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Rational Optimization for Nonlinear Reconstruction

with Approximate ℓ0 Penalization
Marc Castella, Member, IEEE, Jean-Christophe Pesquet, Fellow, IEEE, and Arthur Marmin

Abstract

Recovering nonlinearly degraded signal in the presence of noise is a challenging problem. In this work, this problem is
tackled by minimizing the sum of a non convex least-squares fit criterion and a penalty term. We assume that the nonlinearity
of the model can be accounted for by a rational function. In addition, we suppose that the signal to be sought is sparse and
a rational approximation of the ℓ0 pseudo-norm thus constitutes a suitable penalization. The resulting composite cost function
belongs to the broad class of semi-algebraic functions. To find a globally optimal solution to such an optimization problem, it
can be transformed into a generalized moment problem, for which a hierarchy of semidefinite programming relaxations can be
built. Global optimality comes at the expense of an increased dimension and, to overcome computational limitations concerning
the number of involved variables, the structure of the problem has to be carefully addressed. A situation of practical interest is
when the nonlinear model consists of a convolutive transform followed by a componentwise nonlinear rational saturation. We
then propose to use a sparse relaxation able to deal with up to several hundreds of optimized variables. In contrast with the naive
approach consisting of linearizing the model, our experiments show that the proposed approach offers good performance.

Index Terms

signal reconstruction, sparse signal, nonlinear model, polynomial optimization, semi-definite programming.

I. INTRODUCTION

O
VER the last decade, there has been much progress made in the area of sparse signal recovery. The results and techniques

have spread over a wide range of signal processing applications such as denoising, source separation, image restoration,

or image reconstruction. Attention has been however mostly focused on linear observation models, for which many efforts

have been dedicated to solving the associated inverse problems. In the basic setup, a vector of observations d is available,

which is obtained from a ground-truth signal x by a linear transformation H. It is known that an exact reconstruction of x

is possible even when the size of the latter is greater than the number of observations, a fact popularized by the celebrated

compressed sensing theory [1] which exploits the structure (i.e. sparsity) of x.

Unfortunately, the linear assumption on the observation model is often quite inaccurate. For a long time and in many signal

processing applications, attempts have been made in order to deal with more general nonlinear models. For example, one

can mention the pioneering works undertaken with Volterra models [2], which may be useful in some application areas [3].

Similarly, for many real acquisition devices, the actual degradation model is not linear as some nonlinear saturation effects

often arise. This situation is closely related to 1-bit compressed sensing [4] and classification problems. Such nonlinearly

distorted convolution models may also be encountered in blind source separation [5] and neural networks [6]. A simplified

model resulting from a linearization procedure can then be adopted in order to make the associated mathematical problem

tractable. For example, standard tools in signal processing such as the Wiener filter are effective mostly in a linear framework.

More specifically, well-known sparse recovery techniques such as LASSO have been used in a nonlinear context by overlooking

the nonlinearity. Some results have been obtained in this context [7], [8], [9], but methods explicitly taking into account the

nonlinearity are likely to provide better results and are crucially lacking. This paper aims at providing such a method in this

still unexplored area.

A popular approach in many reconstruction problems consists in minimizing the sum of a data fidelity term and a reg-

ularization term incorporating prior information such as sparsity. In this case, convex potentials related to the ℓ1 norm are

often employed as surrogates to the natural sparsity measure, which is the ℓ0 pseudo-norm (count of the number of nonzero

components in the signal). Although some theoretical works have promoted the use of the ℓ1 norm [1], its optimality can only

been established under some restrictive assumptions. In turn, cost functions involving the ℓ0 pseudo-norm lead to NP-hard

problems for which reaching a global minimum cannot be guaranteed in general [10], [11], [12]. Smooth approximations of the

ℓ0 pseudo-norm may appear to provide good alternative solutions [13], [14], [15], [16]. Among the class of possible smoothed

ℓ0 functions, the Geman-McClure ℓ2 − ℓ0 potential was observed to give good results in a number of applications [13], [14],

[15]. Yet, in the recent works [17], [18], [19], [16], promising results have been obtained with a non differentiable function.

Concerning the minimization of the penalized criterion, many efforts have been undertaken to derive efficient algorithms

able to deal with a large number of variables, while ensuring convergence to a global minimizer [20], [21], [22]. Many of the
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available techniques assume that the observation model is linear and that the noise has a log-concave likelihood. Then, both

the penalty and the data fit terms are convex and many optimization techniques may be used. In a more difficult scenario,

a quadratic tangent function can be derived, which makes efficient majorization-minimization (MM) strategies usable for

optimizing certain penalized criteria (see [23] for more details). However, for most of the existing optimization algorithms

(e.g. those based on Majorize-Minimize strategies), only convergence to a local minimum can be expected and algorithms can

get trapped by undesirable local minima due to the nonconvexity of the criterion. In our context, none of the two terms of the

criterion is convex because of the nonlinear observation model and because of the chosen approximation of the ℓ0 pseudo-norm.

Developing methods with global convergence properties is therefore a crucial issue, which we address in this paper.

