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Abstract: Recently, texture features have been widely used for historical document image analysis.
However, few studies have focused exclusively on feature selection algorithms for historical document
image analysis. Indeed, an important need has emerged to use a feature selection algorithm in
data mining and machine learning tasks, since it helps to reduce the data dimensionality and to
increase the algorithm performance such as a pixel classification algorithm. Therefore, in this
paper we propose a comparative study of two conventional feature selection algorithms, genetic
algorithm and ReliefF algorithm, using a classical pixel-labeling scheme based on analyzing and
selecting texture features. The two assessed feature selection algorithms in this study have been
applied on a training set of the HBR dataset in order to deduce the most selected texture features
of each analyzed texture-based feature set. The evaluated feature sets in this study consist of
numerous state-of-the-art texture features (Tamura, local binary patterns, gray-level run-length
matrix, auto-correlation function, gray-level co-occurrence matrix, Gabor filters, Three-level Haar
wavelet transform, three-level wavelet transform using 3-tap Daubechies filter and three-level wavelet
transform using 4-tap Daubechies filter). In our experiments, a public corpus of historical document
images provided in the context of the historical book recognition contest (HBR2013 dataset: PRImA,
Salford, UK) has been used. Qualitative and numerical experiments are given in this study in order
to provide a set of comprehensive guidelines on the strengths and the weaknesses of each assessed
feature selection algorithm according to the used texture feature set.

Keywords: benchmarking; texture; feature selection; pixel-labeling; ancient document images

1. Introduction

Providing reliable computer-based access and analysis of cultural heritage documents has
been flagged as a very important need for the library and the information science community,
spanning educationalists, students, practitioners, researchers in book history, computer scientists,
historians, librarians, end-users and decision makers. More specifically, there is a consistent and
clear need for robust and accurate document image analysis (DIA) methods that deal with the
idiosyncrasies of historical document images [1,2]. Indeed, historical DIA remains an open issue
due to the particularities of historical documents, such as the superimposition of information layers
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(e.g., stamps, handwritten notes, noise, back-to-front interference, page skew) and the variability of
their contents and/or layouts. Moreover, analyzing historical document images and characterizing
their layouts and contents under significant degradation levels and different noise types and with
no a priori knowledge about the layout, content, typography, font styles, scanning resolution or
DI size, etc. is not a straightforward task. Therefore, researchers specialized in historical DIA
keep proposing novel reliable approaches and rigorous techniques for historical DIA, segmentation
and characterization. Recently, there has been increasing interest in using deep architectures for
solving various sub-fields and tasks related to the issues surrounding computer vision and pattern
recognition and particularly document image analysis and handwritten text recognition. For instance,
deep neural networks have been used for feature learning [3] and document layout and content
analysis [4,5]. For instance, Chen et al. [4] proposed a pixel-labeling approach for handwritten
historical document images segmentation based on using a convolutional neural network (CNN).
Calvo-Zaragoza et al. [5] presented a CNN-based method for automatic document processing of music
score images. Wei et al. [3] proposed a layout analysis method of historical document images using the
sequential forward selection algorithm and the autoencoder technique as a deep neural network for
feature selection and learning. Nevertheless, these methods based on deep architectures are hindered
by many issues related to the computational cost in terms of memory consumption, processing time
and computational complexity on the one hand, and the need for large datasets.

In the literature, the methods used for DIA have been classified into two categories: texture and
non-texture-based [6]. Kise [7] stated that the most relevant DIA methods used to analyze documents
with unconstrained layouts and overlapping layers are based on texture features. It has been
demonstrated that the text/graphic region separation task can be performed efficiently by using
a texture-based method. On the other hand, the textual regions with different fonts can be segmented
using texture features which are often used for text font characterization. A text font is mainly
characterized by its weight, style, condensation, width, slant, italicization, ornamentation, and designer
or foundry [8].

However, using a texture-based method has quite high computational complexity since it
often involves a large number of features. Indeed, two criteria can be identified when using a
texture-based method: object to be analyzed (i.e., foreground or background) and primitive of
analysis (i.e., pixels, superpixels, connected components, etc.). These two criteria entail large
volumes of data to be processed when using a texture-based method. Moreover, the processing
time of a texture-based method depends entirely on the image size and resolution due to the use
of a primitive-based computation. However, there is awareness that maybe there are redundant
and non-relevant indices when extracting and analyzing texture features which may reduce the
performance of a texture-based algorithm. Feature selection meets this real need by selecting relevant
features and by removing redundant ones in order to reduce the data dimensionality, to improve
the quality of the feature set and to increase the algorithm performance, such as a texture-based
pixel-labeling algorithm.

Thus, in this paper a comparative study of two conventional feature selection algorithms, genetic
algorithm (GA) and ReliefF algorithm (RA), is proposed in order to provide a set of comprehensive
guidelines on the strengths and the weaknesses of each assessed feature selection algorithm according
to the used texture feature set. The texture-based feature sets which have been compared and
evaluated in this study have been derived from the Tamura, local binary patterns (LBP), gray-level
run-length matrix (GLRLM), auto-correlation, gray-level co-occurrence matrix (GLCM), Gabor filters
and three wavelet-based approaches: three-level Haar wavelet transform (Haar), three-level wavelet
transform using 3-tap Daubechies filter (Db3) and three-level wavelet transform using 4-tap Daubechies
filter (Db4).

In our comparative study, a public corpus of historical document images (called the HBR2013
dataset) which was provided by the pattern recognition and image analysis research lab (PRIma) [9]
has been used [1,2]. The HBR2013 dataset has been proposed in the context of the historical book
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recognition (HBR) contest held in conjunction with the ICDAR conference (2011 and 2013). The
HBR2013 dataset is a subset of the IMPACT dataset [10], representing key holdings of major European
libraries and consisting of printed documents of various types (e.g., books, newspapers, journals, legal
documents), in 25 languages from the 17th century to the early 20th century. It contains a large diversity
of historical document contents (variety of layouts and contents). The HBR2013 dataset presents many
particularities and challenges which motivates us to conduct our thorough study on it.

