za) to the attractor
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Figure 1: Various types of trees arising in the multi-instanton expansion of various quantities. Tn

denotes the set of (unrooted) trees with n vertices. Tr
n is the set of rooted trees with n vertices.

Taf
n is the set of attractor flow trees with n leaves (of which we only draw the different topologies).

And TS
n denotes the set of Schröder trees with n leaves. In addition to these sets, an important rôle

is played by the set Tℓ
n of labelled unrooted trees which is obtained from Tn by assigning different

labels to the vertices.

index Ω⋆(γ). We then apply this formalism in the context of Calabi-Yau string vacua, and

express the generalized DT invariants Ω(γ, za) in terms of their counterparts evaluated at the

large volume attractor point (1.1), known as MSW invariants.

2.1 Wall-crossing and attractor flows

The BPS index Ω(γ, za) counts (with sign) micro-states of BPS black holes with total electro-

magnetic charge γ = (pΛ, qΛ), for a given value za of the moduli at spatial infinity. While

Ω(γ, za) is a locally constant function over the moduli space, it can jump across certain real

codimension-one loci where certain black hole bound states, represented by multi-centered

black hole solutions of N = 2 supergravity, become unstable. The positions of these loci,

known as walls of marginal stability, are determined by the central charge Zγ(z
a), a complex-

valued linear function of γ whose modulus gives the mass of a BPS state of charge γ, while

the phase determines the supersymmetry subalgebra preserved by the state. Since a bound

state can only decay when its mass becomes equal to the sum of masses of its constituents,

it is apparent that the walls correspond to hypersurfaces where the phases of two central

charges, say ZγL(z
a) and ZγR(z

a), with non-vanishing Dirac-Schwinger-Zwanziger (DSZ) pair-

ing ⟨γL, γR⟩ ̸= 0, align. The bound states which may become unstable are then those whose

constituents have charges in the positive cone spanned by γL and γR.

The general relation between the values of Ω(γ, za) on the two sides of a wall has been

found in the mathematics literature by Kontsevich–Soibelman [34] and Joyce–Song [35, 36],

and justified physically in a series of works [6, 7, 8, 9]. However, in this work we require a
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somewhat different result: an expression of Ω(γ, za) in terms of moduli-independent indices.

One such representation, known as the Coulomb branch formula, was developed in a series of

papers [37, 38, 39] (see [40] for a review) where the moduli-independent index is the so-called

‘single-centered invariant’, counting single-centered, spherically symmetric BPS black holes.

Unfortunately, this representation (and its inverse) is quite involved, as it requires disentan-

gling genuine single-centered solutions from so-called scaling solutions, i.e. multi-centered

solutions with n ≥ 3 constituents which can become arbitrarily close to each other [6, 41]. A

simpler alternative is to consider the attractor index, i.e. the value of the BPS index in the

attractor chamber Ω∗(γ) ≡ Ω(γ, zaγ), where z
a
γ is fixed in terms of the charge γ via the attrac-

tor mechanism [42] (recall that for a spherically symmetric BPS black hole with charge γ, the

scalars in the vector multiplets have fixed value zaγ at the horizon independently of their value

za at spatial infinity.). By definition, the attractor indices are of course moduli independent.

The problem of expressing Ω(γ, za) in terms of the attractor indices was addressed recently

in [20]. Relying on the split attractor flow conjecture [19, 6], it was argued that the rational

BPS index

Ω̄(γ, za) =
∑
d|γ

1

d2
Ω(γ/d, za) (2.1)

can be expanded in powers of Ω∗(γi)

Ω̄(γ, za) =
∑

∑n
i=1 γi=γ

gtr,n({γi}, za)
n∏

i=1

Ω̄∗(γi), (2.2)

where the sum over {γi} runs over ordered3 decompositions of γ into sums of vectors γi ∈ Γ+,

with Γ+ being the set of all vectors γ whose central charge Zγ(z
a
∞) lies in a fixed half-space

defining the splitting between BPS particles (γ ∈ Γ+) and anti-BPS particles (γ ∈ −Γ+).

Such decompositions correspond to contributions of multi-centered black hole solutions with

constituents carrying charges γi.

The coefficient gtr,n, called the tree index, is defined as

gtr,n({γi}, za) =
1

n!

∑
T∈Taf

n

∆(T )κ(T ), (2.3)

where the sum goes over attractor flow trees. These are (unordered, full) rooted binary trees4

T with vertices decorated by electromagnetic charges γv, from the total charge γ at the root

v0 to the constituent charges γi at the leaves of the tree, with condition that γv = γL(v)+γR(v)

where L(v), R(v) are the two children of vertex v (see Fig. 2). Note that when all the

charges γi are distinct, flow trees are in one-to-one correspondence with 2-bracketings of the

unordered set {1, . . . , n}, e.g. the tree displayed in Fig. 2 corresponds to ((13)(2(45))). The

idea of the split attractor flow conjecture is that each tree represents a nested sequence of

two-centered bound states describing a multi-centered solution built out of constituents with

3In [20] this formula was written as a sum over unordered decompositions. Thus, the definition of gtr,n
here differs from the one in [20] by the factor of 1/n! which appears explicitly in (2.3).

4The number of such trees with n leaves is bn = (2n − 3)!! = (2n − 3)!/[2n−2(n − 2)!] =

{1, 1, 3, 15, 105, 945, ...} for n ≥ 1.
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Figure 2: An example of attractor flow tree corresponding to the bracketing ((13)(2(45))).

charges γi. With this interpretation, the edges of the graph represent the evolution of the

moduli under attractor flow, so that one starts from the moduli at spatial infinity za∞ ≡ za

and assigns to the root v0 the point in the moduli space zav0 where the attractor flow with

charge γ crosses the wall of marginal stability where Im
[
ZγL(v0)

Z̄γR(v0)
(zav0)

]
= 0. Then one

repeats this procedure for every edge, obtaining a set of charges and moduli (γv, z
a
v ) assigned

to each vertex, with the bound state constituents and their attractor moduli (γi, z
a
γi
) assigned

to the leaves. Given these data, the factor ∆(T ) is given by

∆(T ) =
∏
v∈VT

∆
zp(v)
γL(v)γR(v) , ∆z

γLγR
=

1

2

[
sgn Im

[
ZγLZ̄γR(z

a)
]
+ sgn(γLR)

]
, (2.4)

where VT denotes the set of vertices of T excluding the leaves, p(v) is the parent of vertex v,

and γLR = ⟨γL, γR⟩. This factor vanishes unless the stability condition5

γL(v)R(v) Im
[
ZγL(v)

Z̄γR(v)
(zap(v))

]
> 0 (2.5)

is satisfied for all v ∈ VT , which ensures admissibility of the flow tree T , i.e. the existence of

the corresponding nested bound state. The second factor

κ(T ) ≡ (−1)n−1
∏
v∈VT

κ(γL(v)R(v)), κ(x) = (−1)x x. (2.6)

is simply the product of the BPS indices of the nested two-centered solutions associated with

the tree T . Note that the signs of ∆(T ) and κ(T ) are separately ambiguous, due to the choice

of ordering (γL(v), γR(v)) at each vertex, but the sign of their product is unambiguous.

Sometimes, it is useful to consider the refined BPS index Ω(γ, za, y) which carries ad-

ditional dependence on the fugacity y conjugate to the spin J3. All the above equations

remain valid in this case as well (except the definition of the rational invariant (2.1) which

must be slightly modified), but now the function κ(x) appearing in (2.6) becomes a Laurent

polynomial in y

κ(x) = (−1)x
yx − y−x

y − y−1
, (2.7)

5In fact, the admissibility also requires Re
[
ZγL(v)

Z̄γR(v)
(zav )

]
> 0 at each vertex. This condition will hold

automatically for the case of our interest, namely, D4-D2-D0 black holes in the large volume limit, so we do

not impose it explicitly.
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reducing to the unrefined case in the limit y → 1.

It is easy to see that the ‘flow tree formula’ (2.2) is consistent with the primitive wall-

crossing formula [6, 7]

∆Ω̄(γL + γR) = −sgn(γLR)κ(γLR) Ω̄(γL, z
a) Ω̄(γR, z

a), (2.8)

which gives the jump of the BPS index due to the decay of bound states after crossing the

wall defined by a pair of primitive6 charges γL and γR. To this end, it is enough to consider

all flow trees which start with the splitting γ → γL + γR at the root of the tree. It is also

useful to note that, assuming that all charges γi are distinct, the sum over splittings and flow

trees in (2.2) can be generated by iterating the quadratic equation [20]

Ω̄(γ, za) = Ω̄∗(γ)−
1

2

∑
γ=γL+γR
⟨γL,γR⟩≠0

∆z
γLγR

κ(γLR) Ω̄(γL, z
a
LR) Ω̄(γR, z

a
LR), (2.9)

where zaLR is the point where the attractor flow of charge γ crosses the wall of marginal

stability Im
[
ZγLZ̄γR(z

a
LR)
]
= 0.

2.2 Partial tree index

While the representation of the BPS index based on attractor flows is useful for many purposes,

it seems to require evaluating the central charges along the attractor flow (see (2.4)), which

is in general difficult. In fact, in order to determine if a given tree is stable, only the signs of

the relative phases between the two central charges at the vertices of the tree are required,

and it turns out to be possible to compute all of them recursively [20]. Nevertheless, this still

leaves us with sign functions depending on non-linear combinations of central charges and

DSZ products, which are very difficult to work with.

A solution to overcome this problem was found in [20]. The key idea is to introduce a

refined index with a fugacity y conjugate to angular momentum, and define

gtr,n({γi}, za, y) =
(−1)n−1+

∑
i<j γij

(y − y−1)n−1
Sym

{
Ftr,n({γi}, za) y

∑
i<j γij

}
, (2.10)

where Sym denotes symmetrization (with weight 1/n!) in all charges and the ‘partial tree

index’ is defined by

Ftr,n({γi}, za) ≡
∑

T∈Taf-pl
n

∆(T ), (2.11)

where the sum runs over the set Taf-pl
n of planar flow trees with n leaves7 carrying ordered

charges γ1, . . . , γn. Although this is not manifest, the refined tree index (2.10) is regular at

y = 1, and its value (computed e.g. using l’Hôpital rule) reduces to the tree index (2.3). The

advantage of the representation (2.10) is that the partial tree index Ftr,n does not involve the

κ-factors (2.6) and is independent of the refinement parameter.

6Here, by primitive we mean that all charges with non-zero index in the two-dimensional lattice spanned

by γL and γR are linear combinations NLγL +NRγR with coefficients NL, NR of the same sign.
7The number of such trees is the n− 1-th Catalan number |Taf-pl

n | = (2n−2)!
n[(n−1)!]2 = {1, 1, 2, 5, 14, 42, 132, . . . }

for n ≥ 1.
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There are two important results about the partial index Ftr,n. To formulate them, let us

introduce a few convenient notations:

ci(z
a) = Im

[
ZγiZ̄γ(z

a)
]
, Sk =

k∑
i=1

ci(z
a), βkℓ =

k∑
i=1

γiℓ, Γkℓ =
k∑

i=1

ℓ∑
j=1

γij. (2.12)

Note that due to γ =
∑n

i=1 γi, the parameters ci satisfy
∑n

i=1 ci = 0. In terms of these

notations, the partial index satisfies the iterative equation [20, (2.59)],

Ftr,n({γi}, za) =
1

2

n−1∑
ℓ=1

(
sgn(Sℓ)− sgn(Γnℓ)

)
Ftr,ℓ({γi}ℓi=1, z

a
ℓ )Ftr,n−ℓ({γi}ni=ℓ+1, z

a
ℓ ), (2.13)

where zaℓ is the value of the moduli where the attractor flow crosses the wall for the decay

γ → (γ1 + · · ·+ γℓ, γℓ+1 + · · ·+ γn) and it can be shown that for this value

ci(z
a
ℓ ) = c

(ℓ)
i ≡ ci(z

a)− βni
Γnℓ

Sℓ. (2.14)

It is clear that this iterative equation is in a sense a realization of the quadratic equation

(2.9). A similar equation can be written for the tree index gtr,n itself, but it will involve the

κ-factors and symmetrization.

According to the result obtained in [20, Prop. 2], the partial tree index satisfies another

recursion relation

Ftr,n({γi}, za) =F (0)
n ({γi, ci})−

∑
n1+···+nm=n
nk≥1, m<n

Ftr,m({γ′k}, za)
m∏
k=1

F (⋆)
nk

(γjk−1+1, . . . , γjk), (2.15)

where the sum runs over ordered partitions of n,m is the number of parts, and for k = 1, . . . ,m

we defined

j0 = 0, jk = n1 + · · ·+ nk, γ′k = γjk−1+1 + · · ·+ γjk . (2.16)

The two functions appearing in (2.15) are simply products of signs

F (0)
n ({γi, ci}) =

1

2n−1

n−1∏
i=1

sgn(Si), F (⋆)
n ({γi}) =

1

2n−1

n−1∏
i=1

sgn(Γni). (2.17)

This new recursive relation allows to express the partial index in the way which does not

involve sign functions depending on non-linear combinations of parameters, in contrast to the

previous relation (2.13) where such sign functions arise due to the attractor flow given by

(2.14).

2.3 D4-D2-D0 black holes and BPS indices

The results presented above are applicable in any theory with N = 2 supersymmetry. Let us

now specialize to the BPS black holes obtained as bound states of D4-D2-D0-branes in type

IIA string theory compactified on a CY threefoldY. In this case the moduli za = ba+ita (with

a = 1, . . . , b2(Y) running over a basis of H2(Y,Z)), where t
a are Kähler moduli and ba are

components of the Kalb-Ramond field, parametrize the complexified Kähler moduli spaceMK
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of Y. The charge vectors in a fixed basis of even cohomology have the form γ = (0, pa, qa, q0)

where zero corresponds to the vanishing D6-brane charge, whereas other components satisfy

the following quantization conditions [43]

pa ∈ Z, qa ∈ Z+
1

2
(p2)a, q0 ∈ Z− 1

24
pac2,a. (2.18)

Here c2,a are components of the second Chern class of Y, and to write the second relation we

introduced notations (kp)a = κabck
bpc and (lkp) = κabcl

akbpc (recall that κabc are intersection

numbers of Y) which will be extensively used below. The lattice of charges satisfying (2.18)

will be denoted by Γ. A smaller lattice Γ+ is obtained by further restriction that the D4-brane

charge pa corresponds to an effective divisor in Y and belongs to the Kähler cone, i.e.

p3 > 0, (rp2) > 0, kap
a > 0, (2.19)

for all effective divisors raγa ∈ H+
4 (Y,Z) and effective curves kaγ

a ∈ H+
2 (Y,Z), where γa

denotes irreducible divisors giving an integer basis of Λ = H4(Y,Z), whereas γ
a an integer

basis of Λ∗ = H2(Y,Z). Such charge pa gives rise to the quadratic form κab = κabcp
c on

Λ ⊗ R ≃ Rb2 of signature (1, b2 − 1). It allows to embed Λ into Λ∗, but since in general the

map ϵa 7→ κabϵ
b is not surjective, the quotient Λ∗/Λ is a finite group of order | detκab|.

The holomorphic central charge for this system is given by

Zγ(z
a) = qΛX

Λ(za)− pΛFΛ(z
a), (2.20)

where we used the special coordinates XΛ(za) = (1, za) and FΛ = ∂XΛF (X) is the derivative

of the holomorphic prepotential F (X) on MK. In the large volume limit ta → ∞, the

prepotential reduces to the classical cubic contribution

F (X) ≈ F cl(X) = −κabc
XaXbXc

6X0
, (2.21)

and the central charge can be approximated as

Zγ ≈ −1

2
(pt2) + i (qat

a + (pbt)) + q0 + qab
a +

1

2
(pb2). (2.22)

Note, in particular, that it always has a large negative real part. Another useful observation

is that both quantities appearing in the definition of ∆z
γLγR

(2.4) are independent of the q0
component of the charge. Indeed,

⟨γ, γ′⟩ = qap
′a − q′ap

a,

Im
[
ZγZ̄γ′

]
= − 1

2

(
(p′t2)(qa + (pb)a)t

a − (pt2)(q′a + (p′b)a)t
a
)
.

