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Analysing oscillatory trends of discrete-state stochastic
processes through HASL statistical model checking

Paolo Ballarini
CentraleSupélec
France

Abstract The application of formal methods to
the analysis of stochastic oscillators has been at the
focus of several research works in recent times. In
this paper we provide insights on the application
of an expressive temporal logic formalism, namely
the Hybrid Automata Stochastic Logic (HASL), to
that issue. We show how one can take advantage of
the expressive power of the HASL logic to define
and assess relevant characteristics of (stochastic)
oscillators.

1 Introduction

Many biological systems are characterised by some
form of stochastic oscillatory dynamics. A rough
classification may distinguish damped oscillators,
that is, systems that exhibit a transient oscillatory
trend, from sustained oscillators, that is, systems
that exhibit a stationary oscillation lasting in the
long run. Assessing the main characteristics of a
stochastic oscillator, like, for example, the mean
amplitude or the mean period of oscillations, or
even the variability of amplitude and period, is not
a trivial task.

Oscillation analysis techniques exist both in ap-
plied mathematics and signal processing. In math-
ematics the oscillatory character of systems de-
scribed in terms of Ordinary Differential Equations
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(ODEs) can be assessed through limit-cycle analy-
sis. With signal processing the oscillatory nature of
a given signal can be assessed through Fast Fourier
Transformation (FFT) or autocorrelation analysis.

In recent times the study of oscillatory sys-
tems has attracted the attention of research in the
area discrete-state stochastic models, yielding to
a number of research works aimed at the appli-
cation of temporal logic reasoning to characteri-
sation of oscillations [8,25,4,12]. The goal in that
respect is, quite simply, to adapt (stochastic) model
checking techniques so that, given a modelM , one
is capable to obtain answers to questions such as:
“does M oscillates?” , “where are the peaks of
oscillations ?” “what is the (average) period of
oscillations?”. Since here we refer to stochastic
models answering such questions usually boils down
to assessing some distribution of probability (e.g.
assessing the steady-state distribution ofM , and/or
the PDF of the period duration, and/or the PDF of
the location of the peaks of oscillations). So far
analysis of oscillations through stochastic model
checking have been mainly obtained through ap-
plication of the Continuous Stochastic Logic (CSL) [5]
(in some cases joint to its reward-based extensions [21])
approach or similarly expressive (linear-time) vari-
ants (e.g. Metric Interval Temporal Logic [12]).

Interestingly, in recent times, Spieler [25] has
shown how CSL model checking can be adapted
to oscillation analysis so that both qualitative, as
quantitative oscillation related queries can be for-
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mally assessed against a continuous-time Markov
chain (CTMC). This is achieved by coupling of a
CTMC model with a timed automaton (TA) “mon-
itor” capable of identifying noisy-periodic traces.

In this paper we extend Spieler’s approach by
considering a larger class of “monitor” automata,
namely that of Hybrid Automata, featured in the
Hybrid Automata Stochastic Logic (HASL) [7],
i.e., a recently introduced formalism for assess-
ing a generic class of discrete state stochastic pro-
cesses, which includes, but is not limited to, CTMCs.
Differently from Spieler’s approach, which allows
one for qualitatively establishing whether a CTMC
model is a sustained oscillator and, if so, to assess-
ing some quantitative characteristics (e.g. the av-
erage period duration), the methodology we intro-
duce here is limited to assessing quantitative char-
acteristics of a stochastic model which is known
(or believed to) oscillates.

Paper contribution. The paper main contribution
is one of demonstrating the effectiveness of the
HASL formalism as a means to effectively spec-
ifying and automatically estimate oscillation re-
lated measures. We consider two different approaches:
the first is concerned with assessing the oscillation
period, the second is concerned with measuring
the oscillation peaks (hence the oscillation ampli-
tude). We define two specific types of linear hybrid
automata (LHA) that, when synchronised with an
oscillatory stochastic process, are capable of de-
tecting the periods, respectively the peaks, of its
trajectories and compute on-the-fly classical char-
acteristics like the average duration or the average
amplitude of the oscillations as well as more so-
phisticated ones like the period fluctuation, which
allow for assessing the regularity of an oscillator.

We demonstrate such contributions by consid-
ering a well-known case study. i.e. the analysis of
a model of the circadian clock [26].

Paper organisation. In Section 2 we introduce the
HASL formalism. In Section 3 we describe the ba-
sic contribution of the paper, namely the applica-
tion of HASL to the analysis of oscillations. In
Section 4 we demonstrate the HASL-based anal-
ysis of oscillations on an example of biological

oscillator. We wrap up the paper with some con-
cluding remarks in Section 6.

2 HASL model checking

HASL framework belongs to the family of so-called
statistical model checking methods, whose goal is
to produce estimates of a (formally specified) tar-
get measure through sampling of the trajectories
of the model1. HASL is an automata-based type
of logic, meaning that it employs automata, and
specifically linear hybrid automata (LHA) as ma-
chineries for characterising the properties to be in-
vestigated. This yields the main feature of HASL,
that is, its expressive power which in this paper we
are going to demonstrate in respect to the oscilla-
tion analysis problem.

Simply speaking the HASL model checking
procedure works as follows: given a model D and
a certain dynamics of interest encoded by an LHA
A, the HASL model checker samples trajectories
of the synchronised processD×A, hence selecting
only those paths of D that are accepted by A and
using them for estimating the confidence-interval
of a given target measure (in the following denoted
Z), a quantity defined as a function of the LHA
variables.

In the remainder of this section we give the ba-
sics elements of the HASL formalism, which in-
clude: the characterisation of Discrete Event Stochas-
tic Process (DESP), the characterisation of LHA
and of the corresponding synchronised processD×
A, and that of target measureZ. We refer the reader
to [7] for more details.

2.1 Discrete Event Stochastic Processes

We refer to a DESP as a discrete-state stochastic
process consisting of an enumerable set of states
and whose dynamic is triggered by a set of (time
consuming) discrete events. We do not consider

1 as opposed to numerical stochastic model checking
which requires the complete construction of a model’s
state-space to assess the exact value of the target measure.
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any restriction on the nature of the distribution as-
sociated with events2. Otherwise said a DESP is
a family of random variables {X(t) | t ∈ R≥0}
where t represents time and where, in the context
of this paper, Nn is assumed to be the support of
X (i.e. we talk in this case of an n-dimensional
DESP population model, see Definition 3). Below
we give the formal definition of DESP. Such a char-
acterisation is useful to provide us with an algo-
rithmic formulation of the dynamics of a DESP
(see below) which is at the basis of the HASL sta-
tistical model checking procedure.

Notation. For a generic set A we denote dist(A)

the set of possible probability distributions whose
support is A, that is, dist(A) = {µ : ΣA →
R+|(A,ΣA, µ)} where (A,ΣA, µ) is a probabil-
ity space for a sigma-algebra ΣA of A. Observe
that depending on the nature of A the correspond-
ing probability distributions µ ∈ dist(A) are ei-
ther continuous (if A is dense) or discrete (if A is
finite/discrete).

Definition 1 (DESP) A DESP is a tuple
D = 〈S, π0, E, Ind, enabled, delay, choice, target〉
where

– S is an enumerable (possibly infinite) set of
states,

– π0 ∈ dist(S) is the initial distribution on states,
– E is a finite set of events,
– Ind is a set of functions from S to R called

state indicators (including the constant func-
tions),

– enabled : S → 2E are the enabled events in
each state with for all s ∈ S, enabled(s) 6= ∅.

– delay : S×E → dist(R+) is a partial function
defined for pairs (s, e) such that s ∈ S and
e ∈ enabled(s).

– choice : S × 2E ×R+ → dist(E) is a partial
function defined for tuples (s, E′, d) such that
E′ ⊆ enabled(s) and such that the possible
outcomes of the corresponding distribution are
restricted to e ∈ E′.

– target : S×E×R+→S is a partial function de-
scribing state changes through events defined
for tuples (s, e, d) such that e∈enabled(s).

2 hence, in essence, a DESP corresponds to a generalised
semi-Markov processes [14,3]

A configuration of a DESP consists of a triple
(s,τ ,sched) with s being the current state, τ ∈R+

the current time and sched : E → R+∪{+∞} be-
ing the function that describes the occurrence time
of each scheduled event (+∞ if an event is not yet
scheduled). Observe that a scheduler sched essen-
tially describes the state of the events’ queue in
a given configuration of the DESP. Thus all (cur-
rently) enabled events will have a finite scheduled
time sched(e) <∞, whereas non-enabled events
will be associated with an infinite delay, that is,
sched(e)=∞. Thus, within the algorithm for gen-
erating a trajectory of a DESP, a scheduler sched
provides the occurrence time of the next event to
occur (see also Algorithm 1). In the remainder we
denote Conf = S×R+×Sched the set of pos-
sible configurations of a DESP (where Sched de-
notes the set of possible schedules functions for
the events of the DESP). Also for a configuration
c = (s , τ , sched) ∈ Conf , we denote c(s), c(τ)

and c(sched) the state s, respectively the time τ
and the schedule sched of configuration c.

For a state s, enabled(s) is the set of events en-
abled in s. For e ∈ enabled(s), delay(s, e) is the
distribution of the delay between the enabling of
e and its possible occurrence. Furthermore, if we
denote δm the delay of the earliest event in the cur-
rent configuration (s,τ ,sched) of the process, and
Emin ⊆ enabled(s) the set of events with earli-
est delay, then choice(s, Emin, δm) describes how
the conflict between the concurrent events inEmin
is randomly resolved: i.e. choice(s, Emin, δm)(e′)
is the probability that e′ ∈ Emin will be selected
hence occurring with delay δm. Finally function
target(s, e, d) denotes the target state reached from
s on occurrence of e after waiting for d time units.

Dynamics of a DESP. The evolution of a DESP D
can be informally summarised by an iterative pro-
cedure consisting of the following steps (assuming
(s , τ , sched) is the current configuration ofD): 1)
determine the set Emin of events enabled in state
s and with minimal delay δm; 2) select the next
event to occur enext∈Emin by resolving conflicts
(if any) between concurrent events through proba-
bilistic choice according to choice(s, Emin, τ); 3)
determine the new configuration of the process re-
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sulting from the occurrence of enext, this in turns
consists of three sub-steps: 3a) determine the new
state resulting from occurrence of enext, i.e. s′ =

target(s, enext, δm); 3b) update the current time
to account for the delay of occurrence of enext, i.e.
τ = τ + δm; 3c) update the schedule of events ac-
cording to the newly entered state s′ (this implies
setting the schedule of no longer enabled events to
+∞ as well as determining the schedule of newly
enabled events by sampling through the correspond-
ing distribution). Such procedure is (semi-formally)
summarised in Algorithm 1.

Algorithm 1 Evolution of a DESP
initial configuration: (s , τ , sched)
while Enabled(s) 6= ∅ do
Emin=min(∪e∈enabled(s)sched(e))
enext = choice(s, Emin, τ)
δm = sched(enext)
s′ = target(s, enext, δm)
τ ′ = τ + δm
sched(e)= +∞ (∀e 6∈enabled(s′))
sched(e)=sample(delay(s′, e)) (∀e∈enabled(s′))

A path (or trajectory) of a DESP is a sequence of
configurations σ=c1, c2, c3, . . . resulting from the
execution of the procedure highlighted by Algo-
rithm 1. We formalise this in the following defini-
tion. The notion of DESP path will be used later on
for reasoning about the dynamics of a DESP and
in particular for reasoning about oscillations.

Definition 2 (Path of a DESP) For a DESP D =

〈S, π0, E, Ind, enabled, delay, choice, target〉we
define the set of finite paths asPath∗ ⊆ ⋃n∈N Conf n,
with Conf the set of configurations of D. We de-
note σ=(c0, c1 . . . , cn)∈Path∗, where π0(c0(s))>

0 and ∀0 ≤ i < n, ∃e ∈ Emin(ci(s)) such that
ci+1(s) = target(ci(s), e, ci(τ)). By extension
we denote Pathω as the set of infinite path and
Path = Path∗∪Pathω as the of all paths of a
DESP.