An approach recently proposed in the optimization community [24], [25], [26], [27] provides theoretical guarantees of

global optimality when only polynomial or rational functions are involved. The minimization problem is recast as a problem

of moments, for which a hierarchy of semidefinite positive programming (SDP) relaxations asymptotically provides an exact

solution. This approach is often referred to as the Lasserre hierarchy [24] and its major advantage is a guaranteed convergence

to the global minimum of the original problem, which can be accessed by solving successive SDP problems. Alternatively, the

problem of global polynomial or rational minimization can be tackled from the standpoint of sum of squares (SOS) hierarchy

[25], [27], [28]: both approaches are linked by duality. One advantage of the moment approach is the possibility, under some

conditions, to extract the optimal point.

We investigate here the potential offered by these rational optimization methods for sparse signal recovery from nonlinearly

degraded observations. In the present state of research, the Lasserre/SOS hierarchies are restricted to small to medium size

problems. In signal processing, one of the main difficulties we face is the large number of variables which have to be optimized.

A stochastic block-coordinate method has been proposed as a first solution in one of our previous works [17]: despite interesting

experimental results, global optimality is lost in this case.

In this work, we propose a novel approach for restoring sparse signals degraded by a nonlinear model. More precisely, our

contributions in this paper are threefold.

• First, the proposed approach is able to deal with degradation models consisting of a convolution followed by a pointwise

transform. The latter appears as a rational fraction of the absolute value of its input argument. The formulation of the

problem as a nonconvex optimization also allows the use of a Geman-McClure like regularization term.

• Although SDP relaxations of optimization problems are popular in signal processing [29], they usually lead to suboptimal

solutions. Our second contribution is to make use of asymptotically exact SDP relaxations able to minimize polynomial

or rational nonconvex functions of several variables.

• The last contribution of this work is to devise a sparse relaxation in the spirit of [30] to cope with the resulting rational

optimization. Exploiting the specific structure of the problem to obtain sparse SDP relaxations plays a prominent role in

making the Lasserre/SOS hierarchy applicable to several hundred of variables as it is common in inverse problems.

The remainder of the paper is organized as follows. The considered model is described in Section II. Section III describes

the general methodology and Section IV emphasizes the specificities of our context. Simulations results are provided in Section

V. Finally, Section VI concludes the paper.

Notation: The set of polynomials in the indeterminates given by vector x = (x1, . . . , xT ) ∈ R
T is denoted by R[x]. For

any multi-index α = (α1, . . . , αT ) ∈ N
T , we define xα = xα1

1 . . . xαT

T and |α| = α1 + · · ·+ αn. Therefore, any polynomial

can be written as a finite sum over multi-indices as follows: (∀x ∈ R
T ) p(x) =

∑
α pαx

α. The degree of p will be denoted

by deg p. Such a polynomial can be identified with the vector of its coefficients p = (pα)α: this will be used for convenience.

Finally, the lower integer upper bound of any real-valued number is denoted by ⌈.⌉.

II. MODEL AND CRITERION

A. Observation model

We consider the problem of recovering a set of unknown samples given by the vector x := (x1, . . . , xT )
⊤. In our context,

this original signal cannot be measured and we have access only to some measurements related to the original signal through

a linear transformation followed by some nonlinear effects. More precisely, the observation model reads

d = φ(Hx) + n, (1)

where the vector d = (d1, . . . , dT )
⊤ contains the observation samples, n = (n1, . . . , nT )

⊤ is a perturbation noise vector,

H ∈ R
T×T is a given matrix, and φ : RT → R

T is a nonlinear function. It is assumed that φ applies componentwise, that

is, for every u := (u1, . . . , uT )
⊤, the t-th component of φ(u) is given by [φ(u)]t = φt(ut), where the real-valued function

φt models a saturation effect as in the top plot of Figure 1. In this paper, the functions (φt)1≤t≤T are assumed to be known

and to be rational, possibly involving absolute values. Actually, other functions could be considered in theory as long as the

fit term ‖d− φ(Hx)‖2 appearing later in the criterion is semi-algebraic in x (see the comments in Subsection III-B6).

The linear part in Model (1) can typically describe a convolution. In this case, the samples stem from a signal given by

(∀t ∈ {1, . . . , T }) dt = φt(ht ⋆ xt) + nt. (2)
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Fig. 1: Plot of the nonlinear saturation function φt in (28) with χ = 0.3 and of the sparsity promoting function in (4) with

δ = 0.01.

In the equation above, ⋆ denotes the convolution by the filter with a finite response (ht)t and
(
nt)1≤t≤T is a realization of an

additive random noise. If the convolution filter has a finite impulse response (FIR), then, with vanishing boundary conditions,

the matrix H is Toeplitz band with values defined by the impulse response. An important contribution in this paper is that this

structure will be exploited in order to reduce the computational cost of the subsequently proposed global optimization method

(see Section IV). For now, no assumption is made on the matrix H.

B. Sparse signal and penalized criterion

The signal (xt)1≤t≤T modelled by vector x is assumed to be sparse. By saying this, we simply assume that xt 6= 0 only

for a few indices t.
Following a classical approach for estimating x, we minimize a penalized criterion having the following form:

(∀x ∈ R
T ) J (x) = ‖d− φ(Hx)‖2 + λP(x) , (3)

where P is a penalization function whose small values promote sparse vectors, in accordance with our assumptions concerning

the true x. The positive regularization parameter λ controls the relative importance given to the squared norm fit term and

to the penalization. In this paper, we have chosen P(x) =
∑T

t=1 ψδ(xt) where the sparsity promoting function ψδ has been

drawn on the bottom plot of Figure 1 and is given by

(∀ξ ∈ R) ψδ(ξ) =
|ξ|

δ + |ξ| . (4)