(2.23)

The BPS spectrum Ω̄(γ, za) of D4-D2-D0 black holes is captured by Donaldson-Thomas

invariants of Y. An important property of the DT invariants considered for charges of the

above form is that they are invariant under the combination of the shift of the Kalb-Ramond

field, ba 7→ ba + ϵa, and the spectral flow transformation acting on the D2 and D0 charges

qa 7→ qa − κabcp
bϵc, q0 7→ q0 − ϵaqa +

1

2
(pϵϵ). (2.24)
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The shift of ba cannot be ignored since the DT invariants are only piecewise constant as

functions of the complexified Kähler moduli za = ba + ita due to wall-crossing.

On the other hand, the MSW invariants Ω̄MSW(γ), defined as the generalized DT invari-

ants Ω̄(γ, za) evaluated at their respective large volume attractor point (1.1), are by construc-

tion independent of the moduli, and therefore invariant under (2.24). As a result, they only

depend on pa, µa and q̂0, where we traded the electric charges (qa, q0) for (ϵa, µa, q̂0). The

latter comprise the spectral flow parameter ϵa, the residue class µa ∈ Λ∗/Λ defined by the

decomposition

qa = µa +
1

2
κabcp

bpc + κabcp
bϵc, ϵa ∈ Λ , (2.25)

and the invariant charge (κab is the inverse of κab)

q̂0 ≡ q0 −
1

2
κabqaqb , (2.26)

which is invariant under (2.24). This allows to write Ω̄MSW(γ) = Ω̄p,µ(q̂0).

An important fact is that the invariant charge q̂0 is bounded from above by q̂max
0 =

1
24
((p3) + c2,ap

a). This allows to define two generating functions

hDT
p,q (τ, z

a) =
∑

q̂0≤q̂max
0

Ω̄(γ, za) e(−q̂0τ) , (2.27)

hp,µ(τ) =
∑

q̂0≤q̂max
0

Ω̄p,µ(q̂0) e(−q̂0τ) , (2.28)

where we used notation e(x) = e2πix. Whereas the generating function of DT invariants hDT
p,q

depends on the full electric charge qa and also carries a piecewise constant dependence on

the moduli za, the generating function of MSW invariants hp,µ(τ), due to the spectral flow

symmetry, depends only on the residue class µa. This generating function will be the central

object of interest in this paper. In particular, our main goal is to understand its behavior

under modular transformations of τ , without any assumptions on the degree of reducibility

of the divisor paγa.

In general, the MSW invariants Ω̄MSW(γ) are distinct from the attractor moduli Ω̄⋆(γ),

since the latter coincide with the generalized DT invariants Ω̄(γ, za) evaluated at the true

attractor point za∗(γ) for the charge γ, while the former are the generalized DT invariants

evaluated at the large volume attractor point za∞(γ) defined in (1.1). Nevertheless, we claim

that in the large volume limit ta → ∞, the tree flow formula reviewed in the previous subsec-

tions still allows to express Ω̄(γ, za) in terms of the MSW invariants, namely

Ω̄(γ, za) =
∑

∑n
i=1 γi=γ

gtr,n({γi}, za)
n∏

i=1

Ω̄MSW(γi) ( Im za → ∞). (2.29)

The point is that the only walls of marginal stability which extend to infinite volume are

those where the constituents carry only D4-brane charge, and that non-trivial bound states

involving constituents with D4-brane charge are ruled out at the large volume attractor point,

similarly to the usual attractor chamber. Since the r.h.s. of (2.29) is consistent with wall-

crossing in the infinite volume limit and agrees with the left-hand side at za = za∞(γ), it
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must therefore hold everywhere at large volume. Of course, some of the states contributing

to Ω̄MSW(γi) may have some substructure, e.g. be realized as D6-D̄6 bound states, but this

structure cannot be probed in the large volume limit. Importantly, since the quantities (2.23)

entering in the definition of the tree index are independent of the D0-brane charge q0, the

formula flow tree formula (2.29) may be applied to relate the generating functions of DT and

MSW invariants,

hDT
p,q (τ, z

a) =
∑

∑n
i=1 γ̌i=γ̌

gtr,n({γ̌i}, za) eπiτQn({γ̌i})
n∏

i=1

hpi,µi
(τ), (2.30)

where γ̌ = (pa, qa) denotes a part of the charge vector and

Qn({γ̌i}) = κabqaqb −
n∑

i=1

κabi qi,aqi,b (2.31)

appears due to the quadratic term in the definition of q̂0.

3. D3-instantons and contact potential

In this section, we switch to the dual setup8 of type IIB string theory compactified on the

same CY manifold Y. The DT invariants, describing the BPS degeneracies of D4-D2-D0

black holes in type IIA, now appear as coefficients in front of the D3-D1-D(-1) instanton

effects affecting the metric on the hypermultiplet moduli space MH . The main idea of our

approach is that these instanton effects are strongly constrained by demanding that MH

admits an isometric action of the type IIB S-duality SL(2,Z). This constraint uniquely fixes

the modular behavior of the generating functions introduced in the previous section. Here

we recall the twistorial construction of D-instanton corrections to the hypermultiplet metric,

describe the action of S-duality, and analyze the instanton expansion of a particular function

on MH known as contact potential.

3.1 MH and twistorial description of instantons

The moduli space of four-dimensional N = 2 supergravity is a direct product of vector

and hypermultiplet moduli spaces, MV ×MH . The former is a (projective) special Kähler

manifold, whereas the latter is a quaternion-Kähler (QK) manifold. In type IIB string theory

compactified on a CY threefold Y, MH is a space of real dimension 4b2(Y) + 4, which is

fibered over the complexified Kähler moduli space MK(Y) of dimension 2b2(Y). In addition

to the Kähler moduli za = ba + ita, it describes the dynamics of the ten-dimensional axio-

dilaton τ = c0 + i/gs, the Ramond-Ramond (RR) scalars ca, c̃a, c̃0, corresponding to periods

of the RR 2-form, 4-form and 6-form on a basis of Heven(Y,Z), and finally, the NS-axion ψ,

dual to the Kalb-Ramond two-form B in four dimensions.

8Our preference for the type IIB set-up is merely for consistency with our earlier works on hypermultiplet

moduli spaces in d = 4 Calabi-Yau vacua. The same considerations apply verbatim, with minor changes of

wording, to the vector multiplet in type IIA string theory compactified on Y × S1, which is more directly

related to the counting of D4-D2-D0 black holes in four dimensions.
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At tree-level, the QK metric on MH is obtained from the moduli space MK via the c-

map construction [44, 45] and thus is completely determined by the holomorphic prepotential

F (X). But this metric receives gs-corrections, both perturbative and non-perturbative. The

latter can be of two types: either from Euclidean D-branes wrapping even dimensional cycles

on Y, or from NS5-branes wrapped around the whole Y. In this paper we shall be interested

only in the effects of D3-D1-D(-1) instantons, and ignore the effects of NS5 and D5-instantons,

which are subleading in the large volume limit. Since NS5-instantons only mix with D5-

instantons under S-duality, this truncation does not spoil modular invariance.

The most concise way to describe the D-instanton corrections is to consider type IIA

string theory compactified on the mirror CY and to the twistor formalism for quaternionic

geometries [28, 29]. In this approach the metric is encoded in the contact structure on a

CP 1-bundle over MH , known as twistor space. The D-instanton corrected contact structure

has been constructed to all orders in the instanton expansion in [27, 30], and an explicit

expression for the metric has been derived recently in [46, 47]. Here we will present only

those elements of the construction which are relevant for the subsequent analysis, and refer

to reviews [48, 49] for more details.

The crucial point is that, locally, the contact structure is determined by a set of holo-

morphic Darboux coordinates (ξΛ, ξ̃Λ, α) on the twistor space, considered as functions of

coordinates on MH and a coordinate t on the CP 1 fiber. Although all Darboux coordi-

nates are important for recovering the metric from the holomorphic one-form dα + ξ̃Λdξ
Λ,

for the purposes of this paper the coordinate α is irrelevant. Therefore, we consider only

ξΛ and ξ̃Λ which can be conveniently packed into symplectic invariant exponential functions

Xγ = e
(
pΛξ̃Λ − qΛξ

Λ
)
labelled by a charge vector γ = (pΛ, qΛ).

At tree level, the Darboux coordinates (multiplied by t) are known to be simple quadratic

polynomials in t so that Xγ take the form9

X sf
γ (t) = e

(
τ2
2

(
Z̄γ(ū

a) t− Zγ(u
a)

t

)
+ pΛζ̃Λ − qΛζ

Λ

)
, (3.1)

where Zγ(u
a) is the central charge (2.20) but written in terms of the complex structure moduli

ua of the mirror CY, ζΛ and ζ̃Λ are periods of the RR 3-form of the type IIA formulation, and

τ2 = g−1
s is the ten-dimensional string coupling. At non-perturbative level, this expression

gets modified and the Darboux coordinates are determined by the integral equation

Xγ(t) = X sf
γ (t) e

(
1

8π2

∑
γ′

σγ′Ω̄(γ′) ⟨γ, γ′⟩
∫
ℓγ′

dt′

t′
t+ t′

t− t′
Xγ′(t′)

)
, (3.2)

where the sum goes over all charges labeling cycles wrapped by D-branes,

ℓγ = {t ∈ CP 1 : Zγ/t ∈ iR−} (3.3)

is the so called BPS ray, a contour on CP 1 extending from t = 0 to t = ∞ along the direction

fixed by the central charge, and σγ is a quadratic refinement of the DSZ product, i.e. a sign

factor satisfying the defining relation

σγ1σγ2 = (−1)⟨γ1,γ2⟩σγ1+γ2 . (3.4)

9The superscript ‘sf’ means ‘semi-flat’, a type of geometry of the c-map.
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The system of integral equations (3.2) can be solved iteratively by first substituting Xγ′(t′)

on the r.h.s. with its zero-th order value X sf
γ′ (t′) in the weak coupling limit, computing the

leading correction from the integral and iterating this process. This produces an asymptotic

series at weak coupling, in powers of the DT invariants Ω̄(γ). Using the saddle point method,

it is easy to check that the coefficient of each monomial
∏

i Ω̄(γi) is suppressed by a factor

e−πτ2
∑

i |Zγi |, corresponding to an n-instanton effect [31, 50]. Note that multi-instanton effects

become of the same order as one-instanton effects on walls of marginal stability where the

phases of Zγi become aligned.

3.2 D3-instantons in the large volume limit

The above construction of D-instantons is adapted to the type IIA formulation because the

equation (3.2) defines the Darboux coordinates in terms of the type IIA fields appearing

explicitly in the tree level expression (3.1). To pass to the mirror dual type IIB formulation,

one should apply the mirror map, a coordinate transformation from the type IIA to the type

IIB physical fields. The problem is that this transformation itself gets instanton corrections.

A way to fix it is to require that the metric on MH carries an isometric action of S-duality

group SL(2,Z) of type IIB string theory, which acts on the type IIB fields by an element

g =
(
a b

c d

)
in the following way

τ 7→ aτ + b

cτ + d
, ta 7→ |cτ + d| ta,

(
ca

ba

)
7→
(
a b

c d

)(
ca

ba

)
,

c̃a 7→ c̃a − c2,aε(g),

(
c̃0
ψ

)
7→
(
d −c
−b a

)(
c̃0
ψ

)
,

(3.5)

where ε(g) is the logarithm of the multiplier system of the Dedekind eta function [43].

It is important to note that any isometric action on a quaternion-Kähler manifold can be

lifted to a holomorphic isometric action on its twistor space. In the present case, SL(2,Z)

acts on the fiber coordinate t by fractional-linear transformations with τ -dependent coeffi-

cients. This transformation takes a much simpler form when formulated in terms of another

coordinate on CP 1 related to t by a Cayley transformation

z =
t+ i

t− i
. (3.6)

Then the action of SL(2,Z) on the fiber is given by a simple phase rotation10

z 7→ cτ̄ + d

|cτ + d|
z . (3.7)

Using the non-trivial constraint of holomorphicity for the SL(2,Z) isometry on the twistor

space, quantum corrections to the classical mirror map, originally found in [52], were identified

in [53, 54, 18, 22]. In fact, D3-instanton corrections to the mirror map are known only in the

large volume limit where the Kähler moduli are taken to be large, ta → ∞. In the following,

10Actually, this is true only when five-brane instanton corrections are ignored. Otherwise, the lift also gets

a non-trivial deformation [51].
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we restrict ourselves to this approximation so that we can use the results in loc. cit., which

can be written as

ua = ba + ita − i

2τ2

∑
γ∈Γ+

pa

[∫
ℓγ

dz (1− z)Hγ +

∫
ℓ−γ

dz

z3
(1− z)H−γ

]

ζ0 = τ1, ζa = −(ca − τ1b
a)− 3

∑
γ∈Γ+

pa Re

∫
ℓγ

dz z Hγ,

ζ̃a = c̃a +
1

2
κabc b

b(cc − τ1b
c) + κabct

b
∑
γ∈Γ+

pc Im

∫
ℓγ

dz Hγ,

(3.8)

where we introduced a convenient notation11

Hγ(t) =
Ω̄(γ)

(2π)2
σγXγ(t) . (3.9)

Similar results are known for ζ̃0 and the NS-axion dual to the B-field, but we will not need

them in this paper.

Note that the integral contributions to the mirror map are written in terms of the coordi-

nate z (3.6). Besides simplifying the study of modular properties, there is another reason for

this: in the large volume limit, the integrals along BPS rays ℓγ are dominated by the saddle

point [18]

z′γ ≈ −i
(q + b)+√

(pt2)
, where q+ =

qat
a√

(pt2)
, (3.10)

for (pt2) > 0 and z′−γ = 1/z′γ in the opposite case. This shows that all integrands can be

expanded in Fourier series either around z = 0 or z = ∞, keeping constant taz or ta/z,

respectively. This allows to extract the leading order in the large volume limit in a simple

way.

Let us evaluate the combined limit ta → ∞, z → 0 of the part of the integral equation

(3.2) relevant for D3-instantons. As a first step, we rewrite the tree level expression (3.1) in

terms of the type IIB fields. To this end, we restrict the charge γ to the lattice Γ+, take the

central charge as in (2.20) with the cubic12 prepotential (2.21), and substitute the mirror map

(3.8). Furthermore, we change the coordinate t to z and take the combined limit. In this way

one finds

X sf
γ (z) = X cl

γ (z) exp

2π ∑
γ′∈Γ+

(tpp′)

∫
ℓγ′

dz′Hγ′

 , (3.11)

where

X cl
γ (z) = e(−q̂0τ)X (θ)

p,q (z) (3.12)

11The functions Hγ have a simple geometric meaning [27, 55]: they generate contact transformations (i.e.

preserving the contact structure) relating the Darboux coordinates living in the patches separated by the

BPS rays. In fact, these functions together with the contours ℓγ are the fundamental data fixing the contact

structure on the twistor space.
12The other contributions to the prepotential, representing perturbative and non-perturbative α′-

corrections, combine with D(-1) and D1-instantons, but are irrelevant for our discussion of instantons with

non-vanishing D3-brane charge.
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is the classical part of the Darboux coordinates which we represented as a product of two fac-

tors: exponential of the invariant charge (2.26) and the remaining q0-independent exponential

X (θ)
p,q (z) = e−Scl

p e
(
−τ
2
(q + b)2 + ca(qa +

1
2
(pb)a) + iτ2(pt

2)(z2 − 2zzγ)
)
, (3.13)

with Scl
p being the leading part of the Euclidean D3-brane action in the large volume limit

given by Scl
p = πτ2(pt

2)− 2πipac̃a. Next, we can approximate

dt′

t′
t+ t′

t− t′
=

2dz′

1− z′2
1− zz′

z − z′
≈

{
2dz′

z−z′
, γ′ ∈ Γ+,

2(1−zz′)dz′

z′3
, γ′ ∈ −Γ+.