The remainder of this article is organized as follows. Sections 2 and 3 review firstly the
texture-based methods and feature selection algorithms proposed in the literature, respectively, with a
particular focus on those related to historical DIA. A brief report of the different texture-based feature
sets and feature selection algorithms evaluated in this study is also given. Section 4 describes the
experimental protocol by firstly presenting the main phases of the proposed pixel-labeling scheme used
for analyzing and comparing the performance of each texture feature set according to the use of a full
texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a
subset of texture features selected by means of the RA (cf. Section 4.1). Secondly, the experimental corpus
and the defined ground truth used in our experiments are detailed in Section 4.2. Then, qualitative
results are given to demonstrate the performance of each texture-based feature set according to the use or
not of a feature selection algorithm (cf. Section 4.4). Afterwards, we discuss quantitatively the obtained
performance of the texture feature analysis experiments (cf. Section 4.4). Finally, our conclusions and
future work are presented in Section 5.

2. Texture Features

Recently, many DIA issues have been focused on using texture-based approaches for segmentation
and classification tasks [6]. Indeed, the use of texture analysis techniques for historical document
images has become an appropriate choice, since it has been shown that texture-based approaches work
effectively with no a priori knowledge about the layout, content, typography, font and graphic styles,
scanning resolution, document image size, etc. Moreover, the use of a texture-based approach has
been shown to be effective with skewed and degraded images. Therefore, the interest in using a
texture-based method for historical DIA is continuously increasing [11].

In the literature, based on extracting and analyzing texture features a texture-based method has
been usually used to partition the analyzed image into regions. The obtained regions have similar
properties and characteristics with respect to the extracted texture features [12]. Thus, this study is
based on the two following assumptions: text regions have different texture features from non-text
ones and textual regions with different fonts are also distinguishable [6].

Relatively a limited number of comparative studies address the problem of presenting quantitative
comparisons of texture-based algorithms, although it is commonly agreed that texture analysis
plays a fundamental role for DIA [13]. Visual or qualitative results of seven texture-based methods
(run-lengths, multi-channel Gabor filters, texture co-occurrence spectrum, white tiles, texture masks,
structured wavelet packet analysis and laws masks) have been reported in [6]. Mehri et al. [11]
presented a benchmarking of the most classical and widely used texture-based feature sets which
had been conducted using a classical texture-based pixel-labeling scheme on a corpus of historical
document images. This comparative study has been carried out for selecting the most relevant texture
feature set based on the best trade-off between the best performance and the lowest computation time.

Therefore, the texture-based features which are compared and evaluated in this article have been
derived from the Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters and three wavelet-based
approaches: Haar, Db3 and Db4.

3. Feature Selection Algorithms

Using a texture-based method often involves a large number of texture features in
high-dimensional spaces to be analyzed. Indeed, each analyzed image will be described by a set
of multi-dimensional texture-based feature vectors. This will induce greater computational cost and
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occupy a lot of storage space since a large and complex feature space has been generated. Moreover,
it is worth noting that the smaller the dimension of the analyzed texture-based space, the easier it
will be to deal with the specified task. Besides, if the number of dimensions becomes very large,
this will make it more difficult to compute data similarity and perform data mining tasks. Indeed,
the data similarity is sensitive to the number of dimensions (curse of dimensionality) since it is based
on computing distance between vectors (i.e., the higher the number of dimensions, the higher the
values of distance between vectors and the more difficult it will be to group data).

Based on these findings, redundant or even irrelevant features may affect the learning process
and consequently reduce the pixel classification accuracy in the case of our work. For instance,
Journet et al. [14] extracted three auto-correlation features and two frequency descriptors by using
a multi-scale analysis for classifying pixels into text, graphics and background in historical
document images. Then, they proposed to reduce the dimension space of the extracted features
using the principal component analysis technique. They demonstrated that only 78% of the extracted
features are relevant. In order to classify pixels from historical document images into four classes
(periphery, background, text block, and decoration), Wei et al. [15] used the convolutional auto-encoder
features and concluded that more than 80% of the analyzed features are redundant or irrelevant.

Therefore, a feature selection phase is often required to avoid these problems by selecting the most
relevant features and remove redundant ones from the original large set of texture-based features [16].
Sequential forward selection, sequential backward selection, tabu search, genetic algorithm and
ReliefF algorithm are the most well-known and widely used feature selection algorithms [17].
A feature selection algorithm is based on using a search technique to evaluate different proposals of
feature subsets by means of an evaluation measure in order to determine the one that has the best
performance [18].

Figure 1 depicts the common key steps of a feature selection process. The general procedure
for feature selection starts by creating a candidate feature subset for evaluation. Each candidate
subset is evaluated by using an evaluation criterion to measure the quality of the selected features.
The process of subset generation and evaluation is repeated until a predefined stopping criterion
is satisfied. The feature selection process ends by outputting the selected subset of features to a
validation procedure.

