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Abstract An automatic method to combine several local
surrogate models is presented. This method is intended to
build accurate and smooth approximation of discontinuous
functions that are to be used in structural optimization prob-
lems. It strongly relies on the Expectation−Maximization
(EM) algorithm for Gaussian mixture models (GMM). To
the end of regression, the inputs are clustered together with
their output values by means of parameter estimation of
the joint distribution. A local expert is then built (linear,
quadratic, artificial neural network, moving least squares)
on each cluster. Lastly, the local experts are combined using
the Gaussian mixture model parameters found by the EM
algorithm to obtain a global model. This method is tested
over both mathematical test cases and an engineering opti-
mization problem from aeronautics and is found to improve
the accuracy of the approximation.
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1 Introduction

In recent years, design engineers have been provided with
many practical tools from mathematical optimization and
most of the classical gradient-based optimization techniques
are now widely used in all fields (see for instance Haftka
and Gurdal 1992 in the field of structural optimization).
When using these classical tools, one often faces long
simulations times either to compute the optimization con-
straints, or the objective function, or both. To speed up
design, approximation models were developed to tackle
the slowness of repetitive code evaluations. When used
within a design process, these approximation methods are
often called surrogate models. Surrogate models arise from
statistics and probability theory and are now widespread
tools to approximate complicated functions. They are used
inside the optimization process to approximate the objective
function or the constraints, or they can directly approxi-
mate the results of the optimization process as a function
of the optimization problem parameters (materials charac-
teristics, load case in structural optimization for instance).
They are also widely used in the multilevel and multi-
disciplinary optimization framework (Liu et al. 2004;
Merval 2008; Merval et al. 2006). Surrogate modeling
offers many ways to approximate functions from sample
data: artificial neural networks (ANN) (Dreyfus 2005),
moving least squares (MLS) (Nealen and Darmstadt 2004),
radial basis functions (RBF) (Buhmann 2001), kriging
(van Beers and Kleijnen 2004), support vector machines
(Smola and Schölkopf 2004), multivariate adaptive re-
gressive splines (MARS) (Friedman et al. 2001). A good



overview of the existing surrogate models can be found in
Friedman et al. (2001), Kleijnen et al. (2005), Wang and
Shan (2007) and Simpson et al. (2008). In Forrester and
Keane (2009), Forrester and Keane provide an intensive
review of most of the surrogate models and compare them
when used within an optimization process. Nonetheless, one
simple surrogate model might not be enough to approxi-
mate a complicated function, especially when this function
features different behaviors depending on the region of the
input space. This situation happens quite often in mechan-
ics when computing critical buckling modes. For instance
in Merval (2008), the optimization constraints to be approx-
imated (reserve factors for skin buckling and local web
stringer buckling for a composite stiffened panel) happen
to be discontinuous and derivative-discontinuous which pre-
cludes the training of an accurate surrogate model. Indeed
surrogate models usually assume that the function to approx-
imate is smooth and are themselves smooth. This results in a
high variance around the discontinuities and that makes the
generalization power of the surrogate model poorer. One
way to prevent this high variance would be to divide the
input space into regions that do not feature discontinuities
and then build a surrogate model on each of these regions.
This way one could get rid of the discontinuities.

To improve the accuracy of a surrogate model, a com-
mon practice is to build several surrogate models on the
same common learning basis. One is more likely to find
a more accurate surrogate when building many surrogate
models. As explained in Viana et al. (2009), several sur-
rogate models prevents from building poorly fitted models.
On the basis of the different surrogate models, one can
choose the most accurate based on the classical statistical
techniques of cross-validation and bootstrap to obtain esti-
mates of the generalization error of the different surrogate
models (see for instance Kohavi 1995 and Picard and Cook
1984). As pointed out in Acar and Rais-Rohani (2009), one
of the drawbacks of choosing the best predictor is that we do
not make use of all the resources used in the construction of
the discarded surrogate models. The chosen predictor may
be globally precise enough but may lack accuracy in some
crucial areas of the input space (boundaries for instance),
while one of several of the discarded surrogate models may
perform better in these very areas. One could overcome this
drawback by combining all the surrogate models by means
of weights. This practice of combination relies on the same
basis as committees of machines in artificial intelligence. A
committee of machines is a collection of intelligent agents
that vote and decide all together, hoping that errors would
cancel as there are several experts. In the area of machine
learning, this practice of combination appears in the bagging
and boosting techniques. In the case of an ensemble of surro-
gate models, the different surrogate models may be simply
averaged or weighted. Note that the weighting may be done

globally (constant weights over the input space) as it is done
in Viana et al. (2009) and in Acar and Rais-Rohani (2009) or
locally (depending on the input space) as it is done in Zerpa
et al. (2005) and in Sanchez et al. (2008). Even though the
idea of combining several surrogate models seems appro-
priate to approximate functions, there is no evidence that
combining is always better than selecting the best surrogate,
as it is pointed out in Yang (2003).

Our approach is in the framework of ensembles of locally
weighted surrogate models except that it is also based on a
partitioning of the learning basis, whereas in most of the
described techniques of ensembles, the surrogate models
are built on the same common learning basis. Indeed, our
concern is about the approximation of functions featuring
discontinuities, heterogeneous behaviors and very different
landscapes depending on the region of the input space. This
is why, in our approach, a surrogate model is built over a
specific region of the input space. From an optimization
point of view, the global surrogate model needs to be con-
tinuous and even smooth (for gradient-based optimization
techniques), this is why we combine them in a way that
their errors are canceled, notably in the vicinity of discon-
tinuities. As pointed out, this approach differs slightly from
the existing ensembles of surrogate models, since each sur-
rogate model, though applied over the whole input space at
the very end, is only built over a specific region of the input
space. Our approach is based both on the same idea as the
committee of machines but also on the ‘Divide and Conquer’
principle. In the literature, this kind of approach is referred
to as mixture of experts (MoE’s). A general introduction to
mixture of experts can be found in Friedman et al. (2001).
One classical application is known as hierarchical mixture
of experts (HME) and is described in Jordan and Jacobs
(1994). In this study, Jordan and Jacobs present a general
architecture of mixture of experts for supervised learning
(regression and classification). This architecture is a tree
structure where each nonterminal produces a soft split of the
input value coming from the upper level. This soft split con-
sists in giving different weights to the lower sub levels by
means of a generalized linear model; the authors call it gat-
ing network. Each gating network produces soft splits until
the terminal leaves, which produce output (real value for
regression and binary for classification) by means of a gen-
eralized linear model. These terminal leaves are called by
the authors expert network. The parameters of the different
generalized linear models are estimated using a classical
algorithm in statistics: the Expectation-Maximization algo-
rithm (EM algorithm) on the input-output space, which
means that in their study, partitioning and learning are based
on the same algorithm. We propose a different method
where clustering is separated from learning. The gating
networks are not generalized linear models (GLIM) but
Gaussian mixture models (GMM) still estimated through