(3.14)

This shows that the contribution of γ′ ∈ −Γ+ is suppressed comparing to γ′ ∈ Γ+ and therefore

can be neglected. As a result, we arrive at the integral equation which is conveniently written

in terms of Hγ

Hγ(z) = Hcl
γ exp

∑
γ′∈Γ+

∫
ℓγ′

dz′Kγγ′(z, z′)Hγ′(z′)

 , (3.15)

where the effective kernel is

Kγ1γ2(z1, z2) = 2π

(
(tp1p2) +

i⟨γ1, γ2⟩
z1 − z2

)
. (3.16)

Below we will need a perturbative solution of the integral equation (3.15). Applying

the iterative procedure outlined below (3.4), or equivalently using the Lagrange inversion

theorem, such solution can be written as a sum over rooted trees [31, §C],

Hγ1(z1) = Hcl
γ1
(z1)

∞∑
n=1

 n∏
i=2

∑
γi∈Γ+

∫
ℓγi

dziH
cl
γi
(zi)

 ∑
T ∈Tr

n

A(T )

|Aut(T )|
, (3.17)

where Tr
n is the set of rooted trees with n vertices and A(T ) is the ‘amplitude’

A(T ) =
∏
e∈ET

Kγs(e),γt(e)(zs(e), zt(e)). (3.18)

A rooted tree13 T consists of n vertices joined by directed edges so that the root vertex,

corresponding to v = 1, has only outgoing edges, whereas all other vertices have one incoming

edge and an arbitrary number of outgoing ones. We label the vertices of the tree by v =

1, . . . , n in an arbitrary fashion, except for the root which is labelled by v = 1. The symmetry

factor |Aut(T )| is the order of the symmetry group which permutes the labels 2, . . . , n without

changing the topology of the tree. Each vertex is decorated by a charge vector γv and a

complex variable zv. We denote by ET the set of edges, VT the set of vertices, s(e) and t(e)

13We will use calligraphic letters T for trees where charges γi are assigned to vertices to distinguish them

from rooted trees T where the charges are assigned to leaves (hence T has always more than n vertices).

Similarly, we will use notations v and v for vertices of these two types of trees, respectively. Note also that

whereas VT denotes the set of all vertices, VT does not includes the leaves. An example of trees of the latter

type are attractor flow trees.
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the source and target vertex of edge e, respectively, and by nv the number of outgoing edges

at vertex v. Unpacking these notations, we get

Hγ1 = Hcl
γ1
+
∑
γ2

K12H
cl
γ1
Hcl

γ2
+
∑
γ2,γ3

(
1

2
K12K13 +K12K23

)
Hcl

γ1
Hcl

γ2
Hcl

γ3
(3.19)

+
∑

γ2,γ3,γ4

(
1

6
K12K13K14 +

1

2
K12K23K24 +K12K13K24 +K12K23K34

)
Hcl

γ1
Hcl

γ2
Hcl

γ3
Hcl

γ4
+ . . .

where we omitted the integrals and denoted Kij = Kγi,γj(zi, zj). The expansion (3.17) is effec-

tively a multi-instanton expansion in powers of the DT invariants Ω̄(γi), which is asymptotic

to the exact result at weak coupling.

3.3 From the contact potential to the instanton generating function

Let us recall that our goal is to derive constraints imposed by S-duality on the DT invariants

Ω̄(γ) appearing as coefficients in the multi-instanton expansion. To achieve this goal, it is

not necessary to study the full metric on MH . It is enough to consider a suitable function on

this moduli space which has a non-trivial dependence on Ω̄(γ) and specified transformations

under S-duality.

Remarkably, onMH there is a natural candidate with the above properties — the so-called

contact potential eϕ. This is a real function which can be defined on any quaternion-Kähler

manifold with a continuous isometry in terms of the contact structure on its twistor space

[29]. Furthermore, there is a general expression for the contact potential in terms of Penrose-

type integrals on the CP 1 fiber. In the case of MH , the required isometry is the shift of the

NS-axion, which survives all quantum corrections as long as NS5-instantons are kept switched

off. In the case at hand, the contact potential is given exactly by [27]

eϕ =
iτ 22
16

(
ūΛFΛ − uΛF̄Λ

)
− χY

192π
+

iτ2
16

∑
γ

∫
ℓγ

dt

t

(
t−1Zγ(u

a)− tZ̄γ(ū
a)
)
Hγ, (3.20)

where χY is the Euler characteristic of Y. This formula has a non-trivial contribution due to

D-instantons given by the last term.

On the other hand, in the classical, large volume limit one finds eϕ =
τ22
12
(t3), which shows

that the contact potential can be identified with the four-dimensional dilaton and in this

approximation behaves as a modular form of weight (−1
2
,−1

2
) under S-duality transformations

(3.5). In fact, one can show [27] that SL(2,Z) preserves the contact structure, i.e. it is an

isometry of MH , only if the full non-perturbative contact potential transforms in this way,

eϕ 7→ eϕ

|cτ + d|
. (3.21)

Furthermore, since S-duality acts by rescaling on both Kähler moduli ta and fiber coordinate

z (see (3.7)), it preserves each order in the expansion around the large volume limit. This

implies that the large volume limit of the D3-instanton contribution to eϕ, which we denote

by (eϕ)D3, must itself transform as (3.21). It is this condition that we shall exploit to derive

modularity constraints on the DT invariants.
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To make this condition more explicit, let us extract the D3-instanton contribution to

(3.20). The procedure is the same as was used to get (3.15), and we relegate the details of

the calculation to appendix A. The result can be written in a concise way using the complex

function defined by

G =
∑
γ∈Γ+

∫
ℓγ

dz Hγ(z)−
1

2

∑
γ1,γ2∈Γ+

∫
ℓγ1

dz1

∫
ℓγ2

dz2Kγ1γ2(z1, z2)Hγ1(z1)Hγ2(z2) (3.22)

and the modular covariant derivative operator

Dh =
1

2πi

(
∂τ +

h

2iτ2
+

ita

4τ2
∂ta

)
, (3.23)

which maps modular functions of weight (h, h̄) to modular functions of weight (h+2, h̄). Then

one has (generalizing [21, (4.5)] to all orders in the instanton expansion)

(eϕ)D3 =
τ2
2
ReD− 3

2
G +

1

32π2
κabct

c∂c̃aG∂c̃bG. (3.24)

It is immediate to see that (eϕ)D3 transforms under S-duality as (3.21) provided the function

G transforms as a modular form of weight (−3
2
, 1
2
). In order to derive the implications of this

fact, we need to express G in terms of the generalized DT invariants.

For this purpose, we substitute the multi-instanton expansion (3.17) into (3.22). We

claim that the result takes the simple form

G =
∞∑
n=1

 n∏
i=1

∑
γi∈Γ+

∫
ℓγi

dziH
cl
γi
(zi)

Gn({γi, zi}), (3.25)

where Gn({γi, zi}) is now a sum over unrooted trees with n vertices,

Gn({γi, zi}) =
∑

T ∈Tn

A(T )

|Aut(T )|
=

1

n!

∑
T ∈Tℓ

n

A(T ), (3.26)

where in the second equality we rewrote the result as a sum over unrooted labelled trees.14 To

see why this is the case, observe that under the action of the operator D̂ = Hcl∂Hcl rescaling

all functions Hcl
γ , the function G maps to the first term in (3.22), which we denote by F ,

D̂ · G = F , F ≡
∑
γ∈Γ+

∫
ℓγ

dz Hγ, (3.27)

as can be easily verified with the help of the integral equation (3.15). The multi-instanton

expansion of F follows immediately from (3.17),

F =
∞∑
n=1

 n∏
i=1

∑
γi∈Γ+

∫
ℓγi

dziH
cl
γi
(zi)

 ∑
T ∈Tr

n

A(T )

|Aut(T )|
. (3.28)

14The number of such trees is |Tℓ
n| = nn−2 = {1, 1, 3, 16, 125, 1296, . . . }. Such trees also appear in the

Joyce-Song wall-crossing formula [35, 36] and are conveniently labelled by their Prüfer code.
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Integrating back the action of the derivative operator D̂, we see that the sum over rooted

trees in (3.28) turns into the sum over unrooted trees in (3.26). At the first few orders we

get, using the same shorthand notation as in (3.19),

G =
∑
γ

Hcl
γ +

1

2

∑
γ1,γ2

K12H
cl
γ1
Hcl

γ2
+

1

2

∑
γ1,γ2,γ3

K12K23H
cl
γ1
Hcl

γ2
Hcl

γ3

+
∑

γ1,γ2,γ3,γ4

(
1

6
K12K13K14 +

1

2
K12K23K34

)
Hcl

γ1
Hcl

γ2
Hcl

γ3
Hcl

γ4
+ . . .

(3.29)

The simplicity of the expansion (3.26), and the relation (3.24) to the contact potential,

show that the function G is very natural and, in some sense, more fundamental15 than the

naive instanton sum F . We shall henceforth refer to G as the ‘instanton generating function’.

In the following we shall postulate that G transforms as a modular form of weight (−3
2
, 1
2
),

and analyze the consequences of this assumption for the DT invariants.

4. Theta series decomposition and modularity

4.1 Factorisation

To derive modularity constraints on the DT invariants, we need to perform a theta series

decomposition of the generating function G defined in (3.22). To this end, let us make use of

the fact noticed in (2.23) that the DSZ products ⟨γ, γ′⟩ and hence the kernels (3.16) do not

depend on the q0 charge. Choosing then the quadratic refinement σγ as in (C.5), which is

also q0-independent, and using the factorization (3.12) of X cl
γ , one can rewrite the expansion

(3.25) as follows

G =
∞∑
n=1

1

(2π)2n

[
n∏

i=1

∑
pi,qi

σpi,qih
DT
pi,qi

∫
ℓγi

dzi X (θ)
pi,qi

(zi)

]
Gn({γi, zi}), (4.1)

where the sum over the invariant charges q̂i,0 gave rise to the generating functions of DT

invariants defined in (2.27). This is not yet the desired form because these generating functions

depend non-trivially on the remaining electric charges qi,a. If it were not for this dependence,

the sum over qi,a would produce certain non-Gaussian theta series, and at each order we would

have a product of this theta series and n generating functions. Then the modular properties

of the theta series would dictate the modular properties of the generating function.

Such a theta series decomposition can be achieved by expressing the DT invariants in

terms of the MSW invariants, for which the dependence on electric charges qi,a reduces to the

dependence on the residue classes µi,a due to the spectral flow symmetry. Substituting the

expansion (2.30) of hDT
p,q in terms of hp,µ, the expansion (4.1) of the function G can be brought

to the following factorized form

G =
∞∑
n=1

2−
n
2

π
√
2τ2

[
n∏

i=1

∑
pi,µi

σpihpi,µi

]
e−Scl

p ϑp,µ

(
Φtot

n , n− 2
)
, (4.2)

15In [21], it was noticed that the function G, denoted by F̃ in that reference and computed at second order

in the multi-instanton expansion, could be obtained from the seemingly simpler function F by halving the

coefficient of its second order contribution. Now we see that this ad hoc prescription is the consequence of

going from rooted to unrooted trees, as a result of adding the second term in (3.22).
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where ϑp,µ is the theta series (C.1) with parameter λ = n − 2 and the kernel which has the

following structure

Φtot
n (x) = Sym


∑

n1+···nm=n
nk≥1

Φm(x
′)

m∏
k=1

Φ g
nk
(xjk−1+1, . . . , xjk)

 , (4.3)

where the sum runs over ordered partitions of n, whose number of parts is denoted by m, and

we adopted notations from (2.16) for indices jk. The argument x of the kernel encodes the

electric components of the charges (shifted by the B-field and rescaled by
√
2τ2) and lives in

a vector space (⊕n
i=1Λi) ⊗ R of dimension d = nb2(Y), given by b2(Y) copies of the lattice

Λ, where the i-th copy Λi carries the bilinear form κi,ab = κabcp
c
i of signature (1, b2 − 1).

Therefore, ϑp,µ is an indefinite theta series of signature (n, n(b2 − 1)) with the bilinear form

given explicitly in (C.4).

Finally, the kernel (4.3) is constructed from two other functions. The first, Φn, is the

multiple integral of the coefficient Gn in the expansion (3.25),

Φn(x) =

(√
2τ2
2π

)n−1
[

n∏
i=1

∫
ℓγi

dzi
2π

Wpi(xi, zi)

]
Gn({γi, zi}), (4.4)

with measure factor

Wp(x, z) = e−2πτ2z2(pt2)−2πi
√
2τ2 z (pxt) (4.5)

coming from the z-dependent part of (3.13). Although this function is written in terms of

Gn depending on full electromagnetic charge vectors γi, it is actually independent of their q0
components. Indeed, using the result (3.26), it can be rewritten as

Φn(x) =
1

n!

[
n∏

i=1

∫
ℓγi

dzi
2π

Wpi(xi, zi)

] ∑
T ∈Tℓ

n

∏
e∈ET

K̂s(e)t(e), (4.6)

where we introduced a rescaled version of the kernel (3.16)

K̂ij(zi, zj) =

((√
2τ2 t+ i

xi − xj
zi − zj

)
pipj

)
. (4.7)

Note that τ2 and ta appear only in the modular invariant combination
√
2τ2 t

a. In (4.3)

this function appears with the argument x′ and carries a dependence on p′ (not indicated

explicitly) which are both mb2-dimensional vectors with components (cf. (2.16))

p′ak =

jk∑
i=jk−1+1

pai , x′ak = κ′abk

jk∑
i=jk−1+1

κi,bcx
c
i , (4.8)

where κ′k,ab = κabcp
′c
k .

The second function, Φ g
n , appears due to the expansion of DT invariants in terms of the

MSW invariants and is given by a suitably rescaled tree index

Φ g
n(x) =

σγ(
√
2τ2)

n−1∏n
i=1 σγi

gtr,n({γi}, za). (4.9)
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It is also written in terms of functions depending on the full electromagnetic charge vectors

γi (with γ = γ1 + · · · γn). However, using (3.4), all quadratic refinements can be expressed

through (−1)⟨γi,γj⟩ which cancel the corresponding factors in the tree index (see (2.6)). Fur-

thermore, as was noticed in the end of section 2.3, the tree index is independent of the q0
components of the charge vectors. Therefore, it can be written as a function of pai , µi,a and

xai =
√
2τ2(κ

ab
i qi,b + ba). Then, since after canceling the sign factors gtr,n is homogeneous of

degree n− 1 in qi,a, all factors of
√
2τ2 in (4.9) cancel as well.

4.2 Modularity and Vignéras’ equation

As explained in appendix C.1, the theta series ϑp,µ

(
Φ, λ

)
is a vector-valued modular form

of weight (λ + d/2, 0) provided the kernel Φ satisfies Vignéras’ equation (C.3). In our case

λ = n − 2 and the dimension of the lattice d = nb2(Y) so that the expected weight of the

theta series is (2(n − 1) + nb2/2, 0). It is consistent with weight (−3
2
, 1
2
) of G given in (4.2)

only if hDT
p,µ is a vector-valued holomorphic modular form of weight (−b2/2 − 1, 0). However

for this to be true, the kernel Φtot
n ought to satisfy Vignéras’ equation. Let us check whether

or not this is the case.

To this end, we first consider the kernel Φn. In appendix D we evaluate the multiple

integrals defining this kernel explicitly . To present the final result, let us introduce the

following d-dimensional vectors vij,ui,j:

(vij)
a
k = δkip

a
j − δkjp

a
i such that vij · x = (pipj(xi − xj)),

(uij)
a
k = δki(pjt

2)ta − δkj(pit
2)ta such that uij · x = (pjt

2)(pixit)− (pit
2)(pjxjt),

(4.10)

where k labels the copy in ⊕n
k=1Λk, a = 1, . . . b2(Y), and the bilinear form is given in (C.4).

This first scalar product vij · x corresponds to the DSZ product ⟨γi, γj⟩, whereas the second

uij · x to −2 Im [ZγiZ̄γj ] (2.23), both rescaled by
√
2τ2 and expressed in terms of xai . From

these vectors we also construct two sets of vectors which are assigned to the edges of an

unrooted labelled tree T , such as the trees appearing in (3.26) and (4.6). Namely,

ve =
∑
i∈VT s

e

∑
j∈VT t

e

vij, ue =
∑
i∈VT s

e

∑
j∈VT t

e

uij, (4.11)

where T s
e , T t

e are the two disconnected trees obtained from the tree T by removing the edge

e. Then the kernel Φn can be expressed as follows,

Φn(x) =
Φ1(x)

2n−1n!

