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Abstract: This paper presents an experimental study on the effects of multi-site damage on 

the vibration response of honeycomb sandwich beams, damaged by two different ways i.e., 

impact damage and core-only damage simulating damage due to bird or stone impact or due 

to mishandling during assembly and maintenance. The variation of the modal parameters with 

different levels of impact energy and density of damage is studied. Vibration tests have been 

carried out with both burst random and sine dwell testing in order to evaluate the damping 

estimation efficiency of these methods in the presence of damage. Sine dwell testing is done 

in both up and down frequency directions in order to detect structural non-linearities. Results 

show that damping ratio is a more sensitive parameter for damage detection than the natural 

frequency. Design of experiments (DOE) highlighted density of damage as the factor having a 

more significant effect on the modal parameters and also proved that sine dwell testing is 

more suitable for damping estimation in the presence of damage as compared to burst random 

testing.    

 

Keywords: Vibration Testing, Modal Parameters, Structural Health Monitoring, Honeycomb 

Sandwich Beams  

 
1. Introduction 
 

Laminated honeycomb sandwich materials are being used widely in weight sensitive 

structures where high flexural rigidity is required, such as in the aerospace industry. By 

inserting a light weight core between the two face sheets, the bending stiffness and strength 

are substantially increased compared with a single layer homogeneous structure, without 

adding much weight. When the beam or plate undergoes flexural vibration, the damped core 

is constrained primarily to shear. This shearing causes energy to be dissipated and the flexural 

motion to be damped. However damage in these structures may negate many of the benefits 

of sandwich construction. Impact can induce various types of damage in the structure. The 

facesheets can be damaged through delamination and fibre breakage; the facesheet and core 
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interface region can be debonded and the core can be damaged through crushing and shear 

failure mechanisms. Safe and functional effectiveness of stressed sandwich structures can 

often depend on the retention of integrity of each of the different materials used in its 

manufacture. Therefore lightweight sandwich materials used in next generation of more 

advanced aircraft, marine craft, road and rail vehicles must possess the capability to absorb 

higher impact energy and retain a high degree of structural integrity. For aeronautical 

structures, a field where this problem has been quite studied, the components have to undergo 

low energy impacts caused by dropped tools, mishandling during assembly and maintenance, 

and in-service impacts by foreign objects such as stones or birds. In these low energy impacts 

normally, a small indentation is seen on the impact surface. This level of damage is often 

referred to as barely visible impact damage (BVID). There has been considerable research on 

the impact performance and damage development in carbon fiber composite materials and 

sandwich composite materials; see for example references [1-5].  

 

Although not visually apparent, low energy impact damage is found to be quite 

detrimental to the load bearing capacities of sandwich structures, underscoring the need for 

reliable damage detection techniques for composite sandwich structures. In recent years, 

structural health monitoring (SHM) using vibration based damage detection has been rapidly 

expanding and has shown to be a feasible approach for detecting and locating damage. The 

purpose of structural health monitoring systems is to provide information about the condition 

of a structure in terms of reliability and safety before the damage threatens the integrity of the 

structure. So the diagnosis of the damage in structural systems requires an identification of the 

location and type of damage, as well as the quantification of the degree of damage. Therefore, 

several techniques have been used to detect damage in structures. A detailed and 

comprehensive overview on the vibration based damage detection methods has been 

presented in references [6-11]. The basic principle of vibration based damage detection can be 

explained as follows. Any structure can be considered as a dynamic system with stiffness, 

mass and damping. Once some damages emerge in the structures, the structural parameters 

will change, and the frequency response functions and modal parameters of the structural 

system will also change. This change of modal parameters can be taken as the signal of early 

damage occurrence in the structural system. Although vibration-based structural damage 

detection is a newly emergent research topic, its development can still be divided into 

traditional- and modern- type.  

 

The traditional-type refers to detection method for structural damage by using only the 

structural characteristics, such as natural frequencies, modal damping, mode shapes, etc. 
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These methods are among the earliest and most common, principally because they are simple 

to implement on any size structure. Structures can be excited by ambient energy, an external 

shaker or embedded actuators. Accelerometers and laser vibrometers can be used to monitor 

the structural dynamic responses.  A variety of broadband excitation signals have been 

developed for making shaker measurements with FFT analyzers e.g., burst random, burst 

chirp etc. Since the FFT provides a spectrum over a broad band of frequencies, using a 

broadband excitation signal makes the measurement of broadband sprectral measurements 

much faster than using sine dwell or swept sine excitations [12]. Despite the fact that sine 

dwell or swept sine modal testing requires large acquisition times, but they have the capability 

of detecting non linear structural dynamic behavior unlike the broadband excitations [13]. 

Several modern techniques e.g., statistical process control, neural networks, advanced signal 

processing, genetic algorithm, wavelet analysis etc., have been researched for detecting 

damage in composite materials, many of them showing the effectiveness of dynamic response 

measurements in monitoring the health of engineering structures [14-23]. These methods are 

generally classified as modern-type methods for damage detection.  