In the remainder we might refer to a DESP path
using σ=(c0, c1 . . . , cn) or, depending on the con-
text, simply indicating the corresponding sequence
of states σ = (c0(s), c1(s) . . . , cn(s)), or simply
σ = (s0, s1 . . . , sn). Furthermore for a path σ =

(c0, c1 . . . , cn) we use the following notations: for

i∈N, σ[i] = ci(s) denotes the i-th state, time(σ, i)

denotes the time spent in state σ[i], while for t ∈
R+, σ@t denotes the state in which σ is at time
t, that is, σ@t= σ[j] such that j is the smallest j
with t≤∑i≤j

i=0 time(σ, i).
Since in this paper we deal with the analysis of

discrete-state biological models representing the
evolution of the molecular population of n species,
we introduce the notion of DESP population model.

Definition 3 (DESP Population Model) A DESP
model for n∈N population types is a DESP D =

〈S, π0, E, Ind, enabled, delay, choice, target〉with
S⊆Nn.

Definition 4 (DESP Observed Species) For D a
DESP population model with n species we define
Di the observed ith process, with 1 ≤ i ≤ n, as
the process resulting fromD by observing only the
ith component of each state of D. Thus each s=

(s1, . . . , si, . . . sn) ∈ S of D corresponds to state
si∈Si of Di.

By extension for σ∈Path a path of a DESP popu-
lation model we denote σi the ith projection of σ,
thus if σ = (s10, . . . s

n
0 ), (s11 . . . s

n
1 ), . . . then σi =

si0, s
i
1 . . .

Indicator functions. In the definition of DESP we
include a set of indicator functions denoted Ind.
An indicator α ∈ Ind maps states of a DESP to
real values α : S → R. DESP indicators describe
what information can be seen by an LHA during
the synchronisation with a DESP. Specifically, in-
dicators appear in various parts of a synchronising
LHA (see Definition 5): in the location invariants
(function Λ), in a location’s flow, and in the edge
constraints (Const and lConst, within→) and edge
updates (Up) of an LHA edge. We denote Prop⊆
Ind the subset of boolean valued indicators called
propositions, i.e., for α∗∈Prop, α∗ : S → {0, 1}.
Indicators are evaluated against states. Thus for
s∈S, and α∈ Ind an indicator, α(s) denotes the
value of α in state s. Specific details about how in-
dicators are applied within the characterisation of
an LHA are given in Section 2.2.
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DESP in terms of GSPN For implementation con-
venience, in the context of HASL and in particular
of the associated model checking tool COSMOS [1,
6], we represent DESP models in terms of stochas-
tic petri nets, and more precisely we adopt (the
non-markovian extension3 of) Generalised Stochas-
tic Petri Net (GSPN) [2] as the high-level input
formalism for expressing a DESP model. Thus, in
this context, DESP indicators are actually GSPN
indicators, that is: they are expressions which con-
tain references to the (marking of the) places of
a GSPN model. For the sake of brevity here we
assume familiarity with the GSPN formalism, re-
ferring the reader to the literature [2] for details.
GSPN semantics is briefly presented later on through
description of a simple GSPN model (see Figure 1).

Example: DESP indicators within LHA. In the LHA
of Figure 1 (right) the indicator protA, which refers
to the marking of the GSPN place named protA
in Figure 1 (left), is used within the updates of
the self-loop edges of location l0. Specifically in-
dicator protA is used to update the LHA variable
a with the current number of tokens contained in
GSPN place protA. Similarly in the LHA of Fig-
ure 4 the GSPN place indicator A (which refers to
the GSPN place namedA of the GSPN in Figure 8)
is used within the invariant constraints A≤L, L≤
A ≤ H and A ≥ H associated respectively with
locations low, mid and high (where L,H∈R are
just symbolic names for two real-valued constants
used for representing a generic version of theAper
LHA: in practice concrete instances of Aper are
obtained by actual instances of L,H , e.g., L = 1

and H= 10). Such invariants essentially state that
entering the locations low, mid and high depend
on the current marking of place A (see Section 3.1
for more details).

2.2 Hybrid Automata Stochastic Logic

The Hybrid Automata Stochastic Logic, introduced
in [7], extends Deterministic Timed Automata (DTA)

3 GSPN with timed transitions associated to generic
probability distributions, that is, not necessarily Negative
Exponential as with the standard GSPN definition [2].

logics for describing properties of Markov chain
models [13,10], by employing LHA (a generali-
sation of DTA) as instruments for characterising
specific dynamics of an observed DESP model. An
HASL formula consists of two elements: 1) a so-
called synchronising LHA, i.e. an LHA enriched
with (state and/or event) indicators of the observed
DESP and 2) a target expression (see grammar (1))
which expresses the quantity to be evaluated. The
synchronised LHA is used for selecting the trajec-
tories that correspond to the behaviour to of inter-
est. The target expression indicates what statistics,
i.e. what function of the synchronised LHA data
variables, will be assessed with respect to the tra-
jectories selected by the LHA.

In the following we formally introduce the no-
tion of synchronised LHA and then informally de-
scribe the stochastic process resulting from the prod-
uct of a DESP and a synchronised LHA.

Definition 5 A synchronised linear hybrid automa-
ton is a tupleA=〈E,L,Λ, I, F,X, flow,→〉where:

– E is a finite alphabet of events;
– L is a finite set of locations;
– Λ : L→ Prop is a location labelling function;
– I ⊆ L is the initial locations;
– F ⊆ L is the final locations;
– X = (x1, ...xn) is a n-tuple of data variables;
– flow : L 7→ Indn associates an n-tuple of in-

dicators with each location (the ith projection
flowi denotes the flow of change of variable
xi).

– →⊆ L×
(
(2E × Const) ] ({]} × lConst)

)
×

Up× L is the set of edges of the LHA ,

where] denotes the disjoint union, Const and lConst
denotes the set of possible constraints, respectively
left closed constraints, associated with A (see de-
tails below), Up is the set of possible updates for
the variables of A and Prop ⊆ Ind denotes the
subset of boolean valued DESP indicators.

Before presenting informally the synchronisa-
tion of a DESP with an LHA we start by describ-
ing the various parts of an LHA. In what follows
we denote indicators symbolically by greek letters
α, α′ ∈ Ind, while we use capital letters A,B, . . .
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to refer to names of GSPN places (within con-
crete indicators instances) and x1, x2, . . . to denote
LHA variables. Thus, for example, α≡A+ 2B is
an indicator whose value is given by the sum of
the marking of place A with twice the marking of
place B.

Location proposition: function Λ associates each
location l∈L with a proposition (also called loca-
tion invariant in the remainder) Λ(l)∈ Prop rep-
resenting a condition under which a location can
be entered. A location proposition consists of a
boolean combination of inequalities involving DESP
indicators and has the following formΛ(l)≡∧i(αi≺
α′i) with αi, α′i ∈ Ind, and ≺∈ {=, <,>,≤,≥}.
Notice that indicators can be constant functions,
thus, for example, a location proposition may con-
sist of comparing indicators’ values against con-
stant thresholds, as in, e.g., Λ(l) ≡ A ≥ 10, or
it may consist of comparing different indicators
one another, as in, e.g., Λ(l) ≡ A ≤ B or Λ(l) ≡
A≤ B2

√
C. A location proposition (given by Λ)

is shown by a label next to the location it refers
to. For convenience no label is shown next to un-
constrained locations, i.e., locations associated to
a tautology like > ≡ (αi=αi). Location proposi-
tions are evaluated against states of a DESP. Thus
for s ∈ S a DESP state and l ∈ L a location of
an LHA we say that s satisfies the invariant Λ(l),
denoted s |= Λ(l), if Λ(l)(s) = true (where Λ(l)

is the value of the boolean expression obtained by
replacing each indicator α ∈ Λ(l) with its value
α(s)). Furthermore given two edge locations l and
l′ we say that the their respective invariants are
inconsistent, denoted Λ(l) ∧ Λ(l′) ⇔ false, if
there cannot exist a state s that satisfies Λ(l) ∧
Λ(l′). For example, if Λ(l) ≡ A ≤ 2 and Λ(l′) ≡
A>2 then trivially A≤2∧A>2⇔ false. This
means that l and l′ are mutually exclusive, which is
a necessary condition for LHA with multiple ini-
tial locations (see conditions c1 below).

Edge constraint: Edge constraints describe neces-
sary conditions for an edge to be traversed. We
denote Const (resp. lConst) the set of constraints
(resp. left-closed constraints) of an LHA edge. An
edge constraint consists of a boolean combination

of inequalities involving both DESP indicators and
LHA variables. They have the following form γ≡∧
j(
∑

1≤i≤n αijxi≺α′j) with αij , α′j ∈ Ind, xi ∈
X and ≺∈ {=, <,>,≤,≥}. Simple examples of
edge constraints can be: γ ≡ (2x1 +3x2 ≤ 5) or
also γ ≡ (Ax1 = 5), where A in the latter case
represents a DESP indicator (i.e., the marking of
the GSPN place named A). Given a location l of
the LHA and a state s of the DESP, the inequal-
ities γj ≡

∑
1≤i≤n αijxi ≺ α′j of constraint γ,

evolve linearly with time. Thus each γj gives an
interval of time during which γj is satisfied, and
the complete constraint γ is satisfied over the in-
tersection of the intervals satisfying the conjuncts
γj . We say that a constraint is left closed if, what-
ever the current state s (defining the values of the
DESP indicators), the time at which the constraint
is satisfied is a union of left closed intervals (for
example, γ ≡ (x1≥ 5) is left-closed whereas γ ≡
(x1 > 5) is not). We denote lConst ⊆ Const the
subset of left-closed constraint. For efficiency the
constraint of autonomous-edges (see below) must
be left-closed.
Edge constraints are evaluated against pairs (s, ν)∈
S×V al where s∈S is a state of a DESP and ν :

X → R∈V al is a valuation that maps every LHA
data variable to a real value (we denote V al the
set of all possible valuations). For ν ∈ V al, ν(x)

denotes the value of variable x through valuation
ν. Given γj ≡

∑
1≤i≤n αijxi ≺ αj an inequality

contained in an edge-constraint γ ≡∧j γj , its in-
terpretation w.r.t. ν and s, denoted γj(s, ν), is de-
fined by γj(s, ν) =

∑
1≤i≤n αij(s)ν(xi)≺α′j(s).

We write (s, ν) |= γj if γj(s, ν) = true and, by
extension, (s, ν) |= γ iff (s, ν) |= γj for all j. Fur-
thermore given two edge constraints γ and γ′ we
say that their conjunction γ∧γ′ is inconsistent, de-
noted γ∧γ′ ⇔ false, if there exists no combina-
tion (s, ν)∈S×V al that satisfies it. For example,
if γ ≡ x1 ≤ 2 and γ′ ≡ x2 > 2 are the constraints
for two edges then trivially (x1≤2) ∧ (x1>2)⇔
false, meaning the two edges cannot be concur-
rently enabled (see conditions c2 and c3 below).

Edges update: an edge update U = (u1, ..., un)∈
Up is an n-tuple of functions characterising how
each LHA variable xk is going to be updated on
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traversal of the edge. Each function uk (1≤k≤n)
of an edge update U = (u1, ..., un)∈Up is of the
form xk =

∑
1≤i≤n αixi + c where the αi and c

are DESP indicators. Similarly to edge constraints,
updates are evaluated against pairs (s, ν)∈S×V al.
Given an update U = (u1, . . . , un), we denote by
U(s, ν) the valuation defined by U(s, ν)(xk) =

uk(s, ν) for 1 ≤ k ≤ n.

Locations flow: a location flow is an n-tuple of in-
dicators flow(l) = (α1, . . . , αn), where αi ∈ Ind
describes the gradient at which variable xi ∈ X
changes while the automaton sojourns in location
l. Specifically when location l is entered the rate of
change of each xi is established by the valuation,
w.r.t. to the state the DESP is at on entering of l, of
the corresponding αi. Observe that, if each αi in
flow(l) is a constant function (e.g. αi = ci, with
ci ∈R) then each variable xi changes at constant
rate throughout the sojourn in l. However this is
not necessarily the case for variables whose flow is
given by a non-constant indicator, like, for exam-
ple, αi=c1A+c2B, with c1, c2∈R andA,B rep-
resenting the marking of two GSPN places named
A and B. In this case the flow of change of xi de-
pends on the marking of places A and B, and such
marking may change during the sojourn in l, for
example if a synchronising self-loop edge l → l

exists which synchronises with some DESP event
whose occurrence modify the marking of A or B.