Figure 1. Common key steps of a feature selection process.
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Few researchers have addressed feature selection issues for historical DIA. For instance,
Tao et al. [19] proposed a feature selection algorithm based on using the LBP operator and dimension
reduction technique for Chinese character font categorization. A hybrid feature selection method was
proposed by Wei et al. [20] for historical DIA. The proposed feature selection method was based on
using an adapted greedy forward selection method and the genetic selection algorithm in a cascading
way to select different kinds of features including color, gradient, and LBP. By comparing their method
with four conventional feature selection methods (genetic selection, linear forward Selection, best first
forward selection and best first backward selection), Wei et al. [20] concluded that their method
selected significantly fewer features and provided lower error rates. They also concluded that the most
discriminative features for layout analysis of documents of diverse nature are the LBP ones. In our
paper, we have focused on the multi-scale texture analysis of historical document images using nine
texture feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and Db4).
However, Wei et al. [20] investigated three main sets of texture features (color, gradient and LBP
features) without using a multi-scale analysis. They combined all these features in a 204-dimensional
feature vector. Furthermore, we have investigated separately the two feature selection algorithms
(genetic and ReliefF algorithms) on each texture feature set. However, a cascading feature selection
method (a cascade of an adapted forward selection and a genetic selection algorithms) was proposed
in [20]. Besides, comparing to [20] we have used more images (60 images) during the training phase.

To the best of our knowledge, there is no comparative study that has been carried out to investigate
jointly the most well-known texture-based feature sets and widely used feature selection algorithms
for historical DIA. Therefore, we propose in this article to evaluate the use of two conventional feature
selection algorithms, genetic algorithm and ReliefF algorithm, in order to select an optimal subset of
each texture-based feature set for pixel-labeling task in ancient document images.

3.1. Genetic Algorithm

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. First,
a population of chromosomes which encodes candidate solutions is created. A chromosome is a string
of bits (1 and 0 indicate whether a feature is selected or not, respectively) whose size corresponds to the
number of features. Then, the solutions are evolved by applying genetic operators such as crossover
and mutation to find the best solution based on a predefined fitness function. Commonly, the GA
terminates when either a maximum number of generations has been produced or a satisfactory fitness
level has been reached for the population [21]. Algorithm 1 details the different parameters used in the
GA. More details were given in [22] with a thorough description of the different parameters used in
the GA.

Figure 2 presents a flowchart summarizing the fundamental steps of the GA used in this
study. The GA starts by creating an initial population of randomly generated individuals using
the following formula:

P = round((L− 1)× rand(DF, 200× DF)) + 1 (1)

where L and DF represent the number of input features and the desired number of selected features,
respectively. In the GA experiments, DF is set to L/2.



J. Imaging 2018, 4, 97 6 of 24

Algorithm 1 Basic genetic algorithm [21]
Input: Crossover probability (Pco)
Input: Mutation probability (Pmut)
Input: Population size (L-chromosomes- or classifier- by N-bits)
Input: Criteria function (Fit())
Input: Fitness threshold (θ)
Output: Set of highest fitness chromosomes (best classifier)

1: repeat
2: Determine the fitness of each chromosome: Fit(i), i = 1, . . . , L
3: Rank the chromosomes
4: repeat
5: Select two chromosomes with highest score
6: if Rand[0, 1] < Pco then
7: Crossover the pair at a randomly chosen bit
8: else
9: Change each bit with the probability Pmut

10: Remove the parent chromosomes
11: until N offspring have been created
12: until Any chromosome’s score Fit() exceeds θ

13: return Highest fitness chromosome (best classifier)

Figure 2. Flowchart of the GA.
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In each generation, a proportion of the existing population is selected to breed a new generation.
Each selected individual solution is evaluated on the basis of its overall fitness. In the GA experiments,
a fitness function based on the principle of Minimum Redundancy Maximum Relevance (mRMR)
is used [22]. The key idea of mRMR is to select the set S with m features {xi} that satisfies the
maximization problem:

max Φi(D, R); Φ(D, R) = D− R (2)

where D and R represent the max-relevance and min-redundancy, respectively. D and R are defined
as follows:

D =
1
S ∑

xi∈S
I(xi, y) (3)

R =
1
S2 ∑

xi ,xj∈S
I(xi, xj) (4)

where I(xi, y) and I(xi, xj) represent the mutual information, which is the quantity that measures the
mutual dependence of the two random variables and is calculated as follows:

I(x, y) = H(x) + H(y)− H(x, y) (5)

where H(.) is the entropy.

3.2. ReliefF Algorithm

The ReliefF algorithm (RA) is one of the most famous feature weighting methods. It assigns a
weight to each feature, and the features values over a particular threshold are selected. The key idea of
the RA is to select features randomly, and then based on nearest neighbors the relevance of features
according to how well their values distinguish among the instances of the same and different classes
that are near to each other is estimated [23]. The bigger the weight value, the better the feature is.
Algorithm 2 gives a more detailed description of the process of the RA method. More details were
given in [24] with a thorough description of the key steps of the investigated RA.

Algorithm 2 ReliefF algorithm [24]
Input: For each training instance:
Input: Vector of attribute values (Ai, i = 1, . . . , a)
Input: Class value (C)
Output: Vector W of the estimations of the qualities of attributes

1: Set all weights W[A] := 0.0
2: for i:=1 to m do
3: Randomly select an instance Ri
4: Find k nearest hits Hj
5: for each class C 6= class(Ri) do
6: From class C find k nearest misses Mj(C)
7: for A:=1 to a do

W[A] := W[A]−
k

∑
j=1

di f f (A, Ri, Hj)

m× k
+ ∑

C 6=class(Ri)

P(C)
1−P(class(Ri))

k
∑

j=1
di f f (A, Ri, Mj(C))

m× k

where m is a user-defined parameter. di f f (A, I1, I2) is a function that computes the difference between

the values of the attribute A for two instances I1 and I2. P(.) denotes the prior probability.
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4. Evaluation and Results

In this section, a brief description of the main phases of the pixel-labeling scheme used
for analyzing and selecting texture features is presented. Then, qualitative results are given to
demonstrate the performance of each texture-based feature set according to the use or not of a
feature selection algorithm. Subsequently, the performance of each texture feature set according to the
use of a full texture feature set, the use of a subset of texture features selected by means of the GA,
and the use of a subset of texture features selected by means of the RA is discussed after describing
our experimental corpus and its associated ground truth, and presenting the used accuracy metrics for
performance evaluation.