 

Change in natural frequency is the most common parameter used in the identification 

of damage [24-26]. Various methods of damage detection that use natural frequency 

information are reported by salawu [27]. Kim and Hwang investigated the effect of the 

debonding extent on reduction in the flexural bending stiffness and on the natural frequency 

of honeycomb sandwich beams, and concluded that increasing face-layer debonding 

progressively reduces the flexural bending stiffness of the beams [28]. Lestari and Qiao 

extracted dynamic characteristics of a sandwich structure by collecting dynamic response data 

from piezoelectric smart sensors, in order to evaluate the location and magnitude of the 

damage [29]. Adams and Cawley localized damage in structure from measurements of natural 

frequencies [30]. Yam and Chang showed that with the increase in delamination size the 

natural frequency decreases, by artificially creating a crack and then vibrating the structure 

with the help of an embedded actuator [31]. Arkaduiz found that the presence of a self created 

delamination reduces the natural frequencies of a composite beam when harmonically excited 

[32]. Kim et al. also proposed a methodology to non-destructively locate and estimate the size 

of damage in structures using a few natural frequencies. They formulated a damage-

localization algorithm in order to locate damage from changes in natural frequencies and a 

damage-sizing algorithm to estimate crack-size from natural frequency perturbation [33]. 

Khoo et al. employed different vibration techniques in order to locate damage in structures. 

They used resonant poles to identify the modes, especially those modes that exhibit relatively 

large pole shifts are believed to be affected by damage [34].  S.G. Mattson et al. carried out 
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damage detection based on residuals and discussed the phenomenon of false negatives. 

According to them, false negatives give no indication of damage when damage is present. 

[35]. The advantage of using the change of structural natural frequency to detect damage is 

its convenient measurement and high accuracy. However the measurement of natural 

frequency cannot provide enough information for structural damage detection. Furthermore, 

the natural frequency is often not sensitive enough to initial damage in structures. Usually, 

this method can only ascertain existence of large damage, but may not be able to give the 

damage location because the structural damage in different location may cause the same 

frequency change.   
          

However, in structures made of composite materials there seems to be a tendency to 

use damping as a damage indicator tool, as it tends to be more sensitive to damage than the 

stiffness variations. The introduction of damage into a material generally results in an increase 

of damping, which is related to energy dissipation during dynamic excitation. As friction is an 

energy dissipation mechanism, it is reasonable to assume that damping may be used for SHM, 

when this type of damage is concerned.  Therefore, damping has also been proposed as a 

potentially sensitive and attractive damage indicator [36], though research works related to 

damping are fewer in number than those on natural frequency. The main sources of internal 

damping in a composite material arise from microplastic and viscoelastic phenomena in the 

matrix together with the interface effects between the matrix and the reinforcement [37]. The 

importance of damping as a parameter for damage detection is explained in scientific 

literature and has also been verified by the experimental results in this article. Zhang and 

Hartwig recommended damping in the evaluation of damage process which seemed more 

sensitive than the natural frequencies [38]. Gibson carried out vibration tests on composite 

specimens and found that for higher modes damping loss factor measurements are more 

significant than frequency measurements [39]. Similarly, Saravanos and Hopkins 

experimented on composite beams, and showed that the delamination has a more profound 

effect on modal damping than the natural frequencies [40]. Colakoglu showed that the 

damping factor increased with the number of fatigue cycles [41]. Richardson and Mannan 

found that the loss of stiffness in a structure corresponds to a decrease in natural frequency 

combined with an increase in damping [42].    

 

The main motivation of the work presented in this article, is to carryout modal testing 

on intact and damaged sandwich beams by using both burst random and sine dwell testing in 

order to study the influence of impact damage and core-only damage on the global modal 

parameters (frequency and damping). The testing methodology used falls under the 
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traditional-type vibration-based structural damage detection methods. In the end, a design of 

experiments is carried out on the experimental results, to determine that which modal testing 

method among burst random and sine dwell is more efficient for estimation in the presence of 

damping.    

 

2. Material and specimen 
 
 
 In order to investigate the effect of impact and core-only damages on the modal 

parameters, honeycomb sandwich beams shall be used in this article. As this is a preliminary 

experimental study, therefore standard sandwich material like honeycomb is chosen for the 

instance. In future, this study will be extended to more complex sandwiches like entangled 

sandwich materials.    

 

 Resin-containing carbon-fiber/epoxy prepreg of T700/M21 is used to fabricate the skin 

materials [43].  The material is supplied by Hexcel composites, the physical properties are set 

out in Table 1. The upper and lower skins consist of four plies each with a stacking sequence 

of [0/90/90/0]. The thickness of each ply is 0.125mm.  

 

The core material is honeycomb and can be selected from a wide range of metallic and 

non-metallic honeycomb cores. The honeycomb sandwich beams in this article are made of 

Nomex-aramid honeycomb core (HRH 10) supplied by Hexcel composites [44]. The 

honeycomb core has a nominal cell size of 6.5 mm and a core thickness of 10 mm. 

Mechanical properties of the honeycomb core is listed in Table 2. The sandwich beam 

specimens are fabricated using an autoclave and an aluminum mold. The skin and the core are 

cured simultaneously in order to have an excellent bond. The final dimensions of the six 

identical honeycomb sandwich beams used in this article are 480 x 50 x 11 mm.  

