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Abstract. Helicopter ground resonance is an unstable dynamic phenomenon which can lead to the total destruction of 
the aircraft during take-off or landing phases. Studies have been developed by researchers which considered a 
simplified mathematical model. With the goal of further comprehend the phenomenon, predictions of unstable motions 
are done and compared. First, Floquet’s theory is applied to solve the linear equations of motion including parametric 
and periodic terms. Then, the multiple scales method is applied on the nonlinear model. The analyses highlight that, by 
keeping the nonlinear terms in the equations, other instability zones are identified.   
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1. INTRODUCTION 
 
 The ground resonance phenomenon in helicopters consists of a self-excited oscillation caused by the interaction of 
the rotor blades’ lagging motion with other helicopter modes of motion. Several accidents have been recorded and show 
that, under some conditions, it can be very violent and can lead to the total destruction of the aircraft. 
 Coleman and Feingold (1958) performed some of the earliest research on the phenomenon, and laid the foundation 
for all of the work that was to follow. Between those, Donham et al. (1969), and Lytwyn et al. (1969) studied this 
phenomenon taking into account also the air resonance effect. Major contributions in understanding the ground 
resonance phenomenon in hingeless and bearingless rotors were done by Army researchers, as for example, Dawson 
(1983) and Hodges (1979). Recently, Kunz (2002) analysed the influence of nonlinear springs and dampers (elastomeric 
elements) on predicting the rotor’s instability zone. Byers and Gandhi (2006) explored the passive control of the 
problem. 
 However, in order to establish the criteria to avoid the unstable oscillations, the equations of motion were linearized 
and then simplified by eliminating the periodic and parametric termes. This last process, applicable only for isotropic 
systems, is identified as the Coleman Transformation and more generally called the multi blade coordinate 
transformation. 
 A recent study given by Skjoldan et al. (2009) kept the periodic and parametric terms in the equations of motion of a 
wind turbine. The instability zone predicted by using the Floquet’s theory over a certain range of rotation speeds is 
similar to that predicted by Coleman and Feingold, for a isotropic rotor.  
 With the objective of further understanding the ground resonance phenomenon, an analysis of the nonlinear 
equations of motion is envisioned. This paper sets up the nonlinear equations of motion by considering all terms. 
Multiple scales method is used to treat the equations of motion.  
    
2. MECHANICAL MODEL 
 
 Similar to that proposed by Coleman and Feingold, the present mechanical model is developed to characterize the 
dynamical behavior of a helicopter with a hinged rotor. In other words, it consists of figuring out the relation between 
the longitudinal – x(t) - and lateral displacement – y(t) - of the fuselage, and the kth blade lag angle - kϕ (t) – in terms of 

the rotor speed Ω and time t.  Figure 1 illustrates a general schema of the system.   
 The fuselage is considered to be a rigid body with its center of gravity at point O. At the initial time, the origin of an 
inertial coordinate system (X0,Y0,Z0) is coincident at this point. The body is connected to springs which represent the 
flexibility of the landing skid.  
 The rotor head system consists of an assembly of one rigid rotor hub with Nb blades. Each blade is represented by a 
concentrated mass located at a distance b from the lag articulation (point B) and, on each articulation, a torsional spring 
is present. The origin of a mobile coordinate system (x, y, z), parallel to the inertial one, is located at the geometric 
center of the rotor hub (point A). Both, body and rotor head, are joined by a rigid shaft and the aerodynamical forces on 
the blades are neglected. 
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Figure 1. General schema of the mechanical model 
 
2.1 Equation of motion 
 
 The equations of motion are obtained by applying Lagrange’s equation on the kinetic and potential energy 
expressions of the system (body and rotor head). To reach this goal, some conditions have been considered, which are:  

• The fuselage has mass mf and the spring constants connected to it are Kf-X  and Kf-Y  through x  and y  
directions, respectively; 

• The rotor is composed of Nb = 4 blades and each blade k has an azimuth angle of  ( )2 1k k Nbθ π= −  

with the x - axis; 
• Each blade has the same mass mb and moment of inertia around the z - axis is to Izb ; 
• The angular spring constant for each k blade is Kb-k; 
• The k blade position projected in the inertial coordinate system is: 

   
                 cos( ) cos( (t)) (t)x a t b t xb_k k k kΩ θ Ω θ ϕ= + + + + +  (1) 

  
                sin( ) sin( (t)) (t)y a t b t yb_k k k kΩ θ Ω θ ϕ= + + + + +  (2) 

  
where a is the hinge offset.  
 Considering the general Laplace variable q as 
 

 { } { } { }1..6 1 2 3 4 1..6(t) (t) (t) (t) (t) (t)q uT Tx(t) y(t) ϕ ϕ ϕ ϕ= =  (3) 

  
where u is a vector made up of the degree of freedom variables of the system. 
 Equations (4 - 6), are nonlinear equations in the function of u. Equations (4) and (5) correspond to the motion 
equation in the x and y directions, respectively. Equation (6) represents the dynamical equations of blades 1 to 4, 
changing n from 3 to 6 in that order.  
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 The terms 1ω  and 2ω  are the resonance frequency of the fuselage in the x and y directions, respectively. 