4.1. Pixel-Labeling Scheme

In order to investigate the importance of using a feature selection algorithm for historical DIA, a
generic and standard framework that ensures a fair analysis and comparison of performance is required.
The proposed framework is presented in this study as a pixel-labeling scheme based on analyzing
and selecting texture features. It aims at analyzing and comparing of the performance of each texture
feature set according to the use of a full texture feature set, the use of a subset of texture features
selected by means of the GA, and the use of a subset of texture features selected by means of the RA.

The main goal of the proposed pixel-labeling consists of structuring the texture feature space
within a clustering technique in order to group pixels sharing similar characteristics. The proposed
pixel-labeling scheme forms the basis of a classical layout analysis approach and cornerstone of
different DIA tasks related to segmentation, analysis, classification and recognition of historical
document images, etc. The pixel-labeling scheme used in our experiments to analyze and select texture
features is illustrated in Figure 3.

Figure 3. Pixel-labeling scheme based on analyzing and selecting texture features.
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First of all, each historical document image of our experimental corpus is fed as input of our
proposed pixel-labeling scheme. Then, texture feature have been extracted only from the foreground
pixels of gray-scale images without using any binarization step. By using analysis windows of varying
sizes (i.e., a pixel-wise technique), the texture feature extraction step is performed in order to adopt a
multi-resolution/multi-scale approach. By using a multi-scale approach, more reliable information
can be obtained and region boundaries can be identified more accurately since textural characteristics
can be perceived differently at varying scales. A border replication step is applied on each image in
order to deal with foreground pixels located at image borders when computing texture features.

Then, all extracted features have been used as input for both the GA and the RA individually.
Two separate datasets, namely, the training dataset (60%) and the testing dataset (40%) that our
experimental corpus comprises have been used separately in our experiments. A learning phase
is introduced in the proposed pixel-labeling scheme that the most selected texture features will be
identified according to the textural characteristics of a 60% of document images selected randomly
from the HBR2013 dataset. For each document image in the training dataset, only 50% of all the
features have been selected when performing separately the GA and the RA iterations. Afterwards,
the subset of the most selected texture features used on evaluating the testing dataset is deduced based
on the following heuristic: a texture feature would be counted among the subset of the most selected
texture features by using a feature selection algorithm, if it was chosen by over half the images of the
training dataset.

Given the results of the most selected texture features from the training dataset, an unsupervised
clustering step is afterwards performed based on analyzing the subset of the most selected texture
features extracted from the foreground pixels of the testing dataset. The clustering step is performed
by using the hierarchical ascendant classification (HAC) algorithm and by setting the number of
homogeneous and similar content regions (k) equal to the one defined in the ground truth in order
to avoid inconsistencies and bias in assessments caused by estimating automatically the number of
homogeneous and similar content regions and subsequently to ensure an objective understanding of
the behavior of the evaluated texture feature sets and feature selection algorithms. The HAC algorithm
is performed on the computed texture features without taking into account the spatial coordinates.
The HAC algorithm process consists of successively merging pairs of existing clusters where at each
cluster grouping step, the choice of cluster pairs depends on the smallest distance (i.e., clusters are
grouped if the intra-cluster inertia is minimal). This linkage between clusters is performed using the
Ward criterion along with the weighted Euclidean distance [25].

By using the HAC algorithm the obtained texture-based feature vector sets are partitioned into k
compact and well-separated clusters in the multi-dimensional feature space, producing a pixel-labeled
image as output. Since the used classifier process in the pixel-labeling scheme is unsupervised,
the colors attributed to the different document image contents (text or graphics) may differ from one
document image to another.

4.2. Corpus and Preparation of Ground Truth

In our experiments, a public corpus of historical document images provided in the context of the
HBR contest (HBR2013 dataset) has been used. The HBR2013 dataset contains 100 binary, gray-scale or
color historical document images which were digitized at 150/300 dpi. Table 1 details the HBR2013
dataset characteristics. Figure 4 illustrates samples of pages of the HBR2013 dataset.
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Table 1. Composition of the HBR2013 dataset.

Content Number
of Pages

Number
of Fonts

Graphics

Only one font (cf. Figure 4a) 3 1 No
Only two fonts (cf. Figure 4b) 17 2 No
Graphics and text with two different fonts (cf. Figure 4c) 9 2 Yes
Only three fonts (cf. Figure 4d) 20 3 No
Graphics and text with three different fonts (cf. Figure 4e) 6 3 Yes
Only four fonts (cf. Figure 4f) 11 4 No
Graphics and text with four different fonts (cf. Figure 4g) 15 4 Yes
Only five fonts (cf. Figure 4h) 5 5 No
Graphics and text with five different fonts (cf. Figure 4i) 14 5 Yes

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Historical document image examples of the HBR2013 dataset. (a–i) illustrate examples of
historical document images of the HBR2013 dataset containing only two fonts, two fonts and graphics,
only three fonts, three fonts and graphics, only four fonts, four fonts and graphics, only five fonts and
five fonts and graphics, respectively.
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To analyze the performance of each texture-based feature set according to the use or not of
a feature selection algorithm in the proposed pixel-labeling scheme, a pixel-based ground truth is
required. For this purpose, the ground truthing environment for document images (GEDI) [26] has
been used in our experiments.