 

The vibration tests are carried out with two steel masses (50 x 25 x 5 mm) attached at 

the ends [23,26]. The aim of putting these masses at the ends is to enhance the difference in 

the modal parameters between the undamaged and the damaged test specimens.  

 

3. Experimental methods 
 

3.1. Vibration tests 

 
The experimental equipment used for vibration testing is shown in Fig. 1. The 

experimental set-up is that of a free-free beam excited at its center, based on Oberst method 
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[22]. The Oberst method states that a free-free beam excited at its center has the same 

dynamical behavior as that of a half length cantilever beam. The test specimen is placed at its 

center on a B&K force sensor (type 8200) which is then assembled on a shaker supplied by 

Prodera having a maximum force of 100 N. However the force sensor is not capable of 

measuring reliable response below 5 Hz. A fixation system is used to place the test specimens 

on the force sensor. The fixation is glued to the test specimens with a HBM X60 rapid 

adhesive. The response displacements are measured with the help of a non-contact and high 

precision Laser Vibrometer OFV-505 provided by Polytec. The shaker, force sensor and the 

laser vibrometer are manipulated with the help of a data acquisition system supplied by LMS 

Test Lab for burst random testing and Ideas Test (B&K) for sine dwell testing.  

     

The center of the test specimens is excited at Point 17 as shown in Fig. 2. Each 

sandwich specimen is tested with two types of excitations i.e., burst random and sine dwell. 

For both the testing systems (LMS and B&K), the resolution is kept 0.25 Hz in order to obtain 

a good shape of the resonance peaks at low frequency range and to have a reliable comparison 

of modal parameters between the two systems. Response is measured at 33 points that are 

symmetrically spaced in three rows along the length of the beam to have reliable identifiable 

mode shapes. The level of the excitation signal for both the excitations is chosen as 1N which 

is kept fixed during all the vibration tests conducted in this paper. With the help of LMS by 

using burst random excitation, we have the advantage of having in quick time the overall 

dynamic (modal) response of our structure if we are mostly concerned with frequency and 

mode shapes. In addition, this broadband type of testing helps us identify the modes that we 

can use later on for sine-dwell testing. However if we need precise damping measurements 

then sine-dwell testing becomes inevitable but the problem with it is the lengthy acquisition 

times.  

 

Burst random excitation is a broadband type excitation signal for which a 50% burst 

percentage is used. Normally burst random excitations are leakage free but after trying 

different window functions, it was found that by putting Hanning windows on both the 

excitation and response signals, better quality signals FRFs are obtained. The signal is 

averaged 10 times for each measurement point and the frequency band chosen is 0-2650Hz.  

 

Sine-dwell excitation is the discrete version of sine sweep. The frequency is not varied 

continuously, but is incremented by discrete amounts at discrete time points. The advantage 

of sine-dwell testing is its capability of detecting non linear structural dynamic behavior 

unlike the broadband excitations. As sine dwell testing requires larger acquisition times, so 
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instead of studying the whole frequency band (0-2650 Hz), acquisition is carried out only 

around the first four bending modes previously identified by burst random testing by keeping 

the same resolution.  

 

The modal parameters are extracted by Polymax and Polyreference, integrated in the 

data acquisition systems for burst random and sine-dwell testing respectively. The Polymax 

estimation method used by LMS acquisition system is a new non-iterative frequency domain 

parameter estimation method based on weighted least squares approach and uses measured 

FRFs as primary data. For the B&K system, one similar concept is used but in time-domain 

(Polyreference LSCE method), which typically require impulse responses (obtained as the 

inverse Fourier transforms of the FRFs) as primary data. Practically both of these methods 

work in similar fashion as follows:  

 

• Firstly all the 33 FRFs are sort of superimposed along with a FRF sum. Limited 

frequency band estimation is then performed by taking each resonance separately.  

 

• For accurate assessment of damping, a frequency interval of ± 20 Hz is chosen for 

each resonance peak for both Polymax and Polyreference, because by changing the 

frequency interval damping values can be affected.  

 

• In the next step a stability diagram is constructed containing the poles i.e., frequency, 

damping information. For each mathematical model order, the poles are calculated 

from the estimated denominator coefficients of Equation 3. The order of the 

mathematical model is shown on the right vertical end of the stability diagram. For 

reliable damping measurement, that value of pole should be chosen which displays a 

stable value for several model orders and if possible for each mode the value of poles 

should be chosen at the same model order to ensure that there is minimum uncertainty 

while comparing the damping values between different damage states.  

 

One of the specific advantages of these two techniques lies in the very stable 

identification of the system poles and participation factors as a function of the specified 

system order, leading to easy-to-interpret stabilisation diagrams. This implies a potential for 

automating the method and to apply it to "difficult" estimation cases such as high-order and/or 

highly damped systems with large modal overlap. As discussed previously, both Polymax and 

Polyreference are based on least-squares complex optimization methods, so both of them 

calculate the optimal pole value (frequency and damping) based on the 33 measurement 
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points. We do not have access to the average values, variances or standard deviations for the 

33 FRFs as the estimated modal parameters are the results of an optimized process.                                     

The reference [47] explains these two estimators in detail.  