∑
T ∈Tℓ

n

Φ̃M
n−1({ue}, {vs(e)t(e)};x). (4.12)

Here the first factor is simply a Gaussian

Φ1(x) =
e
−π(pxt)2

(pt2)

2π
√
2τ2(pt2)

(4.13)

which ensures the suppression along the direction of the total charge in the charge lattice.

In the second factor one sums over unrooted labelled trees T with n vertices, with summand
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given by a function Φ̃M
n defined as in (C.15), upon replacing ΦE

n by ΦM
n in that expression.

Both ΦE
n and ΦM

n are the so-called generalized (complementary) error functions introduced

in [24] and further studied in [25], whose definitions are recalled in (C.10) and (C.14). The

functions Φ̃M
n−1 in (4.12) depend on two sets of n− 1 d-dimensional vectors: the vectors from

the first set are given by ue defined above, whereas vs(e)t(e) coincide with vij for i and j

corresponding to the source and target vertices of edge e of the labelled tree.

The remarkable property of the generalized error functions Φ̃M
n−1 is that, away from certain

loci where these functions are discontinuous, they satisfy Vignéras’ equation for λ = 0 and

n−1, respectively. Given that Φ1 is also a solution for λ = −1, and the vector t = (ta, . . . , ta)

(such that t · x = (pxt)) is orthogonal to all vectors ue and vs(e)t(e), the kernel (4.12) solves

this equation for λ = n− 2.

However, as mentioned above, it fails to do so at the discontinuity loci. These disconti-

nuities arise due to dependence of the integration contours ℓγ on moduli and electric charges.

Of course, since the integrands are meromorphic functions, the integrals do not depend on

deformations of the contours provided they do not cross the poles. But this is exactly what

happens when two BPS rays, say ℓγ and ℓγ′ , exchange their positions, which in turn takes

place when the phases of the corresponding central charges Zγ and Zγ′ align, as follows from

(3.3). The loci where such alignment takes place are nothing else but the walls of marginal

stability. This point will play an important role in the next subsection since it makes possible

to recombine the discontinuities of the generalized error functions with discontinuities of the

tree indices.

Next, we evaluate the action of Vignéras’ operator on Φ g
n . To this end, it is convenient

to use the representation of the tree index as a sum over attractor flow trees (2.3). Let us

assign a nb2-dimensional vector ṽv to each vertex v of a flow tree . Denoting by Iv the set of

leaves which are descendants of vertex v, we set

ṽv =
∑

i∈IL(v)

∑
j∈IR(v)

vij. (4.14)

With these definitions the kernel (4.9) can be written as

Φ g
n(x) = (−1)n−1

∑
T∈Taf

n

∏
v∈VT

(ṽv,x)∆
zp(v)
γL(v)γR(v) . (4.15)

The factors ∆z
γLγR

are locally constant and therefore, if we stay away from the loci of their

discontinuities, the action of Vignéras operator reduces to its action on the scalar products

(ṽv,x). For a single such factor one finds

Vλ(ṽv,x) = (ṽv,x)Vλ−1 + 2ṽv · ∂x. (4.16)

The crucial observation is that all vectors ṽv appearing in the product (4.15) for a single tree

are mutually orthogonal (ṽv, ṽv′) = 0, which is clear because ⟨γL(v), γR(v)⟩ is antisymmetric in

charges γL(v), γR(v), whereas the factors associated with vertices which are not descendants of

v either depend on their sum or do not depend on them at all. Therefore, one obtains

VλΦ
g
nk
(x) = Φ g

nk
(x)Vλ−nk+1 + 2(−1)nk−1

∑
T∈Taf

nk

∆(T )
∑
v∈VT

 ∏
v′∈VT \{v}

(ṽv′ ,x)

 ṽv · ∂x. (4.17)
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Let us now evaluate the action of Vn−2 on the full kernel Φtot
n . Applying the result

(4.17), we observe that the second term vanishes on the other factors in (4.3) due to the

same reason that they either do not depend (Φ g
nk′

, k′ ̸= k) or depend (Φm) only on the sum

of charges entering Φ g
nk
. Therefore, one finds that, away from discontinuities of generalized

error functions and ∆(T ), one has Vn−2 · Φtot
n = 0.

4.3 Discontinuities and the anomaly

Let us now turn to the discontinuities of Φtot
n which we ignored so far and which spoil Vignéras’

equation and hence modularity of the theta series. There are three potential sources of these

discontinuities:

1. walls of marginal stability — at these loci Φm are discontinuous due to exchange of

integration contours and Φ g
nk

jump due to factors ∆
zp(v)
γL(v)γR(v) assigned to the root vertices

of attractor flow trees;

2. ‘fake walls’ — these are loci in the moduli space where Im
[
ZγL(v)

Z̄γR(v)
(zap(v))

]
= 0, and

hence the corresponding ∆-factor jumps, where v is not a root vertex — they have the

meaning of walls of marginal stability for the intermediate bound states appearing in

the attractor flow;

3. moduli independent loci where (ṽv,x) = 0 — at these loci the factors ∆
zp(v)
γL(v)γR(v) and

hence Φ g
nk

are discontinuous due to the second term in (2.4).

Remarkably, the two effects due to the non-trivial charge and moduli dependence of the

DT invariants and the contours cancel each other and the function G turns out to be smooth

at loci of the first type. This is expected because the whole construction of D-instantons has

been designed to make the resulting metric on the moduli space smooth across these loci,

which required the cancelation of these two types of discontinuities [31, 30]. Besides, in [32]

it was proven that the contact potential is also smooth, which suggests that the function G
must be smooth as well. In appendix B we present an explicit proof of this fact based on the

representation in terms of trees.

Furthermore, in [20] it was shown that the discontinuities across ‘fake walls’ cancel in the

sum over flow trees as well. In fact, this cancelation is explicit in the representation of the

partial tree index given by the recursive formula (2.15) where the signs generating such ‘fake

discontinuities’ do not arise at all. As a result, it remains to consider only the discontinuities

of the third type corresponding to the moduli independent loci.

It is straightforward to check that already for n = 2 these discontinuities are present and

do spoil modularity of the theta series. For small n one can explicitly evaluate the anomaly

in Vignéras’ equation. It is given by a series of terms proportional to δ(ṽv,x). Note that

no derivatives of delta functions or products of two delta functions arise despite the presence

of the second derivative in Vignéras’ operator. This is because each sgn(ṽv,x) from ∆(T ) is

multiplied by (ṽv,x) from κ(T ) in (2.3) and one gets a non-vanishing result only if the second

order derivative operator acts on both factors. In particular, this implies that the anomaly is

completely characterized by the action of Vλ on Φ g
n .
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5. Modular completion

Since the theta series ϑp,µ(Φ
tot
n ) are not modular for n ≥ 2, the analysis of the previous section

implies that the generating function hp,µ of the MSW invariants is not modular either as soon

as the divisor D = paγa is reducible. However, its modular anomaly has a definite structure.

In particular, in [21] it was shown that for n = 2, hp,µ must be a vector-valued mixed mock

modular form, i.e. it has a non-holomorphic completion ĥp,µ constructed in a specific way

from a set of holomorphic modular forms and their integrals of Eichler type [26, 13]. In this

section we generalize this result for abitrary n, i.e. for any degree of reducibility of the divisor.

5.1 Completion of the generating function

Let us recall the notations γ̌ = (pa, qa) and Qn from (2.31), and decompose the electric

component qa as in (2.25). Then we define

ĥp,µ(τ) = hp,µ(τ)−
∞∑
n=2

∑
∑n

i=1 γ̌i=γ̌

Rn({γ̌i}, τ) eπiτQn({γ̌i})
n∏

i=1

hpi,µi
(τ). (5.1)

We are looking for non-holomorphic functions Rn, exponentially suppressed for large charges,

such that ĥp,µ transforms as a modular form. The condition for this to be true can be found

along the same lines as before: one needs to rewrite the expansion of the function G as a series

in ĥp,µ and require that at each order the coefficient is given by a modular covariant theta

series. For such a theta series decomposition to be possible however, it is important that ĥp,µ
be invariant under the spectral flow, which implies that the functions Rn be independent of

the spectral flow parameter ϵa of the total charge γ̌. This condition will be an important

consistency requirement on our construction.

Rather than inverting (5.1) and substituting the result into (4.2), we can consider the

generating function of DT invariants hDT
p,µ and, as a first step, rewrite it as a series in ĥp,µ.

Let us denote the coefficient of such expansion by ĝn({γ̌i}, za) (with ĝ1 ≡ 1), i.e. we take (cf.

(2.30))

hDT
p,q (τ, z

a) =
∑

∑n
i=1 γ̌i=γ̌

ĝn({γ̌i}, za) eπiτQn({γ̌i})
n∏

i=1

ĥpi,µi
(τ). (5.2)

It is clear that ĝn is a direct analogue of the tree index gtr,n, and to get the expansion of G in

terms of ĥp,µ, it suffices to replace gtr,n by ĝn in (4.9). Our first problem is to express these

coefficients in terms of the functions Rn.

The result can be nicely formulated using the so-called Schröder trees, which are rooted

ordered trees such that all vertices (except the leaves) having at least 2 children. Their vertices

are decorated by charges in such way that the leaves have charges γi, whereas the charges

at other vertices are defined by the inductive rule γv =
∑

v′∈child(v) γv′ . Note that these trees

should not be confused with flow trees, since they are not restricted to be binary nor do they

carry moduli at the vertices. We denote the set of Schröder trees16 with n leaves by TS
n.

16The number of Schröder trees with n leaves is the n − 1-th super-Catalan number, TS
n =

{1, 1, 3, 11, 45, 197, 903, . . . } for n ≥ 1 (sequence A001003 on the Online Encyclopedia of Integer Sequences).
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Figure 3: An example of Schröder tree contributing to W8. Near each vertex we showed the

corresponding factor using the shorthand notation γi+j = γi + γj .

Let us also introduce a convenient notation: for any set of functions fn({γ̌i}) depending
on n charges, we set fv ≡ fnv({γ̌v′}) where v′ ∈ child(v) and nv is their number. Using

these notations, the expression of ĝn in terms of Rn can be encoded into a recursive equation

provided by the following proposition, whose proof we relegate to appendix E:

Proposition 1. The coefficients ĝn are determined recursively by the following equation

ĝn({γ̌i}, za) = −1

2
Sym

{
n−1∑
ℓ=1

∆z
γℓ
Lγ

ℓ
R
κ(γℓLR) ĝℓ({γ̌i}ℓi=1, z

a
ℓ ) ĝn−ℓ({γ̌i}ni=ℓ+1, z

a
ℓ )

}
+Wn({γ̌i}),

(5.3)

where γℓL =
∑ℓ

i=1 γi, γ
ℓ
R =

∑n
i=ℓ+1 γi, γ

ℓ
LR = ⟨γℓL, γℓR⟩, zaℓ is the value of the moduli where the

attractor flow crosses the wall for the decay γ → γℓL + γℓR (cf. (2.13)), and Wn is a function

given by the sum over Schröder trees

Wn({γ̌i}) = Sym

∑
T∈TS

n

∏
v∈VT

Rv

 . (5.4)

What are conditions on ĝn for the corresponding theta series to be modular? Let us

denote by Φ ĝ
n the kernel defined by ĝn analogously to (4.9). Then the above analysis implies

that the modularity requires from Φ ĝ
n to satisfy Vignéras equation away from walls of marginal

stability, whereas at these walls its discontinuities should follow the same pattern as before

to cancel the discontinuities from the contour exchange in Φm. Thus, the completion should

smoothen out the discontinuities from the moduli independent signs sgn(ṽv,x), but otherwise

leave the action of Vignéras’ operator intact. Formally, this means that Φ ĝ
n must satisfy the

following equation

Vn−1 ·Φ ĝ
n = Sym

n−1∑
ℓ=1

[
ũ2

ℓ ∆
ĝ
n,ℓ δ

′(ũℓ ·x) + 2ũℓ · ∂x∆ĝ
n,ℓ δ(ũℓ ·x)

]
, ∆ĝ

n,ℓ =
1

2
(ṽℓ,x) Φ

ĝ
ℓ Φ

ĝ
n−ℓ,

(5.5)

where we introduced two vectors constructed from the vectors (4.10),

ṽℓ =
ℓ∑

i=1

n∑
j=ℓ+1

vij , ũℓ =
ℓ∑

i=1

n∑
j=ℓ+1

uij . (5.6)
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Note that (ũℓ,x) corresponds to the quantity Sℓ (2.12).

To solve the above constraints, let us consider the following iterative ansatz

ĝn({γ̌i}, za) = g(0)n ({γ̌i, ci})− Sym


∑

n1+···+nm=n
nk≥1, m<n

ĝm({γ̌′k}, za)
m∏
k=1

Enk
(γ̌jk−1+1, . . . , γ̌jk)

 , (5.7)

where the notations for indices and primed charges are the same as in (2.16). This ansatz is

motivated by analogy with the iterative equation for the (partial) tree index (2.15). It involves

two yet unknown sets of functions, g
(0)
n and En. The former carry the moduli dependence

through the variables ci (2.12), whereas the latter are moduli independent. We set g
(0)
1 =

E1 = 1 and also assume that g
(0)
n have discontinuities only at walls of marginal stability, i.e.

at
∑

i∈I ci = 0 for various subsets I of indices.

The unknown functions together with the functions Rn defining the completion, or their

combinations (5.4), are supposed to be fixed by the conditions (5.3) and (5.5). In appendix

E we prove the following result:

Proposition 2. Let us split En = E (0)
n + E (+)

n into E (+)
n which is exponentially decreasing for

large charges part and the non-decreasing remainder E (0)
n . Then the ansatz (5.7) satisfies the

recursive equation (5.5) provided

1. the functions g
(0)
n are subject to a similar recursive relation

1

4
Sym

{
n−1∑
ℓ=1

(
sgn(Sℓ)− sgn(Γnℓ)

)
κ(Γnℓ) g

(0)
ℓ ({γ̌i, c(ℓ)i }ℓi=1) g

(0)
n−ℓ({γ̌i, c

(ℓ)
i }ni=ℓ+1)

}
= g(0)n ({γ̌i, ci})− g(0)n ({γ̌i, βni}),

(5.8)

where Sk, βkℓ, Γkℓ and c
(ℓ)
i were defined in (2.12), (2.14);

2. the non-decreasing part of En is fixed in terms of g
(0)
n ({γ̌i, ci}) as

E (0)
n ({γ̌i}) = g(0)n ({γ̌i, βni}); (5.9)

3. its decreasing part is given by

E (+)
n ({γ̌i}) = − Sym


∑

n1+···+nm=n
nk≥1, m>1

Wm({γ̌′k})
m∏
k=1

Enk
(γ̌jk−1+1, . . . , γ̌jk)

 . (5.10)

Furthermore, if the functions En depend on electric charges qi,a only through the DSZ products

γij and their kernels Φ E
n (x) defined as in (4.9) are smooth solutions of Vignéras’ equation,

Vn−1 · Φ E
n = 0, (5.11)

then the ansatz (5.7) also satisfies the modularity constraint (5.5).
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This proposition allows in principle to fix all unknown functions. Indeed, the recursive

relation (5.8) determines all g
(0)
n . Then equations (5.9) and (5.10) give the two parts of

En = E (0)
n + E (+)

n in terms of g
(0)
n and Wn. At this point the latter are still undetermined and

are defined in terms of the unknown functions Rn. But there is an additional constraint that

En should solve Vignéras’ equation. This constraint has a unique solution for E (+)
n for a given

E (0)
n and thus establishes a relation between Wn and g

(0)
n . Finally, inverting (5.4) generates a

solution for Rn.

5.2 Generalized error functions and the completion

We see that the first step to be done is to provide an explicit expression for g
(0)
n . Once such

an expression is known, all other functions can be determined algebraically.