Having described the DESP indicators dependent
elements of an LHA we now see how they are all
combined within the characterisation of an LHA
edge.

Edges of an LHA. An edge l
E′,γ,U−−−−→ l′ of an LHA

is labelled by: 1) a constraint γ, 2) a set of event la-
belsE′, 3) an update U . An edge can be either syn-
chronous or autonomous. A synchronous edge is
one whose traversal is triggered by the occurrence
of an event of the DESP in particular an event e∈
E′⊆ E where E′ is the set of event names label-
ing the edge. An autonomous edge, on the other
hand, is one whose traversal is independent of the
occurrence of DESP events, hence the event label

for autonomous edges is E′≡ ], where ] is the la-
bel used for representing a “pseudo-event”.

The class of LHA for HASL is further restrained
by the following conditions:

– c1 (initial determinism): ∀l 6= l′ ∈ I , Λ(l) ∧
Λ(l′) ⇔ false. This means that indepen-
dently of the interpretation of the indicators,
hence of the synchronising DESP model, at most
one initial location l∈I can have its constraint
Λ(l) verified.

– c2 (determinism on events:) ∀E1, E2 ⊆ E :

E1 ∩E2 6= ∅, ∀l, l′, l′′ ∈ L, if l′′
E1,γ,U−−−−→

l and l′′
E2,γ

′,U ′−−−−−→ l′ are two distinct transi-
tions, then either Λ(l) ∧ Λ(l′) ⇔ false or
γ∧γ′ ⇔ false. Again this equivalence must
hold whatever the interpretation of the indica-
tors occurring in Λ(l), Λ(l′), γ and γ′.

– c3 (Determinism on ]:) ∀l, l′, l′′ ∈ L, if l′′ ],γ,U−−−→
l and l′′

],γ′,U ′−−−−→ l′ are two distinct transitions,
then either Λ(l)∧Λ(l′)⇔ false or γ∧γ′ ⇔
false.

– c4 (no ]-labelled loops:) For all sequences

l0
E0,γ0,U0−−−−−−→ l1

E1,γ1,U1−−−−−−→ · · · En−1,γn−1,Un−1−−−−−−−−−−−→
ln such that l0 = ln, there exists i ≤ n such
that Ei 6= ].

Synchronisation of LHA and DESP. The role of a
synchronised LHA A is to select specific trajecto-
ries of a corresponding DESP D while collecting
relevant data (maintained in the LHA variables)
along the execution. Synchronisation is technically
achieved through the product processD×Awhose
formal characterisation, for the sake of brevity, we
omit in this paper: we provide however an intuitive
description of the D ×A semantics.

The product D×A is itself a DESP whose
states are triples (s, l, ν) where s is the current
state of the D, l the current location of the A and
ν :X→ R the current valuation of the variables of
A. Formally the set of states of the product process
D×A is defined as S′ = (S × L × V al) ] {⊥},
where V al denotes the set of possible variables’
valuations and ⊥ denotes the rejecting state, i.e.,
the state entered when synchronisation fails, hence
when a trajectory is rejected (see below). Notice
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that a configuration of the product DESP D × A
has the following form ((s, l, ν), τ, sched′), where
(s, l, ν) is the current state ofD×A, τ ∈R+ is the
current time, and sched′ is the schedule of the en-
abled events of D ×A. The synchronisation starts
from the initial state (s, l, ν), where s an the initial
state of the DESP (i.e. π0(s) > 0), l is an initial
location of the LHA (i.e. l∈ I) and the LHA vari-
ables are all initial set to zero (i.e. ν = 0)4.

From the initial state the synchronisation pro-
cess evolves through transitions where each tran-
sition corresponds to traversal of either a synchro-
nised or an autonomous edge of the LHA5. Fur-
thermore if an autonomous and a synchronised edge
are concurrently enabled the autonomous transi-
tion is taken first. Let us suppose that (s, l, ν) is
the current state of processD×A and describe how
the synchronisation evolves. If in the current loca-
tion of the LHA (i.e. location l of the current state
(s, l, ν)) there exists an enabled autonomousedge

l
],γ,U−−−→ l′, then that edge will be traversed leading

to a new state (s, l′, ν′) where the DESP state (s)
is unchanged whereas the new location l′ and the
new variables’ valuation ν′ might differ from l, re-
spectively ν, as a consequence of the edge traver-
sal. On the other hand if an event e of process D
(corresponding to transition s e−→ s′ of D) occurs
in state (s, l, ν), either an enabled synchronous edge

l
E′,γ,U−−−−→ l′ (with e ∈ E′) exists leading to new

state (s′, l′, ν′) of process D×A (from which syn-
chronisation will continue) or the synchronisation
halts hence the trace is rejected (formally this is
achieved with the system entering the rejecting state
⊥).

Enabling of an LHA edge. Let us briefly describe
how the enabling, hence the traversal, of an LHA
edge is established. Let (s, l, ν) be the current state

of process D×A. An edge l
E,γ,U−−−−→ l′ being it

autonomous or synchronous originating in l is en-

4 Notice that because of the “initial-nondeterminism” of
LHA there can be at most one initial state for the product
process.

5 notice that because of the determinism constraints of
the LHA edges (conditions c2 and c3) at most only one
autonomous or synchronised edge can ever be enabled in
any location of the LHA.

abled if the following two conditions hold: 1) if the
edge constraint is satisfied in state (s, l, ν) (i.e., if
(s, ν) |= γ) 2) if the location invariant of the target
location Λ(l′) is satisfied in the state s′ reached
by traversal of the edge, i.e., if s′ |= Λ(l′) (ob-
serve that if the considered edge is autonomous
then necessarily s′=s, whereas if it is synchronous
then possibly s′ 6= s). Finally for a synchronous
edge to be enabled, in addition to 1) and 2), it must
be the case that the DESP event e occurring while
in (s, l, ν) is captured by the the edge, i.e., e∈E.

Remarks. The above described synchronisation of
a DESP and an LHA, which HASL model check-
ing is based on, requires certain properties to hold,
namely: uniqueness, convergence and termination
of the synchronisation. This means that for A a
synchronised LHA then for any (infinite) path σ of
a synchronising DESP model: 1) there must be ex-
actly one synchronisation with A, 2) synchronisa-
tion cannot go on indefinitely due to an infinity of
consecutive autonomous events, 3) path σ should
lead to an absorbing state (i.e. a final location of
the A or the rejecting state ⊥) with probability
1. The uniqueness property is guaranteed by con-
straint c1, c2 and c3 of the LHA definition whereas
convergence is a consequence of constraint c4. On
the other hand termination of the synchronisation
is not explicitly guaranteed, however can be en-
sured by structural properties of A and/or D.

HASL expressions. The second component of an
HASL formula is an expression related to the au-
tomaton. Such an expression, denoted Z, is de-
fined by a specific grammar [7] of which here we
consider only the basic elements given in (1).

Z ::= E[Y ] | P
Y ::= last(y) |min(y) |max(y) | avg(y)

y ::= c | x | y + y | y × y | y/y
(1)

Z is either either an expectation expression E[Y ],
or a probability expression P . An expectation ex-
pression Z = E[Y ] represents the expected value
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Example (synchronisation of DESP and LHA): To understand how synchronisation of a DESP with an LHA works let
us consider a simple example. Figure 1 depicts a toy DESP model in GSPN form (on the left) coupled with a simple
LHA (on the right). The GSPN model represents the basic steps of gene expression: 1) binding/unbinding of an activator
protein to the promoter of gene A; 2) of transcription of a gene into an mRNA molecule; 3) degradation of the mRNA
4) translation of the mRNA into the expressed protein prot A. The states of the DESP consist of 4-tuples s = (protA,
geneA ,A geneA, mrnA) ∈ N4, corresponding to the marking of the 4 places of the GSPN, whereas the event set is
E = {bind, unbind, degrade, transc, transl}, corresponding to the 5 timed-transitions of the GSPN. The LHA A, on
the other hand, consists of: two locations, l0 (initial) and l1 (final), and three data variables t (a clock), n (for counting
the number of occurrences of the transc event) and a (for keeping track of the population of prot A). Notice that the
invariant of both locations is Λ(l0)=Λ(l1)=>, (hence no label is associated to l0, l1), meaning that both locations can be
entered without constraint. The initial state of the product process D ×A is s0 =((2, 1, 0, 0), l0, ν0), where ν0 is the zero

valuation (i.e., ν0(t)=ν0(n)=ν0(a)=0).A has two synchronised (self-loop) edges l0
{transc},n<N,{n++,a=protA}
−−−−−−−−−−−−−−−−−−−−−→ l0,

which synchronises with occurrences of the transc event, and l0
E\{transc},n<N,{a=protA}
−−−−−−−−−−−−−−−−−−−→ l0, which synchronises with

occurrences of any other event but transc (i.e., E \ {transc}). The constraint for both synchronised edges is n < N

which means they can be traversed as long as the number of observed occurrences of transc, which is stored in n, is less
than N . Both updates for the two synchronised edges refer to a single indicator, namely protA, whose value is given by
the marking of the GSPN place labelled protA, but they are slightly different. The update for the edge which synchronises
with transc is {n++, a = protA}, meaning that whenever the edge is traversed (i.e., on occurrence of a transc event)
the counter n is incremented and the current marking of place protA is stored in a. On the other hand the update for the
edge which synchronises with E \ {transc} the update is simply {a = protA} as clearly n must be incremented only on

occurrence of transc. Furthermore A has an autonomous edge l0
],(n=N),∅−−−−−−→ l1 leading to the final location l1. Such edge

gets enabled as soon as its constraint (n = N) is satisfied, that is, as soon as a state sN = ((n1, n2, n3, n4), l0, νN ), is
reached with νN being a valuation such that νN (n)=N . In any such state sN the autonomous edge is traversed (leading to
state sstop=((n1, n2, n3, n4), l1, νN )) and the synchronisation stops.

prot_A

gene_A A_geneAExp(1) mRNA_A

bind

transl

Exp(0.002)

Exp(0.02)

transc

degrade
unbind

Exp(0.02)

Exp(0.1)D l1

l0
ṫ : 1
ṅ : 0
ȧ : 0

E\{transcr},(n<N),{a= prot A}

],(n=N),;

{transcr},(n<N),{n++, a= prot A}

A

Fig. 1 Synchronisation between a DESP toy model (left) representing basic steps of gene expression and an LHA (right)
which selects paths containing N occurrences of the transcription event

of a random variable Y built on top of basic path
operators (last(y),min(y),max(y) , avg(y)). Each
such path operator take as argument y an algebraic
combination of the LHA data variables x, and is
evaluated along a (synchronised) path that is ac-
cepted by the automaton. Intuitively the meaning
of path operators is as follows: last(y) represents
the value that expression y has at the instant a path
is accepted, while min(y) (max(y), respectively
avg(y)) represents the minimum (maximum, re-
spectively average) value assumed by y along an
accepted path. Expression Z = P , on the other
hand, simply represents the probability that a path
is accepted by the LHA. This is given by the ratio

between the number of accepted paths and total
number of paths generated throughout a simula-
tion experiment.

In recent updates the COSMOS model checker [6]
has been enriched with facilities for assessing the
Probability (Cumulative) Distribution Function (PDF,
respectively CDF) of the value that an expression
Y takes at the end of a synchronising path. Notice
that PDF and CDF HASL expressions, are only
high-level macros supported by the COSMOS tool
in order to give the user the possibility to specify
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PDF/CDF measures6 in a straightforward manner.
Thus COSMOS supports the following syntax for
estimating a PDF measure: Z = PDF (Y, s, l, h),
where Y is the path dependent expression whose
PDF is to be estimated while l and h are the lower,
respectively higher, bound of the interval repre-
senting the support of Y (i.e. estimation of the PDF
of Y is done assuming Y takes value in [l, y]) and
s < (h − l) is the width of each sub-interval in
which the considered support [l, y] is discretised.
Thus during estimation of Z = PDF (Y, s, l, h)

COSMOS internally maintains a counter for each
of the (h − l)/s sub-intervals. Each such counter
is incremented if the value of Y on acceptance
of a trace falls in the corresponding sub-interval.
Then the value returned by COSMOS for Z =

PDF (Y, s, l, h) is the array of frequencies obtained
by dividing each of the above counters by the total
number of generated trajectories.