Moreover, 3..6ω are the resonance frequencies of blades 1 to 4. The terms rm and rb are smaller than one.  

 
3.  FLOQUET’S METHOD 
 
 In this section a simplified mathematical model is expanded. A Taylor’s series of first order is developed for the 
terms sin(un) and cos(un) in the equations (4-6) and, furthermore, the nonlinear terms are neglected. Consequently, a 
new dynamical system is reached, and is represented as below. 
 
 extM u G u K u F+ + =ɺɺ ɺ   (7) 

 
where M  is the inertia matrix, G  is the damping matrix, K  is the stiffness matrix, and extF  is the external vector 

force.  
 Due to the fact that parametric terms exist, M  becomes a symmetric and non-diagonal matrix, G  and K are non-
symmetric and non-diagonal matrices. Also, because of the rotor head’s symmetry, extF  is equal to zero.  

 Then, Floquet’s theory is used to solve differential equations with periodic coefficients. Considering S(t), the state-
space matrix with period T of  Eq. (7), and its state-space representation as 
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 By Floquet’s Theory, a transition matrixΦ , which relates ( )v t  and 0( )v t , is defined as 

 

 ( ) ( ) ( )0
0 0, , Q

Φ P t tt t t t e −=  (9) 

 
 The monodromy matrix R and the constant matrix Q are defined, then: 
 

 ( )0 0,R Φ t T t= +   and  ( )1
logQ R

T
=  (10) 

 



 The dynamical system Eq. (7) is stable if the eigenvalues (µ) of Q are negative or, similarly, if the norm of the 
eigenvalues of R is less than one.  
 
4. MULTIPLE SCALES METHOD 
 
 The perturbation method used to obtain the solution for these nonlinear equations is the multiple scales method 
(Nayfeh, 2004). It consists of assuming that in any function dependent of time, the independent variable t is a function 
of multiple scales of the time at the first order. Then, the perturbation substitutions created by introducing a 
bookkeeping parameterε  are: 
 
 ;6..1),(),()( 1010

10
=+= nTTTTt nnn uuu ε  (11) 

  
 , ,m b Rr rε α ε β Ω Ω ε σ= = = +  (12) 

 
where, ΩR is the nominal rotor speed, σ is the detuning frequency parameter of the rotation speed and the terms T0 and 
T1 correspondent to t and ε t, respectively.  
 The terms sin(un) and cos(un) are expanded by a Taylor’s series of first order in u and, after that, the perturbation 
substitutions are done on the equations of motion. Consequently, several sets of equations are obtained by grouping 
them by power of ε.  
 
4.1. Order ε0 equations 
 
 The set of order ε0 equations of the system is collected. They represent the steady-state response of the uncoupled 
rotor and fuselage system.       
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where D0 is the derivative with respect to T0. 

 The solutions of these equations are trivial and are in the form of ( ) [ ]0
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steady-state responses are zero. The term An(T1) is complex and defined as 1( )
1 1( ) ( ) nI B T

n nA T C T e−= , where Cn and Bn 

are the amplitude and phase angle of each response, respectively.   
    
4.2. Order ε1 equations 
 
 The following, Eq. (14-16), is the set equations of order ε

1.  
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where [c.c] corresponds to the complex conjugate of the previous terms.  
 As observed, the right-hand side of the above equations is all dependent on the steady-state responses

0nu .  

 
4.3. Secular terms – possible instable regions 
 
  The developing of Eq. (14-16), after Eq. (13) have been substituted into them, lead to combinations of nω  and RΩ  

multiplied by T0 as exponent to each equation of motion. Therefore, depending on the applied specific rotor speedRΩ , 

secular terms may exist. This fact implies that the response(s) 
1nu grows without limit as t increases and, consequently, 

it does not provide a small correction to
0nu . 

  Based on that, a set of possible rotor speed values ofRΩ for each equation is listed and it indicates instability zones 

of the system. These zones are well defined through the analysis of the amplitude responses calculated around a critical 
value for RΩ  by shifting the detuning frequency parameter.  
  