Our ground truth has been manually outlined by labeling spatial boundaries of regions annotating
the textual and graphical contents. Figure 5 illustrates few examples of the defined ground truth.
Different labels for regions with different fonts have been also annotated for evaluating the performance
of texture feature to separate various text fonts. Then, to provide a pixel-accurate representation of the
analyzed images of the HBR2013 dataset, each selected foreground pixel is annotated according to the
label of the region to which it belongs.

(a) (b) (c)

(d) (e) (f)

Figure 5. Example of the defined ground truth and obtained pixel-labeling result. (a,b) illustrate an
original historical document image and its associated ground truth, respectively. (c) shows the final
result of the pixel-labeling task by analyzing the Gabor features. (d–f) illustrate zoomed regions of
(a–c), respectively.

Analyzing the nine sets of texture descriptors and two feature selection algorithms using the
HBR2013 dataset gives a total of 1800 analyzed images (100 images × 9 different texture-based
approaches × 2 different feature selection algorithms).

4.3. Qualitative Results

A visual comparison of the resulting images of historical document examples of the training
and testing datasets of the HBR2013 dataset using the proposed pixel-labeling scheme is discussed in
this section.

Figure 6 depicts the resulting images of a historical document example of the “Three fonts and
graphics” category of the training dataset of the HBR2013 dataset, while Figure 7 illustrates the resulting
images of a historical document example of the “Three fonts and graphics” category of the testing
dataset of the HBR2013 dataset. The number of class labels in the resulting images is equal to 4.
Since the pixel-labeling task is unsupervised, the colors attributed to text or graphics may differ from
one document to another.
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(a) Input (b) Ground truth (c) Tamura (d) Tamura + GA (e) Tamura + RA

(f) LBP (g) LBP + GA (h) LBP + RA) (i) GLRLM (j) GLRLM + GA

(k) GLRLM + RA (l) Auto-correlation (m) Auto-correlation + GA (n) Auto-correlation + RA (o) Co-occurrence

(p) Co-occurrence + GA (q) Co-occurrence + RA (r) Gabor (s) Gabor + GA (t) Gabor + RA

(u) Haar (v) Haar + GA (w) Haar + RA (x) Db3 (y) Db3 + GA

(z) Db3 + RA (aa) Db4 (ab) Db4 + GA (ac) Db4 + RA

Figure 6. Qualitative results without and with using a feature selection algorithm on a historical
document image of the “Three fonts and graphics” category from the training dataset of the HBR2013
dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised, the colors
attributed to text or graphic clusters have been manually set to display the most correct matching.
(a,b) illustrate the input image and its associated ground truth, respectively. The remaining figures
depict the resulting pixel-labeling images. (c–e), (f–h), (i–k), (l–n), (o–q), (r–t), (u–w), (x–z) and (aa–ac)
illustrate the resulting pixel-labeling images given by analyzing the full texture feature set (Tamura,
LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4, respectively), the selected texture
features by means of the GA and RA algorithms.
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(a) Input (b) Ground truth (c) Tamura (d) Tamura + GA (e) Tamura + RA

(f) LBP (g) LBP + GA (h) LBP + RA) (i) GLRLM (j) GLRLM + GA

(k) GLRLM + RA (l) Auto-correlation (m) Auto-correlation + GA (n) Auto-correlation + RA (o) Co-occurrence

(p) Co-occurrence + GA (q) Co-occurrence + RA (r) Gabor (s) Gabor + GA (t) Gabor + RA

(u) Haar (v) Haar + GA (w) Haar + RA (x) Db3 (y) Db3 + GA

(z) Db3 + RA (aa) Db4 (ab) Db4 + GA (ac) Db4 + RA

Figure 7. Qualitative results without and with using a feature selection algorithm on a historical
document image of the “Three fonts and graphics” category from the testing dataset of the HBR2013
dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised, the colors
attributed to text or graphic clusters have been manually set to display the most correct matching.
(a,b) illustrate the input image and its associated ground truth, respectively. The remaining figures
depict the resulting pixel-labeling images. (c–e), (f–h), (i–k), (l–n), (o–q), (r–t), (u–w), (x–z) and (aa–ac)
illustrate the resulting pixel-labeling images given by analyzing the full texture feature set (Tamura,
LBP, GLRLM, auto-correlation, GLCM, Gabor, Haar, Db3 and Db4, respectively), the selected texture
features by means of the GA and RA algorithms.
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From the series of the resulting images given in the two Figures 6 and 7, we see that the obtained
results are slightly astounding. For instance, the best pixel-labeling results are given by analyzing
the selected Gabor features by means of the GA when the analyzed document belongs to the training
dataset (i.e., graphical regions in blue color are more homogeneous), which is not the case when
the analyzed document belongs to the testing dataset (cf. Figure 6s). This can be justified by the
particularities of the HBR2013 dataset (strong heterogeneity, with differences in layout, typography,
illustration style, complex layouts and historical spelling variants, etc.) since it consists of printed
documents of various types (e.g., books, newspapers, journals, legal documents). It represents a wide
variety of layouts that reflect several particularities of historical document images. This points out that
applying a global selection on the HBR2013 dataset is not quite relevant that it is necessary to train on
documents having similar characteristics in terms of the layout structure and/or typographic/graphical
properties of the historical document image content. The quality of the pixel-labeling task will be more
convincing if we use a feature selection algorithm on documents having some similarities of document
content type (some similarities of document content type can be deduced from many book pages since
a document content type can be repeated on many pages of the same book).

By comparing the visual results of a document belonging to the testing dataset, we note a drop
in performance in terms of homogeneity when the analyzed features are given by selecting the LBP
and Gabor features by means of the GA (cf. Figure 7g,s) and by means of the RA (cf. Figure 7h,t).
In Figure 7s, we show that some foreground pixels characterizing a textual content (cyan) has been
labeled as graphical one (green and blue), while in Figure 7t we see that some foreground pixels
characterizing a graphical content (red, green, and blue) has been labeled as textual one (cyan).