This choice is similar in spirit to the Geman-McClure potential [13] and, since for every ξ ∈ R, limδ→0 ψδ(ξ) = 0 when

ξ = 0 and 1 otherwise, the solution to the ℓ0 penalized problem is recovered asymptotically as δ → 0 under some technical

assumptions (see [14, Proposition 2]). Note also that this penalty has recently shown to be effective in image restoration

problems (see [31] and references therin). Finally, the criterion to be minimized in our approach reads:

(∀x ∈ R
T ) J (x) = ‖d− φ(Hx)‖2 + λ

T∑

t=1

ψδ(xt), (5)

where the minimization is performed over a compact feasible set denoted by K. The optimal cost function value is denoted

by

J ⋆ = inf
x∈K

J (x) ,

and the estimated signal generated by our approach is then x̂ = argminx∈K J (x).
Importantly, our model involves rational functions φ and ψδ. As a consequence, the criterion J is a rational function of its

arguments (possibly with absolute values). We detail in next section how recent rational and polynomial optimization techniques

apply in this context.

III. POLYNOMIAL AND RATIONAL OPTIMIZATION

In this section, we explain the basic principles of the methods in [24], [26] for polynomial and rational optimization.
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A. Global optimization and equivalent problem over measure

Consider the problem of determining the global minimum of a given lower-semicontinuous function f over a given compact

set K ⊂ R
T :

Find f⋆ = inf
x∈K

f(x). (6)

We can introduce an optimization problem equivalent to (6), where the new optimization variable is a measure belonging to

an infinite dimensional space. Following the terminology from [26], such problem will be called a generalized problem of

moments (GPM). Denoting by P(K) the set of probability measures suppported on K, this problem reads as follows:

Find (f⋆)gpm = inf
µ∈P(K)

∫

RT

f(x) dµ(x) . (7)

To see the equivalence between (6) and (7), note first that (∀x ∈ K) f(x) ≥ f⋆ implies that (f⋆)gpm ≥ f⋆. For the reverse

inequality, it can be noticed that the minimum of f is reached at a point x⋆ ∈ K because K is compact and the Dirac measure

δx⋆ provides a solution such that (f⋆)gpm = f⋆.

Let us now write more specifically the GPM for rational functions by assuming that the function f reads:

(∀x ∈ R
T ) f(x) =

p(x)

q(x)
where (∀x ∈ K) q(x) > 0. (8)

Let us introduce the measure dν(x) = 1
q(x)dµ(x). With this change of variables, ν is no longer a probability measure, but,

since the total mass of the probability measure µ is one, it satisfies (10) below. Therefore, by defining M(K) as the set of

finite nonnegative Borel measures supported on K, Problem (7) can be equivalently re-expressed as:

Find f⋆ = inf
ν∈M(K)

∫

RT

p(x) dν(x) (9)

s.t.

∫

RT

q(x)dν(x) = 1 . (10)

Importantly, Problem (9)-(10) corresponds to a simple objective function and an explicit constraint, both terms being linear

with respect to ν. However, the implicit contraint that ν is a measure in M(K) is more complicated to cope with. Fortunately,

the latter can be handled via a hierarchy of tractable constraints when p and q are polynomials, as shown next.

B. Hierarchy of SDP relaxations

The infinite dimensional optimization problem (9)−(10) can be approximated by a hierarchy of SDP problems with increasing

sizes when the involved function is given by (8) with (p, q) ∈ (R[x])2. The main ingredients of this approach are presented

now.

1) Moment sequence: In (9)-(10), the optimization variable is the measure ν. The first step is to replace this variable by

a more tractable one, i.e. a finite dimensional vector. Since the measure ν has a compact support, it can be represented by a

moment sequence y = (yα)α∈NT defined as

(∀α ∈ N
T ) yα =

∫

K

xα dν(x). (11)

In so doing, the measure ν in Problem (9)-(10) is represented by the moment sequence y, which is an infinite dimensional

vector. A hierarchy of finite dimensional optimization problems will be obtained by considering truncated versions of y with

increasing sizes.

2) Linear objective and constraints: Consider a polynomial of total degree k represented by its vector of coefficients

p = (pα)|α|≤k:

(∀x ∈ R
T ) p(x) =

∑

|α|≤k

pαx
α. (12)

By linearity and by the definition of the moments (yα)α, any integral such as the ones arising in (9) and (10) can be

rewritten as ∫

RT

p(x) dν(x) =
∑

|α|≤k

pαyα = Lp(y). (13)

The function Lp(·) as defined above is linear. Therefore, the objective and the explicit constraint in (9) and (10) are linear

funtions of the moment sequence y and the difficulty of the original problem has therefore been transfered to the implicit

constraint that the sequence y should satisfy (11) for a given measure ν ∈ M(K).
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3) Support/measure constraint: Since an arbitrary sequence y does not necessarily represent a measure ν on K, some

constraints needs to be taken into account on y. To achieve this goal, we first need a more precise description of K. In our

context, the set K is defined by polynomial inequalities of the following form:

K = {x ∈ R
T | (∀i ∈ {1, . . . , I}) gi(x) ≥ 0}, (14)

where, for every i ∈ {1, . . . , I}, gi ∈ R[x]. The constraints will now be specified on a truncated version of the sequence y.