Example. We consider some examples of HASL
formula referred to the GSPN model of Figure 1
(left).

– φ1 ≡ (A, E[last(t)]): represents the average
time for completing N transcriptions

– φ2≡(A, E[max(a)]): represents the maximum
population reached by protein A within the first
N transcriptions

– φ3≡(A, PDF (last(t), 0.1, 0, 10)): represents
the PDF of the delay for completing N tran-
scriptions computed over the interval [0, 10]

with a discretisation step of 0.1

Observe that all three formulae φ1, φ2, φ3 use the
same monitor automaton, i.e., A (Figure 1, right).
This means that φ1, φ2, φ3 will all select the same
type of trajectories, specifically those trajectories
whose prefix contains exactly N occurrences of
the transc event.

For φ1 the expression to be estimated is Z1 =

E[last(t)], which is, the expected value that the
LHA variable t exhibits at the end (last(t)) of an
accepted, synchronised trace. Thus for each trace
σ sampled from process D×A the value of t at

6 Otherwise PDF/CDF measures can be encoded explic-
itly in an LHA but such encoding would usually result in a
rather complex LHA.

the moment σ is accepted (i.e., on occurrence of
the N -th transc event) is retained as a sample
for the confidence-interval estimation of the ex-
pectation of last(t). For φ2 the expression to be
estimated is Z2 = E[max(a)], which is, the ex-
pected value of the maximum that LHA variable
a exhibited along a synchronised trace. The maxi-
mum of an LHA variable along a trace is automati-
cally computed on-the-fly during the sampling of a
trace hence the value max(a) for a sampled trace
σ is known straight away on acceptance of σ. No-
tice that a stores the marking of the GSPN place
prot A, therefore Z2 represents the expected value
of the maximum number of protein A observed
over the firstN transcription events. Finally for φ3
the expression Z3 =PDF (last(t), 0.1, 0, 10) cor-
responds to estimating with what probability the
value of last(t) (i.e., the value of t at the end of a
sampled trajectory) falls within a discretised sub-
interval of [0, 10]. In this case we consider k =

(10 − 0)/0.1 = 100 sub-intervals of ∆ = [0, 10]

each of width 0.1 and with the k-th subinterval be-
ing∆k=[0+0.1·k, 0+0.1·(k+1)] with 0≤k≤99.
In practice, for estimating PDF-expressions like
Z3, COSMOS uses k internal variables, which we
may call N∆k

last(t) each of which counts how many
times the value of last(t) observed at the end of
a sampled trajectory σ has been found falling into
the k-th interval∆k. The probability that last(t)∈
∆k then simply corresponds to N∆k

last(t)/n, where
n is the total number of sampled trajectories. Thus
the estimate of Z3 produced by COSMOS is the
k-tuple of variables (N∆0

last(t)/n, . . . , N∆k
last(t)/n,

. . .N∆99

last(t)/n).

2.3 COSMOS statistical model checker

COSMOS7 [6] is a prototype software platform for
HASL-based statistical model checking. It employs
confidence interval techniques for estimating the
mean value of relevant performance measures ex-
pressed in terms of HASL formulae against a given

7 COSMOS is an acronym of the french sentence “Con-
cept et Outils Statistiques pour le MOdèles Stochastiques”
whose english translation would sound like: “Tools and
Concepts for Statistical analysis of stochastic models”.
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GSPN model. COSMOS has been recently integrated
in the CosyVerif platform [11] which adds to the
original command line interface (available with the
first version) the possibility of drawing the input
elements (i.e. GSPN and LHA) through a user a
graphical interface. Software platforms featuring
statistical model checking functionalities similar
to COSMOS include: PRISM [22], UPPAAL-SMC [9],
and PLASMA [17], APMC [15], YMER [27], MRMC [19]
and VESTA [23]. We refer the reader to [1,6] for
more details on COSMOS.

3 Measuring oscillations with HASL

Intuitively an oscillation is the periodic variation
of a quantity around a given value. In mathemat-
ical terms this is associated with the definition of
(non-constant) periodic function. i.e. function f :

R+ → R for which ∃P ∈ R+ such that ∀t ∈ R+,
f(t) = f(t+P ), where P is called the period (e.g.
trace in Figure 2(a)). In the context of stochastic
models such a “deterministic” characterisation of
periodicity is of little relevance, as the trajectories
of a stochastic oscillator being strictly periodic (as
in f(t) = f(t + P )), will have (unless in degen-
erative cases) zero probability. More generally the
traces of (discrete-state) stochastic oscillators are
characterised by a remarkable level of noise (e.g.
trace in Figure 2(b)).

Generally speaking, oscillation can either be a
transient behaviour (a model which oscillates for
a finite duration) or a limiting behaviour (i.e. a
model that exhibits a sustained oscillation). In [25]
Spieler, whose work tackles CSL based analysis
of CTMC oscillators, characterised sustained os-
cillations as the absence of both divergence and
convergence, meaning that a stochastic model that
oscillates sustainably is one whose trajectories σ
do not diverge (limt→∞ σ(t) <∞) nor converge
(@n ∈ N : limt→∞ σ(t) = n). Otherwise said a
stochastic model oscillates sustainably if and only
if the probability measure of the converging trajec-
tories and diverging trajectories is null [25].

In order to study the dynamics of stochastic
oscillators, in the following we introduce two (or-
thogonal) characterisations of oscillatory traces. The

first one, which following [25] we call noisy peri-
odicity, allows us for observing the period dura-
tion of an oscillator. The second allows us to lo-
cate the maximal and minimal peaks of oscillating
traces. We first recall the definition of trajectory of
a DESP.

3.1 Measuring the period of oscillations

As we previously argued, the mathematical char-
acterisation of periodic function is of little use when
it comes with analysing the periodic nature of a
stochastic model. As a consequence here we con-
sider an alternative characterisation of periodicity
which is suitable for capturing the noisy nature
of stochastic oscillations. For this we establish a
partition of a DESP state-space induced by two
threshold levels L,H ∈ N with L < H and we
say that, with respect to a specific observed species
(i.e. one of the n dimensions of the DESP) a tra-
jectory oscillates or, equivalently is noisy periodic,
if it traverse

Definition 6 (noisy periodic trajectory) For D
an n-dimensional DESP population model, let dom(D)

be its state space, and domi(D) the projection of
dom(D) along the ith dimension 1 ≤ i ≤ n of
D. Let L,H ∈N, L<H , be two levels establish-
ing the partition domi(D) = low ∪ mid ∪ high
with low = (−∞, L), mid = [L,H) and high =

[H,∞). A trajectory σ of D is said noisy peri-
odic with respect to the ith dimension, and with
respect to the considered L,H induced partition
of domi(D) if the projection σi visits the intervals
low), mid and high infinitely often.

In the remainder rather than referring to the pe-
riodicity with respect to the ith dimension we re-
fer to the periodicity with respect to the population
of species A, where A is the symbolic name of the
observed species corresponding to one of the Petri-
net place in the GSPN representation of D. Thus,
with a slight abuse of notation, we will denote σA
a trace which is noisy periodic w.r.t. species A.

Given a noisy periodic trace we are interested
in measuring the basic characteristics of its oscil-
latory nature, such as, the (average) duration of the
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 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2  4  6  8  10

nu
m

. o
f m

ol
ec

ul
es

time

regular oscillation

(a) a regular oscillation centred at 1 with maxima at 2,
minima at 0, and period equal to 2

 0

 5

 10

 15

 20

 25

 30

 0  1  2  3  4  5  6  7  8  9  10

nu
m

. o
f m

ol
ec

ul
es

time

A

X X X X X

(b) noisy oscillation: by considering a lower and higher
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Fig. 2 Deterministic versus stochastic (noisy) oscillations

oscillation period. For this we first need to estab-
lish what we mean by period. Intuitively a period,
for a trace which is noisy periodic (in the sense of
Definition 6), corresponds to the time interval be-
tween two consecutive sojourns in one of the two
extreme regions of the partition (e.g., low region),
interleaved by (at least) one sojourn into the op-
posite region (e.g., high region). Figure 3 gives
an example of period realisations for a noisy pe-
riodic trace: the first two period realisations, de-
noted p1 and p2, are delimited by the mid-to-low
crossing points corresponding to the first entering
of the low region which follows a previous sojourn
in the high region. Such an intuitive description of
noisy period of a noisy periodic trace is formalised
in Definition 7. We first introduce the notion of
crossing points sets associated to a noisy periodic
trace.

Given a noisy periodic trace σA we denote τj↓
(respectively τj↑), the instant of time when σA en-
ters for the j-th time the low (respectively the high)
region. T↓=∪jτj↓ (resp. T↑=∪jτj↑) is the set of
all low-crossing points (reps. high-crossing points).
Observe that T↓ and T↑ reciprocally induce a parti-
tion on each other. Specifically T↓=∪kTk↓ where
Tk↓ is the subset of T↓ containing the k-th sequence
of contiguous low-crossing points not interleaved
by any high-crossing point. Formally
Tk↓={τi↓, . . . , τ(i+h)↓|∃k′, τ(i−1)↓<τk′↑<τi↓,
τ(i+h)↓<τ(k′+1)↑}. Similarly T↑ is partitioned T↑=

∪kTk↑ where Tk↑ is the subset of T↑ containing the
k-th sequence of contiguous high-crossing points

not interleaved by any low-crossing point. For ex-
ample, with respect to trace σA depicted in Fig-
ure 3 we have that T↓ = T1↓∪T2↓∪T3↓ . . . with
T1↓= {τ1↓, τ2↓}, T2↓= {τ3↓}, T3↓= {τ4↓}, while
T↑ = T1↑∪T2↑∪T3↑ . . . with T1↑ = {τ1↑}, T2↑ =

{τ2↑}, T3↑= {τ3↑}. Observe that a noisy periodic

p1

L

H

low

mid

high

p2p0
T

⌧2" ⌧3"⌧1" ⌧1# ⌧2# ⌧3# ⌧4#

A

Fig. 3 Example of trace σA which is noisy periodic w.r.t to
species A and a given (L<H induced) partition of a DESP
state space.

trace can be seen as a collection of realisations of
certain random variables. For example the instants
of time τj↓, τj↑ are realisations of the random vari-
ables (which we could denote xj↓, respectively xj↑)
corresponding to the timing of entering the low,
respectively high, regions. Similarly the duration
of the k-th period contained in a trace can be seen
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as the realisation of a random variable8. We for-
malise the notion of noisy period realisation in the
next definition.

Definition 7 (kthnoisy period realisation) For σA
a noisy periodic trajectory with crossing point times
T↓ = ∪k≥1Tk↓ , respectively T↑ = ∪k≥1Tk↑, the
realisation of the kth noisy period, denoted tpk , is
defined as tpk =min(T(k+1)↓)−min(Tk↓).

Observe that in Definition 7 tpk could alternatively
be defined as tpk =min(T(k+1)↑)−min(Tk↑), that
is, with respect to crossing into the high region,
rather that into the low region. It is straightfor-
ward to show that both definitions are semantically
equivalent, i.e., the average value of tpk measured
along a trace (see Definition 8) is equivalent with
both definitions.
Furthermore observe that a noisy periodic trace (as
of Definition 6) contains infinitely many realisa-
tions of (noisy) periods. In the remainder we will
refer to the N -prefix of a noisy periodic trace σA,
meaning the prefix of σA that consists of the first
N noisy period realisations.

As an example of period realisations, let us
consider the noisy periodic trace in Figure 3 whose
first two period realisations are tp1 =τ3↓− τ1↓ and
tp2

= τ4↓ − τ3↓. Notice that the time interval de-
noted as p0 in Figure 3 does not represent a com-
plete period realisation as there’s no guarantee that
T = 0 corresponds with the actual entering into
the low region. Definition 7 correctly does not ac-
count for the first spurious period p0.