EM algorithm. Based on the Gaussian mixture models esti-
mates, the input-output space (or conjoint space) is clustered
with respect to the maximum a posteriori (MAP). Once this
clustering is done, we have a certain number of sub-bases
and a surrogate model is trained over each sub-basis. This
surrogate model can be quadratic regression, artificial neu-
ral networks and moving least squares regression, while
Jordan and Jacobs use a generalized linear model. All the
surrogate models are combined on the basis of the Gaussian
parameters found by EM algorithm. The proposed tech-
nique relies on a certain number of hard tasks that try to
answer the following questions

a) How do we cluster the learning basis? Clustering (or
automatic classification) is one of most important areas
of unsupervised learning. It aims at finding groups
whose individuals are close in some sense into a col-
lection of points. There are many different techniques
to cluster data (K-means, K-medoids, quality thresh-
old clustering, density clustering see Berkhin (2002)
for instance where most of the classical algorithms for
clustering are reviewed). Some of theses are hard clus-
tering, where each point of the design space belongs to
one and only one cluster. Others are fuzzy clustering,
where each point of the design space belongs to several
clusters and each point is associated to a random vector
defining the probabilities to lie within each cluster.

b) Which local experts do we build and how do we com-
bine them? As pointed out in Yang (2003), there is no
reason that combining several surrogate will perform
better than only one, which means that the combination
has to be done carefully based on a technique that is
expected to cancel errors.

c) How to choose the number K of clusters? This is a
rather difficult question since there might not be per-
fect number of clusters. Indeed, we just want to find a
good number of clusters such that each expert would do
well enough to be combined. There might be different
choices for K . The question of the number of clusters is
central in clustering theory and involves different tools
from statistics, probability theory and information the-
ory. In Burnham and Anderson (2004), some of the
most common criteria to find the best number of clus-
ters (Akaike Information Criterion and the Bayesian
Information Criterion) are thoroughly investigated and
compared.

As said earlier, our concern is mostly about the approxi-
mation of discontinuous functions to the end of optimiza-
tion. The clustering should be done such that the boundary
between clusters would be as close as possible to the real dis-
continuities. We assume that these discontinuities may be
distributed all over the domain and would naturally divide

the input-output space into bunches of points that are con-
nected but that may be anisotropic. Clustering should also
be done in such a way that the we have a center and a param-
eterization of each cluster to combine the local surrogate
models. To that end, we assume that a good representation
of the conjoint data for discontinuous functions would be
Gaussian mixture models. The EM algorithm would allow
us to find good estimates of the Gaussian parameters. EM
clustering for Gaussian mixture models gives an anisotropic
representation of the data and therefore a parameterization
of the clusters that makes it possible to combine the dif-
ferent surrogate models built on each cluster. In Bradley
et al. (1998), some of the benefits that can be taken from
using EM clustering are developed. Next, we describe our
method by answering the former questions. We first present
the theoretical background of our proposed technique:
Gaussian mixtures models, clustering based on the GMM
estimates in Section 2 and answer question a). We then
focus on the combination of the local experts trained on
the basis of the clustering, this will allow us to answer
question b) and derive the original algorithm presented in
Section 3 to improve the accuracy of surrogate modeling
for discontinuous functions. In Section 4, we validate our
proposed algorithm on test cases obtained from a discon-
tinuous functions samples generator called Samgen and we
also give a practical answer to question c). In Section 5, we
finally test our proposed algorithm on a structural optimiza-
tion problem from aeronautics. The EM algorithm, which
is the basis of our method is recalled in Appendix A. We
also give an original interpretation of a standard surrogate
model the weighted least squares (WLS) in terms of mix-
ture of experts based on a soft clustering and local quadratic
experts in Appendix B. The tool called Samgen that we
implemented to provide highly discontinuous functions in
arbitrary dimension is outlined in Appendix C.

2 Gaussian mixture models and EM clustering

2.1 Gaussian mixture models

We first describe in this section Gaussian mixture models.
Suppose we are given X = (x1, ..., xn) a set of data where
xi ∈ R

d . Assume that these xi ’s come from {Xi }i=1...n a set
of identical and independently distributed (iid) random vari-
ables. An important problem in statistics and in probability
theory is the estimation of the probability density function
(pdf). In the case of GMM, we assume that the probability
law of X is a weighted combination of a given number K of
multivariate Gaussian laws

X ∼
K∑

k=1

αkN (μk, �k), (1)



where the αk’s are the mixture parameters, i.e, αk is the pro-
portion of the Gaussian k in the mixture. Note that, if we
denote fk the pdf of Gaussian k, the ∼ symbol means that
the pdf of X is

∑K
k=1 αk fk . We obviously have

∑K
k=1 αk =

1 since it is a probability density function. The other param-
eters are the Gaussian parameters. Recall that a multivariate
Gaussian distribution is defined by its mean μk ∈ R

k and
its variance-covariance matrix �k ∈ Md(R), which is sym-
metric positive definite. The pdf of Gaussian N (μk, �k) is
therefore

fk(x) = 1√
(2π)d det(�k)

e− 1
2 (x−μk )

T �−1
k (x−μk ). (2)

To illustrate GMM’s, we depicted Fig. 1 two different
GMM’s, respectively in R and in R

2.

2.2 Expectation-maximization clustering

We recall in Appendix A the EM algorithm, which is a prac-
tical tool to determinate the underlying structure of data.
More precisely in the Gaussian mixture model case, EM
algorithm gives estimates of the means and the variance-
covariance matrices. Since we consider regression prob-
lems, we assume we have X = (x1, . . . , xn) a set of inputs
and Y = (y1, . . . , yn) the corresponding outputs. Note that
we consider in the following that the output space is R, but
we could have considered R

d with no changes. We want to
describe the conjoint law of (X, Y ) as a GMM.

Consider the conjoint space X × Y = Z = (z1, . . . , zn)

where zi = (xi , yi ) ∈ R
d+1. Suppose we have set the num-

ber of clusters to K . We estimate through EM algorithm the
parameters of the K multivariate Gaussian distributions in
R

d+1 such that

Z ∼
K∑

k=1

αkN (μk, �k), (3)

where the αk’s are the mixture parameters, i.e for all
k ∈ i . . . K , αk ∈ [0, 1] and

K∑

k=1

αk = 1 (4)

and μk ∈ R
d+1 is the mean of the Gaussian distribution k

and denote

μk =
⎛

⎝
μX

k

μY
k

⎞

⎠ , (5)
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where μX
k ∈ R

d is the X−coordinates of the mean μk

and μY
k ∈ R is the Y−coordinate of the mean μk . �k ∈

Md+1(R) is the variance-covariance matrix and denote

�k =
(

�X
k νk

νT
k ξk

)
, (6)

where �X
k ∈ Md(R) is the variance-covariance matrix of X

for Gaussian k, νk ∈ R
d is Cov(X, Y ) for Gaussian k and

ξk = Var(Y ).