For a given k ∈ N and for multi-indices α,β such that |α| ≤ k and |β| ≤ k, the elements of the k-th order moment matrix

Mk(y) of y are given by

[Mk(y)]α,β = yα+β. (15)

Note that Mk(y) involves moments up to the order 2k. The main property of Mk(y) is that for a polynomial of degree no

more than k expressed by (12), we have:
∫

K

p(x)2 dν(x) = p⊤Mk(y)p. (16)

Similarly, for a given polynomial g ∈ R[x], the elements of the localizing matrix M
g
k(y) associated to g and y are

[Mg
k(y)]α,β

=
∑

γ

gγyγ+α+β, (17)

and we have ∫

K

g(x)p(x)2 dν(x) = p⊤Mg
k(y)p. (18)

The positivity of the right hand side of (16) for any vector of coefficients p shows that the positive semi-definiteness of matrix

Mk(y) is a necessary condition for the sequence y to be a valid moment sequence. Similarly, according to (18) and because

(∀x ∈ K) gi(x) ≥ 0, we deduce that M
gi
k (y) � 0 for every i ∈ {1, . . . , I}, if y is the moment sequence of a measure in

M(K). Due to the linear dependence of Mk(y) and M
g
k(y) on y, these constraints are linear matrix inequalities.

4) Relaxation: Based on the above developments, we are now able to introduce a relaxation of Problem (9)-(10). Define,

for every i ∈ {1, . . . , I}, ri = ⌈(deg gi)/2⌉ and, for any order k ≥ max{maxIi=1 ri, deg p, deg q}, consider the optimization

problem:

Find f⋆
k = inf

y
Lp(y)

s.t. Lq(y) = 1,

Mk(y) � 0,

M
gi
k−ri

(y) � 0 (∀i ∈ {1, . . . , I}).

(19)

The objective function and the equality constraint are directly derived from Problem (9)-(10) where integrals have been

represented as in (13). The last two constraints are necessary constraints for y to be a measure supported by K. Therefore,

we naturally have f⋆
k ≤ f⋆ and f⋆

k is an increasing sequence with lower bounds of f⋆. Note that since the order in the last

constraints have been limited to k − ri, for every i ∈ {1, . . . , I}, it follows from (15) and (17) that the moments involved in

Problem (19) are (yα)|α|≤2k.

A crucial observation is that (19) is a convex SDP optimization problem for which efficient techniques exist and provide

guaranteed global optimal solution [32], [33].

5) Theoretical results and solution extraction:

a) Convergence results: We now detail some existing theoretical results about the approach. For their validity, the following

technical assumption is required:

A1. There exist polynomials σ0, . . . , σI , which are all sum of squares, such that the set {x ∈ R
T |σ0(x)+

∑I
i=1 σi(x)gi(x) ≥

0} is compact.

Under Assumption A1, we have [24], [26]

f⋆
k ↑ f⋆ as k → +∞ .

This is a strong result ensuring convergence to the global optimum of Problem (6) when considering increasing order SDP

relaxations.

Note that, in addition to K being compact, Condition A1 requires that that the polynomials (gi)1≤i≤I describing K in

(14) yield an algebraic certificate of compactness. More details can be found in [25], [26], [27], [30]. For simplicity, we will

only consider the practical situation where K = [B,B]T . This is easily satisfied when lower and upper bounds B,B on the

variables (xt)1≤t≤T are available. By setting I = T and

(∀x ∈ R
T ) gt(x) = (xt −B)(B − xt),
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K can be expressed under the form (14). The set K is obviously compact. In addition,

T∑

t=1

gt(xt) ≥ 0 ⇔ ‖x‖2 − (B +B)

T∑

t=1

xt + TBB ≤ 0

⇔ ‖x− u‖ ≤ T
B −B

2
, (20)

where u = B+B

2 (1, . . . , 1)⊤ ∈ R
T . Therefore, Assumption A1 holds with σ0(x) = 0 and, for every t ∈ {1, . . . , T } σt(x) = 1.

b) Extraction of the optimal solution: The above convergence results are asymptotic results for increasing orders of

the hierarchy of SDP relaxations. Fortunately, it has been experimentally observed that low relaxation orders often provide

satisfactory results (see e.g. [24], [30]). In addition, it has been proven [26], [25] that under certain rank conditions, the solution

given by the SDP relaxation is guaranteed to be the global minimizer of the original problem. In this case, globally optimal

points can be extracted by the procedure in [34]. Details on the rank conditions and the extraction procedure are beyond the

scope of this paper.

Unfortunately, there are two main difficulties in applying this methodology to practical situations: first, it is known that

detecting the rank of a matrix can be numerically sensitive. In addition, because of the complexity of the original problem,

the possible relaxation order that we can choose may be too small. For both reasons, we have observed that the mentioned

rank conditions are generally not satisfied numerically. Alternatively, considering that the global minimium is likely to be

unique, one can extract from the optimal solution y⋆ to Problem (19) the moments corresponding to the respective monomials

x1, . . . , xT . This extraction is straightforward and we have used the vector of these moments as an estimate denoted by x̂⋆
k of

the global minimizer for the original problem.

6) Extension to semi-algebraic functions/constraints: From a theoretical viewpoint, the above methodology can be extended

to more complicated functions and constraints than polynomials or fractions. We briefly explain how the absolute value, which

appears in the nonlinearity and/or in the penalty function, can be handled. Proceeding similarly, it is actually possible to handle

any semi-algebraic function or constraint.