Having introduced the notion of noisy period
realisation we now look at the problem of esti-
mating two characteristic measures related to it,
namely, the period average and the period fluctua-
tion. By period average we simply mean the aver-
age value of the period realisations sampled along
a trace. On the other hand by period fluctuation
we mean a measure of the variability of the period
realisations along a trace. Observe that, from the
point of view of analysis, period fluctuation allows
us to analyse the regularity of the observed oscil-
lator. In this respect a “regular” oscillator is one

8 Note that the duration of the k-th period of a trace is,
in turn, dependent on the the random variables xj↓, xj↑
corresponding to the entering of the low, high regions.

whose traces consists of little variable periods (i.e.,
small fluctuation), as opposed to an “irregular” one
whose traces exhibits variable periods (i.e., large
fluctuation). We demonstrate the analysis of oscil-
lation regularity through fluctuation assessment in
Section 4.

Definition 8 (period average) For σA a noisy pe-
riodic trajectory the period average of the first n∈
N period realisations, denoted tp(n), is defined as
tp(n) = 1

n

∑n
k=1 tpk , where tpk is the k-th period

realisation.

Observe that for a sustained oscillator, the av-
erage value of the noisy-period, in the long run,
corresponds to the limit tp = limn→∞ tp(n).

Definition 9 (period fluctuation) For σA a noisy
periodic trajectory the period fluctuation of the first
n ∈ N period realisations, denoted s2tp(n), is de-
fined as s2tp(n) = 1

n

∑n
k=1(tpk − tp(n))2, where

tpk is the k-th period realisation and tp(n) is the
period average for the first n period realisations.

Note that the period fluctuation is in essence
defined as the variance of the period realisations
along a trace. In the remainder we show how, through
automaton Aper, we can estimate the period fluc-
tuation on-the-fly, that is, as the noisy periodic traces
are generated and scanned by Aper. For this we
employ an adaptation of the so-called online al-
gorithm [20] for computing the variance out of a
sample of observations.

In the following we introduce an LHA automa-
ton, called Aper, which is targeted to estimating
both the average and the fluctuation of the first N
the period realisations occurring along the simu-
lated noisy periodic traces.

The automaton Aper. The LHA Aper depicted in
Figure 4 is designed for detecting noisy periods
of an observed species (here denoted A). It con-
sists of an initial transient filter (locations l0, l′0)
plus three main locations low, mid and high (cor-
responding to the partition of A’s domain induced
by thresholds L < H). The intuition behind the
structure of the Aper automaton is as follows: the
transient filter is used to simply let the simulated
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E,(n<N),;
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Skipping the initial transient, 
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}

Fig. 4 Aper: an LHA for selecting noisy periodic traces (with respect to an observed species A) related to partition low =
(−∞, L], mid = (L,H) and high = [H,+∞).

trajectory unfold for a given duration (which is
useful for eliminating the effect of the initial tran-
sient from long measures, see below). The actual
analysis of the periodicity is performed by looping
within the low, mid and high locations. In partic-
ular each of these three locations corresponds to
one region of the partition induced by the consid-
ered L <H thresholds: location low corresponds
to region low = (−∞, L], location mid to re-
gion mid = (L,H) and location high to region
high = [H,+∞). Thus while a trace of the con-
sidered DESP is simulated theAper automaton os-
cillates in between locations low and high, passing
through mid, following the profile of the observed
species A. The completion of a loop from low to
high and back to low corresponds to detection of a
period realisation (as of Definition 7). During pe-
riod detection a number of relevant information
is stored in the data variables of Aper which are
then exploited for estimating the considered target
expressions. The analysis of the simulated trajec-
tory ends by entering location end as soon as the
N -th period has been detected. Below we provide
a more detailed description of the functioning of
Aper.

The synchronization starts in l0 where the au-

tomaton loops through synchronous edge l0
E,>,∅−−−−→

l0, simply observing the occurrences of any event

of E (i.e., the event set of synchronised GSPN-
DESP model), hence letting the simulated trajec-
tory unfold for a fixed duration given by parame-
ter initT : when t ≥ initT Aper moves, through
autonomous edges, to either l′0, if by t= initT the
simulated trajectory is not in a state of the low =

(−∞, L] region (i.e., if the invariant A>L of l′0 is
satisfied), or to location low if the current state of
the trajectory belongs to the low = (−∞, L] re-
gion (i.e., if the invariantA≤L of low is fulfilled).
If l′0 is entered then the simulated trace is let fur-

ther unfolding (synchronised self-loop l′0
E,>,∅−−−−→

l′0) until a state within low = (−∞, L] is reached,
in which case the invariant of location low is ful-
filled hence the autonomous edge l′0

],>,...−−−−→low
is traversed. Observe that on entering of low the
global timer variable t is reset and the period counter
n is initialised to −1 (this is so to avoid the first
spurious period, denoted p0 in Figure 3, to be con-
sidered amongst the detected ones). Once in loca-
tion low the actual detection of the period realisa-
tions begins9 and the automaton gets looping be-
tween the low, mid and high locations for as long
as N periods have been detected. From low the
automaton follows the profile exhibited by the ob-

9 Although the LHA in Figure 4 is designed so that pe-
riods detection starts from low it can be easily adapted so
that the identification starts from any location.
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Data variables
name domain update definition description
t R≥0 reset time elapsed since beginning measure

(first non-spurious period)
n N increment counter of detected periods
top bool complement boolean flag indicating whether the

high part of the partition has been en-
tered

tp R≥0 reset duration of last detected period
t̄p R≥0 f(t̄p, tp, n) =

t̄pn ·n+tp
n+1

mean value of tp

s2tp R≥0 g(s2tp , t̄p, tp, n) =
[(n−1)s2

tp
+(tp−t̄p)(tp−f(t̄p,tp,n+1))]

n
fluctuation of tp

Table 1 The data variables of automata Aper of Figure 4 for measures of noisy-periodicity

served populationA, thus moving to mid (and pos-
sibly back) as soon as the population of A grows
and a state of the mid = (L,H) region is entered
(i.e., corresponding to the L< A<H invariant of
mid location becoming satisfied), and then to high
(and possibly back) as soon as the population of A
enters the high = [H,+∞) region (correspond-
ing to the A ≥ H invariant of high location). On
entering the high location the boolean variable top
is set to true (i.e., top=1). This allows then for dis-
tinguishing between the mid-to-low transitions of

kind mid
E,(...∧top=1),...−−−−−−−−−−→low, which correspond to

an actual closure of a period realisation (i.e., those
τj↓ preceded by a sojourn in the high = [H,+∞)

region), from those of kind mid
E,(...∧top=0),...−−−−−−−−−−→low

which correspond to a return to low without having
previously sojourned in high. Observe that from
mid location there are four possible (mutually ex-
clusive) ways of entering the low location. If the
sojourn in mid has not been preceded by a sojourn

in high edge mid
E,(n<N∧top=0),...−−−−−−−−−−−−→low is enabled.

On the other hand if the sojourn in mid has been
preceded by a sojourn in high but low is going
to be re-entered for the first time (i.e., n = −1)
then the timer t is reset (representing the start time
of actual period detection) and the counter of de-
tected periods n is set to zero (again representing
the actual beginning of counting of period detec-
tion). Furthermore if the sojourn in mid has been
preceded by a sojourn in high and the period to be

detected is the first one (i.e., 0≤ n≤ 1 ∧ top= 1)
then we increment the counter n of detected pe-
riod, we reset the flag top and update the value of
the average duration of detected period t̂p while
we do not update the variable s2tp as in order as in
order to update the value of the fluctuation of the
detected period duration we need that at least two
periods have been detected. Finally if the period to
be detected is the n-th with n≥2 (i.e., correspond-
ing to guard 2≤ n≤N ∧ top=1) we do the same
update operations of the previous case but also up-
date s2tp .

The automata uses variable n to count the num-
ber of noisy periods detected along a trajectory,
and stops as soon as the N th period is detected
(i.e. event bounded measure). The boolean vari-
able top, which is set to true on entering of the
high location, allows for detecting the completion
of a period (i.e. crossing from mid to low when
top is true). Two clock variables, t and tp, main-
tains respectively the total simulation time as of
the beginning of the first detected period (t) and
the duration of the last detected period (tp). Finally
variable tp maintain the average duration of all (so
far) detected periods while s2tp stores the fluctu-
ation (or variability) of duration (i.e. how far the
duration of each detected period is distant from its
average value computed along a trajectory) of all
(so far) detected periods.

Theorem 1 If a trace σA is noisy periodic w.r.t.
amplitude levels L,H ∈ N then it is accepted by
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automaton Aper with parameters L, H , initT ∈
R+ and N ∈N.

Proof See Appendix A.

HASL expressions associated to Aper. We define
different HASL expressions to be associated to to
automaton Aper.

– Z1 ≡ E[last(t̄p)]: corresponding to the mean
value of the period duration for the first N de-
tected periods.

– Z2 ≡ PDF (t̄p, s, l, h): corresponding to the
PDF of the average period duration over the
firstN detected periods, where [l, h] represents
the considered support of the estimated PDF,
and [l, h] is discretized into uniform subinter-
vals of width s

– Z3 ≡ E[last(s2tp)]: corresponding to the fluc-
tuation of the period duration.

Expression Z1 represents the expected value
assumed by variable t̄p, that is, the average dura-
tion of the first N periods detected along a trace,
at the end of accepted trajectory (i.e., a trajectory
that contains N periods). Similarly expression Z2

evaluates the PDF of the average duration of the
first N periods by assuming the interval [l, h] as
the support of the PDF and considering that [l, h]

is discretised in (h− l)/s uniform subintervals of
width s. On the other hand Z3 is concerned with
assessing the expected value that variable s2tp has
at the end of a trace consisting of N noisy peri-
ods. By definition (see Table 1) s2tp corresponds to
the fluctuation of the duration of the detected peri-
ods, (i.e., how much the N periods detected along
a trace differ from their average duration). Observe
that the measured period fluctuation (i.e. Z3) pro-
vides us with a useful measure of the irregularity,
from the point of view of the period duration, of
the observed oscillation.

3.2 Measuring the peaks of oscillations

In the previous section we have seen how a char-
acterisation of periodicity for stochastic oscillation
can be obtained by considering a given partition,
induced by two thresholds L,H , of the domain

of the observed population. The drawback of such
a characterisation is that, the detected periods de-
pend on the chosenL,H thresholds, and these have
to be chosen by the modeller manually, i.e., nor-
mally by looking at the shape of a sampled trajec-
tory and then choosing where to “reasonably” set
the L and H values before executing the measure-
ments with automaton Aper. To improve things
here we propose a different approach which is aimed
at identifying where the peaks (i.e., the local max-
ima/minima) of oscillatory traces are located.

Since traces of a DESP consist of discrete in-
crements/decrements of at least one unit, it is up to
the observer to establish what should be accounted
for as a local maximum (minimum) during such
detection process. Intuitively a local max/min of
a trace σA (the projection of σ w.r.t. the observed
species A) is a state σA[i] (i∈N) that corresponds
to a change of trend in the population of A. This is
formally captured by the following definition.

Definition 10 (local maximum/mininimum of a
trace) For σA the A projection of a trace σ of an
n-dimensional DESP D population model, state
σA[i] is a maximum, if σA[i− 1]<σA[i]>σA[i+

1], or a minimum, if σA[i− 1]>σA[i]<σA[i+ 1].

T

A

m[1]

m[2]

m[3]

m[4] m[5]

m[6]

M [1]

M [2]

M [3]

M [4]

M [5]

M [6]
M [7]

m[7]

m[8]

Fig. 5 Example of local maxima/minima of an alternating
trajectory σA.

In the remainder we refer to a trace that con-
sists of an infinite sequence of local maxima inter-
leaved with an infinite sequence of local minima
as an alternating trace (Definition 11).

Definition 11 (alternating trajectory) A trajec-
tory σ of an n-dimensional DESP D population
model is said alternating with respect to the ith
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(1≤ i≤ n) observed species of D, if σi contains
infinitely many local minima (or equivalently local
maxima).