 

So from the above discussion it can be said that both Polymax and Polyreference 

methods work in similar fashion, so the difference in the resulting modal parameters if it is 

the case, is due to the difference in excitations than due to the different estimation methods. 

 

3.2. Impact tests 

 

The six sandwich beams tested in this article are damaged in two different ways. The 

first four are damaged by drop weight impacts around the barely visible impact damage limit 

(BVID), in order to simulate damage by foreign impact objects such as stones or birds. The 

other two are damaged by piercing a hole all along the width in the honeycomb core by a 

hand drill, simulating mishandling during assembly and maintenance. The impact tests are 

carried out by a drop weight system as shown in Fig. 3, and a detailed cut away of the drop 

assembly is shown in Fig. 4.  

 

 The impactor tip has a hemispherical head with a diameter of 12.7 mm. A force sensor 

(type 9051A) provided by Kistler is placed between the impactor tip and the free falling mass 

of 2 kg. The impact velocity is measured with the help of an optic sensor. The combined 

weight of the impact head, freefalling mass, force sensor and the accelerometer is 2.03 kg. In 

the calculation of impact height, a factor of 1.1 is used to compensate for the losses due to 

friction between the guidance tube and the drop assembly. The size of the impact window is 

80 x 40 mm2 which allows all the impact points to have the same boundary conditions and all 

the four ends are clamped. Further details on the impact test methodology of this drop tower 

can be found in the references [3,26]. 

 

In this article, a simple case with symmetric impacts is chosen. If satisfactory results 

are obtained, then asymmetric damage shall be studied in the future. Honeycomb sandwich 

beams are impacted by taking into account the barely visible impact damage limit (BVID). 

BVID corresponds to the formation of an indentation on the surface of the structure that can 

be detected by detailed visual inspection and can lead to high damage. In the aeronautical 

domain, BVID corresponds to an indentation of 0.3 mm after relaxation, aging etc (according 

to Airbus certifications). In this study, it is decided to take 0.6-0.8 mm of penetration depth as 

detectability criterion just after the impact [3] which corresponds to an indentation depth of 
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approximately 0.3 mm by taking into account the above mentioned factors such as relaxation, 

aging, humidity etc. The idea behind the impact tests is to damage the specimens below the 

BVID limit, in order to detect by vibration testing the damage that is not visible through 

naked eye. Four of the six sandwich beams are impacted symmetrically at four points with the 

same impact energy, as shown in Fig. 2. However in honeycomb sandwich beams, it is 

difficult to induce the same amount of damage at different points in the same specimen, even 

if it is impacted with the same energy i.e., impacting at the honeycomb cell center and at the 

corner leads to different damages. Therefore, it is not possible to have the same density of 

damage in honeycomb sandwich specimens at all the different impact points.  

 

The first two honeycomb sandwich beams (H1 and H2) are impacted at 4J that 

produces a very small damage (not measurable by NDT methods) which is not visible on the 

surface. The reason for having the same impact energy for these two beams is to study the 

effect of end masses i.e., H1 is without and H2 is with end masses. The next honeycomb 

beam (H3) is impacted at 6J, which produces an indentation depth from 0.1 to 0.3 mm at the 

four impact points. However, the greatest dispersion in damage is seen in the honeycomb 

beam H4 which is impacted at 8J as shown in Fig. 5.  

 

The damage depth for two impact points at one side of the beam is approximately 0.7 

mm which corresponds to the BVID limit. But at the two impact points on the other end of the 

beam, the impactor head has induced severe damage due to impact at honeycomb cell center. 

This phenomenon introduces asymmetry in the beams and highlights the difficulty in inducing 

a global symmetric damage.  The impact parameters for these four sandwich beams are listed 

in Table 3.  

 

The data obtained during the drop weigh impact tests carried out on the honeycomb 

beams (H2, H3 and H4) is shown in Fig. 6. The impact test data for the honeycomb beams 

(H1 and H2) is similar as they are impacted with the same energy.   

 

Four similar impacts have been performed on each specimen. However, in order to 

clarify these plots, only one impact test result for each specimen is plotted. All the impact 

curves presented in Fig. 6 are filtered at 15 kHz to avoid a free frequency of the impactor at 

about 20 kHz. These curves, representative of all performed impact tests, are very classic in 

the literature [4,5]. In Fig. 6 a, the impact forces are drawn as a function of time. These curves 

are globally smooth and almost sinusoidal at low impact energy. The curves for all the three 

beams (H2, H3 and H4) show an important force signal fall followed by oscillations which is 



characteristic of delamination onset i.e., the appearance of first major damage in the sandwich 

beams. This is also evident in the force-displacement plot (Fig. 6 b). The evolution of the 

peak force signal for the three beams (H2, H3 and H4) shows a logical increase with the 

increase in the impact energy.  