First, note that polynomial equality constraints such as g(x) = 0 are possible in the definition of the feasible set K. This is

easily done by introducing the two inequalities g(x) ≥ 0 and −g(x) ≥ 0 in the equations defining K in (14).

Then, absolute values can be considered as follows: for each term |v(x)| appearing, where v is a polynomial, one can

introduce an additional variable u and impose the constraints u ≥ 0, u2 = v(x)2. The methodology of the paper can then be

applied with the extended set of variables (x, u).

IV. EXPLOITING THE PROBLEM STRUCTURE

A. Toeplitz structure and split criterion

In this section, we assume that the convolutional model in (2) is considered. Additionally, it is assumed that the involved

filter is FIR with impulse response of length L given by the vector (h1, . . . , hL)
⊤. Under vanishing boundary conditions, the

observation model in (1) holds and involves the following specific Toeplitz band matrix:

H =




h1 0 . . . . . . . . . . . . 0
...

. . .
. . .

...

hL
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 hL . . . h1




.

Finally, remind that we have assumed that the nonlinearity φ applies componentwise and that it is given by a rational function,

possibly involving absolute values. The latters can be discarded by using the trick described above. Thus, for clarity, and with

no loss of generality, we describe the method when all quantities are nonnegative and hence no absolute value appears.

We now focus on two specificities of our problem and show how they can leverage a methodology similar to [30]. First,

developing the squared norm in (5) and substituting all terms, the criterion J appears as a sum of rational functions. Reducing

J to the same denominator would result in a ratio of high degree polynomials, making the approach described in Section III

intractable. A remedy consists in introducing one measure (and hence one moment sequence) for each elementary fraction in

J , and simultaneously imposing constraints which guarantee equality of identical moments related to different measures.

Going further, the second specificity stems from the Toeplitz band structure of the matrix H. In this case indeed, each term

of the sum of rational functions in J (x) only involves a small subset of all variables. This leads to a sparse1 SDP relaxation.

The rationale is explained below and more details are given in Section IV-B.

1The notion of sparsity here concerns the optimization variables and should not be confused with the sparsity assumed for the original samples in vector x.
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Let us introduce, for every t ∈ {1, . . . , T }, the set

It = {min{1, t− L+ 1}, . . . , t}
which is the set of column indices where t-th row of H has nonzero elements (in particular, I1 = {1}, I2 = {1, 2}, . . . ,

IT = {T − L+ 1, . . . , T }). Developing the squared norm, we rewrite Criterion (5) as follows

J (x) =

T∑

t=1

(
dt − φt

( L∑

i=1

hixt−i+1

))2

︸ ︷︷ ︸
pIt

(x)

qIt (x)

+λψδ(xt)︸ ︷︷ ︸
p(xt)
q(xt)

, (21)

where by convention xt = 0 for every t /∈ {1, . . . , T }. This reads equivalently:

J (x) =

T∑

t=1

(
pIt(x)

qIt(x)
+
p(xt)

q(xt)

)
. (22)

In the above equation, pIt , qIt are polynomials that depend on the variables (xk)k∈It only and p(xt), q(xt) are univariate

polynomials that depend on xt only.

Now, one can see that, by introducing for each fraction summing up in (21) a relaxation similar to the methodology introduced

in Section III, the original problem involving a large number T of variables is split in a collection of smaller problems and

relaxations. Proceeding in this way would be quite natural for a separable criterion where the problem is decomposed into

a sum of subproblems that can be solved independently. Of course, for a non separable criterion, one cannot split freely the

problem and constraints must be added between the subproblems to link them. In addition, a technical condition is required

on the subsets of variables of the split form. This is further explained in the next section.

B. Sparse SDP relaxation

For every t ∈ {1, . . . , T }, each rational function
pIt

(x)

qIt (x)
is related to the marginal µIt on R

|It| of the original probability

measure µ defined on R
T . By weighting µIt with the denominator of this rational fraction, as explained in Section III,

we define a measure νIt associated with a sequence of moments zt, which satisfies the following relations: for any k ≥
max{1, deg pIt , deg qIt},

Mk(zt) � 0, LqIt
(zt) = 1, M

gt
k−rt

(zt) � 0. (23)

In addition, we have to pay attention to the fact that the same monomial may appear in two consecutive terms
pIt−1

(x)

qIt−1
(x) and

pIt
(x)

qIt (x)
in Summation (22), when t ∈ {2, . . . , T }. Let N(It∩It−1) denote the subset of T -tuples α = (α1, . . . , αT ) ∈ N

T such

that αt = 0 for t /∈ It ∩ It−1. In other words, the T -tuples in N
(It∩It−1) correspond to monomials involving variables with

indices in It ∩ It−1. The latter monomials are precisely the common monomials in
pIt−1

(x)

qIt−1
(x) and

pIt
(x)

qIt (x)
. We have then, for

every α ∈ N
(It∩It−1),

∫
xαdµIt(x) =

∫
xαdµIt−1

(x)

⇔ LxαqIt (x)
(zt) = LxαqIt−1

(x)(zt−1). (24)

Similarly, for every t ∈ {1, . . . , T }, the rational function
p(xt)
q(xt)

can be associated with a sequence of monovariate moments yt,

for which the following conditions have to be met:

Mk(yt) � 0, Lqt(yt) = 1, M
gt
k−rt

(yt) � 0, (25)

and, for every α ∈ N,

Lxα

t
q(xt)(yt) = Lxα

t
qIt (x)

(zt). (26)

By using these variables (yt, zt)1≤t≤T , we are now in order to provide a sparse SDP relaxation for the minimization of (22):

Find f⋆s
k = inf

z,y

T∑

t=1

LpIt
(zt) + Lp(yt)

s.t. (∀t ∈ {1, . . . , T }) :
(23), (25),

(24) for α+ deg qIt ≤ 2k,

(26) for α ∈ N
(It∩It−1) with |α|+ deg qIt ≤ 2k .
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Remark 1: For the aforementioned approach to be mathematically valid, a technical assumption is required: the so-called

Running Intersection Property [30], [26]. For convenience, let us introduce a notation for the 2T different index sets

corresponding to each fraction in (22):

(∀t ∈ {1, . . . , T }) Jt = It and Jt+T = {t}.