Once the GMM parameters are estimated, we can now
compute the posterior probabilities, that is to say, the prob-
ability for a given (x, y) ∈ R

d+1 to lie within cluster ki .
It is given by Bayes’ formula where κ denotes the discrete
random variable associated with the clusters

P(κ = ki |(X, Y ) = (x, y))

= P(κ = ki )P((X, Y ) = (x, y)|κ = ki )∑K
k=1 P(κ = k)P((X, Y ) = (x, y)|κ = k)

.

For the particular case where (X, Y ) is assumed to be a
Gaussian mixture model: (X, Y ) ∼ ∑K

k=1 αkN (μk, �k) we
have for all k ∈ {1, . . . , K }

P(κ = k) = αk,

(X, Y )|κ = k ∼ N (μk, �k),

which leads with z = (x, y) to

P(κ = ki |(X, Y ) = (x, y))

= det(�ki )
− 1

2 αki e
− 1

2 (z−μki )
T �−1

ki
(z−μki )

∑K
k=1 det(�k)

− 1
2 αke− 1

2 (z−μk )
T �−1

k (z−μk )
. (7)

Note that in (7), the 2π factor vanishes, but the determi-
nant of the variance-covariance matrices �k’s remain as the
mixture parameters αk’s. Formula (7) offers two ways of
partitioning the data set:

− hard clustering: we simply choose over all the k’s the
one that gives the highest probability. Given (x, y) in
the conjoint space, (x, y) lies in cluster j where

j = argmax j=1,...,K P(κ = j |(X, Y ) = (x, y)). (8)

− soft clustering: points belong to all clusters, we assign
to each point (xi , yi ) its probability to be generated
knowing the cluster j (and thus the mode j). Each
point is therefore given a set of K probabilities p =
(p1, . . . , pK ) where

p j = P((X, Y ) = (x, y)|κ = j)
∑K

k=1 P((X, Y ) = (x, y)|κ = k)
. (9)

Indeed, we want to train a surrogate model over X
for mode j , therefore each learning point xi should be
weighted by the probability p j to have xi knowing that
the cluster is j . This probability is normalized such that∑K

k=1 pk = 1.

In this article, we chose the hard clustering. The hard clus-
tering keeps the localization of the examples in the same

cluster in the sense that they are close with respect to
the Mahalanobis distance1 associated with the variance-
covariance matrix �k . The other reason is that building
surrogate model from weighted examples is not straight-
forward, apart from linear and polynomial multivariate
regressions where it boils down to weighted least squares
(see Appendix B). In the next section, we describe the way
we combine the different local experts built on this hard
clustering.

3 Combining local experts and proposed algorithm

The learning basis is split into K learning sub-bases and
an expert fk is trained over each sub-basis k. Any surro-
gate model can be used, we give results obtained using the
following different local experts:

− linear regression: the most simple expert (apart from
the constant expert which leads to radial basis functions
regression). It can be computed easily and the multi-
variate linear regression parameters are directly given
by the Gaussian component parameters

fk(x) = Covk(X, Y )

Vark(X)

(
x − E

k(X)
) + E

k(Y )

= (�X
k )−1νk

(
x − μX

k

) + μY
k . (10)

In that case, once the EM algorithm is done, all the
parameters of the MoE are computed. In this particu-
lar case, clustering and learning are not separated as
in Jordan and Jacobs (1994). This MoE is therefore
very cheap to compute. Note that a numerical instabil-
ity (apart from EM algorithm that might converge very
slowly) can arise from the inversion of the variance-
covariance matrices �k (for clustering) and �X

k (to build
local experts and combine them). This should be done
carefully using for instance QR factorization.2

− quadratic regression: the original response surfaces,
which are quadratic polynomials over R

d as extensively
described in Myers et al. (2009). They are also rela-
tively inexpensive to build however there is no easy

1The Mahalanobis distance of a random variable X ∈ R
d is the

distance defined by the inverse the variance-covariance matrix
� = Var(X): for ω1, ω2 ∈ R

d the Mahalanobis distance
is DM (ω1, ω2) = ||ω1 − ω2||�−1 = √

(ω1 − ω2)T �−1(ω1 − ω2). It
does define a distance since the inverse of � (sometimes called the
precision matrix) is symmetric positive definite.
2All these matrices are symmetric positive definite but they can
become nearly-singular especially in case of redundant data (linearity),
QR factorization performs better than Gaussian reduction and even
Choleski factorization.



formula that can be derived from the Gaussian com-
ponents parameters. In our case, we computed it in a
simple way taking care of the inversion of the system.

− artificial neural networks: we use here the classical
Multi Layer Perceptron (MLP) as a local expert; MLP
models are thoroughly described in Haykin (2008).
We use one-layer networks and the number of hid-
den neurons is classically determined through a cross-
validation procedure and the network is trained using
Levenberg−Marquardt algorithm.

− moving least squares: the MLS expert is the most com-
plicated expert to compute for it is an implicit model
that needs to be recomputed at each new evaluation
point. We implemented a moving least squares method
based on the Backus−Gilbert approach that can be
found in Fasshauer (2005). We also implemented a
golden ratio search to optimize the hyper-parameter σ

(width of the Gaussian kernel, see Appendix B). A
landmark paper on MLS is Levin (1998) and a brief
introduction can be found in Nealen and Darmstadt
(2004).

Nonetheless, any surrogate model can be used (kriging, sup-
port vector regression, radial basis function, multivariate
adapted regressive splines) as a local expert and can be per-
fectly improved using an ensemble of surrogate models, or
boosting (Meir and Ratsch 2003). Moreover, a local expert
can be a black-box or itself an MoE and so on.