 

As discussed previously, the second way of inducing damage is by piercing a hole all 

along the width in the honeycomb core by a hand drill. This type of damage can be referred to 

as core-only damage. In case of the honeycomb beams (H5) and (H6), approximately 5 mm 

and 10 mm diameter holes are pierced all along the width at the same positions as the impact 

points as shown in Fig .2. For the 5 mm holes (Beam H5), some honeycomb material is 

present between the hole and the skins, however in case of 10 mm holes (Beam H6), no 

honeycomb material is present between the damage and the skin. The aim of inducing core-

only damage is to check that whether this type of damage induces the same effect on the 

modal parameters as the impact damage. This will help us in future to develop algorithms 

based on modal parameters to detect these kinds of damages (impact and core-only damage) 

in sandwich structures.        

 

The sandwich beams have three states. First one is the undamaged state (UD), the 

second is the damage state due to two impacts or two holes (D1) and the third is the damage 

state due to four impacts or four holes (D2). Vibration tests are carried out on the six 

sandwich beams after each of these three states. The effect of the impact damage and core-

only damage on the modal parameters is studied in the following sections of this paper with 

the help of frequency and damping changes between the undamaged (UD) and the damaged 

states (D1 and D2) with the help of Eq. 1 and Eq. 2.    

 

Change in frequency between UD and D1, (Δf) = UD D

UD

f (k) f (k)
f (k)

− 1  (1)  

Change in damping between UD and D1, (Δζ ) = D UD

UD

(k) (k)
(k)

ζ − ζ
ζ

1  (2)  

 
where fUD(k) is the damped natural frequency for the undamaged specimen for the kth 

mode and fD1(k) is the damped natural frequency for the specimen damaged at two impact 

points (D1) for the kth mode. Nomenclature in case of Eq. 2 is the same. Furthermore, in order 

to calculate the frequency and damping change ratios between UD and D2 the same procedure 

is used. 
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3.3. Tracking of poles for damage detection by modal analysis 

 

Modal parameter estimation is a special case of system identification where the a 

priori model of the system is known to be in the form of modal parameters. The identification 

process consists of estimating the modal parameters from frequency response function (FRF) 

measurements. Modal identification uses numerical techniques to separate the contributions 

of individual modes of vibration in measurements such as frequency response functions. Each 

term of the FRF matrix can be represented in terms of pole location and a mode shape. The 

FRF matrix model is represented mathematically by: 

[ ] [ ] [ ]modes

k 1

R(k ) R(k)*
H( )

(j (k ) p(k )) (j (k ) p(k )*)=

⎧ ⎫
ω = +⎨ ω − ω −⎩ ⎭

∑ ⎬       (3) 

The numerator R(k) is the residue of the FRF and is a function of the product between 

mode shape components at all points. The denominator gives the modal frequency and modal 

damping (second term in Equation (3) is the complex conjugate term). The poles p(k), are the 

roots that satisfy this equation and are related to modal frequency and damping as follows: 

p(k) (k ) j (k )= −σ + ω               (4) 

The magnitude of each pole is the undamped natural frequency (ωn). The undamped 

natural frequency (ωn) and the modal damping (σ ) are related to mass, stiffness and damping 

as follows: given by   

2 2
n d

K(k )
M

ω = ω +σ =              (5) 

C2 (k)
M

σ =              (6) 

The effect of physical properties on poles in the complex s-plane is illustrated in Fig. 8.  

  

 From Fig. 8, it can be observed that a change in stiffness affects only the frequency, 

while changes in mass and structural damping affect both modal damped frequency (ωd) and 

modal damping ( ). For this study, the primary interest is to study the decrease in the modal 

damped frequency (ωd) and the increase in modal damping (

σ

σ ) due to damage in the 

sandwich specimens [45].  

 

4. Results and discussion 
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4.1. Significance of end-masses 
 

End-masses have been placed in case of composite laminate beams in scientific 

literature [26] in order to enhance the difference between the modal parameters for the 

undamaged and the damaged cases. But in case of sandwich composite beams, this 

phenomenon has to be verified. So in this article, vibration tests are carried out on honeycomb 

sandwich beams (H1 without end-masses) and (H2 with end masses) to verify that whether in 

case of honeycomb sandwich beams the end-masses have as effect on modals parameters or 

not.  

 

This study is conducted by studying the frequency and the damping change ratios 

presented in Table 4 between the undamaged (UD) and the two damaged cases (D1 and D2) 

for the honeycomb sandwich beams (H1 without end-masses) and (H2 with end-masses) for 

both burst random (BR) and sine dwell (SD) testing based on Eq. 1 and Eq. 2. From Tables 4, 

it can be said that on the whole the changes in frequency and damping ratios are more 

prominent in case of the beam H2 with end masses. A closer examination of the results 

reveals that by adding end-masses, the damping ratios seem to be affected more as compared 

to the natural frequencies. A plausible explanation can be that the end-masses increase the 

effect of shearing forces which causes an increase in friction in the material, consequently 

leading to a higher change in damping ratios as compared to natural frequencies. Table 4 

shows that by putting end-masses, the change in natural frequency (between the undamaged 

and the damaged cases) is increased by around 3 %. However in case of damping ratios, this 

increase is as high as 93 %. So clearly the damping ratios are more affected by the end-

masses. It can also be noticed that the change in damping ratios is greater in case of sine dwell 

testing, because the damping ratio estimated by sine-dwell testing is always higher in case of 

the two damaged states (D1 and D2) as compared to the burst random testing (also seen in 

Figure. 12 and Table 6). Therefore, the rest of the honeycomb sandwich beams (H2 to H6) 

except beam H1 in this article have been tested with end-masses. 