Note that the sets (Jt)1≤t≤2T satisfy
⋃2T

t=1 Jt = {1, . . . , T } . The Running Intersection Property then reads

(∀t ∈ {2, . . . , 2T }) Jt
⋂
(

t−1⋃

k=1

Jk

)
⊆ Jj for some j ≤ t− 1. (27)

It is easy to check that this condition is satisfied in our case.

C. Comparison between full and sparse relaxations

We detail here the reasons why the specific form of the latter relaxation is crucial from a computational standpoint. Using

the sparse relaxation indeed allows us to handle a much higher number of variables T than the non sparse one. The different

numbers of involved variables and matrix sizes are listed below, in the case when no absolute value appears.

1) Relaxation involving one measure only: For a problem with T variables and a relaxation order k, the size of the vector

representing the measure/moment sequence is given by the number of all mutivariate monomials with degree less than or equal

to 2k, which is precisely the binomial coefficient
(
T+2k
2k

)
. As a consequence, the number of variables in an SDP relaxation

involving only one measure (such as (19)) scales as T 2k. In addition, according to the definition of the moment matrix in (15),

the maximum size of the square matrices defining positive definite constraints is
(
T+k
k

)
, which scales as T k.

2) Sparse relaxation for a Toeplitz matrix: Concerning the sparse relaxation with order k, the number of variables involved

is
(
L+2k
2k

)
for each zt and

(
1+2k
2k

)
= 2k+ 1 for each yt with t ∈ {1, . . . , T }. The total number of variables in the sparse SDP

relaxation is therefore

T

((
L+ 2k

2k

)
+ 2k + 1

)
.

As a consequence, for a given order k, the number of variables scales as T L2k in the computation of f⋆s
k . The maximum size

of the moment matrix with positive definite constraint is then
(
L+k
k

)
, hence it scales as Lk.

In summary, the gain in terms of size of the sparse relaxation is T 2k−1/L2k. In addition, the maximum size of the semidefinite

constraints is of the respective order T k for the non sparse relaxation and Lk for the sparse one. Considering these two facts,

it follows that the sparse relaxation is highly advantageous for L ≪ T , that is for H corresponding to a convolutive matrix

with relatively short FIR.

Remark 2: The relaxation order k must be greater than or equal to the maximal degree appearing in the original polynomial

or rational problem. Consequently, Relaxation (19) is intractable after reducing the terms in (22) to the same denominator,

since this would introduce polynomials with a high degree (of order T ). On the contrary, the sparse relaxation takes

explicitly into account that the criterion is a sum of fractions with low degrees and allows order k to be set to a much

smaller value.

V. SIMULATIONS

A. Experimental setup

1) Generated sparse signal and nonlinearity: In all the performed experiments, several sets of 100 Monte-Carlo realizations

of generated data are processed. Samples x of a sparse signal are generated, the number of samples being set to T = 200,

T = 100, T = 50, or T = 20. We impose that exactly 10% of the sample values are nonzero, yielding respectively 20, 10, 5,

and 2 nonzero components in x.

Then, this impulsive signal, considered as the ground truth, is corrupted following the model in (1), where the noise n

is drawn according to an i.i.d. zero-mean Gaussian distribution with standard deviation σ = 0.15. The components of the

nonlinear function φ are chosen all identical and given by

(∀t ∈ {1, . . . , T }) φt(u) =
u

χ+ |u| , (28)

where χ = 0.3. Considering the amplitude of the signals, the above function acts as a nonlinear saturation (see top plot in

Figure 1). Finally, the matrix H is Toeplitz band and corresponds to FIR filters of length 3.

We test our approach in two scenarios:
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a) Nonnegative case: We first consider only a nonnegative original signal x and nonnegative coefficients in the matrix H.

In the Geman-McClure penalty term given by (4), absolute value are then of no use and they can be discarded. The amplitudes

of the nonzero components of x are drawn according to a uniform distribution on [2/3, 1]. The impulse responses of the FIR

filters corresponding to H are set to h(a) = [0.1, 0.8, 0.1] or h(b) = [0.2254, 0.3361, 0.4385]. An additional set of Monte-Carlo

simulations is run where the impulse responses are drawn randomly (nonnegatively) for each realization. Due to the positivity

assumption, the minimization of J ⋆ is then performed on the hypercube K = [0, 1]T .

b) Real-valued case: We then consider real valued x and H, still using the penalty term in (4). The amplitudes of the

nonzero components of x are then drawn according to a uniform distribution on [−1,−2/3]∪ [2/3, 1]. In addition, the impulse

responses of the FIR filters are given by h(a), h(b) (like in the first scenario), and h(c) = [−0.1127,−0.0683, 0.8191]. Here

again, on one set of Monte-Carlo realizations, the impulse responses are randomly drawn with real-valued coeffcients, for each

realization. Finally, the criterion is minimized on the set K = [−1, 1]T .