Once we build our local experts fk , we want to pre-
dict the response y for a new entry x ∈ R

d . This is done
by combining them. We form a linear combination of the
local experts fk . A natural idea is that this linear combina-
tion should not be constant over the whole input space and
should give more weight to expert fk when x gets closer
to the center of cluster k with respect to the natural Maha-
lanobis distance inherited by the variance-covariance matrix
of Gaussian k. Namely the global model f̂ is

f̂ (x) =
K∑

i=1

βk(x) fk(x), (11)

where β = (β1, . . . , βK ) is an expert that gives the local
weights (local in the sense that it does depend on x). A
natural gating network would be

β(x) = (P(κ = 1|X = x), . . . , P(κ = K |X = x)), (12)

such that the global model would be

f̂ (x) =
K∑

i=1

P(κ = i |X = x) fi (x). (13)

Equation (13) is the classical probability expression of mix-
ture of experts (as it can be found in Jordan and Jacobs

1994). Note that this expression may represent a lot of
different situations and therefore a lot of different MoE’s.
For instance, as said earlier, the weighted least squares
can be interpreted as an Moe using that equation (see
Appendix B). To use (13) we need to know what is the
law of κ knowing that X = x and without knowing that
Y = y, this can be easily obtained with the Gaussian param-
eters found by EM algorithm. Indeed, from the conjoint law
(X, Y ) ∼ ∑K

k=1 αkN (μk, �k), we can derive the law of
X |κ = k without knowing Y

X |κ = k ∼ Nd(μX
k , �X

k ), (14)

such that the global GMM law of X is

X ∼
K∑

k=1

αkN (μX
k , �X

k ). (15)

Note that this Gaussian mixture model is different from the
one we would have obtained by applying EM only on the
inputs X ’s for it is the projection on the input space of
the conjoint law. Therefore we can derive equivalently the
posterior probability from Bayes’ formula

P(κ = ki |X = x)

= det
(
�X

ki

)− 1
2 αki e

− 1
2 (x−μX

ki
)T �X−1

ki
(x−μX

ki
)

∑K
k=1 det(�X

k )− 1
2 αke− 1

2 (x−μX
k )T �X−1

k (x−μX
k )

. (16)

Note that the global model defined with (13) and (16) is
completely smooth. In the sequel, this mixture of experts
will be referred to as smooth mixture. At this point, we can
think of another way of combining the local surrogate mod-
els that takes more avantage from the clustering made by the
EM algorithm. Indeed, based on the Gaussian parameters
estimated on the clustering step, we can predict which clus-
ter a new given entry x lies in and simply assign to this entry
x the corresponding local surrogate model. This means that
we can, at least formally, define a partitionning of the whole
input space: X = ∪K

k=1Xi and simply define the law of k
knowing that X = x as a uniform discrete law such that the
global model would be

f̂ (x) =
K∑

k=1

1ClX
k
(x) fk(x) (17)

where

1ClX
k
(x) =

{
1 if k = argmax j=1,...,K P(κ = j |X = x)

0 if k �= argmax j=1,...,K P(κ = j |X = x)

(18)

and (17) defines the most simple mixture of experts where
a new entry x is given a cluster k and the predicted value



is simply fk(x). An important feature of this mixture of
experts is that it is not continuous, indeed at the bound-
ary between two adjacent clusters3 the two adjacent local
surrogate models need not to match resulting in a glob-
ally discontinuous model. This mixture of experts will be
referred to as hard mixture of experts. In the case when the
functions to approximate is discontinuous the hard mixture
version is likely to be more accurate than the smooth ver-
sion. Besides being discontinuous, the hard mixture version
may create artificial discontinuities where the original func-
tion does not have ones (see Fig. 2d). In this article, we
are mainly concerned with approximating functions that are
objective or constraints functions of an optimization prob-
lem that is to be solved on the basis of a gradient-based
method, this is why we will focus on the smooth mixture of
experts. Indeed, in such applications, we are not only con-
cerned with the accuracy of the approximation but also with
the regularization of the original approximation. In terms of
accuracy the hard version is likely to perform better (see for
instance Fig. 2d) but the optimization algorithm may fail
to converge due to the non-differentiability of the global
approximation model.

Our algorithm is presented here and results of this
method are given in the following sections with the help
of two test cases and one engineering problem. This method
is also illustrated on a one-dimensional test case in Fig. 2.

1. Assemble Z the conjoint learning basis where zi ∈ R
d+1

contains inputs xi ∈ R
d and output yi ∈ R, see Fig. 2a

Z =

⎛

⎜⎜⎜⎜⎝

x (1)
1 . . . x (1)

n
...

...

x (d)
1 . . . x (d)

n

y1 . . . yn

⎞

⎟⎟⎟⎟⎠
. (19)

2. Set the number of clusters K as explained below. In
Fig. 2 the number of clusters was set to 3.

3. Apply EM algorithm to Z with K to get α̂k , μ̂k and �̂k ,
estimates of the real Gaussian parameters.

4. Hard clustering of the data, see Fig. 2b. zi = (xi , yi )

belongs to cluster ki where

ki = argmax j=1,...,K P( j |(X, Y ) = (xi , yi )). (20)

where P(κ = j |(X, Y ) = (xi , yi )) is computed using
(7)

5. Split the conjoint learning basis into K clusters Z =
∪K

i=1 Z (i).

3This boundary is often known in Probability as the Bayes classifier.

6. For i = 1 . . . K

(a) Remove outliers using for instance Mahalanobis
distance.

(b) Split randomly Z (i) = Z (i)
learn ∪ Z (i)

test into learning
basis and test basis.

(c) Train expert fi on Z (i)
learn, choose the best expert fi

with Z (i)
test, see Fig. 2c.

7. Combine all the experts with

f̂ (x) =
K∑

i=1

P(κ = i |X = x) fi (x). (21)

where P(k = i |X = x) is computed using (16), see
Fig. 2d where we also plotted the hard version of the
mixture of experts.

So far we have not answered the crucial question about
the number of clusters. We suggest here a practical way to
determinate a good number of such clusters. As discussed
earlier, there might not be a perfect number of clusters,
the function may be continuous and non derivative dis-
continuous and only one expert may be a good choice to
approximate the function. Nonetheless, we usually observed
even in that case that several experts can perform better than
only one. On the other hand, too many experts may split the
learning basis onto clusters with too few examples to train a
reasonable surrogate model. There is a trade-off between the
complexity of the model (number of free parameters) and
the capacity of generalization of the MoE. To set the correct
number of clusters (and experts) we suggest to build MoE’s
with linear experts and quadratic experts, estimate the MSE
and the other error measures for different number of clus-
ters, (say for k = 2 . . . NA/10) and then choose the number
of clusters that minimizes the MSE and Êmean. In the case
where there are several number of clusters that could do it,
we would better choose the lowest to make the clusters as
big as possible and thus improve the accuracy of the local
experts. Part of the reason for this procedure is that building
linear experts and quadratic experts is inexpensive in com-
parison to building neural experts or moving least squares
regression experts.