 

4.2. Estimation of modal parameters at the undamaged state 
 

Theoretically all the beams at the undamaged state should possess similar natural 

frequency and damping values, but due to fabrication anomalies there can be some dispersion. 

As all the beams are at the undamaged state and the testing parameters have been kept the 

same for all beams so the authors think that it is logical to compare the average natural 

frequency and average damping ratio values for all the beams for the first four bending modes 
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with their respective standard deviation values to give an idea about the dispersion at the 

undamaged state.    

 

In this section the modal parameters of the five honeycomb sandwich beams with end-

masses (H2 to H6) are discussed. In order to have a clear picture, the average values of natural 

frequencies and damping ratios for the first four bending modes of these five beams (H2 to 

H6) with both burst random and sine dwell testing are plotted in Fig.9. The standard deviation 

associated with each average value is also represented for both burst random and sine dwell 

testing. In case of natural frequencies, the two types of testing, give similar results at the 

undamaged states as shown by the standard deviation values. However the dispersion at the 

3rd bending mode for the natural frequency is a bit on the higher side, which is due to the fact 

that the beam H5 at the 3rd bending mode has a natural frequency of 1429 Hz whereas the 

average for the other four beams is 1338 Hz. This dispersion in natural frequency at Mode 3 

occurs in case of both of testings. This anomaly outlines the inherent possibility of false 

negatives which can arise due to boundary conditions and gives no indication of damage 

when it is present as discussed in the reference [35].  

 

In case of damping ratios, the results at the undamaged state give a good comparison 

as well for the two types of testings with small standard deviation values. However the 

exception in case of the damping ratios is the 1st bending mode for burst random testing which 

has a high standard deviation value of 0.116 (Fig. 9b). This is because of the honeycomb 

beam H2, which has a damping ratio of 0.161 % for the 1st bending mode, whereas the 

average damping ratio for the other four beams estimated by burst random testing is 0.389 %. 

This dispersion is not present in case of sine dwell testing, so this result gives us a first 

indication that the sine dwell testing might be better suited for damping estimation.          

 

4.3. Effect of impact damage on modal parameters  

 
The effect of impact damage on the honeycomb sandwich beams is studied with the 

help of modal parameter changes for the first four bending modes as they have the largest 

amplitudes for the type of test configuration presented in this article. The variation of natural 

frequency and damping ratio due to impact damage is studied for the honeycomb beams (H2, 

H3 and H4) with end-masses. Frequency and damping ratios are the global parameters of the 

specimen, and are extracted from high quality measurements carried out on the 33 

measurement points. The modal parameters (natural frequency and damping) help in 

monitoring globally the health of a specimen. For the first four bending modes, the variation 

of damped natural frequency as a function of the undamaged (UD) and the two damage states 
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(D1 and D2) for the honeycomb beams (H2, H3 and H4) for both burst random (BR) and 

sine-dwell (SD) testings is presented in Fig. 10. 

 

As discussed before in section 4.1, that damage in the specimens prompts a decrease in 

natural frequencies. So from Fig. 10, it is clear that the decrease in the natural frequencies for 

the three honeycomb beams is more prominent in case of the beam H4 impacted at 8J. In case 

of natural frequencies, both burst random and sine-dwell testing give similar results. But the 

interesting fact is that, even for beam H2 impacted at 4 J which does not produce a visible 

damage on the surface, the average change in frequency for the first four bending modes 

between the undamaged and the damaged cases is 14 %, which proves that the beam H2 has a 

notable loss of rigidity without any signs of damage on the beam surface. It is particularly in 

these cases that vibration testing becomes a very useful tool for structural health monitoring. 

It is noticed that in case of honeycomb beams H3 and H4 impacted at 6 and 8 J respectively, 

the level of damage is not the same on both sides of the beams as it depends on whether the 

honeycomb cell center or corner is impacted as discussed previously and shown in Fig.5. So 

this asymmetric damage leads to distortion of the resonance peaks or the appearance of twin 

peaks instead of one. This is evident in Fig. 11, which shows a comparison of the sum of the 

frequency response functions (FRF), estimated by burst random testing, for the honeycomb 

sandwich beams (H2, H3 and H4) for the undamaged case (UD), damaged at 2 points (D1) 

and damaged at 4 points (D2) for the 2nd bending mode. The sum of the FRF can be compared 

as for each sandwich beam 33 symmetric measurement points have been chosen that are 

symmetric on both sides of the two major axes of symmetry.  