We also show that the results have significantly improved when using in the proposed
pixel-labeling scheme the Tamura features selected using the RA on documents of the training and
testing datasets (cf. Figures 6e and 7e). We observe that when using the selected GLRLM features by
means of the GA and RA algorithms on a document of the testing dataset, the pixel-labeling quality
has improved considerably (cf. Figure 7j,k), unlike when using the selected auto-correlation features
(cf. Figure 7m,n). The pixel-labeling results given by analyzing the full auto-correlation feature set
(cf. Figure 7l) on the proposed pixel-labeling scheme on a document of the testing dataset are relatively
similar to those based on selecting auto-correlation features by means of a feature selection algorithm
(cf. Figure 7m,n).

We see that the Gabor and Db4 features give the best results in terms of the homogeneity of
the textual region content when using in the proposed pixel-labeling scheme the full texture feature
set (cf. Figure 7r,aa) and the texture features selected using the RA (cf. Figure 7t,ac) on a historical
document example of the testing dataset. We also note that in the case of using the full Gabor and Db4
feature sets, the Gabor and Db4 features selected using the RA, the textual regions with different sizes
and fonts have not been separated properly and particularly when the documents also contain graphics
(more than one cluster is assigned for graphical regions by discriminating many orientations that
are present to different extents in graphical regions). This confirms that the Gabor and Db4 features
characterize specifically the main orientation of a texture. A suitable alternative is to use a recursive
clustering method in order to ensure the distinction between distinct text fonts and various graphic
types when the documents under consideration are complex and contain graphics and various kinds
of fonts.

4.4. Benchmarking and Performance Evaluation

The dimensionality and performance evaluation of each texture-based feature set in the following
three cases: with full texture feature set, with texture features selected using the GA, and with texture
features selected using the RA, using the proposed pixel-labeling scheme on the HBR2013 dataset are
presented in Table 2.
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The Gabor and GLRLM signatures have the largest dimensions equal to 192 and 176, respectively,
while the Tamura and auto-correlation signatures have the smallest dimensions equal to 16 and 20,
respectively. By applying the GA and RA on a document of the training dataset, the number of
features has been reduced by half. We note that the number of features has been significantly reduced.
The reduction ratio (RD) is computed using the following equation:

RD = 1−
N′f
Nf

(6)

where Nf and N′f note the total number of features and the final number of features after
reduction, respectively.

The RD of Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and Db4 are:
50%, 57%, 46%, 50%, 58%, 53%, 42%, 47% and 43%, respectively when using the GA, and 56%, 50%,
49%, 50%, 50%, 48%, 50%, 45% and 52%, respectively when using the RA on a document of the
testing dataset. As a consequence, we conclude that using a feature selection algorithm helps to reduce
the dimensionality of the data, which entails lower computational cost in terms of lighter memory
consumption, processing time and numerical complexity.

It is inherently a subjective evaluation to use a visual inspection of the pixel-labeling results of a
texture-based method to draw some conclusions about which set of texture features deduced by using
a feature selection algorithm is well suited for historical DIA. Thus, in this study several per-pixel
and per-block accuracy metrics, namely, the silhouette width (SW) [27], purity per-block (PPB) [28],
and F-measure (F) [29], have been computed based on the defined pixel-accurate ground truth of the
analyzed images of the HBR2013 dataset.

The silhouette width (SW) assesses the pixel-labeling quality by computing the level of data
compactness and separation based on the intrinsic information concerning the distribution of the
observations into different clusters. The purity per-block (PPB) measures the homogeneity rate of
regions by evaluating the matching regions between the defined pixel-based ground truth and the
obtained pixel-labeling results. The F-measure (F) assesses both the homogeneity and the completeness
criteria of the pixel-labeling results by computing a score resulting from the combination of the precision
and recall accuracies. SW, PPB, and F are computed. The higher the values of the computed metrics,
the better the results. In Table 2, we have used three different colors (red, green, and blue), to quote the
highest SW, PPB, and F values deduced by comparing the performances of each accuracy measure for
each texture-based feature set in the following three cases: with full texture feature set, with texture
features selected using the GA, and with texture features selected using the RA.

Good performance has been noted for documents of the training dataset when analyzing the
selected texture features by means of the GA and particularly the Gabor features. However, there is no
significant improvement in performance for documents of the testing dataset due to the complexity
and the wide variety of layouts of the HBR2013 dataset. This confirms our observation about the
need to train on documents having similar characteristics in terms of the layout structure and/or
typographic/graphical properties of the historical document image content.

To highlight the similarities of the behavior of the different evaluated texture features according to
the use of a full texture feature set, the use of a subset of texture features selected by means of the GA,
and the use of a subset of texture features selected by means of the RA, the correlation analyses of the
F-measure performance of each texture-based feature set are illustrated in Figure 8a,b,c, respectively.
Each figure represents a matrix of plots showing the different Pearson’s linear correlations among
pairs of the nine texture-based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor,
Haar, Db3 and Db4). Histograms of the nine evaluated texture-based feature sets appear along the
matrix diagonal, while scatter plots of the texture-based feature set pairs appear in the off-diagonal.
Each dot in each correlation plot represents one historical document image of the testing dataset of the
HBR2013 dataset. The displayed Pearson’s linear correlation coefficients in the scatter plots highlighted
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indicate which pairs of texture-based feature sets have correlations significantly different from zero
(equal to the slopes of the least-squares reference lines in red).