A solution for g
(0)
n can be guessed on the basis of (4.12). The point is that these two sets

of functions both have discontinuities at walls of marginal stability which, as we know, must

cancel each other. Furthermore, they should recombine into a smooth solution of Vignéras’

equation. Thus, Φn is expected to encode at least a part of the completion of g
(0)
n . On the

other hand, as explained in appendix C.2, the function Φ̃M
n−1, from which Φn is constructed,

appears as one of the terms (the one with the fastest decay) in the expansion of the function

Φ̃E
n−1 (C.15) with the arguments V = {ue}, Ṽ = {vs(e)t(e)}. The latter is a smooth solution

of Vignéras’ equation having the asymptotics (C.16). This means that Φ̃M
n−1 is a part of the

completion for the kernel given by this asymptotics. This naturally leads us to the following

ansatz which is proven in appendix E:

Proposition 3. The function g
(0)
n ({γ̌i, ci}) is given by the sum over unrooted labelled trees

with n leaves,

g(0)n ({γ̌i, ci}) =
(−1)n−1+

∑
i<j γij

2n−1n!

∑
T ∈Tℓ

n

∏
e∈ET

γs(e)t(e) sgn(Se), (5.12)

where17

Se =
∑
i∈VT s

e

ci =
∑
i∈VT s

e

∑
j∈VT t

e

Im
[
ZγiZ̄γj

]
. (5.13)

Given the result (5.12) and the relation (5.9), one obtains an explicit expression for the

non-decreasing part of En,

E (0)
n ({γ̌i}) =

(−1)
∑

i<j γij

2n−1n!

∑
T ∈Tℓ

n

∏
e∈ET

γs(e)t(e) sgn(Γe), Γe =
∑
i∈VT s

e

∑
j∈VT t

e

γij. (5.14)

From Proposition 2 we know that the kernel Φ E
n corresponding to the full function En must

solve Vignéras’ equation. Thus, we come to the problem of finding a smooth function Φ E
n

annihilated by Vn−1, which asymptotes to a locally polynomial function at infinity,

lim
x→∞

Φ E
n (x) =

1

2n−1n!

∑
T ∈Tℓ

n

∏
e∈ET

(vs(e)t(e),x) sgn(ve,x) , (5.15)

17Note that the sign factor (−1)
∑

i<j γij is equal to the ratio of quadratic refinements appearing in (4.9).
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where the vectors vij,ve are defined in (4.10) and (4.11). From the above discussion, it is

clear that such function can be obtained from (4.12) by replacing Φ̃M
n−1 by Φ̃E

n−1 and ue by

ve. Thus, we arrive at the following result

Φ E
n (x) =

1

2n−1n!

∑
T ∈Tℓ

n

Φ̃E
n−1({ve}, {vs(e)t(e)};x). (5.16)

In words, En is a sum over unrooted labelled trees of solutions Φ̃E
n−1 of Vignéras equation with

λ = n − 1, obtained from standard generalized error functions ΦE
n−1 by acting with n − 1

raising operators.

After substituting into the iterative ansatz (5.7), the two results (5.12) and (5.16) com-

pletely specify the coefficients of the expansion (5.2) of the generating function of DT invari-

ants in terms of ĥp,µ. The result of the iteration can in fact be written explicitly as a sum

over Schröder trees. Adopting the same notations as in Proposition 1, one has

Proposition 4. The function ĝn({γ̌i, ci}) is given by the sum over Schröder trees with n

leaves,

ĝn = Sym

∑
T∈TS

n

(−1)nT−1
(
g(0)v0

− Ev0
) ∏
v∈VT \{v0}

Ev

 , (5.17)

where v0 is the root of the tree and nT is the number of its vertices (excluding the leaves).

The properties of g
(0)
n and En ensure that the theta series appearing in the corresponding

decomposition of G is modular so that the modularity of G requires the function ĥp,µ to be

a vector valued (non-holomorphic) modular form of weight (−b2/2− 1, 0). The functions Rn

entering in the non-holomorphic completion ĥp,µ, are then given by the following proposition,

whose proof can again be found in appendix E:

Proposition 5. Inverting the relations (5.4) and (5.10), one obtains

Rn = Sym

∑
T∈TS

n

(−1)nT E (+)
v0

∏
v∈VT \{v0}

E (0)
v

 . (5.18)

It is important to check that the resulting functions Rn are invariant under the spectral

flow of the total charge. This is in fact a simple consequence of the fact that the functions En
entering their definition depend on the electric charges only through the DSZ products γij.

As follows from (2.23), all such products are invariant under the spectral flow of the total

charge, hence Rn are invariant as well.

In appendix F we present explicit expressions for various elements of our construction up

to order n = 4. Based on these results, we conjecture a general formula for the kernel Φ̂tot
n of

the theta series appearing in the expansion of G in terms of ĥp,µ:

Conjecture 1. The generating function of multi-instantons is given by

G =
∞∑
n=1

2−
n
2

π
√
2τ2

[
n∏

i=1

∑
pi,µi

σpiĥpi,µi

]
e−Scl

p ϑp,µ

(
Φ̂tot

n , n− 2
)
, (5.19)
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where the kernels of the theta series are given by

Φ̂tot
n = Φ1 Sym

∑
T∈TS

n

(−1)nT−1
(
Φ̂ E

v0
− Φ E

v0

) ∏
v∈VT \{v0}

Φ E
v

 . (5.20)

Here Φ1(x) is the Gaussian factor (4.13), and Φ̂ E
n is obtained from Φ E

n by replacing the vectors

ve in the arguments of generalized error functions by the vectors ue, i.e.

Φ̂ E
n (x) =

1

2n−1n!

∑
T ∈Tℓ

n

Φ̃E
n−1({ue}, {vs(e)t(e)};x). (5.21)

Note that this result automatically implies that the theta series ϑp,µ

(
Φ̂tot

n , n− 2
)
is modular,

since its kernel is a solution of Vignéras’ equation.

6. Discussion

In this paper we studied the modular properties of the generating function hp,µ(τ) of MSW

invariants encoding BPS degeneracies of D4-D2-D0 black holes in Type IIA string theory

on a Calabi-Yau threefold, with fixed D4-charge pa, D2-brane charge (up to spectral flow)

µa and invariant D0-brane charge q̂0 (defined in (2.26)) conjugate to the modular parameter

τ . Our main result is an explicit formula for the non-holomorphic modular completion ĥp,µ
(5.1), where the functions Rn({γi}, τ) are given by Eq. (5.18), with Ev = E (0)

v + E (+)
v specified

by (5.14) and (5.16). This result applies for D4-branes wrapping a general effective divisor

which may be the sum of an arbitrary number n of irreducible divisors, and it follows from

demanding that the vector multiplet moduli space in D = 3 (or the hypermultiplet moduli

space in the dual type IIB picture) admits an isometric action of SL(2,Z).

The existence of such completion is far from obvious. We arrived at this result by can-

celing the modular anomaly of an indefinite theta series of signature (n, nb2(Y) − n) with

a complicated kernel (4.3). In particular, the Vignéras equation encoding this anomaly in-

volves Kähler moduli in a non-trivial way through the walls of marginal stability, whereas

the functions Rn in our ansatz (5.1) can only depend (non-holomorphically) on the modular

parameter τ and on the charges γi. We regard this cancellation as one of many string theory

‘miracles’.

On the other hand, the arguments in the present work were somewhat formal, since we did

not control the convergence of the various generating functions and theta series. Technically,

we constructed a theta series ϑp,µ

(
Φ̂tot

n , n−2
)
whose kernel satisfies Vignéras’ equation (C.3),

but we did not demonstrate that it decays as required by Vignéras’ criterium. (For n = 2 this

is easy to show [21] since the kernel is a product of an exponentially suppressed factor and a

difference of two error functions defined by two positive vectors.) In fact, convergence issues

already arise when expressing the generating function of DT invariants in terms of MSW

invariants in (2.30), and are related to the problem of convergence of the BPS black hole

partition function. The latter was proven to converge in the large volume limit for the case

involving up to n ≤ 3 centers in [56]. We believe that the results for the tree index obtained

in [20] will allow to extend this result to arbitrary n.
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The structure of the completion suggests that, for a divisor decomposable into a sum

of n effective divisors, the holomorphic generating function hp,µ is a mixed vector valued

mock modular form of higher depth, equal to n− 1. Such objects have recently appeared in

the mathematical literature [57, 58, 59, 60] and correspond to holomorphic functions whose

completion is constructed from period (or Eichler) integrals of mock modular forms but smaller

depth (with depth 0 mock modular forms being synonymous with ordinary modular forms).

For instance, in the case of standard mock modular forms of depth one, the completion is

given by an Eichler integral of a modular function [23]. In our case this structure follows from

the fact that the completion ĥp,µ is built from the generalized error functions which have a

representation in terms of iterated period integrals [24, 57]. Note however that in order to

make manifest the mixed mock modular nature of hp,µ, one should represent its completion

as a sum of products of holomorphic modular forms times iterated period integral of anti-

holomorphic modular forms. This is a non-trivial task which involves the technique of lattice

factorization for indefinite theta series, which we leave for future research.

An interesting side remark is that the modular completion depends on a choice of function

g
(0)
n which satisfies the recursive relation (5.8). The solution to this equation is not unique,

since at each step one may add a moduli-independent contribution to g
(0)
n without affecting

the r.h.s. of (5.8). We suspect that this ambiguity amounts to shifting ĥpi,µ by a mock

modular form of lower depth, but it would be interesting to flesh this out.

As for the physics of BPS black holes, an outstanding question is to understand the

physical significance of the instanton generating function G defined in (3.22). Its modular

properties are exactly those expected from the elliptic genus of a superconformal field theory,

except for the fact that it is not holomorphic in τ . It is natural to expect that this non-

holomorphy can be traced to the existence of a continuum of states with a non-trivial spectral

asymmetry between bosons and fermions. It would be very interesting to understand the

origin of this continuum in terms of the worldvolume theory of an M5-brane wrapped on a

reducible divisor. Moreover, G is closely related to the index considered in [32], for special

N = 2 theories in D = 4 obtained by circle compactification of an N = 1 theory in D = 5.

It would be interesting to understand the physical origin of its modular invariance in this

context.

As a technical byproduct of this work, it is worth pointing out a new representation of the

tree index. Indeed, the index ĝn plays the same role in (5.2) as the tree index gtr,n in (2.30),

upon replacing the holomorphic partition function hp,µ by its completion ĥp,µ. Therefore it

must reduce to gtr,n after dropping all terms exponentially suppressed for large charges. To

this end, it is enough to replace Ev by its asymptotic expression E (0)
v in (5.17). Thus, one

arrives at the following representation

gtr,n = Sym

∑
T∈TS

n

(−1)nT−1
(
g(0)v0

− E (0)
v0

) ∏
v∈VT \{v0}

E (0)
v

 , (6.1)

where g
(0)
v and E (0)

v are constructed from (5.12) and (5.14), respectively. Note that this

representation is more explicit than the ones given in section 2.2 since it does not require

neither iterations, nor taking the limit y → 1.
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Finally, we expect that the structure found in the context of generalized DT-invariants

on Calabi-Yau threefolds will also arise in the study of other types of BPS invariants where

higher depth mock modular forms are expected to occur, such as Vafa-Witten invariants and

Donaldson invariants of four-folds with b+2 = 1 [24, 58]. In particular, it would be interesting

to determine the modular completion of the generating function of Vafa–Witten invariants on

the complex projective plane computed for all ranks in [61], and compare with the completion

found in the present paper.
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A. D3-instanton contribution to the contact potential

To evaluate (eϕ)D3, we first replace in (3.20) the full prepotential F by its classical, cubic part

F cl (2.21) and take into account that the sum over γ ∈ −Γ+ is complex conjugate to the sum

over γ ∈ Γ+. This gives

eϕ ≈ τ 22
12

(( Imu)3) +
iτ2
8

∑
γ∈Γ+

Re

∫
ℓγ

dt

t

(
t−1Zγ(u

a)− tZ̄γ(ū
a)
)
Hγ. (A.1)

Next, we substitute the quantum corrected mirror map (3.8), change the integration variable

t to z, and take the combined limit ta → ∞, z → 0. Keeping only the leading contributions,

one obtains

(eϕ)D3 = −τ2
2

∑
γ∈Γ+

Re

∫
ℓγ

dz

[
q̂0 +

1

2
(q + b)2 + 2(pt2)zzγ −

3

2
z2(pt2)

]
Hγ

−1

4

∑
γ1,γ2∈Γ+

(tp1p2)

(
Re

∫
ℓγ1

dz1Hγ1

)(
Re

∫
ℓγ2

dz2Hγ2

)
. (A.2)

To further simplify this expression, we note that

0 =
1

4π

∑
γ∈Γ+

∫
ℓγ

dz ∂z (z Hγ)

=
∑
γ∈Γ+

∫
ℓγ

dz

 1

4π
+ τ2(pt

2)(zzγ − z2)− i

4

∑
γ′∈Γ+

⟨γ, γ′⟩
∫
ℓγ′

dz′

z − z′
Hγ′

Hγ,

(A.3)
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where we used the integral equation (3.15). Multiplying this identity by 3/4 and adding its

real part to (A.2), one finds

(eϕ)D3 =
τ2
2

∑
γ∈Γ+

Re

∫
ℓγ

dz aγ,− 3
2
(z)Hγ

−1

4

∑
γ1,γ2∈Γ+

[
(tp1p2)

(
Re

∫
ℓγ1

dz1Hγ1

)(
Re

∫
ℓγ2

dz2Hγ2

)
(A.4)

+
3

4
Re

(∫
ℓγ1

dz1Hγ1

∫
ℓγ2

dz2Hγ2

i⟨γ, γ′⟩
z − z′

)]
,

where we introduced

aγ,h(z) = −
(
q̂0 +

1

2
(q + b)2 +

1

2
(pt2)zzγ +

h

4πτ2

)
. (A.5)

The meaning of this function is actually very simple: it gives the action of the modular

covariant derivative operator Dh (3.23) on the classical part of the Darboux coordinate (3.12),

DhX cl
γ = aγ,h(z)X cl

γ . (A.6)

Combining this fact with equation (3.15), it is easy to check that the function (3.22) satisfies

DhG =
∑
γ∈Γ+

∫
ℓγ

dz aγ,h(z)Hγ (A.7)

+
1

8τ2

∑
γ1,γ2∈Γ+

∫
ℓγ1

dz1

∫
ℓγ2

dz2

[
(tp1p2) + 2h

(
(tp1p2) +

i⟨γ1, γ2⟩
z1 − z2

)]
Hγ1(z1)Hγ2(z2),

∂c̃aG = 2πi
∑
γ∈Γ+

pa
∫
ℓγ

dz Hγ, (A.8)

which allows to rewrite (A.4) exactly as in (3.24).

B. Smoothness of the instanton generating function

In this appendix we prove the smoothness of the function G across walls of marginal stability.

The starting point is the representation (4.2) where the potential discontinuities are hidden in

the kernel of the theta series (4.3). Given that Φm can be represented as a sum over unrooted

labelled trees (see (4.6)), whereas Φ g
nk

appear as sums over attractor flow trees (see (4.15)), we

can view the kernel Φtot
n as a sum over ‘blooming trees’ which are unrooted trees with a flow

tree (the ‘flower’) growing from each vertex. Then the idea is that the discontinuities due to

flow trees (i.e. due to DT invariants) of a blooming tree with m vertices are cancelled by the

discontinuities due to exchange of integration contours in Φm+1 corresponding to blooming

trees with m+ 1 vertices.

Following this idea, let us consider a tree which has an attractor flow tree Tv growing

from vertex v (see Fig. 4). We denote by Ti, i = 1, . . . , nv, the blooming subtrees connected
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Figure 4: Combination of trees showing cancelation of discontinuities across the wall of marginal

stability corresponding to the decay γv → γL + γR. The parts corresponding to attractor flow trees

are drown in blue.

to this vertex and by TL and TR the two parts (which may be trivial) of Tv with the total

charges γL and γR so that γv = γL + γR. Together with the contribution of this tree, we

consider the contributions of the trees obtained by splitting the vertex v into two vertices

vL and vR connected by an edge, carrying charges γL and γR and all possible allocations

of the subtrees Ti to these two vertices. Different allocations are accounted for by the sum

over permutations, where the weight 1
ℓ!(nv−ℓ)!

takes into account the fact that permutations

between subtrees connected to one vertex are redundant. The attractor flow trees TL and TR
are then connected to vL and vR, respectively, as shown in the picture.