Note that this algorithm was designed for smoothing
discontinuous or derivative-discontinuous functions. It was
pointed out that the EM clustering is expected to separate
disconnected parts of the conjoint space and therefore to
grasp regions where the response to approximate is con-
tinuous and where building a surrogate model would be
much easier than building one on the whole domain. Nev-
ertheless, combining all the local surrogate models into
a global smooth one is likely to make the approximation
less accurate around the discontinuities, while in the hard
mixture version the discontinuities are preserved. This is
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(d) Global predictor

Fig. 2 Sketch of the proposed algorithm for a 1D test case
samgen_1D_1. a Original function and learning basis. Note that
samgen_1D_1 features two C0 and C1 discontinuities. EM clustering
is expected to separate them well enough to locally build an accurate
surrogate model. b EM clustering on the learning basis for K = 3.
We depict the contour lines of the quadratic function associated to
the variance-covariance matrix �i at 3 × 10−6 for i = 1 . . . 3. Note
that these lines are simply the balls of radius 3 × 10−6 centered at μi
for the Mahalanobis distance associated with the variance-covariance

matrices

(
�X

i νi
νi ξi

)
. c Local quadratic experts and gating networks.

See that the gating network associated to cluster 2 is quite steep. This

is due to the relative small size of cluster 2. d Global surrogate mod-
els obtained through the mixture of local quadratic experts. We plotted
the soft and the hard mixture versions. We also depicted a reasonably
good artificial neural network to compare. We observe that the smooth
predictor is very accurate on clusters 1 and 3 is a little bit less accurate
on cluster 2. While the artificial neural network does not generalize
very well at the boundaries of the domain, the global smooth predic-
tor performs better at these boundaries due to the local behaviour of
the surrogate models. The hard mixture predictor is much more accu-
rate since it does not regularize the discontinuities. It creates though an
artificial C0 discontinuity at x = 0.69



illustrated in Fig. 2d. Besides, such functions may be well
approximated using several existing methods. Apart from
the methods of ensemble of surrogate model that we briefly
describe in the introduction section, the multivariate adap-
tive regressive splines (MARS) are often said to handle such
discontinuous functions especially in high dimensions (see
Friedman et al. 2001). Indeed, MARS builds a model using
a basis of piecewise linear functions and their products. Nev-
ertheless, MARS does not cluster the learning basis and
does not seem to keep the local behavior of the function to
be approximated. One of the benefits of our proposed algo-
rithm is to subdivide the whole design space into ‘regions
of interest’ where previous knowledge or expertise for a
specific surrogate model may help to build an accurate local
approximation that will be merged into a global approxi-
mation. Indeed, we can use cross-validation when building
each local expert and therefore get estimators of the general-
ization error made by each expert. This information can be
used to detect ‘regions’ (that can be a sole cluster or several)
where this error is larger than in the rest of the input space.
These regions may be enriched (by adding learning points)
to get a better global approximation model. Lastly, this local
information can be compared to the generalization error of
the global approximation model to assess the accuracy of
the mixture of experts.

4 Validation on test cases

We present the results of our proposed algorithm obtained
with three cases. The two first are mathematical exam-
ples who were designed to feature C0 and C1 discontinu-
ities. These two functions were generated with Samgen
(see Appendix C). Part of this study was to carry out
new methods to approximate discontinuous functions or
functions that feature different global behaviors depend-
ing on the region of the design space. These two exam-
ples samgen_2D_1 and samgen_2D_2 fulfill these
requirements.

These two functions are defined through the maximum
of non-convex quadratic functions over sub-domains of
[0, 1]2. We depicted these two functions Fig. 3. Note that
samgen_2D_1 only features a discontinuity of the deriva-
tive, samgen_2D_2 features two orthogonal discontinu-
ities that subdivide the whole domain into four sub-domains,
and it also features a discontinuity of the derivative. These
test cases are interesting for several reasons.

− Most surrogate models tend to regularize the disconti-
nuities and therefore hardly handles this test case.

− The outputs are in the same range for all sub-domains.
This is why clustering only on the output values does
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Fig. 3 Mathematical test cases generated with Samgen, outlined in
Appendix C. These functions features C0 discontinuities (b) and C1

discontinuities (a and b)

not detect the correct four sub-domains. We expect EM
clustering to detect these four sub-domains.

To test our proposed algorithm, we used the same proce-
dure for both test cases. The general idea was to compare
the ‘best’ surrogate model over the whole domain and the
proposed MoE for different types of local experts.

To assess the sensitivity of the clustering to design of
experiments, we generated several designs of experiments,
ran on each design the proposed algorithm and compared
the MoE obtained with the ‘best’ surrogate over the whole
domain. At the end, we compared the mean of the different



error measures. More formally, our procedure was the
following

1. We first set the number of learning points NA.
2. We generated Ndoe designs of experiments.
3. For each design of experiment, we built a reasonably

good surrogate model over the whole domain found
after a thorough investigation. To that end, we trained
ANN, MLS, quadratic and linear models and chose the
one that gives the least generalization error estimated
through a classical cross-validation procedure.

4. For each design of experiment, we ran the proposed
algorithm. We decided to compare five different types
of MoE’s

− MOE_LIN: the local experts are linear regression
experts

− MOE_QUAD: the local experts are quadratic
regression experts

− MOE_ANN: the local experts are artificial neural
Networks

− MOE_MLS: the local experts are moving least
squares experts.

− MOE_BEST: once the clustering is done, all the
different types of experts are build and the best
expert over each cluster is chosen, resulting in a
global mixture of experts made of different types
of experts.

5. We compared of all the surrogate models built using the
following measures of approximation quality

− RMSE: root mean squared error, most common
measure (the surrogate models are usually trained
by minimizing this quantity). Note that we could
have used the mean squared error (MSE), since, in
this very case, we just use the RMSE to compare
different surrogate models among them. Owing to
the monotonicity of the square root function, both
RMSE and MSE would give the same rank among
them.