 

Fig. 11 (a) shows that the resonance peaks for the beam H2 impacted at 4J are pretty 

much intact even for the damaged cases, showing that on the whole the beam is lightly 

damaged. But for the beams H3 and H4, as the damage level increases and with the addition 

of the asymmetric distribution of damage as discussed previously, the shape of peaks becomes 

distorted. This distortion of peaks does not affect the estimation of natural frequencies as 

such, as shown in Fig. 10 i.e., both burst random and sine-dwell testing give similar natural 

frequency results in the presence of damage. However, for the estimation of damping ratios 

for the damage states D1 and D2, there is a notable difference between the results of burst 

random and sine dwell testing as shown in Fig. 12.     

 

 It can be seen in Fig. 12 that in general the damping increases with the increase in 

damage in the sandwich beams. However, in case of burst random testing, for the beam H2 

for the 4th bending mode (Fig. 12d) and for the beam H4 for the 1st bending mode (Fig. 12a) 
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the damping does not increase with damage. However sine dwell testing shows a logical 

increase of damping for these beams. Furthermore, the estimation of damping by sine-dwell 

testing for the damage state (D2) is always notably higher as compared to burst random 

testing with the exception of the beam H3 for the 1st bending mode. It confirms the fact that 

sine dwell testing is more capable of detecting non linear structural dynamic behavior (due to 

accumulation of high damage as in state D2) unlike the broadband excitations [13].  
 
4.4. Effect of core-only damage on modal parameters  

 

 As discussed previously, in case of the honeycomb beams (H5) and (H6), 

approximately 5 mm and 10 mm diameter holes are pierced all along the width at the same 

positions as the impact points. The aim of inducing core-only damage is to see that whether 

this type of damage induces the same effect on the modal parameters as the impact damage. 

The effect of core-only damage on the natural frequency and damping is studied similarly as 

the impact damage and is shown in Fig. 13 and Fig. 14.   

 

Fig.13 shows that the core-only damage induces a smaller change in natural 

frequencies as compared to the impact damage. The change in frequencies between the 

damaged states and the undamaged state is below 7 % for both the honeycomb beams H5 and 

H6 as shown by the frequency change ratios in Table 5. Both burst random and sine-dwell 

testing give relatively similar results for natural frequencies with the exception of beam H5 

for the 4th bending mode. It is interesting to note that there is no remarkable change in 

damping ratios for the beams H5 and H6 in the presence of core-only damage, with the 

exception of the damping for the 1st bending mode estimated by burst random testing for both 

beams H5 and H6. Whether the damping increases or decreases with damage, the change in 

damping ratio is generally very small between the undamaged (UD) and the damaged cases 

(D1 and D2). So it can be concluded that the core-only damage does not reduce much the 

stiffness of the honeycomb sandwich beams as compared to the impact damage. As the 

change in modal parameters is slight for the core-only damage, so it shall be more difficult to 

carryout core-only damage detection with the help of modal parameter changes.      

 

The effect of impact and core-only damage on the frequencies and damping ratios can 

be further elaborated by studying the frequency and the damping change ratios between the 

undamaged (UD) and the damaged cases (D1 and D2) for the impact damaged beams H3 and 

H4 and for the core-only damaged beams H5 and H6 in Tables 5 and 6. Same procedure as 

explained in section 4.2 is followed. It can be clearly seen that the change in modal 

parameters is by far more prominent in case of the impact damaged beams (H3 and H4). 
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Furthermore, the results in Tables 5 and 6 underline the fact that the damping change ratios 

are more prominent than the frequency change ratios. The maximum damping change ratio is 

968 % whereas the maximum frequency change ratio is 38 %. As discussed previously, the 

damping change ratio estimated by sine-dwell testing is higher as compared to burst random 

testing. It can be concluded from the above results that damping seems more sensitive to 

damage than the natural frequency variations in case of honeycomb sandwich beams. So it is 

reasonable to assume that damping may be used instead of natural frequency as a damage 

indicator tool for structural health monitoring purposes. However, the fact that damping is a 

parameter that is relatively difficult to estimate as compared to natural frequency has to be 

taken into account [46].  

 

4.5. Effect of sine-dwell frequency direction on modal parameters  

 

 The aim of carrying out sine dwell testing in both up and down frequency directions is 

to be able to detect structural non-linearities in the damaged honeycomb beams. In literature it 

has been shown that frequency response functions (FRF) vary for the different sweep 

directions [13].  In this article, the effect of sweep directions is studied only for the beams 

with the highest level of damage i.e., impact damaged beams H3 and H4 for the damage state 

(D2) as presented in Table 7.  

 

Table 7 shows the presence of nonlinear behavior in the honeycombs beams H3 and H4, as 

the natural frequencies and damping ratios show a slight discrepancy when tested in the 

increasing and decreasing frequency order. This is also shown graphically in Fig. 15 by 

plotting the frequency response functions from sine-dwell sweeps upwards and downwards in 

frequency. It is observed that in the presence of non-linearity, there is always a change in 

amplitude coupled with a slight shift in frequencies.     

 

5. Design of Experiments (DOE) 
 

Design of experiments (DOE) is a powerful analysis tool for highlighting the influence 

of key parameters that affect an experimental process and the output of that process [45]. This 

study is carried out on the modal parameters (natural frequency and damping ratio) of the 

three impact damaged sandwich beams with end-masses (H2, H3 and H4) tested by both burst 

random and sine-dwell testing. The aim is to find out that which testing method gives a more 

logical estimation of damping in the presence of damage i.e., damping increases with the 

increase of damage in the specimen [42]. The design of experiments shall also help us identify 



the factors which have the most significant effect on the experimentally obtained modal 

parameters.  