The contribution corresponding to the first blooming tree has a discontinuity at the wall of

marginal stability for the bound state γL+γR and originating from the factor ∆z
γLγR

assigned

to the root vertex of Tv. The other contributions have discontinuities at the same wall due to

the exchange of the contours ℓγL and ℓγR for the integrals assigned to vL and vR, respectively.

They are given by the residues at the pole of the integration kernel KγLγR . It is clear that

the structure of all jumps is very similar since different subtrees produce essentially the same

weights. Let us analyze which differences they may have.

• First, the contributions of the flow trees TL and TR could differ in the two cases because

they have different starting points for the attractor flows: for the trees on the right side

of Fig. 4 this is za ∈ MK , whereas for the tree on the left this is the point on the wall

for γL+γR reached by the flow from za. But we are evaluating the discontinuity exactly

on the wall where the two points coincide. Thus, the contributions are the same.

• Although the subtrees Ti give rise to the same contributions for all blooming trees shown

in Fig. 4, the contributions of the edges connecting them to either v or vL, vR are not

exactly the same. Each of them contributes the factor given by the kernel (3.16). After

taking the residue, the z-dependence of these kernels for the trees shown on the left and

the right sides of the picture coincide. However, their charge dependence is different:

for the tree on the left they depend on γv, whereas for the trees on the right they depend

on γL or γR, depending on which vertex they are connected to. But it is easy to see

that the sums over ℓ and permutations produce the standard binomial expansion of a
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single product of kernels which all depend on γL+γR = γv and thus coinciding with the

contribution of the tree on the left.

• Finally, one should take into account that the discontinuity of ∆z
γLγR

in the first con-

tribution gives the factor ⟨γL, γR⟩. But exactly the same factor arises as the residue of

KγLγR corresponding to the additional edge.

Thus, it remains only to check that all numerical factors work out correctly. Except the

factors which are common to both contributions, we have

−(−1)⟨γL,γR⟩

2

σγv
(2π)2

2m

m!
+ (2πi)(−2πi)

σγLσγR
(2π)4

m(m+ 1)

(m+ 1)!
. (B.1)

Here − (−1)⟨γL,γR⟩

2
comes from the factor −∆z

γLγR
in Tv, the factors with quadratic refinement

are due to functions Hγ (3.9) assigned to v or vL, vR, (2πi) is the standard weight of the

residue, (−2πi) is the residue of KγLγR (3.16), and factorials are the weights of the trees in

the expansion (3.26). Finally, the factors 2m and m(m+1) arise due to the freedom to relabel

charges assigned to the marked vertices: on the left these are vertex v and the two children

of the root in Tv, whereas on the right these are vL and vR. It is immediate to check that all

these numerical weights cancel, which ensures that the function G is continuous across walls

of marginal stability. Moreover, in this cancelation the condition that we sit on the wall was

used only in locally constant factors. Therefore, it proves not only that G is continuous, but

that it is actually smooth around these loci.

C. Indefinite theta series and generalized error functions

C.1 Vignéras’ theorem

Let Λ be a d-dimensional lattice equipped with a bilinear form (x,y) ≡ x · y, where x,y ∈
Λ⊗R, such that its associated quadratic form has signature (n, d− n) and is integer valued,

i.e. k2 ≡ k · k ∈ Z for k ∈ Λ. Furthermore, let p ∈ Λ be a characteristic vector (such that

k · (k+ p) ∈ 2Z, ∀k ∈ Λ), µ ∈ Λ∗/Λ a glue vector, and λ an arbitrary integer. We consider

the following family of theta series

ϑp,µ(Φ, λ; τ, b, c) = τ
−λ/2
2

∑
k∈Λ+µ+ 1

2
p

(−1)k·p Φ(
√
2τ2(k + b)) e

(
− τ

2
(k + b)2 + c · (k + 1

2
b)
)

(C.1)

defined by a kernel Φ(x) such that the function f(x) ≡ Φ(x) e
π
2
x2

∈ L1(Λ⊗ R) so that the

sum is absolutely convergent. Irrespective of the choice of this kernel and of the parameter

λ, any such theta series satisfies the following elliptic properties

ϑp,µ (Φ, λ; τ, b+ k, c) =(−1)k·p e
(
−1

2
c · k

)
ϑp,µ (Φ, λ; τ, b, c) ,

ϑp,µ (Φ, λ; τ, b, c+ k) =(−1)k·p e
(
1
2
b · k

)
ϑp,µ (Φ, λ; τ, b, c) .

(C.2)

Now let us require that in addition the kernel satisfies the following two conditions:
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1. Let D(x) be any differential operator of order ≤ 2, and R(x) any polynomial of degree

≤ 2. Then f(x) defined above must be such that f(x), D(x)f(x) and R(x)f(x) ∈
L2(Λ⊗R)

∩
L1(Λ⊗R).

2. Φ(x) must satisfy

Vλ · Φ(x) = 0, Vλ = ∂2x + 2π (x · ∂x − λ) . (C.3)

Then in [33] it was proven that the theta series (C.1) transforms as a vector-valued modular

form of weight (λ + d/2, 0) (see Theorem 2.1 in [24] for the detailed transformation under

τ → −1/τ). We refer to Vλ as Vignéras’ operator. The simplest example is the Siegel theta

series for which the kernel is Φ(x) = e−πx2
+ where x+ is the projection of x on a fixed positive

plane of dimension n. This kernel is annihilated by V−n.

In this paper we apply the Vignéras’ theorem to the case of Λ = ⊕n
i=1Λi. Thus, the

charges appearing in the description of the theta series (C.1) are of the type k = (ka1 , . . . , k
a
n),

whereas the vectors b and c are taken with i-independent components, namely, bai = ba,

cai = ca for i = 1, . . . , n. The lattices Λi carry the bilinear forms κi,ab = κabcp
c
i which are all

of signature (1, b2 − 1). This induces a natural bilinear form on Λ:

x · y =
n∑

i=1

(pixiyi). (C.4)

Note also that the sign factor (−1)k·p in (C.1) can be traced back to the quadratic

refinement provided we choose it as

σγ = σp,q ≡ e

(
1

2
paqa

)
σp, σp = e

(
1

2
Aabp

apb
)
. (C.5)

It involves the matrix Aab satisfying

Aabp
p − 1

2
κabcp

bpc ∈ Z for ∀pa ∈ Z. (C.6)

This matrix appears due to the non-trivial quantization of charges on the type IIB side (2.18)

and can be used to perform a symplectic rotation to identify them with mirror dual integer

charges on the type IIA side [43]. It is easy to check that the quadratic refinement (C.5)

satisfies (3.4).

C.2 Generalized error functions

An important class of solutions of Vignéras’ equation is given by the error function and its

generalizations constructed in [24] and further elaborated in [25]. Let us take

M1(u) = −sgn(u) Erfc(|u|
√
π) =

i

π

∫
ℓ

dz

z
e−πz2−2πizu, (C.7)

E1(u) = sgn(u) +M1(u)

= Erf(u
√
π) =

∫
R

du′ e−π(u−u′)2sgn(u′), (C.8)
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where the contour ℓ = R − iu runs parallel to the real axis through the saddle point at

z = −iu. Then, given a vector with a positive norm v2 > 0 so that |v| =
√
v2, we define

ΦE
1 (v;x) = E1

(
v · x
|v|

)
, ΦM

1 (v;x) =M1

(
v · x
|v|

)
. (C.9)

It is easy to check that the first function is a smooth solution of (C.3) with λ = 0, whereas

the second is exponentially suppressed at large x and also solves the same equation, but only

away from the locus v · x = 0 where it has a discontinuity.

Generalizing the integral representations (C.7) and (C.8), we define

Mn(M; u) =

(
i

π

)n

| detM|−1

∫
Rn−iu

dnz
e−πztrz−2πiztru∏

(M−1z)
, (C.10)

En(M; u) =
∫
Rn

du′ e−π(u−u′)tr(u−u′)sgn(Mtru′), (C.11)

where z = (z1, . . . , zn) and u = (u1, . . . , un) are n-dimensional vectors, M is n× n matrix of

parameters, and we used the shorthand notations
∏

z =
∏n

i=1 zi and sgn(u) =
∏n

i=1 sgn(ui).

The detailed properties of these functions can be found in [25]. Here we mention only a few:

• Mn are exponentially suppressed for large u as Mn ∼ (−1)n

πn | detM|−1 e−πutru∏
(M−1u) , whereas

En are locally constant for large u as En ∼ sgn(Mtru).

• More generally, En can be expressed as a linear combination of Mk, k = 0, . . . , n,

multiplied by n− k sign functions, generalizing the first relation in (C.8).

• From (C.11) it follows that every identity between products of sign functions implies an

identity between generalized error functions En. Moreover, expanding the En functions

in terms of Mk’s and sign functions, one obtains similar identities for functions (C.10).

For instance, the identity

(sgn(x1) + sgn(x2)) sgn(x1 + x2) = 1 + sgn(x1) sgn(x2) (C.12)

implies

E2((v1, v1 + v2); u) + E2((v2, v1 + v2); u) = 1 + E2((v1, v2); u),

M2((v1, v1 + v2); u) +M2((v2, v1 + v2); u) =M2((v1, v2); u),
(C.13)

where v1, v2 are two dimensional vectors.

The main reason to introduce these functions is that, similarly to the usual error and

complementary error functions, they can be used to produce solutions of Vignéras’ equation

on Rn,d−n. To write them down, let us consider d × n matrix V which can be viewed as

a collection of n vectors, V = (v1, . . . ,vn). We assume that these vectors span a positive

definite subspace, i.e. Vtr · V is a positive definite matrix. Let B be n× d matrix whose rows

define an orthonormal basis for this subspace. Then we take

ΦM
n (V ;x) =Mn(B · V ,B · x), ΦE

n (V ;x) = En(B · V ,B · x). (C.14)
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It can be shown that both these functions satisfy Vignéras’ equation (for ΦM
n one should stay

away from its discontinuities, i.e. loci where sgn((B · V)−1B · x) = 0). Since at large x one

has ΦE
n ∼ sgn(Vtr · x) =

∏n
i=1 sgn(vi · x), one can think about this function as providing the

modular completion for (indefinite) theta series with kernel given by a product of signs.

Finally, note that a solution of Vignéras’ equation with a given λ can be upgraded to a

solution with λ+1 by the action of the differential operator ṽ · (x+ 1
2π
∂x), which realizes the

action of the covariant derivative raising the holomorphic weight by 1. In particular, we can

construct solutions with λ = n which behave for large x as products of n sign functions. To

this end, it is enough to act on ΦE
n by this operator n times. Thus, we define

Φ̃E
n (V , Ṽ ;x) =

[
n∏

i=1

ṽi ·
(
x+

1

2π
∂x

)]
ΦE

n (V ;x), (C.15)

where Ṽ = (ṽ1, . . . , ṽn) encodes the vectors contracted with the covariant derivatives. In the

case where all ṽi are mutually orthogonal, one finds the following asymptotics at large x

Φ̃E
n (V , Ṽ;x) ∼

n∏
i=1

(ṽi,x) sgn(vi,x). (C.16)

Note that the derivative ∂x in (C.15) does not act on sign functions since ΦE
n is smooth and all

discontinuities due to signs are guaranteed to cancel. Similarly to (C.15), we can also define

Φ̃M
n (V , Ṽ ;x) where the action of derivatives on the discontinuities of ΦM

n is ignored as well.

D. Twistorial integrals and generalized error functions

In this appendix we evaluate the kernels Φn (4.6) and show that they can be expressed

through the generalized error functions introduced in appendix C.2. To this end, let us note

the following identity

ivij ·
(
x+

1

2π
∂x

)
Wpi(xi, zi)Wpj(xj, zj)

zi − zj
= K̂ij Wpi(xi, zi)Wpj(xj, zj). (D.1)

Due to it, the kernel can be represented as

Φn(x) =
1

n!

∑
T ∈Tℓ

n

[ ∏
e∈ET

vs(e)t(e) ·
(
x+

1

2π
∂x

)]
ΦT (x), (D.2)

where

ΦT (x) =
in−1

(2π)n

[
n∏

i=1

∫
ℓγi

dziWpi(xi, zi)

]
1∏

e∈ET

(
zs(e) − zt(e)

) . (D.3)

One could may that the representation (D.2) is not complete because it misses contribu-

tions from the covariant derivatives acting on each other. Such contributions are proportional

to the scalar products of two vectors vs(e)t(e) and are non-vanishing provided the two edges

have a common vertex. As a result, the two edges generate the following factor

(pv1pv2pv3)

(zv3 − zv1)(zv2 − zv3)
, (D.4)
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Figure 5: Three trees generating contributions to the action of covariant derivative operators which

cancel each other.

where v1, v2, v3 are the tree vertices joint by the edges and v3 = e1∩e2. The crucial observation
is that if we pick up 3 subtrees, each with a marked vertex, there are exactly 3 ways to form a

labelled tree out of them by joining the marked vertices (see Fig. 5). Each subtree contributes

the same factor in all 3 cases, whereas the joining edges and the sum over trees give rise to

the vanishing factor

(p1p2p3)

(z3 − z1)(z2 − z3)
+

(p1p2p3)

(z1 − z2)(z3 − z1)
+

(p1p2p3)

(z2 − z3)(z1 − z2)
= 0. (D.5)

This ensures that no additional contributions arise and thereby proves (D.2). Note that for

this proof it was crucial that inequivalent labelled trees enter the sum with the same weight.

Next, note that the contours ℓγi in the z-plane go along the arcs running from −1 to

1 and passing through the saddle points zγi (3.10). However, in the large volume limit one

can deform the contours into the straight lines zγi + R since this changes the integrals by

exponentially small contributions.

Then let us do the change of variables

zi = z′ − i(pxt)√
2τ2(pt2)

+
n−1∑
α=1

eαi z
′
α, (D.6)

where xa = κab
∑
κi,bcx

c
i (cf. (4.8)), and e

α
i are such that

n∑
i=1

pie
α
i = 0,

n∑
i=1

pie
α
i e

β
i = 0, α ̸= β (D.7)

and we introduced the convenient notation pi = (pit
2). Labeling the n − 1 edges of the tree

by the same index α, one can rewrite the function (D.3) in the new variables as

ΦT (x) =
in−1

√
∆

(2π)n
e
−π(pxt)2

(pt2)

∫
dz′ e−2πτ2(pt2)z′2

n−1∏
α=1

∫
dz′α e

−2πτ2 ∆α(z′α)
2−2πi

√
2τ2 wαz′α∑n−1

β=1

(
eβs(α) − eβt(α)

)
z′β

, (D.8)

where

wα =
n∑

i=1

(pixit)e
α
i , ∆α =

n∑
i=1

pi(e
α
i )

2, ∆ =
p
∏n−1

α=1∆α∏n
i=1 pi

. (D.9)

The integral over z′ is Gaussian and is easily evaluated. In the remaining integrals, rescaling

the integration variables by
√
2τ2∆α, one recognizes the generalized error functions (C.10).
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Thus, one obtains

ΦT (x) =
1

2n−1

√
∆| detM|∏n−1

α=1∆α

Φ1(x)Mn−1

(
M;

{
wα

√
∆α

})
. (D.10)

where we used the function Φ1 (4.13) and introduced the matrix M such that

M−1
αβ = (∆α∆β)

−1/2
(
eβs(α) − eβt(α)

)
. (D.11)

There is a simple solution to the conditions (D.7). Let T be a rooted ordered binary tree

with n leaves labelled by γi, i = 1 . . . n. As usual for such trees, other vertices v carry charges

given by the sum of charges of their children, i.e. γv =
∑

i∈Iv γi where Iv is the set of leaves

which are descendants of v. There are n − 1 such vertices which we label by index α. Then

we can choose

eαi =
∑

j∈IL(vα)

∑
k∈IR(vα)

(δij pk − δik pj) , (D.12)

which satisfy (D.7) as can be easily checked. For this choice (cf. (4.14))

wα =(ũα,x), where ũα =
∑

i∈IL(vα)

∑
j∈IR(vα)

uij,

∆α = ũ2
α = pvαpL(vα)pR(vα).