RMSE =
√√√√1

n

n∑

i=1

|| f (xi ) − yi ||2 (22)

− Êmax: maximum of the absolute error
− Êmean: mean of the absolute error. We did not use

the relative error measure to prevent from dividing
by zero since samgen_2D_2 maps to [−1, 1]

6. Finally, we computed the mean for each error measure
to compare all the different surrogate models.

For samgen_2D_1, Ndoe = 100 Latin hyper-cube sam-
pling (LHS) designs of experiments of NA = 80 points

in [0, 1]2 were generated. The global surrogate models and
the proposed MoE’s local experts were trained over a clas-
sical cross-validation partition of (4/5, 1/5) for learning
basis and test basis. The errors presented here were com-
puted over a full factorial plan of 35 × 35 points and the
means of the errors are computed over the 100 LHS. The
number of clusters was set to 3 based on the practical pro-
cedure we describe at the end of Section 3. We plotted
the MSE and Êmean for linear and quadratic expert for dif-
ferent number of clusters in Fig. 4a. We can see that in
the case of samgen_2D_1 that three or four clusters is a
good choice. Therefore, we chose three clusters in that case.
Results for the different MoE’s are given in Table 1. For
more than 85 of the different LHS designs, one or several
MoE’s happened to perform better than the best surrogate
model over the whole domain, which happened to be an
ANN in most cases. In average, the ‘best’ surrogate model
over the whole domain performs pretty much as well as
MOE_QUAD. In this test case, we see that the best surro-
gate model is MOE_ANN. Note that MOE_MLS is slightly
less accurate. Note also that the MOE_BEST had in most
cases ANN and MLS experts as best experts and that it
performs as well as MOE_ANN. The reasons why the best
experts are not quadratic (while the true function is defined
as a maximum of quadratic function) is that the EM clus-
tering is not perfect with respect to the true nature of the
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Table 1 Results for samgen_2D_1

Type RMSE (%) Êmax Êmean

Best surrogate model over the whole domain

ANN 0.59 1.2 × 10−2 7.1 × 10−3

Proposed MoE

MOE_LIN 2.66 1.7 × 10−2 6.6 × 10−3

MOE_QUAD 0.52 1.1 × 10−2 2.8 × 10−3

MOE_ANN 0.73 6 × 10−3 1.8 × 10−3

MOE_MLS 0.31 9.7 × 10−3 3.2 × 10−3

MOE_BEST 0.29 7.3 × 10−3 2.9 × 10−3

function. A few learning points may be misclassified and
ANN are more likely to perform better with outliers than
quadratic models.

For samgen_2D_2 Ndoe = 100 LHS designs of exper-
iments of NA = 100 points in [0, 1]2 were generated.
More learning points were used to get rid of poorly fit-
ted models that were due to the important discontinuities.
The global surrogate models and the proposed MoE’s local
experts were trained over a classical cross-validation par-
tition of (4/5, 1/5) for learning basis and test basis. The
errors presented here were computed over a full factorial
plan of 50 × 50 points (to be sure that we also consider
the error near the discontinuities) and the means of the error
measures were computed over the 100 plans. The num-
ber of clusters was set to 4 on the basis of the procedure
described at the end of Section 3. We plotted the MSE

Table 2 Results for samgen_2D_2

Type RMSE (%) Êmax Êmean

Best surrogate model over the whole domain

ANN 13 2.14 0.54

Proposed MoE

MOE_LIN 12.6 0.51 0.5

MOE_QUAD 9.54 0.36 4.5 × 10−2

MOE_ANN 6.86 0.23 3.7 × 10−2

MOE_MLS 5.66 0.26 2.4 × 10−2

MOE_BEST 5.29 0.29 3.1 × 10−2

and Êmean for linear and quadratic expert for different num-
ber of clusters in Fig. 4b. We can see that in the case of
samgen_2D_2 that four or five clusters is a good choice.
Therefore, we chose four clusters in that case. We also
depicted in Fig. 5 the gating networks αi ’s we obtained
in that case. Results for the different MoE’s are drawn in
Table 2. We observed that all of the different MoE’s per-
formed better than the best surrogate model (which was also
an ANN for 90 of the 100 designs, the rest being MLS).
Results show that a simple and very inexpensive MOE_LIN
performs better than a sophisticated ANN. Regarding the
different types MoE’s, we clearly see that the best is again
MOE_ANN with MOE_MLS being slightly less accurate
and MOE_BEST is again very close to MOE_ANN.

In both cases, MOE_BEST does not give the best accu-
racy, it is however very close to the best MoE. This may

Fig. 5 Gating networks for
K = 4 clusters in the case of
samgen_2D_2. They are
very close to the real C0

discontinuities
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Fig. 6 �−shaped composite
super-stringer under the load
case (Nx , Ny, Nxy)

Stringer cross-section area A

Thickness e

Transverse flux Ny

Shear flux Nxy

Longitudinal flux Nx

be due to the fact a very good local expert may not gener-
alize very well outside the cluster where it was built. The
best expert is somewhat too local and in these test cases, it
seems like combining different types of local experts in the
same global MoE does not improve the accuracy. This may
also be due to the definition of the test cases, which feature
the same kind of quadratic function over each domain (see
Appendix C on Samgen). For other test cases, where the
function behaves differently depending on the region (poly-
nomial on one region and non-polynomial on another one
for instance), MOE_BEST would certainly perform better.
Is is worth noting that we also observed that for a given type
of MoE, the variance of the error measure over the 100 learn-
ing bases was quite low, which would indicate that once the
type of the expert has been chosen, the accuracy will be
nearly independent of the clustering. It should be indicated
that in some cases where EM algorithm could not find good
estimates and failed to converge (or converged too slowly).
Due to the fact there were insufficient example some clus-
ters were almost degenerated which precluded the training
of a correct local expert (apart from the linear and quadratic
regressions). We must therefore insist in the fact that this
procedure needs a certain number of examples and could
not be applied in cases where there are very few examples.

5 Stiffened panel optimization test case

We turn now to the third case, which is an engineering
problem of structural optimization from aeronautics. It con-
sists of the sizing of a composite panel reinforced by an
�-shaped stringer, as depicted in Fig. 6. More precisely,
we are given Nx , Ny, Nxy , the longitudinal flux, the trans-
verse flux and the shear flux. Under this load case, we
want to minimize the cross section area of the stringer A
and the thickness of the panel e under hard structural con-
straints (local buckling of the web of the stringer, Euler
buckling, skin buckling). These constraints are computed
with in-house tools based both on analytical formulas and

a Rayleigh−Ritz approach. We can try to approximate
the skill tool, but we are interested here in approximating
directly the results of the optimization.4 Given Nx , Ny, Nxy

we want to estimate the optimums A∗ and e∗.
To that purpose, the input space, was naturally divided

into four sub-domains and 4,000 examples were com-
puted with Boss Quattro (LHS of 1,000 points for each
sub-domains)

− D1 = {(Nx , Ny, Nxy)|Nx > 0, Ny > 0}
− D2 = {(Nx , Ny, Nxy)|Nx > 0, Ny < 0}
− D3 = {(Nx , Ny, Nxy)|Nx < 0, Ny > 0}
− D4 = {(Nx , Ny, Nxy)|Nx < 0, Ny < 0}

This partition of the input space makes sense from physical
considerations. Indeed, the shear flux Nxy does not influ-
ence that much the optimization and we generally observe in
mechanics different behaviors depending whether the flux
is positive (tension) or negative (compression). We want
to find a good approximation of the optimization over each
sub-domain. Note that this physical subdivision is in itself
a clustering and the resulting global model which consists
in assembling all the local experts is a MoE as described
in (17). We apply the proposed technique over each sub-
domain (and the final global model will be a mixture of
mixture of experts) and compare the results with the best
surrogate over the whole sub-domain.