For σA an alternating trace we denote σMA =

M [1],M [2], . . ., respectively σmA =m[1],m[2], . . .,
the projection of σA consisting of the local max-
ima, respectively minima, of σA. Figure 5 shows
the local maxima and minima for an example of
alternating trace σA. In the following we point out
two simple properties relating the definition of noisy
periodic and alternating trace.

Proposition 1 If σA is a noisy periodic trace (as
of Definition 6) then it is also alternating.

Proposition 1 is trivially true as by definition a
noisy period trace visit infinitely often the low and
high region of the state space, thus necessarily it
contains an infinite sequence local maxima inter-
leaved with local minima.

Proposition 2 If σA is an alternating trace (as of
Definition 11) then it is not necessarily noisy peri-
odic.

Proposition 2 simply points out that, by definition,
an alternating trajectory may be diverging (for ex-
ample if it consist of increasing steps which are
always larger than the decreasing ones), in which
case clearly it is not noisy periodic.

In the remainder we introduce a HASL based
procedure for detecting the local maxima and lo-
cal minima of alternating traces. However rather
than considering detection of “simple” local max-
ima/minima as in Defintion 10, we refer to detec-
tion of a generalised notion of local maxima/minima
of a trace, that is, maxima and minima which are
distanced, at least, by a certain value δ. We for-
malise this notion in the next definition.

Definition 12 (δ-separated local maxima) Let δ∈
R+, and σA the A projection of a trace σ of an n-
dimensional DESP D population model. A state
σA[i] is the j-th, j∈N>0, δ-separated local maxi-
mum (minimum), denotedMδ[j] (mδ[i]), if it is the
largest local maximum (smallest local minimum)
whose distance from the preceding δ-separated lo-
cal minimum mδ[j − 1] (maximum Mδ[j − 1])

is at least δ and from which smaller (larger) state
is reachable which is > δ distanced from Mδ[j]

(mδ[i]).

To understand the meaning of δ-separated min-
ima and maxima definition let us consider the ex-
ample in Figure 6. The nature of the first δ-separated
point (either a maximum or a minimum) depends
on the initial profile of the trace: if the trace, from
its initial state σA[0], first enters the region σA[0]+

δ than the first δ-separated point will be a max-
imum (conversely if it first enters the σA[0] − δ

region it will be a minimum). For the trace in Fig-
ure 6 the first δ-separated point is the maximum
Mδ[1] which is preceded by local minimam[1],m[2]

and a local maximum M [1] none of which is δ-
distanced form the initial state σA[0]. Observe that
the detection ofMδ[1] as the actual first δ-separated
maximum is completed only on entering theMδ[1]−
δ, which happens on observing the decrement fol-
lowing the local maximum M [3]. To better under-
stand that detection of δ-separated minima/maxima
may involve a “temporary detection” phase fol-
lowed by a “detection finalisation” let us continue
the unfolding of the trace. Having entered theMδ[1]−
δ region we encounter the local minimum m[4],
which is temporarily detected as the first δ-separated
minimum, since in fact it is distanced more than δ
from Mδ[1]. However m[4] is followed by m[5]

a smaller local minimum reached without exiting
the m[4] + δ region. Thus m[5] replaces m[4] as
temporary first δ-separated minimum.m[5] becomes
the actual first δ-separated minimum only on en-
tering the m[5] + δ region (which in this case cor-
responds with reaching of state Mδ[2]) since no
smaller local minima has been detected before en-
tering m[5] + δ.

Definition 13 (δ-separated alternating trace) A
trajectory σ of an n-dimensional DESP D popula-
tion model is said δ-separated alternating with re-
spect to the ith (1≤ i≤n) observed species of D,
if it contains contains infinitely many δ-separated
local minima (and equivalently δ-separated local
maxima), where δ ∈ R+.

For σA a δ-separated alternating trace we de-
note σMδ

A =Mδ[1],Mδ[2], . . ., respectively
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Fig. 6 Example of δ-separated local maxima (Mδ[i]) and
minima (mδ[i]) of an alternating trajectory σA

σmδA =mδ[1],mδ[2], . . ., the projection of σA con-
sisting of the δ-separated local maxima, respec-
tively minima, of σA. Observe that the δ-separated
max/min (Figure 6) are a subset of the “simple”
max/min (Figure 5). Furthermore the following prop-
erty holds:

Property 1 For δ= 1 the sequence of δ-separated
maxima (minima) of an alternating trace σA coin-
cides with the list of local maxima (minima), that
is: σM1

A =σMA and σm1

A =σmA .

The detection of the δ-separated local maxima
(minima) for a trace σA can be described in terms
of an iterative procedure through which the list of
detected max/min are constructed as σA unfolds.
Such a procedure is formally implemented by the
LHA Apeaks (Figure 7) which we introduce later
on. Here, based on the example illustrated in Fig-
ure 6, we informally summarise how detection of
δ-separated max/min works. The detection requires
storing of the most recent (temporary) δ-separated
max (min) into a variable named xM (xm), while
once detection of a δ-separated maximum (mini-
mum) is completed the corresponding variable xM
(xm) is copied into a dedicated list, named Lmax,
resp. Lmin (see Table 2), which contains the de-
tected points. To understand how detection works
let us consider the trace in Figure 6. The first ele-
ment encountered is the local minimumm[1] which
is then stored into xm = m[1]. As the trace further
unfolds the subsequent maxima (green points) are
ignored as long as their distance from the tempo-
rary minimum xm is less than δ, as is the case with
M [1]. Similarly any local minimum m[i] (yellow
point) that is encountered after that stored in xm is

ignored (e.g., m[2]), unless it is smaller than xm,
in which case xm is updated with the newly found
smaller minimum. As σA unfolding proceeds we
find the next local maxM [2] which is distant more
than δ from the temporary minimum xm: this means
that xm currently holds an actual δ-distanced min-
imum hence its value is appended to Lmin and the
procedure starts over, in a symmetric fashion, for
the detection of the next maximum.

The rational behind the notion of δ-separated
max/min is that for locating the actual peaks of a
stochastically oscillating trace it is important to be
able to distinguish between the minimal peaks cor-
responding to stochastic noise, the actual peaks of
oscillation. With the δ-separated max/min charac-
terisation we provide the modeller with a means to
establish an observational perspective: by choos-
ing a specific value for the δ parameters the mod-
eller establishes how big a level of noise he/she
wants to ignore when detecting where the oscilla-
tion peaks are located.

In the remainder we introduce the LHAApeaks
which formally implements the detection of the δ-
separated peaks of alternating traces.

The automatonApeaks. We introduce an LHA, de-
noted Apeaks (Figure 7), designed for detecting δ-
distanced local maxima/minima along alternating
traces of a given observed species called A. It re-
quires a parameter δ (the chosen noise level) and
the partition of the event set E = E+A ∪E−A ∪
E=A where E+A (respectively E−A, E=A) is the
set of events resulting in an increase (respectively
decrease, no effect) of the population of A.

The rationale behind the structure ofApeaks is
to mimic the cyclic structure of an alternating trace
through a loop of four locations, two of which (i.e.
Max and Min) are targeted to the detection of lo-
cal maxima, resp. minima. The simulated trace yields
the automaton to loop between Max and Min hence
registering the minima/maxima while doing so. The
detailed behavior ofApeaks is as follows. Process-
ing of a trace starts with a configurable filter of
the initial transient (represented as a box in Fig-
ure 7) through which a simulated trace is simply
let unfolding for a given initT duration.The ac-
tual analysis begins in location start from which
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Fig. 7 Apeaks: an LHA for detecting local maxima/minima (for observed species A) of noisy periodic traces where local
maxima/minima are detected with respect to a chosen level of noise δ.

Data variables
name domain update definition description
t R≥0 reset time elapsed since beginning

measure (first non-spurious pe-
riod)

nM (nm) N increment counter of detected local maxima
(nM ), minima (nm)

x N current value of ob-
served species A

(overloaded) variable storing
most recent detected maxi-
mum/minumum

Smax(Smin) N sum of detected maxima (min-
ima)

Lmax[](Lmin[]) Nn array of frequency of heights of
detected maxima (minima)

Table 2 The data variables of automaton Apeaks of Figure 7 for locating the peaks of a noisy oscillatory traces

we move to either Max or Min depending whether
we initially observe an increase (i.e. x < A−
δ) or a decrease (i.e. x > A+ δ) of the popula-
tion of the observed species A beyond the chosen
level of noise δ. Once within the Max→noisyDec
→Min→ noisyInc loop the detection of local max-
ima and minima begins. Location Max (Min) is
entered from noisyInc (noisyDec) each time a suf-
ficiently large (w.r.t. δ) increment (decrement) of

A is observed. On entering Max (Min), we are
sure that the current value ofA has moved up (down)
of at least δ from the last value stored in x while in
Min (Max), hence that value (x) is an actual local
minimum (maximum) thus we add it up to Smin
(Smax), then we increment the frequency counter
corresponding to the level of the detected mini-
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mumLmin[x] (maximumLmax[x])10 before stor-
ing the new value of A in x and finally increase
nM (nm) the counter of detected maxima (min-
ima). Once in Max (Min) we stay there as long as
we observe the occurrence of reactions which do
not decrease (increase) the value ofA, hence either
reactions of E+A (E−A) or of E=A. While in Max
(Min) if we observe a reaction ofE+A (E−A), then
we store the new increased (decreased) value of
A in x, which becomes the new potential next lo-
cal maximum (minimum). On the other hand while
in Max (Min) if a “decreasing” (“increasing”) re-
action E−A (E+A) occurs we move to noisyDec
(noisyInc) from which we can either move back
to Max (Min), if we observe a new increase (de-
crease) that makes the population of A overpass x
(x overpass A), or eventually entering Min (Max)
as soon as the observed decrease (increase) goes
beyond the chosen δ (see above). For the automa-
ton Apeaks depicted in Figure 7, the analysis of
the simulated trace ends, by entering the end lo-
cation either from noisyDec or noisyInc, as soon
as N maxima (or minima, depending on whether
the first observed peak was a maximum or a mini-
mum) have been detected. Notice that Apeaks can
straightforwardly be adapted to different ending
conditions. The data variables of Apeaks are sum-
marised in Table 2.

HASL expressions associated withApeaks. We de-
fine different HASL expressions to be associated
with automaton Apeaks.
– Zmax ≡ E[last(Smax)/nM ]: corresponding

to the expected value of the average height of
the maximal peaks for the firstN detected max-
ima.

10 with a slight abuse of notation we refer to Lmin[]
and Lmax[] as arrays whereas in reality within COS-
MOS/HASL they correspond to a set of variables Lmini,
Lmaxj , each of which is associated to a given level of the
observed population, thus Lmin1 counts the frequency of
observed minimum at value 1, Lmin2 the observed min-
ima at value 2 and so on. The number of required Lmini,
Lmaxj variables, which is potentially infinite, can be ac-
tually bounded without loss of precision to a sufficiently
large value Lminm (resp. Lmaxm) which must be estab-
lished manually beforehand, for example by observing few
previously generated traces.

– Zmin ≡ E[last(Smin)/nm]: same as Zmax
but for minima.

– ZPDFmax ≡ E(last(Lmax)/nM ): enabling
to compute the PDF of the height (along a path)
of the maximal peaks

– ZPDFmin ≡ E(last(Lmin)/nm): enabling
to compute the PDF of the height (along a path)
of the maximal peaks

Expression Zmax (Zmin) represents the average
value of the detected δ-separated maxima (min-
ima). This is obtained by considering the sum of
all detected δ-separated local maxima (minima),
which is stored in Smax (Smin) and dividing it
by the number of detected maxima nm (nm). Ex-
pressionZPDFmax (ZPDFmin) allows to estimate
the PDF of the height of the detected δ-separated
local maxima (minima). This is achieved by divid-
ing the frequency counters of each detected maxi-
mal (minimal) peak’s height, whose values are stored
in array Lmax (Lmin), by nM (nm), the number
of detected maxima (minima).

Theorem 2 If σA is a δ-separated (with δ ∈ R+)
alternating trace then it is accepted by automaton
Apeaks with parameters δ, initT ∈R+ and N ∈
N.