(D.13)

Note that the vectors ũα are mutually orthogonal.

In principle, any rooted binary tree T is suitable for the above construction. However,

given the unrooted tree T , there is a simple (but non-unique) choice of T which simplifies the

resulting matrixM. For this purpose, let us construct a partially increasing family of subtrees

of T , such that two members in this family are either disjoint, or contained in one another.

Moreover, we require that the largest subtree is T itself, while each subtree containing more

than one vertex is obtained by joining two smaller subtrees along an edge of T . Any such

family contains 2n−1 subtrees Tα̂ labelled by α̂ = 1, . . . , 2n−1. Among them, n−1 subtrees,

which we label by α = α̂ = 1, . . . , n − 1, contain several vertices, while the remaining n

subtrees with label α̂ = n, . . . , 2n − 1 have only one vertex. For each subtree Tα, we denote

by eα the edge of T which is used to reconstruct Tα from two smaller subtrees TαL
, TαR

. From

this data, we construct a rooted binary tree T with n−1 vertices in one-to-one correspondence

with the subtrees Tα and n leaves in one-to-one correspondence with the one-vertex subtrees

Tα̂ with α̂ ≥ n. In this correspondence, the two children of a vertex associated to Tα are the

vertices associated to the two subtrees TαL
, TαR

. The ordering at each vertex is defined to

be such that the subtree containing the source/target vertex of the corresponding edge eα is

on the left/right.18 Of course, this construction is not unique since there are many ways to

decompose T into such a set of subtrees (see Fig. 6).

Applying the above construction to this particular choice of rooted tree, one finds

√
∆α∆β M−1

αβ =


pvα , α = β,

ϵαβpL(vβ), eα ∩ TβR
̸= ∅, eα * Tβ,

ϵαβpR(vβ), eα ∩ TβL
̸= ∅, eα * Tβ,

0, eα ∩ Tβ = ∅ or eα ⊂ Tβ,

(D.14)

18The orientation of the edges of T is fixed already in (D.2), but the full kernel Φn does not depends on its

choice.
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Figure 6: An example of an unrooted labelled tree with 4 vertices and two choices of decompositions

into subtrees with the corresponding rooted binary trees. The edges are labelled e1, e2, e3 from left

to right along T .

where ϵαβ = −1 if the orientations of eα and eβ on the path joining them are the same and +1

otherwise. This result shows that the matrix M−1 turns out to be triangular which makes it

much simpler to find its inverse. On the basis of (D.14), below we will prove the following

Lemma 1. One has B · V = M and B · x =
{

wα
√
∆α

}
provided

B =

(
ũ1√
∆1

, . . . ,
ũn−1√
∆n−1

)tr

,

V = p−1
(√

∆1u1, . . . ,
√
∆n−1un−1

)
,

(D.15)

where the vectors uα are defined in (4.11). Moreover, the vectors ũα form an orthogonal basis

in the subspace spanned by uα.

This lemma allows to reexpress the kernel ΦT (D.10) in terms of the generalized error

function ΦM
n−1 (C.14). It is important that its argument V does not depend on the choice of

the binary tree T , but only on T . In addition, the function actually does not depend on the

normalization of the vectors composing V . Given also that the determinant of M is found to

be

| detM| =
n−1∏
α=1

∆α

pvα
=

n∏
i=1

pi
∏

v∈VT \{v0}

pv =

√√√√p−1

n∏
i=1

pi

n−1∏
α=1

∆α, (D.16)

so that the prefactor in (D.10) cancels, one arrives at

ΦT (x) =
1

2n−1
Φ1(x) Φ

M
n−1({ue};x). (D.17)

Finally, since the differential operator in (D.2) commutes with functions of x due to orthog-

onality of vij and t, one can write the kernel Φn as

Φn(x) =
Φ1(x)

2n−1n!

∑
T ∈Tℓ

n

[ ∏
e∈ET

vs(e)t(e) ·
(
x+

1

2π
∂x

)]
ΦM

n−1({uα};x). (D.18)

which is the same as (4.12).
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D.1 Proof of the Lemma

We start by proving that the vectors ũα form an orthogonal basis in the subspace spanned

by uα. Since the orthogonality is ensured by construction based on a rooted binary tree, it

remains to show that any vector uα can be decomposed as a linear combination of ũα. To this

end, we show that the determinant of the Gram matrix constructed from the set of vectors

{ũα}n−1
α=1 ∪ {uβ} vanishes. This requires to calculate the scalar product (ũα,uβ) which can

be done using

(uij,ukl) =


pipjpi+j, i = k, j = l,

pipjpl, i = k, j ̸= l,

0, i, j ̸= k, l.

(D.19)

Summing i, j, k, l over appropriate subsets, it is immediate to see that (ũα,uβ) = 0 if Tα ⊂ T s
β

or T t
β , which are the two trees obtained by dividing the tree T into two parts by cutting the

edge eα. In other words, it is non-vanishing only if eβ ⊆ Tα. Then there are two cases which

give

(ũα,uβ) =

{
pLβ p

R
β p, α = β,

pLsαβ p
R
α ptβ − pLtαβ p

R
α psβ + pLα p

R
α psβ = pLsαβ p

R
α p, eβ ⊂ Tα,

(D.20)

where we introduced

pLα =
∑

i∈IL(vα)

pi, psβ =
∑
i∈VT s

β

pi, pLsαβ =
∑

i∈IL(vα)∩VT s
β

pi, pstαβ =
∑

i∈VT s
α
∩VT t

β

pi, (D.21)

and similarly for variables with labels R and t. In (D.20) in the second case we assumed that

the orientation of edges is such that eβ ⊂ T s
α and eα ⊂ T t

β . If this is not the case, one should

replace s by t, L by R and flip the sign for each change of orientation. Below we use the same

assumption, but the computation can easily be generalized to a more general situation.

Given the result (D.20), (ũα, ũβ) = ∆αδαβ and (uβ,uβ) = psβ p
t
β p, the determinant of the

Gram matrix is easily found to be

detGram(ũ1, · · · , ũn−1,uβ) = p

n−1∏
α=1

∆α

psβ ptβ − p
∑

Tα⊇eβ

(pLsαβ)
2 pRα

pvαp
L
α

 . (D.22)

Note that the subtrees Tα containing the edge eβ form an ordered set so that the sum in the

square brackets goes over αℓ, ℓ = 1, . . . ,m, such that Tαℓ
⊂ Tαℓ+1

. The first element of this

set α1 = β, whereas the last corresponds to the total tree, Tαm = T . Due to pLαm
= psαm

,

pRαm
= ptαm

and pLsαmβ = psβ, the first term in the square brackets together with the term in the

sum corresponding to αm gives

psβ

(
ptβ −

psβ p
t
αm

psαm

)
=

p psβ p
st
αmβ

psαm

, (D.23)

where we have used that ptβ = pstαmβ + ptαm
and psαm

= pstαmβ + psβ. Thus, the expression in the

square brackets in (D.22) becomes

p

psαm

[
psβ p

st
αmβ − psαm

m−1∑
ℓ=1

(pLsαℓβ
)2 pRαℓ

pvαℓ
pLαℓ

]
. (D.24)
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The new expression in the square brackets is exactly the same as in (D.22) where tree T was

replaced by subtree T s
αm

= Tαm−1 . Thus, one can repeat the above manipulation until one

exhausts all terms in the sum. As a result, the determinant of the Gram matrix turns out to

be proportional to pstα1β
. But since α1 = β, this quantity, and hence the whole determinant,

trivially vanish.

Next, we prove that (D.15) is consistent with B · x =
{

wα
√
∆α

}
and B · V = M. The

first relation is a direct consequence of (D.13). The second relation requires to show that

(ũα,uβ) = p∆
1/2
α ∆

−1/2
β Mαβ or equivalently

∑
γ(ũα,uγ)

√
∆γ∆βM−1

γβ = p∆αδαβ. Using the

result (D.14) for the matrix M−1
γβ , this relation can be written explicitly as

pvβ(ũα,uβ) +

 ∑
eγ∈ER

β

ϵγβpL(vβ) +
∑

eγ∈EL
β

ϵγβpR(vβ)

 (ũα,uγ) = p∆αδαβ, (D.25)

where EL
β = {e ∈ ET : e ∩ TβL

̸= ∅, e * Tβ} and similarly for ER
β .

Consider first the case α = β. From (D.20), it immediately follows that the first term

gives p∆α. On the other hand, the second contribution sums over edges for which Tα ⊆ T s
γ

or T t
γ , and as noted above (D.20) this leads to vanishing of the scalar product. Thus, in this

case the relation (D.25) indeed holds.

Let us now show that it holds as well for α ̸= β. To this end, one should consider several

options. If Tα∩Tβ = ∅, then Tα ⊂ T s
β or T t

β which implies vanishing of the first term. But the

second term vanishes as well because the conditions eγ ⊆ Tα and eγ ∩ Tβ ̸= ∅ are inconsistent

with Tα ∩ Tβ = ∅.
Similarly, if Tα ⊂ Tβ, one has Tα ⊂ T s

β or T t
β which again leads to the vanishing of the first

term, whereas the vanishing of the second is a consequence of that eγ ⊆ Tα implies eγ ⊂ Tβ

so that the sum over eγ is empty.

It remains to consider the case Tβ ⊂ Tα. It is clear that Tβ ⊂ T s
α or T t

α . Without loss

of generality, let us assume that Tβ ⊂ T s
α and eα ⊂ T t

β . Then according to (D.20), the first

term gives pvβ p
Ls
αβ p

R
α p. If instead we have chosen the orientation such that eα ⊂ T s

β , then we

would find −pvβ p
Lt
αβ p

R
α p. Similar results are obtained for each term in the sum of the second

contribution. Again without loss of generality we assume that for all relevant edges eγ one

has eα ⊂ T t
γ , otherwise one flips their orientation. Then the l.h.s. of (D.25) is proportional

to

pvβ p
Ls
αβ +

∑
eγ∈ER

β

ϵγβp
L
β p

Ls
αγ +

∑
eγ∈EL

β

ϵγβp
R
β pLsαγ. (D.26)

Let e⋆α ∈ ER
β is the edge belonging to the path from Tβ to eα (which may coincide with eα).

Then our choice of orientation implies that ϵγβ = −1 for eγ ∈ EL
β ∪ {e⋆α} and ϵγβ = 1 for

eγ ∈ ER
β \ {e⋆α}. Furthermore, one has

pLsαγ⋆
α
= pvβ +

∑
eγ∈EL

β ∪ER
β \{e⋆α}

pLsαγ, pLsαβ = pLβ +
∑

eγ∈EL
β

pLsαγ. (D.27)
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As a result, one finds

(pLβ + pRβ )

pLβ +
∑

eγ∈EL
β

pLsαγ

− pLβ p
Ls
αγ⋆

α
+

∑
eγ∈ER

β \{e⋆α}

pLβ p
Ls
αγ −

∑
eγ∈EL

β

pRβ pLsαγ = 0. (D.28)

This completes the proof of the required statement.

E. Proofs of propositions

In this appendix we fill the gap and prove several propositions which we stated in the main

text.

Proposition 1

To prove the recursive equation (5.3), let us note that the tree index gtr,n satisfies a very

similar equation (cf. (2.9) or (2.15)) which can be seen as the origin of its representation (2.3)

through the attractor flow trees. The only difference is the absence of the last term in (5.3).

Therefore, it is easy to see that this equation implies a simple relation between ĝn and gtr,n

ĝn({γ̌i}, za) =
∑

n1+···+nm=n
nk≥1

gtr,m({γ̌′k}, za)
m∏
k=1

Wnk
(γ̌jk−1+1, . . . , γ̌jk), (E.1)

where as usual we use notations from (2.16).

Next, we substitute this relation into the expansion (5.2). The result can be represented

in the following form

hDT
p,q =

∑
∑n

i=1 γ̌i=γ̌

gtr,n({γ̌i}, za) eπiτQn({γ̌i})
n∏

i=1

hRpi,µi
(τ), (E.2)

where we introduced

hRp,µ =
∑

∑n
i=1 γ̌i=γ̌

Wn({γ̌i}) eπiτQn({γ̌i})
n∏

i=1

ĥpi,µi
(τ)

=
∑

∑n
i=1 γ̌i=γ̌

∑
T∈TS

n

∏
v∈VT

Rv

 eπiτQn({γ̌i})

×
n∏

i=1

hpi,µi
−

∞∑
ni=2

∑
∑ni

j=1 γ̌
′
j=γ̌

Rni
({γ̌′j}, τ, τ̄) eπiτQni ({γ̌

′
j})

ni∏
ji=1

hp′ji ,µ
′
ji


(E.3)

and in the last relation we used the definition of Wn (5.4) and the expansion of ĥp,µ (5.1).

The crucial observation is that if one picks up a factor Rni
from the second line of (E.3),

appearing due to the expansion of ĥpi,µi
, and combines it with the contribution of a tree T

from the first line, it is equal to minus the contribution of another tree obtained from T by
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adding ni children to its ith leaf. As a result, all such contributions cancel and the function

(E.3) reduces to the trivial term

hRp,µ = hp,µ. (E.4)

Substituting this into (E.2), it gives back the original expansion (2.30) of the generating

function of DT invariants, which proves the recursive equation (5.3).

Proposition 2

We will prove proposition 2 by induction. For n = 2 the recursive relation (5.8) reads

g
(0)
2 (γ̌1, γ̌2; c1)− g

(0)
2 (γ̌1, γ̌2; β21) = −1

4

(
sgn(c1)− sgn(β21)

)
κ(γ12), (E.5)

where we took into account that S1 = c1 and Γ21 = β21 = −γ12. Since g(0)2 is supposed to have

discontinuities only at walls of marginal stability, it must not involve signs of DSZ products.

Therefore, we are led to take

g
(0)
2 (γ̌1, γ̌2; c1) = −1

4
sgn(c1)κ(γ12). (E.6)

Then (5.9) and (5.10) imply

E2 =
1

4
sgn(γ12)κ(γ12)−R2, (E.7)

so that the ansatz (5.7) reads

ĝ2(γ̌1, γ̌2; z) = g
(0)
2 (γ̌1, γ̌2; c1)−E2(γ̌1, γ̌2) = −1

4

[
sgn(c1)+sgn(γ12)

]
κ(γ12)+R2(γ̌1, γ̌2), (E.8)

which reproduces the recursive equation (5.3). Furthermore, in appendix C.2 it is shown that

there is a smooth solution of Vignéras’ equation which asymptotes the function (v,x)sgn(v,x),

coinciding with the (rescaled) first term in E2 for v = v12 (4.10). It is given by

Φ̃E
1 (v,v;x) = v ·

(
x+

1

2π
∂x

)
Erf

(√
πv · x
|v|

)
, (E.9)

which corresponds to the following choice of R2 [21]

R2 =
(−1)1+γ12

8π
|γ12| β 3

2

(
2τ2γ

2
12

(pp1p2)

)
, (E.10)

where β 3
2
(x2) = 2|x|−1e−πx2 − 2πErfc(

√
π|x|). Note that the resulting E2 depends on the

electric charges only through the DSZ product γ12. Finally, it is immediate to see that the

kernel Φ ĝ
2 corresponding to ĝ2 satisfies (5.5).