Table 2. Dimensionality and performance evaluation of each texture-based feature set for documents
of the training and testing datasets in the following three cases: with full texture feature set, with
texture features selected using the genetic algorithm (GA), and with texture features selected using
the ReliefF algorithm (RA), using the proposed pixel-labeling scheme on the HBR2013 dataset. Internal
and external accuracy measures are computed, silhouette width (SW), purity per-block (PPB) and
F-measure (F). Nf and N′f note the total number of features and the final number of features after
reduction, respectively. The higher the values of the internal and external accuracy measures, the
better the pixel-labeling performances. For each table (i.e., the training and testing datasets), the values
which are quoted in red, green, and blue colors, are considered as the highest SW, PPB, and F values,
respectively by comparing the performances of each accuracy measure for each texture-based feature
set in the following three cases: with full texture feature set, with texture features selected using the
GA, and with texture features selected using the RA.

Training Dataset

Tamura LBP GLRLM Auto-Correlation GLCM Gabor Haar Db3 Db4

Full
texture
feature set

SW 0.35 0.21 0.13 0.07 0.21 0.26 0.26 0.31 0.28

PPB 0.71 0.78 0.79 0.73 0.84 0.90 0.80 0.79 0.81

F 0.38 0.38 0.35 0.43 0.42 0.52 0.45 0.46 0.46

Nf 16 40 176 20 72 192 80 80 80

Texture
features
selected
using the
GA

SW 0.40 0.04 0.14 0.12 0.20 0.29 0.29 0.28 0.31

PPB 0.73 0.72 0.82 0.80 0.87 0.92 0.83 0.83 0.84

F 0.39 0.36 0.35 0.42 0.42 0.54 0.45 0.45 0.46

N′f 8 20 88 10 36 96 40 40 40

Texture
features
selected
using the
RA

SW 0.30 0.07 0.14 0.11 0.26 0.26 0.24 0.29 0.28

PPB 0.73 0.74 0.77 0.77 0.85 0.88 0.81 0.83 0.83

F 0.40 0.38 0.34 0.42 0.42 0.49 0.43 0.43 0.44

N′f 8 20 88 10 36 96 40 40 40

Testing Dataset

Tamura LBP GLRLM Auto-Correlation GLCM Gabor Haar Db3 Db4

Full
texture
feature set

SW 0.38 0.33 0.35 0.17 0.30 0.28 0.30 0.34 0.30

PPB 0.77 0.83 0.82 0.81 0.86 0.91 0.83 0.83 0.84

F 0.40 0.39 0.37 0.43 0.43 0.52 0.44 0.45 0.46

Nf 16 40 176 20 72 192 80 80 80

Texture
features
selected
using the
GA

SW 0.42 0.01 0.42 0.24 0.35 0.33 0.29 0.33 0.36

PPB 0.76 0.72 0.85 0.85 0.85 0.91 0.86 0.85 0.85

F 0.40 0.37 0.37 0.43 0.41 0.51 0.43 0.42 0.43

N′f 8 17 95 10 30 90 46 42 45

Texture
features
selected
using the
RA

SW 0.35 0.15 0.39 0.22 0.36 0.28 0.31 0.34 0.37

PPB 0.79 0.76 0.81 0.80 0.87 0.89 0.85 0.85 0.86

F 0.41 0.38 0.36 0.42 0.43 0.49 0.42 0.42 0.42

N′f 7 20 89 10 36 98 40 44 38
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Table 3 summarizes the minimum, average, and maximum Pearson’s linear correlation coefficient
values of the F-measure performance of pairs of texture-based feature sets according to the use of a full
texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a
subset of texture features selected by means of the RA.

By comparing the different correlation plots and obtained Pearson’s linear correlation coefficients
when using the full texture feature set, the subset of texture features selected by means of the GA,
and the subset of texture features selected by means of the RA, we observe that the Gabor and the three
wavelet-based approaches are still highly correlated even if a feature selection algorithm is introduced.
This confirms that by using a feature selection algorithm in the Gabor and wavelet approaches only a
small subset of relevant features from the original large set of features characterizing the localization
of the spatial frequency of a texture have been selected. Nevertheless, we observe higher correlation
coefficient values between the Tamura and other investigated features on the one hand and between
the LBP and other investigated features on the other hand when selecting features by means of the
GA and the RA. This confirms that by using a feature selection algorithm a significant number of
texture features which are redundant or irrelevant have been removed. An interesting conclusion
that can be deduced from the correlation plots in Figure 8, is that combining the different selected
texture feature sets can significantly improve the pixel-labeling quality. Indeed, each feature set has
its own particularities. For instance, since Gabor filters is known to be sensitive to the stroke width,
they have the advantage to present the best performance in discriminating text in a variety of situations
of different fonts and scales. On the other side, the auto-correlation feature set has the advantage
of presenting the best performance for segmenting the graphical contents from textual ones since it
highlights interesting information concerning the principal orientations and periodicities of texture [11].
Therefore, combining the different selected texture features from the auto-correlation and Gabor
descriptors can be more adequate for segmenting the graphical contents from textual ones on the one
hand, and discriminating text in a variety of situations of different fonts and scales on the other hand.