2) Considered optimization methods: Recall that the optimized criterion is given by (5). In both scenarios, we have set

empirically λ = 0.15 for the regularization parameter and δ = 0.01 in the penalty function (4).

To obtain an estimate of x, we have built the sparse SDP relaxation from Section IV-B with orders k = 2 and k = 3 using

the software [35]. The SDP has then been solved using SDPT3 [32]. Finally, the corresponding estimate x⋆s
k is determined as

described in Section III-B.

We are not aware of any other method able to find the global minimum of (5). For comparison with a globally convergent

approach, we have used a linearized model for reconstruction purposes: based on Model (1), we have linearized around zero

the nonlinearity (28) and have used the well-known ℓ1 penalization. The cost function then reads

(∀x ∈ R
T ) Jℓ1(x) =

∥∥∥d− 1

χ
Hx

∥∥∥
2

+ λ1

T∑

t=1

|xt|, λ1 > 0

and it can thus be minimized efficiently by standard convex optimization techniques [20], [36].

Finally, we have also implemented a proximal gradient algorithm corresponding to the well-known Iterative Hard Threshold-

ing (IHT) [11]. Since the function φ is Lipschitz-differentiable, the standard IHT algorithm can be extended to the nonlinear

observation model. This leads to the following iterative algorithm:

(∀n ∈ N) x(n+1) = S√
λ0η

(
x(n) − ηH⊤∇φ(Hx(n))

(
φ(Hx(n)

)
− d)

)

where the Jacobian matrix ∇φ(Hx(n)) is diagonal and S√
λ0η

is the hard thresholder with threshold value
√
λ0η, λ0 > 0.

It can be shown that any value of the stepsize η in ]0, ηmax] is valid, where 1/ηmax = ‖H‖2S(1 + 2max1≤t≤T} |dt|)/χ2 is

a Lipschitz constant of the above gradient term (‖H‖S denotes the spectral norm of H). The latter algorithm however only

certifies convergence to a local minimum of the criterion [37]. Due to non convexity, the local minima are likely to differ from

the global minimum [10].

B. Results

1) Performance of the proposed relaxation : Figures 2 and 3 show the objective values J (x⋆s
k ) and the lower-bounds f⋆s

k

provided by our method for relaxation orders k = 2 and k = 3, and for two different sample sizes. The value of the objective

function J obtained after minimizing Jℓ1 is also plotted. For readability, the Monte-Carlo realizations have been sorted by

increasing value of f⋆s
3 . The poor performance of the convex formulation may be accounted for by the fact that the linearized

model leads to a rough approximation. In accordance with the theory, we have f⋆s
2 ≤ f⋆s

3 and the latter value is indeed a

lower-bound on the corresponding obtained criterion values, which are obviously such that J (x⋆s
3 ) ≤ J (x⋆s

2 ). Moreover, the

gap between f⋆s
k and J (x⋆s

k ) is an evidence of the effectiveness of our method. A strictly positive value, as observed for k = 2
indicates that the relaxation order is too small. As illustrated in Figures 2 and 3 the gap value reduces for k = 3, and with

T = 20 a gap numerically close to zero certifies that the global minimum is perfectly attained in more than 80% of the cases.

For the more involved case T = 200, the gap value is small with k = 3 but nonzero: this gives evidence in favor of closeness

to the global solution, although a higher relaxation order would probably be necessary. Due to memory limitations, increasing

further the relaxation order is unfortunately impossible so far. In the next section, we show how to combine our method with

IHT, so as to alleviate this issue.

2) Dealing with local minimas: Because of the difficulty of the rational optimization task, we propose to complement our

method with the IHT optimization method, which is known to be efficient, but only locally. For better emphasizing the benefit

of our approach, several initializations of IHT are considered: x⋆s
3 , the result from the linearized model and ℓ1 penalization,

d, an all-zero vector, and the true x. Obviously, the latter initialization would be impossible to use in real applications. The

average values over all Monte-Carlo realizations are provided in Tables I (nonnegative case) and II (real-valued case) for

T = 200. Some more detailed plots, corresponding to randomly drawn filter coefficients, are shown in Figures 4 (nonnegative

case) and 5 (real-valued case).

The final objective values after convergence of IHT clearly depend on the initialization, which witnesses the existence

of several local optima and emphasizes the importance of addressing the problem from a global optimization standpoint. In
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Fig. 2: Objective value and lower-bound given by our method (randomly driven filters, nonnegative case, T = 20).
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Fig. 3: Objective value and lower-bound given by our method (randomly driven filters, nonnegative case, T = 200).

TABLE I: Final values of the objective function J for various optimization methods (nonnegative case, T = 200).