Results are depicted in Tables 3, 4, 5, 6 for sub-domains
and the overall results are presented in Table 7. Note that
we only included results for MOE_ANN since this MoE
usually performs slightly better than the other MoE’s. We
also changed our error measures; we considered the rela-
tive error instead of the absolute error and also include the
α−quantile for α = 5 and α = 1, e.g the α−quantile is
defined as the percentage of test points that are below an
error of α%. By using the relative error, the output values

4Such regressions are mainly used to speed up pre-sizing of the aircraft
and are known as design curves.



Table 3 Results for D1

Output Type Êmax Êmean α = 1% α = 5%

(%) (%) (%) (%)

Best surrogate model over the whole domain D1

A∗ ANN 11 1.2 69 96

e∗ MLS 14.7 1.3 63 95

Proposed MoE with ANN experts (K = 4)

A∗ MOE_ANN 5.6 0.8 80 98

e∗ MOE_ANN 9.5 1.04 65 98

Table 4 Results for D2

Output Type Êmax Êmean α = 1% α = 5%

(%) (%) (%) (%)

Best surrogate model over the whole domain D2

A∗ MLS 36.5 2.3 52 88

e∗ MLS 25.7 2.6 41 84

Proposed MoE with ANN experts (K = 5)

A∗ MOE_ANN 17.5 1.3 71 95

e∗ MOE_ANN 19.5 1.8 63 89

Table 5 Results for D3

Output Type Êmax Êmean α = 1% α = 5%

(%) (%) (%) (%)

Best surrogate model over the whole domain D3

A∗ MLS 47 3.4 34 83

e∗ ANN 30.5 2.9 38 84

MoE with ANN experts (K = 6)

A∗ MOE_ANN 20.5 2.8 50 81

e∗ MOE_ANN 15.1 1.9 44 89

Table 6 Results for D4

Output Type Êmax Êmean α = 1% α = 5%

(%) (%) (%) (%)

Best surrogate model over the whole domain D4

A∗ MLS 43 7 18.5 54

e∗ ANN 22 4.03 22 69

Proposed MoE with ANN experts (K = 6)

A∗ MOE_ANN 29.5 3.7 39 73

e∗ MOE_ANN 17.3 3.1 35 80

Table 7 Overall results

Output Type Êmax Êmean α = 1% α = 5%

(%) (%) (%) (%)

Best surrogate model over the whole domain D

A∗ ANN-MLS 47 3.5 43.4 80.3

e∗ ANN-MLS 30.5 2.68 42.5 83.3

Mixture of MoE’s

A∗ MOE_ANN 29.5 2.3 60 86.2

e∗ MOE_ANN 19.5 2.1 52 89

(thickness and cross-section area) do not vanish and there-
fore we do not divide by 0. In addition, in a previous work
(Merval 2008) this kind of regression (regression of an opti-
mization results) was already tested with respect to that error
measure. We observe that the MoE technique always outper-
forms the best surrogate built on the whole sub-domain for
all error measures. For the whole domain, where the global
expert is a simple combination of all local models: MoE and
ANN, we observe that the error decreases by about 34% for
the section area and by 22% for the thickness.

6 Conclusion

We presented an original method to improve accuracy for
regression of the objective and constraints functions that
arise in structural optimization problems. Despite the func-
tions to approximate are discontinuous, our method allows
to build smooth approximations. Instead of assembling a
global surrogate model, this method subdivides the global
conjoint space by means of EM algorithm for Gaussian
mixture models, designs a surrogate model on each of
these sub-regions, combines all the surrogate models using
the Gaussian parameters estimated through EM algorithm.
This clustering can be hard or fuzzy. We implemented and
tested the hard clustering version of this method where
local surrogate models can be linear and quadratic regres-
sion, moving least squares and artificial neural networks.
We also derived a classical surrogate model (weighted least
squares in Appendix B) from the soft clustering version.
This method is tested over mathematical test cases and an
industrial case from aeronautics and is found to increase
the accuracy of approximation when compared to a sole
surrogate model built over the whole domain, especially
in the case of a mixture of ANN’s. However, as pointed
it out in the first section, the literature on ensemble of
surrogate models advocates to mix different surrogate mod-
els built over the whole learning basis. As far as smooth
approximations of discontinuous functions are concerned,
the method presented here needs to be compared with the



different methods of ensembles of surrogate models that can
be found in the literature, this will be part of our future
research. When smoothness is not required (in case for
instance of derivative-free optimization, genetic or evolu-
tionary optimization, ant colony optimization...), the hard
mixture version that results in a discontinuous global predic-
tor is more appropriate, this will be also part of our future
research. Nonetheless, this method offers many advantages,
since the training of the local experts can be performed con-
currently and drastically reduces the size of the sample data
when the number of clusters gets high. It also offers a very
good quality even in the linear case (MOE_LIN) which
is inexpensive to compute. It also provides local informa-
tion on the quality of the regression in the hard-clustering
case. Indeed, we know the clusters where the error is high.
We also carried out a numerical procedure to find the opti-
mum (or at least an appropriate) number of clusters K . As
pointed out, one of the main drawbacks of our proposed
algorithm is the large number of data needed for clustering.
We could improve our technique by using the local infor-
mation to enrich the clusters where the approximation is the
worst. In addition, the accuracy could be further improved
by updating the parameters of the local expert within EM
algorithm or use a local procedure to get a better local expert
(boosting Meir and Ratsch 2003). Lastly, this algorithm can
be adapted to mixed input values (discrete and continuous
input variables) by centering clusters on each possible dis-
crete value, making an overall continuous surrogate models
over mixed variables. Possible applications towards lami-
nated composite material design and optimization are in
progress.
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Appendix A: EM algorithm

The EM algorithm aims at solving maximum likelihood
parametric estimation problems. The EM algorithm was
first described in Dempster et al. (1977). First, let us recall
the well-known maximum-likelihood estimator. Suppose
we have a set of observed data X = {xi }i=1...N coming from
a random variable X . Actually, we shall consider that X is
a size N iid sample, i.e. that it is a realization of N inde-
pendent identically distributed random elements with the
same law than the random variable X . We assume that the
law of X is parametric, governed by parameter θ , e.g for
a 1D Gaussian variable X , the parameter θ is (μ, σ 2) the

mean and variance. We can therefore denote the probability
density function gθ (x). Now define the likelihood