J. Imaging 2018, 4, 97 18 of 24

 Correlation Matrix

0.4 0.6 0.8 1

Db4     

0.4 0.6 0.8 1

Db3     

0.4 0.6 0.8 1

Haar     

0.4 0.6 0.8 1

Gabor     

0.4 0.6 0.8 1

GLCM     

0.4 0.6 0.8 1

Auto−correlation     

0.4 0.6 0.8 1

GLRLM     

0.4 0.6 0.8 1

LBP     

0.4 0.6 0.8 1

0.5

1

Tamura     

D
b
4
  
  
 

0.5

1

D
b
3
  
  
 

0.5

1

H
a
a
r 

  
  

0.5

1

G
a
b
o
r 

  
  

0.5

1

G
L
C

M
  
  
 

0.5

1

A
u
to

−
c
o
rr

e
la

ti
o
n
  
  
 0.5

1

G
L
R

L
M

  
  
 

0.5

1

L
B

P
  
  
 

0.5

1

T
a
m

u
ra

  
  
 

0.62 0.61 0.61 0.63 0.50 0.58 0.59 0.53

0.62 0.72 0.68 0.61 0.65 0.68 0.72 0.70

0.61 0.72 0.69 0.75 0.67 0.86 0.80 0.77

0.61 0.68 0.69 0.60 0.64 0.76 0.75 0.74

0.63 0.61 0.75 0.60 0.67 0.82 0.79 0.79

0.50 0.65 0.67 0.64 0.67 0.77 0.77 0.75

0.58 0.68 0.86 0.76 0.82 0.77 0.90 0.93

0.59 0.72 0.80 0.75 0.79 0.77 0.90 0.92

0.53 0.70 0.77 0.74 0.79 0.75 0.93 0.92

(a) Full texture feature set

Figure 8. Cont.
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Figure 8. Correlation analysis of the F-measure performance of each texture-based feature set according to the use of a full texture feature set (a), Full texture feature
set; the use of a subset of texture features selected by means of the GA (b), Texture features selected using the GA; and the use of a subset of texture features selected
by means of the RA (c), Texture features selected using the RA.
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Table 3. Minimum, average, and maximum Pearson’s linear correlation coefficient values of the F-measure performance of pairs of texture-based feature sets according
to the use of a full texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a subset of texture features selected by means
of the RA.

Full Texture Feature Set Texture Features Selected Using the GA Texture Features Selected Using the RA

Features Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

Tamura 0.50
(Gabor)

0.58 0.63
(GLCM)

0.47
(Gabor)

0.75 0.87
(LBP)

0.58
(Gabor)

0.78 0.87
(Haar)

LBP 0.61
(GLCM)

0.67 0.72
(GLRLM)

0.41
(Gabor)

0.74 0.88
(GLCM)

0.51
(Gabor)

0.75 0.86
(GLRLM)

GLRLM 0.61
(Tamura)

0.73 0.86
(Haar)

0.47
(Gabor)

0.74 0.83
(Tamura)

0.62
(Gabor)

0.78 0.86
(LBP)

Auto-correlation 0.60
(GLCM)

0.68 0.76
(Haar)

0.49
(Gabor)

0.69 0.75
(Db3)

0.58
(Gabor)

0.74 0.83
(Tamura)

GLCM 0.60
(Auto)

0.7 0.82
(Haar)

0.53
(Gabor)

0.72 0.88
(LBP)

0.63
(Gabor)

0.78 0.83
(LBP)

Gabor 0.50
(Tamura)

0.67 0.77
(Db3)

0.41
(LBP)

0.49 0.56
(Db3)

0.51
(LBP)

0.59 0.63
(GLCM)

Haar 0.58
(Tamura)

0.78 0.93
(Db4)

0.50
(Gabor)

0.75 0.88
(Db4)

0.62
(Gabor)

0.81 0.93
(Db4)

Db3 0.59
(Tamura)

0.78 0.92
(Db4)

0.56
(Gabor)

0.77 0.93
(Db4)

0.61
(Gabor)

0.79 0.94
(Db4)

Db4 0.53
(Tamura)

0.76 0.93
(Haar)

0.53
(Gabor)

0.76 0.93
(Db3)

0.63
(Gabor)

0.8 0.94
(Db3)
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5. Conclusions and Further Work

This paper has presented a comparative study of using two conventional feature selection
algorithms for selecting a number of commonly and widely used texture features. This comparative
study has been conducted on the HBR2013 dataset, using a classical pixel-labeling scheme based on
analyzing and selecting features. The proposed pixel-labeling scheme integrates a feature selection step,
which has been applied on a training set of the HBR2013 dataset in order to select the most relevant
texture features of each analyzed texture-based feature set.

We conclude that the performance of a particular feature selection algorithm is highly dependent
upon the used texture features. It is admittedly that the proposed pixel-labeling scheme selects
fewer texture features with comparable performance. This study has shown that when the numerical
complexity and pixel-labeling quality are taken into account, good performance has been noted for
documents of the training dataset when analyzing the selected texture features by means of the genetic
algorithm and particularly the Gabor features. These results could be explained by the fact that using
the genetic operators (such as the crossover and mutation operators) in the GA, guarantee a high
diversity of the succeeding populations, and thus more immune to be trapped in a local optima
and faster in reaching the global optima. Moreover, the Gabor features perform better than the
other features, since they characterize specifically the orientation and spatial frequency of a texture
without taking into account the spatial relationships between pixels as concluded in [11].

However, it is not the case for documents of the testing dataset; there is no significant
improvement in performance due to the complexity and the wide variety of contents and layouts
of the HBR2013 dataset. Indeed, it is worth noting that there is awareness that we need a larger
database containing documents having similar characteristics in terms of the layout structure and/or
typographic/graphical properties of the historical document image content in order to train the
different feature selection algorithms. Thus, conducting this study on a larger public annotated dataset
of historical books such as the HBA dataset [30] is among the first aspect of our future work. Finally, we
intend to extend our investigation to recent feature selection algorithms.
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Abbreviations

The following abbreviations are used in this manuscript:

Db3 three-level wavelet transform using 3-tap Daubechies filter
Db4 three-level wavelet transform using 4-tap Daubechies filter
DIA Document image analysis
F F-measure
GA Genetic algorithm
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run-length matrix
Haar three-level Haar wavelet transform
HAC Hierarchical ascendant classification
HBR Historical book recognition
LBP Local binary patterns
RA ReliefF algorithm
SW Silhouette width
PPB Purity per-block
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