Now we assume that (5.3) is consistent with the ansatz (5.7) for all orders up to n−1 and

check it at order n. Denoting the second term in (5.7) by ĝ
(+)
n and substituting this ansatz

into the r.h.s. of (5.3), one finds

Sym

{
n−1∑
ℓ=1

gℓ2

[
g
(0)
ℓ g

(0)
n−ℓ − ĝ

(+)
ℓ ĝn−ℓ − ĝℓ ĝ

(+)
n−ℓ − ĝ

(+)
ℓ ĝ

(+)
n−ℓ

]
za→zaℓ

}
+Wn, (E.11)
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where

gℓ2 = −1

2
∆z

γℓ
Lγ

ℓ
R
κ(γℓLR) =

1

4

(
sgn(Sℓ)− sgn(Γnℓ)

)
κ(Γnℓ). (E.12)

In the first term proportional to g
(0)
ℓ g

(0)
n−ℓ, one can apply the relation (5.8), which together

with (5.9) gives g
(0)
n − E (0)

n . The other terms in the sum over ℓ can be reorganized as follows

− Sym


n−1∑
ℓ=1

gℓ2
∑

n1+···+nm=n
nk≥1, m<n, ℓ∈{jk}

ĝk0(z
a
ℓ ) ĝm−k0(z

a
ℓ )

m∏
k=1

Enk


= − Sym


∑

n1+···+nm=n
nk≥1, 1<m<n

[
m−1∑
k0=1

g
jk0
2 ĝk0(z

a
ℓ ) ĝm−k0(z

a
ℓ )

]
m∏
k=1

Enk

 .

(E.13)

Here we first combined three contributions into one sum over splittings by adding the condition

ℓ ∈ {jk}, with k0 being the index for which jk0 = ℓ, and then interchanged the two sums

which allows to drop the condition ℓ ∈ {jk}, but adds the requirement m > 1 (following

from ℓ ∈ {jk} in the previous representation). In square brackets one recognizes the first

contribution from the r.h.s. of (5.3) with n replaced by m < n. Hence, it is subject to the

induction hypothesis which allows to replace this expression by Wm({γ′k}) − ĝm({γ′k}, za).
Combining all contributions together, one concludes that (E.11) is equal to

g(0)n − E (0)
n − Sym


∑

n1+···+nm=n
nk≥1, 1<m<n

(
ĝm −Wm

) m∏
k=1

Enk

+Wn. (E.14)

The contributions with W can be combined into one sum by dropping the condition m < n.

The resulting sum coincides with the r.h.s. of (5.10) so that these contributions can be

replaced by −E (+)
n . Combined with −E (0)

n , this gives −En and allows to drop the condition

m > 1 in the remaining sum with ĝm. As a result, (E.14) becomes equivalent to the r.h.s. of

(5.7), which proves the consistency of this ansatz with the recursive equation.

Finally, let us show that the ansatz satisfies the modularity constraint (5.5). The crucial

observation is that the vectors vij and uij (4.10) satisfy

(vi+j,k,vij) = (ui+j,k,vij) = 0, (E.15)

where we abused notation with vi+j,k = vik+vjk, etc. These orthogonality relations together

with assumption that En depend on electric charges only through the DSZ products γij ∼
(vij,x) imply factorization of the action of Vignéras’ operator on the kernel corresponding to

the second term in (5.7). Indeed, all contributions of ∂2x where two derivatives act on different

factors vanish and the action reduces to the sum of terms where Vignéras’ operator acts on

one of the factors. But since it is supposed to vanish on Φ E
n , one obtains the simple result

Vn−1 · Φ ĝ
n = Vn−1 · Φ g(0)

n − Sym


∑

n1+···+nm=n
nk≥1, m<n

(Vm−1 · Φ ĝ
m)

m∏
k=1

Φ E
nk

 . (E.16)
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Since for n = 2 the constraint was already shown to hold, one can proceed by induction.

Then in the second term one can substitute the r.h.s. of (5.5), whereas the first term can

be evaluated using the recursive relation (5.8). First of all, by the same reasoning as above,

away from discontinuities, the action of Vignéras’ operator is factorized and actually vanishes.

Furthermore, since g
(0)
n have discontinuities only at walls of marginal stability, to obtain the

complete action, it is enough to consider it only on sgn(Sℓ). Since at Sℓ = 0 one has c
(ℓ)
i = ci

(see (2.14)), one finds that Φ g(0)

n satisfy exactly the same constraint as (5.5). Thus, one can

rewrite (E.16) as

Vn−1 · Φ ĝ
n = Sym

n−1∑
ℓ=1

(
u2

ℓ ∆
g(0)

n,ℓ δ
′(uℓ · x) + 2uℓ · ∂x∆g(0)

n,ℓ δ(uℓ · x)
)

(E.17)

− Sym


∑

n1+···+nm=n
nk≥1, 1<m<n

[
n−1∑
ℓ=1

(
u2

ℓ ∆
ĝ
m,ℓ δ

′(uℓ · x) + 2uℓ · ∂x∆ĝ
m,ℓ δ(uℓ · x)

)] m∏
k=1

Φ E
nk

 .

Note that the orthogonality relation allows to include Φ E
nk

under the derivative in the last

term. Then one can perform the same manipulations with the sum over splittings as in (E.13)

but in the inverse direction, which directly leads to the constraint (5.5).

Proposition 3

To prove the proposition, one needs to verify that the ansatz (5.12) satisfies the recursive

equation (5.8). To this end, we substitute the ansatz into the l.h.s. of this equation and

decompose Γnℓ = −
∑ℓ

i=1

∑n
j=ℓ+1 γij. Then the crucial observation is that this double sum,

the sum over ℓ and the two sums over trees (over Tℓ
ℓ and Tℓ

n−ℓ) are equivalent to a single sum

over trees with n vertices, i.e. over Tℓ
n, supplemented by the sum over edges. Namely, one

can do the following replacement

1

2

n−1∑
ℓ=1

1

ℓ!(n− ℓ)!

∑
TL∈Tℓ

ℓ

∑
TR∈Tℓ

n−ℓ

ℓ∑
i=1

n∑
j=ℓ+1

=
1

n!

∑
T ∈Tℓ

n

∑
e∈ET

. (E.18)

The idea is that on the l.h.s. one sums over all possible splittings of unrooted labelled trees

with n vertices into two trees with ℓ and n− ℓ vertices. Such splitting can be done by cutting

an edge and then i, j correspond to the labels of the vertices joined by the cutting edge. The

relative coefficient n!
ℓ!(n−ℓ)!

takes into account that after splitting the vertices of the first tree

can have arbitrary labels from the set {1, . . . , n} and not necessarily {1, . . . , ℓ}, whereas 1
2

avoids doubling due to the symmetry between TL and TR.

It is easy to check that all factors in (5.8) fit this interpretation and the l.h.s. takes the

following form

(−1)n−1+
∑

i<j γij

2n−1n!

∑
T ∈Tℓ

n

∏
e∈ET

γs(e)t(e)
∑
e∈ET

(
sgn(Se)− sgn(Γe)

) ∏
e′∈ET \{e}

sgn

(
Se′ −

Γe′

Γe

Se

)
,

(E.19)
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where Se and Γe were defined in (5.13) and (5.14). This expression immediately reproduces

the r.h.s. of (5.8) upon applying the following sign identity, established in [20, Eq.(A.7)],

m∑
β=1

(sgn(xβ)− 1)
m∏

α=1
α ̸=β

sgn(xα − xβ) =
m∏

α=1

sgn(xα)− 1, (E.20)

where one should take the label α to run overm = n−1 edges of a tree T , identify xα = Sα/Γα,

and multiply it by
∏n−1

α=1 sgn(Γα). This completes the proof of the proposition.

Proposition 4

This Proposition trivially follows from (5.7).

Proposition 5

The easiest way to prove (5.18) is to substitute it into (5.4) and then to check that the result

is consistent with the constraint (5.10).

The substitution generates a sum over trees which resemble the blooming trees of appendix

B: these are trees with vertices from which other trees grows. But this time the two types

of trees, representing the ‘base’ and the ‘flowers’, are actually the same – both of them are

Schröder trees. The only difference between them is that to vertices of the ‘base’ one assigns

the factors E (+)
v , whereas the vertices of ‘flowers’ have weights E (0)

v . Equivalently, this can be

written as

Wn = Sym

∑
T∈TS

n

(−1)nT

∑
T ′⊆T

∏
v′∈VT ′

E (+)
v′

∏
v∈VT \VT ′

E (0)
v

 , (E.21)

where the second sum goes over all subtrees of T containing its root. Its clear that the two

contributions differing only by whether a vertex v is included into T ′ or not, can be combined

producing the factor Ev assigned to this vertex. Thus, the sum over subtrees can be evaluated

explicitly and gives

Wn = Sym

∑
T∈TS

n

(−1)nT E (+)
v0

∏
v∈VT \{v0}

Ev

 . (E.22)

Given this result, the check of the constraint (5.10) is analogous to the proof of the

relation (E.4): the contribution of each tree T (from the sum in (E.22)) and a splitting with

nk > 1 (from the sum in (5.10)) is cancelled by the contribution of another tree obtained from

T by adding nk children to its kth leaf and the same splitting but with nk = 1. The only

contribution which survives is the one generated by the tree with one vertex and n leaves and

the splitting with all nk = 1. It is given by E (+)
n , which verifies the constraint and proves the

proposition.

F. Explicit results up to 4th order

In this appendix we provide explicit expressions for various functions appearing in our con-

struction up to the forth order. To write them down, we will use the shorthand notation
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γi+j = γi + γj, ci+j = ci + cj, etc. as well as indicate the arguments of functions through

their indices, for instance, Ei1···in = En(γ̌i1 , . . . , γ̌in). These expressions are obtained by simple

substitutions using the results found in the main text and the sets of trees shown in Fig. 1.

The results (5.17) and (5.18) generate the following expansions

hDT
p,q = ĥp,µ +

∑
γ̌1+γ̌2=γ̌

[
g
(0)
12 − E12

]
eπiτQ2({γ̌i})ĥp1,µ1ĥp2,µ2

+
∑

∑3
i=1 γ̌i=γ̌

[
g
(0)
123 − E123 − 2

(
g
(0)
1+2,3 − E1+2,3

)
E12
]
eπiτQ3({γ̌i})

3∏
i=1

ĥpi,µi
(F.1)

+
∑

∑4
i=1 γ̌i=γ̌

[
g
(0)
1234 − E1234 − 2

(
g
(0)
1+2+3,4 − E1+2+3,4

)
(E123 − 2E1+2,3E12)

−3
(
g
(0)
1+2,34 − E1+2,34

)
E12 +

(
g
(0)
1+2,3+4 − E1+2,3+4

)
E12E34

]
eπiτQ4({γ̌i})

4∏
i=1

ĥpi,µi
+ · · · ,

ĥp,q = hp,µ +
∑

γ̌1+γ̌2=γ̌

E (+)
12 eπiτQ2({γ̌i})hp1,µ1hp2,µ2

+
∑

∑3
i=1 γ̌i=γ̌

[
E (+)
123 − 2E (+)

1+2,3E
(0)
12

]
eπiτQ3({γ̌i})

3∏
i=1

hpi,µi
(F.2)

+
∑

∑4
i=1 γ̌i=γ̌

[
E (+)
1234 − 2E (+)

1+2+3,4

(
E (0)
123 − 2E (0)

1+2,3E
(0)
12

)
− 3E (+)

1+2,34E
(0)
12

+E (+)
1+2,3+4E

(0)
12 E

(0)
34

]
eπiτQ4({γ̌i})

4∏
i=1

hpi,µi
+ · · · ,

where the functions g
(0)
n and En can be read off from (5.12) and (5.16)

g
(0)
2 =

(−1)1+γ12

4
γ12 sgn(c1),

g
(0)
3 =

(−1)1+γ12+γ1+2,3

8
Sym

{
γ12 γ23 sgn(c1) sgn(c3)

}
,

g
(0)
4 =

(−1)γ12+γ1+2,3+γ1+2+3,4

16
Sym

{
γ12γ23γ34 sgn(c1)sgn(c1+2)sgn(c4)

− 1

3
γ12γ23γ24 sgn(c1)sgn(c3)sgn(c4)

}
,

(F.3)

E12 =
(−1)γ12

4

[
γ12E1

(√
2τ2|γ12|√
(pp1p2)

)
+

√
(pp1p2)

π
√
2τ

e
− 2πτ2γ

2
12

(pp1p2)

]
,

E123 =
(−1)γ12+γ1+2,3

8(2τ2)
Sym

{
Φ̃E

2

(
(v1,2+3,v1+2,3), (v12,v23);

√
2τ2(q + b)

)}
, (F.4)

E1234 =
(−1)γ12+γ1+2,3+γ1+2+3,4

16(2τ2)3/2
Sym

{
Φ̃E

3

(
(v1,2+3+4,v1+2,3+4,v1+2+3,4), (v12,v23,v34);

√
2τ2(q + b)

)
+
1

3
Φ̃E

3

(
(v1,2+3+4,v1+2+4,3,v1+2+3,4), (v12,v23,v24);

√
2τ2(q + b)

)}
.
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Finally, we provide expressions for the kernels Φ̂tot
n of the theta series appearing in the

expansion (5.19) of G in powers of ĥp,µ:

Φ̂tot
1 = Φ1,

Φ̂tot
2 = Φ2 + Φ1Φ

ĝ
2 =

1

4
Φ1

(
Φ̃E

1 (u12,v12)− Φ̃E
1 (v12,v12)

)
,

Φ̂tot
3 = Φ3 + 2Sym

{
Φ2(x1+2, x3)Φ

ĝ
2 (x1, x2)

}
+ Φ1Φ

ĝ
3

=
1

8
Φ1 Sym

{
Φ̃E

2

(
(u1,2+3,u1+2,3), (v12,v23)

)
− Φ̃E

2

(
(v1,2+3,v1+2,3), (v12,v23)

)
−
(
Φ̃E

1 (u1+2,3,v1+2,3)− Φ̃E
1 (v1+2,3,v1+2,3)

)
Φ̃E

1 (u12,v12)

}
, (F.5)

Φ̂tot
4 = Φ4 + Sym

{
3Φ3(x1+2, x3, x4)Φ

ĝ
2 (x1, x2) + Φ2(x1+2, x3+4)Φ

ĝ
2 (x1, x2)Φ

ĝ
2 (x3, x4)

+2Φ2(x1+2+3, x3)Φ
ĝ
3 (x1, x2, x3)

}
+ Φ1Φ

ĝ
4

=
1

16
Φ1 Sym

{
Φ̃E

3

(
(u1,2+3+4,u1+2,3+4,u1+2+3,4), (v12,v23,v34)

)
−Φ̃E

3

(
(v1,2+3+4,v1+2,3+4,v1+2+3,4), (v12,v23,v34)

)
+
1

3

(
Φ̃E

3

(
(u1,2+3+4,u1+2+4,3,u1+2+3,4), (v12,v24,v34)

)
−Φ̃E

3

(
(v1,2+3+4,v1+2+4,3,v1+2+3,4), (v12,v24,v34)

))
−
(
Φ̃E

2

(
(u1+2,3+4,u1+2+3,4), (v1+2,3,v34)

)
− Φ̃E

2

(
(v1+2,3+4,v1+2+3,4), (v1+2,3,v34)

)
+
1

2

(
Φ̃E

2

(
(u1+2+4,3,u1+2+3,4), (v1+2,3,v1+2,4)

)
−Φ̃E

2

(
(v1+2+4,3,v1+2+3,4), (v1+2,3,v1+2,4)

)))
Φ̃E

1 (u12,v12)

−
(
Φ̃E

1 (u1+2+3,4,v1+2+3,4)− Φ̃E
1 (v1+2+3,4,v1+2+3,4)

)
Φ̃E

2

(
(v1,2+3,v1+2,3), (v12,v23)

)
+
(
Φ̃E

1 (u1+2+3,4,v1+2+3,4)− Φ̃E
1 (v1+2+3,4,v1+2+3,4)

)
Φ̃E

1 (u12,v12)Φ̃
E
1 (u1+2,3,v1+2,3)

+
1

4

(
Φ̃E

1 (u1+2,3+4,v1+2,3+4)− Φ̃E
1 (v1+2,3+4,v1+2,3+4)

)
Φ̃E

1 (u12,v12)Φ̃
E
1 (u34,v34)

}
,

where Φ1(x) is defined in (4.13). These explicit results for Φ̂tot
n are the basis for the conjectural

formula (5.20).
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