L(θ; X) =
N∏

i=1

gθ (xi ) (23)

which is the probability density of the observed data. L is a
function of θ for X fixed. The sample log-likelihood is

l(θ; X) =
N∑

i=1

log gθ (xi ) (24)

Maximum likelihood estimator is the value θ̂ of θ which
maximizes l(θ; X). In simple applications, where the law
of X belongs to a classical family as Gaussian, Poisson,
Gamma, Student, exponential, the maximum-likelihood
estimator is simple to compute and amounts to an ana-
lytic expression. But in a lot of modern problems, the
law of interest is much more complex and can be readily
represented by a mixture

∑
k αk g(θk, x). Notice that this

law is the marginal law of X if we add a latent random
finite variable K such that the random couple (K , X) is
governed by

∀k, �, P(K = k, X ∈ �) = αk

∫

�

g(θk, x)dx

Now suppose that the latent variable K is observed, let us
note (K, X) = {(Ki , Xi )i } this virtual sample and let Xk be
the sub-sample of X of the data Xi for which the associate
latent variable Ki is equal to k, let Nk be the size of Xk .
Then it is easy to get the maximum likelihood estimation
for θk and αk , namely

θ̂k = argmaxθ l(θ; Xk), α̂k = Nk

N

Actually, we do not know the Ki ’s whenever they have a
physical existence. If the parameter set {θk, αk} was known,
Ki could be recovered through a Bayes posterior estimation

γi,k(θ) = P(Ki = k|θ, X = Xi ) (25)

which is called the responsibility of model k for observa-
tion i . Indeed, an estimation of the latent variable may
be estimated through the MAP (maximum a posteriori)
estimation

K̂i = argmaxkγi,k(θ)

A similar method is used in the proposed technique for
‘‘hard clustering’’.



We can now derive the EM algorithm as an iterative
relaxation of these two steps. Let us describe the (n + 1)-th
iteration

1. Take the estimates at the previous step {(θ̂n
k , α̂n

k )k}
2. Expectation step. Compute associate responsibilities

γ̂ n
i,k for i = 1 . . . N and k = 1 . . . m:

γ̂ n
i,k =

α̂n
k g

θ̂n
k
(xi )

∑m
j=1 αn

j g
θ̂n

j
(xi )

(26)

3. Maximization step. Compute the weighted maxi-
mum likelihood estimators for each component of the
mixture:

θ̂n+1
k =

∑N
i=1 γ n

i,k xi
∑N

i=1 γ n
i,k

(27)

α̂n+1
k =

∑N
i=1 γ̂ n

i,k∑m
j=1

∑N
i=1 γ̂ n

i, j

(28)

The convergence of this algorithm is proven in Wu (1983).

Appendix B: An MoE interpretation of weighted
least squares

We give here an interpretation of the weighted least squares
regression. Say we have X = (x1, . . . , xn) ∈ R

d together
with their output values Y = (y1, . . . , yn). A local
Weighted Least Squares regression at point x̂ ∈ R

d con-
sists in finding the best multivariate polynomial approxi-
mation fx̂ :

fx̂ = argminp∈∏d
s

n∑

i=1

θ(||xi − x̂ ||)||p(xi ) − yi ||2 (29)

where �d
s is the set of multivariate polynomials of

d−variables and degree s and θ is a symmetric positive
and decreasing function: maximum value at 0 and 0 when
|x | → +∞: which can be strictly positive or compactly-
supported. θ is called a weight function. A very popular
choice for θ is

θ(r) = 1√
(2π)dσ 2d

e
− 1

2
r2

σ2 (30)

This regression fx̂ is a local approximation which is valid
only in the neighborhood of x̂ . Note that the moving
least squares regression consists in a global weighted least
squares by making the x̂ varying (or moving) over the whole
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Fig. 7 Weighted least squares regressions (polynomials of degree 2
and σ = 0.1) of the function x → cos(4x) at different points and
moving least squares regression

domain R
d , this global model happens to be continuous and

even smooth whenever the weight function is smooth (Levin
1998). We depicted several WLS regression on different
points together with the MLS regression (Fig. 7). Another
way to get a global model is by using a partition of unity.
Namely, we have K so called support points x̂1, . . . , x̂K , a
local WLS regression f̂ x̂ j = f̂ j is built at each support point
x̂ j and the global model is

FW L S(x) =
K∑

i=1

βi (x) f̂i (x) (31)

where

β j (x) = e
− 1

2
||x−x j ||2

σ2

∑K
i=1 e

− 1
2

|||x−xi |
σ2

. (32)

This popular model has an obvious interpretation in
terms of MoE and soft clustering. Assume that the law5 of
X ∼ ∑K

j=1
1
K Nd(x̂ j , σ

2 Id). In that case, we have, keeping
the same notations as in Section 2

P(X = x | j) = 1√
(2π)dσ 2d

e
− 1

2
||x−x̂ j ||2

σ2 (33)

5In this article we focused on Gaussian mixture models that were fully
free, i.e. all the parameters of the Gaussian mixture models are not
constrained and EM algorithm estimates all the parameters. There are
more simple Gaussian mixture models that assume that all the means
are the same or all of the variance-covariance matrices are of the form
σ 2 In (this hypothesis is known in statistics as homoscedascity).



and

P( j |X = x) = e
− 1

2
||x−x̂ j ||2

σ2

∑K
i=1 e

− 1
2

||x−x̂i ||
σ2

(34)

and we see that

FW L S(x) =
K∑

i=1

P(κ = i |X = x) f̂i (x) (35)

and the WLS model is an MoE for X ∼∑K
j=1

1
K Nd(x̂ j ,σ

2 Id)

using a soft partitioning and where local experts are mul-
tivariate polynomial regression experts weighted by the
probabilities of the soft partitioning.

Appendix C: Samgen: a sample generator
of discontinuous functions for surrogate
modeling

When studying regression methods, one often builds surro-
gate models over closed-form functions to assess the accu-
racy of the surrogate. We wanted to explore the accuracy of
surrogate models on discontinuous functions in high dimen-
sion (>8). We ended up with the need of such analytical
functions, Samgen was created to generate such functions
and more precisely functions that mimic the behavior of
aeronautical stress tools. Samgen is a simple Matlab code
that generates a structure that contains all the data needed
to compute a discontinuous function in arbitrary dimension
over [0, 1]d (Fig. 8). It simply separates with hyper-planes
the unit hyper-cube [0, 1]d into the desired number of dis-

Fig. 8 Example of a C0 and C1 discontinuous 2D function created with
Samgen

continuities and over each sub-domain generates two non-
convex quadratic functions and compute the maximum of
them to generate derivative-discontinuities.
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