 Body’s Equation – Eq. (14):   1 1 1 10 2 3 3..6n n n nω ω ω ω ω ω ω ± ± ± =   (17) 

 

 Body’s Equation – Eq. (15):   2 2 2 20 2 3 3..6n n n nω ω ω ω ω ω ω ± ± ± =   (18)  

 

 Blade’s Equations – Eq. (16):   1,2 1,2 1,2 2 3..6n n nω ω ω ω ω − − =
 

 (19) 

 
5. RESULTS 
 
 The goal of this section is to predict and collect the speed rotor valueRΩ for which the system becomes instable from 

both mathematical models developed previously. Later, the results are compared. 
  The numerical values used for the system’s inputs are defined in Tab. 1.  
 

Table 1. Numerical values of the fuselage and rotor head inputs 
 

Fuselage Rotor 
mf = 2902.9 [kg] mb = 31.9 [kg] a = 0.2 [m] b = 2.5 [m] 

Kf-X  = Kf-Y  = 1.077e3 [kN/m] Kb-1..4 = 40.716 [kNm/rad]  Izb = 259 [kg m2] 
  
 Applying the numerical values, the resonance frequency, in Hz, of the fuselage 1ω  and 2ω  are equal to 3.00 and, 

for the blades 3ω , 4ω , 5ω and 6ω  are equal to 1.50. By varying the rotor speed from 0 to 7 Hz, Fig. 2 illustrates the 

instability zone  for 4.358<Ω <5.187, in Hz, by using Floquet’s Method. It is defined when the real part of the 
characteristic multipliers are positive and nonzero.  
 
 



 
 

Figure 2. Campbell Diagram by Floquet Method. 
 
 However, by using Multiple Scales Method, the rotor speed values in Hz, at which unstable oscillations for the 
fuselage and the blades may occurs, are ordered as follow:  
 
 RΩ = [ ]1.5 3.0 4.5 6.0 7.5 (20) 

 
6. CONCLUSION 
 
 As for the comprehension and analysis, this paper envisioned to verify the influence of the nonlinear terms in the 
equations of motion on the prediction of the rotor speed which the ground resonance phenomenon may occur. Two 
different models were developed and compared: one keeps the linear, parametric and periodic terms and another 
considers all terms, including the nonlinear ones.  
 The numerical results obtained in the first model, by applying the Floquet’s Theory, show a well defined instability 
zone for the rotor speed between 4.358 and 5.187 Hz. Time response analysis for Ω =4.77 Hz evidences the divergent 
behaviour of the fuselage displacement.  
 However, the analysis of the secular terms in the nonlinear model, by using multiple scales method, verifies many 
others possibilities of instability zones. They are defined as a combination of the resonance frequency of the fuselage 
and the blades’, by considering the linear system of motion as uncoupled. It evidences the importance of considering the 
nonlinear terms into the model in order to predict the instability zones.  
 The perspectives for this work consist in studying the amplitude responses in function of the detuning frequency 
parameter. It is envisioned too the analysis of the sensibility of each unstable region and the amplitude response in 
terms of internal detuning frequency parameters. 
 A passive control and an experimental validation of the results, through an experimental set up, are envisioned.      
 
7. REFERENCES 
 
 Byers,L., Gandhi,F., Rotor blade with radial orber’, American Helicopter Society 62nd Annual Forum, Phoenix, 
May, 2006. 
 Coleman, R. P., Feingold, A. M., ‘Theory of self-excited mechanical oscillations of helicopter rotors with hinged 
blades’, NACA Rep. 1351, 1958. 
 Donham, R.E., Cardinale, S.Y., Sachs, I.B., Ground and air resonance characteristics of a soft inplane rigid rotor 
system, J. Amer. Helicopter Soc. 14 (4), 1969. 
 Dawson, S.P., An experimental investigation of the stability of a bearingless model rotor in hover, J. Amer. 
Helicopter Soc. 28 (4), 1983. 
 Hodges, D.H., An aeromechanical stability analysis for bearingless rotor helicopters, J. Amer. Helicopter Soc. 24 
(1), 1979. 
 Kunz, D., Nonlinear Analysis of helicopter ground resonance, Nonlinear Analysis: Real World Applications 3 page: 
383 – 395, 2002. 
 Lytwyn, R.T. , Miao, W., Woitch, W., Airborne and ground resonance of hingeless rotors, J. Amer.Helicopter Soc. 
16 (2), 1969. 
 Nayfeh, A. H. and Mook, D. T., ‘Nonlinear Oscillations’, John Wiley, 2nd ed, 2004. 
 Skjoldan, P.F., Hansen, M.H., ‘On the similarity of the Coleman and Lyapunov-Floquet transformations for modal 
analysis of bladed rotor structures’, Journal of Sound and Vibration 327(424 - 439), 2009.  
 
 8. RESPONSIBILITY NOTICE 
 
 The authors are the only responsible for the printed material included in this paper. 