Proof See Appendix A.

4 Case study

To demonstrate the above described procedure we
consider a popular example of oscillator, the so-
called circadian clock. Circadian clocks are bio-
logical mechanisms responsible for keeping track
of daily cycles of light and darkness. Here we fo-
cus on a model of the biochemical network ([26])
which is believed to be at the basis of the con-
trol of circadian clocks. The network (Figure 8) in-
volves 2 genes, DA which expresses the activator
protein A and DR which expresses the repressor
protein B. Protein expression is a two steps pro-
cess: in the first phase a gene transcribes a messen-
ger RNA (mRNA) molecule; in the second phase
the mRNA molecule is translated into the target
protein. For the model of circadian clock we con-
sider here we denote MA, the mRNA species tran-
scribed by geneDA, andMR the mRNA transcribed
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Fig. 8 Circadian Clock oscillator network: gene DA ex-
presses activator protein A through transcription of mRNA
MA, while gene DR expresses the repressor protein R
through transcription of mRNA MR.

by gene DR. MA and MR are then translated into
proteins A, respectively R .

R1 :A+DA
γA−→ D′A R9 : MA

βA−→MA +A

R2 :D′A
θa−→ A+DA R10 : MR

βR−→MR +R

R3 :A+DR
γR−→ D′R R11 : A+R

γC−→ C

R4 :D′R
θR−→ DR +A R12 : C

δA−→ R

R5 :D′A
α′A−→MA +D′A R13 : A

δA−→ ∅

R6 :DA
αA−→MA +DA R14 : R

δR−→ ∅

R7 :D′R
α′R−→MR +D′R R15 : MA

δMA−→ ∅

R8 :DR
αR−→MR +DR R16 : MR

δMR−→ ∅
(2)

ProteinA acts as an activator for both genes by
attaching to promoter region of DA and DR (i.e.
when A is attached to a gene the mRNA transcrip-
tion increases). Species D′A and D′R represent the
state of gene DA, respectively DB , when an acti-
vator molecule (A) is attached to their promoter.
Note that gene DR acts as a repressor of DA since
when A bounds to its promoter DR sequesters the
activatorA and, as a result, the transcription ofDA

slows down. The repressing role of DR is further
due to the fact that the expressed protein R inacti-
vates the activator A by binding to it and forming
the complex C. Finally the model in Figure 8 ac-
counts for degradation of all species: thus the mR-
NAs MA and MR, as well as the expressed pro-
teins A and B degrades with given rates (see Ta-
ble 3). Notice that protein A degrades also when

attached to R (i.e. when in complex C), and, as a
consequence, C turns into R at a rate equivalent to
the degradation rate of A.
The model of Figure 8 corresponds to the system
of chemical equations (2), whose (continuous) ki-
netic rates (taken from [26]) are given in Table 3.

Stochastic model Equations (2) can give rise to ei-
ther a system of ODEs or to a stochastic process.
Here we focus on the discrete-stochastic seman-
tics: Figure 9 shows the GSPN encoding of equa-
tions (2) developed with COSMOS. The configura-
tion of the GSPN (i.e. the stochastic process) re-
quires setting the initial population and the rates of
each transition (i.e. reaction). For the initial popu-
lation, following [26], we observe that the model
comprises one gene DA and one DR, which can
either be in free-state (no activator A is attached
to the promoter) or in activator-bound state, i.e.
D′A, respectively D′R. As a consequence the popu-
lation of species DA and DR is bounded by the
following invariant constraints: DA + D′A = 1

and DR + D′R = 1 (in fact places DA, DA′ and
DR, DR′ of net in Figure 9 are the only places
covered by P-invarriants). The remaining species
are initially supposed to be “empty”, hence they
are initialised to 0. Concerning the transition rates,
for simplicity we assume a unitary volume of the
system under consideration, hence all continuous
rates in Table 3 can be used straightforwardly as
rates of the corresponding discrete-stochastic re-
actions. In this case we assume all reactions fol-
lowing a negative exponential law.

The oscillatory dynamics of the GSPN model
of Figure 9 can be observed by plotting of a sim-
ulated trajectory (Figure 10). Observe that the fre-
quency of oscillations varies considerably with the
degradation rate of the repressor (R) protein: a faster
degradation of R (right), intuitively, results in a
higher frequency of oscillations. In the remainder
we formally assess the oscillatory characteristics
(i.e. the period and the peaks of oscillations) of
the circadian clock model by application of the
previously described approach, i.e. by analysing
the stochastic process deriving from synchronisa-
tion of the circadian clock GSPN model with the
Aperiod and Apeaks automata.
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αA 50 h−1 αR 0.01 h−1 δA 1 h−1 δR 0.2 h−1

αA′ 500 h−1 αR′ 50 h−1 γA = γR 1 mol−1h−1 γC 2 mol−1h−1

βA 50 h−1 βR 5 h−1 θA 50 h−1 θR 100 h−1

δMA 10 h−1 δMR 0.5 h−1

Table 3 reactions’ rates for the circadian oscillator
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Fig. 9 GSPN encoding of the system (2) of chemical equations corresponding to the circadian-clock.
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Fig. 10 Single trajectory showing the oscillatory character of activatorA and repressorB dynamics with normal repressor’s
degradation rate δR=0.2 (left) and with 10× speed-up, i.e. δR = 2 (right).

Measuring the period of the circadian clock. We
performed a number of experiments aimed at as-
sessing the effect that the degradation rate of the
repressor protein (δR) has on the period of the cir-
cadian oscillator. Figure 11 (right) shows three plots
representing the PDF of the period (obtained through
the HASL formula (Aperiod, PDF (Last(t)/N))

for three values of δR. With δR = 0.2 (i.e. the
original value as given in [26]) the PDF is centred
at t = 24.9, i.e. slightly more of the standard 24
hours period expected for a circadian clock. On
the other hand speeding up the repressor degra-
dation of 10 times (i.e. δR = 2) yields a slightly
more than halved oscillation period (i.e. PDF cen-

tred at T = 10.8). Finally slowing down the degra-
dation rate of a half (i.e. δR = 0.1) yields a less
than doubled oscillation period (i.e. PDF centred
at T = 40.7).

Figure 11 (left) shows plots for the period mean
value (red plot) and the period fluctuation (blue
plot, as described in Section 3.1) in function of
the degradation rate δR. They indicate that slow-
ing down the degradation of the repressor yields,
on one hand, to a lower the frequency of oscilla-
tions, and on the other, augmenting the irregularity
of the periods (i.e. augmenting the period’s fluctu-
ations). All plots in Figure 11 result from sampling
of finite trajectories consisting ofN=100 periods,
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clock measured with Aperiod in function of the repressor’s degradation rate.
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Fig. 12 The mean value of the minimal and maximal peaks of proteins A and R of the circadian clock measured with
Apeaks in function of the repressor’s degradation rate.

where periods have been detected using L=1 and
H = 1000 as partition thresholds, and target esti-
mates have been computed with confidence level
99 and confidence-interval width of 0.01. Further-
more the PDF plots in Figure 11 (right) have been
computed using a discretisation of the period sup-
port interval [0, 50] into subintervals of width 0.1.

Measuring the peaks of oscillations of the circa-
dian clock. We performed a number of experiments
aimed at assessing the effect that the degradation
rate of the repressor protein (δR) has on the peaks
of oscillation for both protein A and R. Figure 12
shows plots for the mean value of the minimal and
maximal peaks of oscillations for both A and R.
Results indicate that while the degradation rate δR

has no effect on the oscillation peaks of A (both
maximal and minimal peaks of A are constant in-
dependently of δR), it affects the maximal peaks
(only) of R. Specifically the mean value of R’s
maximal peaks decreases with the increasing of
δR (while the minimal peaks of R are constantly
at 0), notice that this is in agreement with what in-
dicated by the single trajectories depicted in Fig-
ure 10. Notice that Figure 12 contains also plot for
the absolute maximum of population of A and R
measured along the sampled trajectories through
trivial HASL expressions Z ≡ AV G(max(x))

(where x is a variable used to record the popula-
tion of the observed species along a synchronis-
ing path). All plots in Figure 12 result from sam-
pling of finite trajectories containing of N = 100
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maximal peaks and using a noise parameter δ =

10%AV G(max(x)), meaning that for evaluating
the mean value of maximal peaks we discarded all
critical points distanced one another less than 10%
of the absolute maximum of the observed species.
Finally, again points of every plot in Figure 12
have been computed with confidence level 99 and
confidence-interval width of 0.01.

On the initial transient. To assess the effect that
the initial transient of the circadian clock model
have on the period and peaks estimates we repeated
all of the above discussed experiments with differ-
ent values of the initT parameter (e.g. initT ∈
{10, 50, 100, 500, 1000, . . .}) which determines the
starting measuring point forAperiod and ofApeaks.
The outcomes of repeated experiments turned out
to be independent of the chosen initT value, indi-
cating that circadian clock reaches its steady state
very quickly.

5 Related work and discussion

The HASL based methodology presented in this
paper is by no means the only approach aimed at
the analysis of discrete-state stochastic oscillators.
In the following we provide a brief (non exhaus-
tive) overview of similar approaches.

Mathematical approaches The analysis of periodic
signals can be achieved through well established
signal processing techniques such as, for exam-
ple, Fast Fourier Transform (FFT) and autocorre-
lation. Both methods estimate the dominant fre-
quency of a periodic signal given in terms of a
sequence of (real-valued) points. In the context of
stochastic modelling both FFT and autocorrelation
analysis is performed over trajectories generated
by a stochastic simulator. In order to increase the
accuracy of the estimates usually frequency esti-
mation is then replicated over N trajectories, the
final result being given as the average of the fre-
quency estimate of each trajectory (see e.g. [12,
16]). The main appeal of signal processing tech-
niques is due to their simplicity. However, in the
context of statistical model checking, adding an

(automatic) control on the accuracy of the result-
ing estimate would require their integration within
a confidence interval estimation procedure, some-
thing which at best of our knowledge has not yet
been done. From an expressiveness point of view
it is worth remarking that FFT and autocorrelation
are limited to estimating the (mean value) of the
frequency of an oscillator but provides no support
for assessing other aspects of oscillator such as the
location of the oscillation peaks and the regularity
(i.e. the fluctuation) of the period. Finally another
interesting contribution belonging to the field of
mathematical approaches is presented in [18], where
the relationship between stochastic oscillators and
their continuous-deterministic counterpart is anal-
ysed.

Model checking based approaches. Analysis of os-
cillators through stochastic model checking tech-
niques has been considered in several works. Ap-
plication of CSL [5] to the characterisation CTMC
biochemical oscillators has been considered, with
limited success in [8], and more comprehensively
in [24,25]. In [24] Spieler demonstrated that de-
ciding whether a given CTMC model oscillates sus-
tainably boils down to a steady-state analysis prob-
lem where the allegedly oscillating CTMC is cou-
pled with a period detector automata (through man-
ual hard-wiring). In this case the probability that
the period of oscillation has a certain value is com-
puted through dedicated CSL steady-state formu-
lae and has been demonstrated through examples
on the PRISM model-checker.

In a recent work measuring of oscillations has
been considered with other statistical model check-
ing tools (UPPAAL-SMC and PLASMA) by ap-
plication of the MITL logic [12]. In this case the
analysis of period duration is achieved by detec-
tion of a single period of oscillation through nested
time-bounded Until formulae.

6 Conclusion

We have presented a methodology for the formal
analysis of stochastic models exhibiting an oscilla-
tory behaviour. Such a methodology relies on the
application of the HASL formalism, a statistical
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model checking framework suitable for express-
ing sophisticated performance measures. We have
shown how by means of HASL one can define spe-
cific LHA automata targeted to the analysis of par-
ticular aspects of the dynamics of oscillatory tra-
jectories, such as the detection of the period and
of the peaks of a stochastic oscillator. For the pe-
riod we have introduced a template LHA, denoted
Aper, which allows us to estimate the PDF, the
mean value as well as the the fluctuation of the pe-
riod duration. Concerning the peaks we have intro-
duced a template LHA,Apeaks, which allows us to
measure the mean value of the maximal/minimal
peaks of oscillation. We have demonstrated the ef-
fectiveness of the methodology by studying a well
established model of biological oscillator, namely
the circadian clock.
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A Appendix

Theorem 1. If a trace σA is noisy periodic w.r.t. amplitude
levels L,H∈N then it is accepted by automatonAper with
parameters L, H, initT ∈R+ and N ∈N

Proof By hypothesis σA (the projection, w.r.t an observed
species A, of a trace σ an n-dimensional DESP D) is noisy
periodic w.r.t. the partition of species A’s domain into re-
gions low = (−∞, L),mid = [L,H) and high = [H,∞).