Opt. method
Filters

h(a) h(b) random

x
⋆s

3 7.3185 7.1317 7.1528
linearized ℓ1 15.749 13.794 14.406

IHT, init. x⋆s

3 7.0970 7.0424 6.9981
IHT, init. ℓ1 8.7043 8.6388 8.5518
IHT, init. d 8.8508 8.8928 9.1245
IHT, init. zero 11.798 10.014 13.988
IHT, init. x 7.1441 7.1476 7.1060

average, the lowest objective value is obtained by a local optimization initialized either at x⋆s
3 or at the true x, the two choices

leading to very similar results. More importantly, as shown in Tables III (nonnegative case) and IV (real-valued case), IHT is

not reliable for finding the global minimum. These two tables compare different initializations of IHT and provide for each

initialization the number of times it leads to the smallest objective value among the 100 Monte-Carlo realizations (a sum greater

than 100 on a row occurs for T = 20 and indicates that different initializations have reached the same minimum value). In the

overwhelming majority of cases, the initialization with x⋆s
3 provides the smallest objective. As soon as T is more than a few

tens, IHT is almost unable to reach the global minimum with any of the standard initializations (ℓ1, d, all-zero vector). This

demonstrates the fact that the proposed relaxation is useful in providing a good initial point for a local optimization algorithm.

3) Signal recovery performance: Finally, we illustrate the merits of our method in terms of estimation and peak detection

errors. A typical example of true signal x, of observation vector d and of reconstructed signal is displayed in Figure 6. The

estimation error on x has been quantified by the mean square error 1
T
‖x̂ − x‖2 for a given estimate x̂. The average error
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Fig. 4: Objective value for IHT with different initializations (randomly driven filters, nonnegative case, T = 200). .
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Fig. 5: Objective value for IHT with different initializations (randomly driven filters, real-valued case, T = 200). .

TABLE II: Final values of the objective function J for various optimization methods (real-valued case, T = 200).

Opt. method
Filters

h(a) h(b) h(c) random

x
⋆s

3 12.0845 17.3860 12.2985 16.389
linearized ℓ1 21.837 20.0003 21.7529 20.786

IHT, init. x⋆s

3 7.2254 8.2095 7.2131 7.7278
IHT, init. ℓ1 10.048 11.7268 9.3964 10.281
IHT, init. d 10.024 11.2028 11.9485 12.934
IHT, init. zero 12.079 15.5946 10.4484 12.8234
IHT, init. x 7.1323 7.1113 7.1363 7.1151

and objective values are gathered in Tables V (nonnegative case) and VI (real-valued case). It can be observed that the results

obtained with the ℓ1 penalization followed by IHT are significantly improved when the initialization of IHT is performed by

the proposed rational optimization approach. Finally, we have compared our method for detecting the peaks in the original

signal. Nonzero values of x have been estimated by comparing |x̂| to a threshold. The so-called receiver operating characteristic

(ROC) curves are plotted on Figure 7 by increasing the threshold value: it represents the detection rate versus the false alarm

rate. Clearly, using x⋆s
3 gives the best results. On the contrary, the linearized model with ℓ1 penalty leads to poor results, even

when it is associated with an IHT algorithm.

VI. CONCLUSION

In this paper, we have presented a global optimization approach for addressing a wide range of variational poblems arising

in signal processing. More specifically, the proposed method is able to deal with nonlinear models and regularization functions,
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TABLE III: Out of 100 Monte-Carlo realizations, number of times each initialization of IHT provides the smallest objective

value (nonnegative case, filter random (top) and h(a) (bottom)).

Num.
samples

Initialization
x
⋆s

3 ℓ1 d zero

random filter
20 87 6 4 11
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h(a)

20 86 1 4 17
50 99 0 0 1

100 100 0 0 0
200 100 0 0 0

filter h
(b)

20 94 6 4 5
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

TABLE IV: Out of 100 Monte-Carlo realizations, number of times each initialization of IHT provides the smallest objective

value (real-valued case, filters h(a) and h(b)).

Num.
samples

Initialization
x
⋆s

3 ℓ1 d zero

random filter
20 74 7 6 18
50 97 0 1 2

100 99 1 0 0
200 100 0 0 0

filter h(a)

20 79 2 5 18
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h(b)

20 87 2 7 4
50 100 0 0 0

100 100 0 0 0
200 100 0 0 0

filter h
(c)

20 62 6 8 32
50 97 1 0 2

100 99 0 0 1
200 100 0 0 0

TABLE V: Final average MSE for the proposed optimization method (nonnegative case, T = 200).

Opt. method
Filters

h(a) h(b) random

IHT, init. x⋆s

3 9.23e-03 1.16e-2 1.12e-2
IHT, init. ℓ1 1.17e-02 1.42e-2 1.34e-2
IHT, init. d 1.73e-02 1.43e-2 1.59e-2
IHT, init. zero 5.06e-02 6.47e-2 5.89e-2

TABLE VI: Final average MSE for the proposed optimization method (real-valued case, T = 200).

Opt. method
Filters

h
(a)

h
(b)

h
(c) random

IHT, init. x⋆s

3 9.50e-3 1.58e-2 9.27e-3 1.08e-2
IHT, init. ℓ1 1.35e-2 3.09e-2 1.22e-2 1.73e-2
IHT, init. d 2.66e-2 2.91e-2 4.43e-2 3.34e-2
IHT, init. zero 5.30e-2 6.66e-2 4.23e-2 5.17e-2

provided that they can be approximated under a rational form. The validity of the proposed sparse SDP relaxation has been

demonstrated on a sparse signal restoration problem where the observations are degraded by a convolution followed by a

saturation effect.

This work opens up new perspectives for solving signal recovery and estimation problems where standard optimization

algorithms may fail due to the presence of spurious local minimas. On common computer architectures, using existing SDP
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either by our method or by using a linearized model and ℓ1 penalty.
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solvers, the implementation of this approach is however currently limited to relatively small signal dimensions and low filter

orders.
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