The initial state of the synchronised process D×Aper
will be (σA[0], l0, V al0) with V al0 being the initial valu-
ation with V al0(x)=0 for all variables ∀x∈X of Aper .

To demonstrate that σA is accepted byAper we need to
show that starting from the the initials state (σA[0], l0, V al0)
a final state of D × Aper , i.e., a state such that the current
location is the accepting location end of Aper , is reached.
For this we proceed by induction w.r.t. the number of sub-
sequent sojourns in the low and high regions. In the re-
mainder we use the notation (s, l, V al)

∗−→ (s′, l′, V al′)
to indicate that state (s′, l′, V al′) of process D × Aper is
reachable from (s, l, V al). We split the demonstration in
parts corresponding to the traversal of Aper locations re-
sulting from synchronisation with trace σA:

[init ] Let l0 ∈ N be the index of the first state of σA
that belongs to low and that follows σA@initT (where
initT is the parameter of Aper), that is: l0 =min{i∈
N | i > iinitT ∧ σ[i] ∈ low}, with iinitT being the
index of the state σA is in at time initT (observe that
since σA is assumed noisy periodic then min{i∈N |
i > iinitT ∧ σ[i]∈ low} is guaranteed to exist). Thus
because of the structure ofAper , (σA[0], l0, V al0)

∗−→
(σ[l0], low, V all0), with V all0(x) = 0, for x 6= n and
V all0(n)=−1.

[low→mid→high ] Since σA is noisy periodic then ∃m1, h1∈
N : h1>m1>l0 such that σA[m1]∈mid, σA[h1]∈
high hence, because of the structure ofAper , it follows
that (σ[l0], low, V all0)

∗−→ (σ[m1],mid, V alm1)
∗−→

(σ[h1],high, V alh1
) with V alh1

(top) = 1, because
of the update {top := 1} of the arc leading to location
high.

[high→mid→low ] similarly since σA is noisy periodic then
∃l1,m1b ∈N : l1 >m1b > h1 such that σA[m1b] ∈
mid, σA[l1] ∈ low. hence (σ[h1],high, V alh1

)
∗−→

(σ[m1b],mid, V alm1b)
∗−→ (σ[l1], low, V all1) with

V alm1b(top) = 1, V alm1b(n) = −1 hence V all1(top) =
0, V all1(n) = 0, V all1(t) = 0, since, because of
V alm1b , location low is entered through edge

mid E,(n=−1∧top=1),{n++,top:=0,t:=0}
−−−−−−−−−−−−−−−−−−−−−−−−−−→low

induction since σA is noisy periodic then the high, low
regions are entered infinitely often, hence
the [low→mid→high] and [high→mid→low] steps
of the proof hold for each successive iteration. This

means that if li is the index corresponding to the i-
th time that σA enters the low region after having so-
journed in the high region then because of the peri-
odicity of σA ∃mi+1, hi+1,m(i+ 1)b∈N : li+1 >

m(i+1)b>h1>m1>li such that σA[mib], σA[m(i+1)b]∈
mid, σA[li], σA[li+1]∈ low, σA[h(i+1)]∈high, hence
(σ[li], low, V alli)

∗−→ (σ[li+1], low, V alli+1
), with

V alli+1
(n)=V alli(n) + 1.

termination, [low→end ] By induction we have seen that
∀i∈N, (σ[li], low, V alli)

∗−→ (σ[li+1], low, V alli+1
).

Thus on the (N−1)-th iteration (σ[lN−1], low, V allN−1
)
∗−→

(σ[lN ], low, V allN ) with V allN (n) = N which en-

ables low ],(n=N),∅−−−−−−−→end, hence (σ[lN ], low, V allN )
∗−→

(σ[lN ], end, V allN ) and σA is accepted.

ut

Theorem 2. If σA is a δ-separated (with δ ∈ R+) alter-
nating trace then it is accepted by automaton Apeaks with
parameters δ, initT ∈R+ and N ∈N.

Proof By hypothesis σA is δ-separated alternating, which
means it contains an infinity of δ-separated local maxima
interleaved with δ-separated minima. We recall the basic
notation: if σA is alternating then

σA = ∗,m[1], ∗,M [1], ∗,m[2], ∗, . . .

where m[i] (res[. M [i]) are the local minima (resp. max-
ima) and ∗ denotes an arbitrary long sequence of states.
σMA =M [1],M [2], . . ., respectively σmA =m[1],m[2], . . .,
is the projection of σA consisting of the local maxima, re-
spectively minima, of σA. If σA is δ-separated alternating
then:

σA = σ1
A,mδ[1], σ2

A,Mδ[1], . . .

where each σiA (i ∈ N) is a finite alternating sequence
of non-δseparated local minima/maxima and mδ[i] (resp.
Mδ[i]) are the δ-separated local minima (resp. maxima) For
δ ∈ R+ we denote σMδA =Mδ[1],Mδ[2], . . ., respectively
σ
mδ
A = mδ[1],mδ[2], . . ., the projection of σA consisting

of the δ-separated local maxima, respectively minima, of
σA.

Let (σA[0], l0, V al0) be the initial state of the process
corresponding to the synchronization of σA with Apeaks,
with V al0 being the initial valuation with V al0(x)=0 for
all variables ∀x ∈ X of Apeaks. We need to show that a
final state (σA[n], end, V aln) is reached when σA is syn-
chronised with Apeaks. For this we proceed by induction
w.r.t. the number of subsequent δ-separated max and min
encountered during the synchronization of δA. We split the
demonstration in parts corresponding to the traversal ofApeaks
locations resulting from synchronisation with trace σA.

[l0 → start] Because of the structure of Apeaks, we have
that (σA[0], l0, V al0)

∗−→ (σA@initT, start, V alstart),
with V alstart(n)=−1, V alstart(x)=A and V alstart(t)=
initT .
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[start→Max or start→Min] Let i0 ∈ N be the index of
the first state of σA that follows σA@initT and that
is distanced more than δ from σA@initT , i.e., i0 =
min{i ∈ N | σA@initT − σA[i0] > δ}, (observe
that since σA is assumed to be δ-separated alternat-
ing then min{i ∈ N | σA@initT − σA[i0] > δ} is
guaranteed to exist). Furthermore let iinitT be the in-
dex of state σA@initT , i.e. σA[iinitT ] = σA@initT ,
and ∆T =

∑n|iinitT+n<i0
i=0 time(σA, iinitT + i),

be the time distance from initT and the instant when
state σA[i0] is entered. Thus because of the structure of
Apeaks, either (σA@initT, start, V alstart)

∗−→ (σ[i0],Max, V ali0),
if (σA@initT−σA[i0])<0, or (σA@initT, start, V alstart)

∗−→
(σ[i0],Min, V ali0), if (σA@initT−σA[i0])>0, with
V ali0(x)=A, V ali0(t)=V alstart(t) +∆T .

[Max→NoisyDec→Min ] Let us assume that from state
(σA@initT, start, V alstart) we reached (σ[i0],Max, V ali0),
which means that from σA@initT the trace σA reaches
a state σA[i0] > σA@initT + δ without ever descend-
ing below σ@initT−δ, i.e. ∀j < i0, σA[j] ≥ σA@initT−
δ. Since σA is δ-separated alternating and since we as-
sumed to have reached configuration (σ[i0],Max, V ali0)
then the first δ-separated point is a maximum and in
particular is a state σA[H0] = Mδ[1], i0 <H0, such
that σA[H0] is the largest state reachable from σA[i0]
(i.e., σA[j′] ≤ σA[H0], ∀j′, i0 < j′ < H0) and from
which a δ-distanced smaller state σA[k0], i0 <H0 <

k0 is reachable with k0 = inf{k | σA[k] < σA[H0]−
δ ∧ σA[k′]≤ σA[H0], ∀k′, H0<k′<k}.
Thus, because of the structure of Apeaks, it follows
that (σ[i0],Max, V ali0)

∗−→ (σ[k0],Min, V alk0
), where

V alk0
(Lmax[σ[H0]]) = V ali0(Lmax[σ[H0]]) + 1

V alk0
(nM ) = V ali0(nM ) + 1, V alk0

(x) = σA[k0],
V alk0

(Smax) = V ali0(Smax) + 1, V alk0
(t) =

V ali0(t) +∆T , with ∆T =
∑k0

j=i0
time(σA, j).

[Min→NoisyInc→Max ] On the contrary if we assume that
from state (σA@initT, start, V alstart) we reached
(σ[i0],Min, V ali0), which means that from σA@initT
the trace σA reaches a state σA[i0] < σA@initT − δ
without ever entering the σ@initT+δ region, i.e. ∀j <
i0, σA[j] ≤ σA@initT+δ. Since σA is δ-separated al-
ternating and since we assumed to have reached config-
uration (σ[i0],Min, V ali0) then the first δ-separated
point is a minimum and in particular is a state σA[h0] =
mδ[1], i0 <h0, such that σA[h0] is the smallest state
reachable from σA[i0] (i.e., σA[j′]≥ σA[h0],∀j′, i0<
j′ < h0) and from which a δ-distanced larger state
σA[k0], i0 <h0 < k0 is reachable with k0 = inf{k |
σA[k] > σA[h0] − δ ∧ σA[k′] ≥ σA[h0], ∀k′, h0 <
k′<k}.
Thus, because of the structure of Apeaks, it follows
that (σ[i0],Min, V ali0)

∗−→ (σ[k0],Max, V alk0
), where

V alk0
(Lmin[σ[h0]]) = V ali0(Lmin[σ[h0]]) + 1,

V alk0
(nm) = V ali0(nm) + 1, V alk0

(x) = σA[k0],
V alk0

(Smin) = V ali0(Smin)+1, V alk0
(t) = V ali0(t)+

∆T , with ∆T =
∑k0

j=i0
time(σA, j).

induction since σA is δ-separated alternating then it con-
tains and infinity of δ-separated maxima and minima.
hence the [Max→NoisyDec→Min] and [Min→NoisyInc→Max]
steps of the proof hold for each successive iteration.
This means that if ki,Ki ∈ N are the index corre-
sponding to the state of σA determining the detection
of the i-th δ-separated maximum, resp. minimum, then
∀i ≥ 0 either (σ[Ki],Min, V alKi)

∗−→ (σ[ki],Max, V alki)
∗−→

(σ[Ki+1],Min, V alKi+1
), if (σA@initT, start, V alstart)

∗−→
(σ[i0],Max, V ali0), or (σ[ki],Max, V alki)

∗−→ (σ[Ki],Min, V alKi)
∗−→

(σ[ki+1],Max, V alki+1
), if (σA@initT, start, V alstart)

∗−→
(σ[i0],Min, V ali0), given that V alKi(nm)<Nm−1
and V alki(nM )<NM − 1.

termination, [Max→NoisyDec→end ] By induction we have
seen that ∀i∈N, given that V alki(nM )<NM −1, we
have (σ[ki],Max, V alki)

∗−→ (σ[Ki],Min, V alKi) where
V alKi(nM ) = V alki(nM + 1). Thus on he (NM −
1)-th iteration we have V alknM−1

= NM − 1, hence
on detection of the NM -th δ-separated maximum the

LHA edge NoisyDec ],(x>A+δ)∧(nM=NM−1)−−−−−−−−−−−−−−−−−−−−−−−−→
{Lmax[x]++,Smax+=x,nM++}

end

is enabled hence (σ[knM−1],Max, V alknM−1
)
∗−→ (σ[KnM ], end, V alKnM ),

and σA is accepted.

termination, [Min→NoisyInc→end ] specular to [termi-
nation, [Max→NoisyDec→end]] .

ut