 

The two factors chosen for the design of experiments are the energy of impact (IE) 

and the density of damage (DD). For the energy of impact there are three levels (4, 6 and 8J) 

and for the density of damage there are also three levels (the undamaged state (UD), damage 

at 2 impact points (D1) and damage at 4 impact point (D2)). By keeping in view the levels of 

the two factors, a full factorial design is chosen. The linear regression model associated with 

the full factorial design, based on the two variables discussed above is expressed as follows:  

 

  (7) oY a a .(I E) a .(DD) a .(IE).(DD) E= + + + +1 2 3

 
In Eq. 7, coefficients represent model constants (ai) that are the contribution of 

independent variables on the response. E is the random error term representing the effects of 

uncontrolled variables, i.e., not included in the model. The model constants (ai) are 

determined by multi-linear regression analysis and are assumed to be normally distributed. 

The error is assumed to be random and normally distributed. These constants (ai) are obtained 

with 90% confidence level. The significance of each variable on a given response (modal 

parameters in our case) is investigated using t test values based on Student’s distribution. The 

t ratio is the ratio of the parameter estimate (constants) to its standard deviation. A t ratio 

greater than 2 in absolute value is a common rule of thumb for judging significance of the 

variable. The derived constants (ai) and t ratios for the natural frequencies and the damping 

ratios estimated by burst random testing are presented in Tables 8 and 9. Negative values of 

the model constants and t ratios indicate that the response decreases with the increase in the 

value of the parameter. In our case, this is most of the times true for the natural frequencies as 

they decrease with the increase in damage in the specimens.  

 

By comparing the t ratios for the energy of impact (IE) and the density of damage 

(DD) in Tables 8 and 9, it can be seen that the density of damage (DD) has a more significant 

effect on the modal parameters than the impact energy (IE)  for the first four bending modes. 

The second order interaction term (IE x DD) is more significant in case of the natural 

frequencies as compared to the damping ratios. Similar results are observed in case of sine-

dwell testing. The design of experiment results based on the modal parameters estimated by 

sine-dwell testing are laid out in Tables 10 and 11.  
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Sine-dwell testing also proves the significance of density of damage (DD) as the 

parameter that has the most significant effect on the results. If the t ratios for the damping 
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ratios estimated by burst random and sine-dwell testing are compared in Tables 9 and 11, it 

can be seen that the two factors (IE and DD) have higher t ratios in case of the damping ratios 

estimated by sine-dwell testing. So it can be concluded that sine-dwell testing gives more 

reliable estimation of damping in the presence of damage as compared to burst random 

testing. Although the main disadvantage of sine-dwell testing is the lengthy acquisition times 

as compared to broadband excitations, but if quality damping estimations are required then 

sine-dwell excitation based vibration testing becomes indispensable.  

   

6. Conclusion 
 

 Vibration tests have been carried out on pristine and damaged honeycomb sandwich 

beams using burst random and sine dwell excitations in order to compare that which testing 

method gives a more logical estimation of damping in the presence of damage, because 

damping is much harder to estimate as compared to natural frequency. Vibration tests are 

carried out by placing steel masses at the two ends of the sandwich beams in order to enhance 

the shift between the modal parameters between the undamaged and the damaged cases. The 

six sandwich beams tested in this article are damaged in two different ways. The first four are 

damaged by drop weight impacts around the barely visible impact damage limit (BVID), in 

order to simulate damage by foreign impact objects such as stones or birds. The other two are 

damaged by piercing a hole all along the width in the honeycomb core by a hand drill (core-

only damage), simulating mishandling during assembly and maintenance. Results show that 

with the accumulation of damage in the specimens, there is a decrease in natural frequency 

accompanied by an increase in damping ratio. The impact of core-only damage seems feeble 

on the modal parameters as compared to impact damage. Furthermore, damping seems to be 

more sensitive to damage than the natural frequency. So it is reasonable to assume that 

damping may be used instead of natural frequency as a damage indicator tool for structural 

health monitoring purposes. Presence of non-linearity in the impacted sandwich beams is 

proved by carrying out sine-dwell testing upwards and downwards in frequency. It is 

observed that in the presence of non-linearity, there is always a change in amplitude coupled 

with a slight shift in frequencies in the FRFs. Design of experiments carried out on the 

extracted modal parameters show highlighted density of damage as the factor having the most 

significant effect on the modal parameters, and prove that sine-dwell excitation based modal 

testing gives more reliable estimation of damping in the presence of damage as compared to 

burst random testing.  In future similar vibration tests shall be carried out with different 

excitation levels and asymmetric impacts in order to study their effects on modal parameters.  
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Nomenclature 
 
 

BR = Burst random testing 

SD = Sine-dwell testing 

UD = undamaged state 

D1 = damaged state at 2 points 

D2 = damaged state at 4 points 

FRF = Frequency Response Function 

H(ω) = Frequency Response Function matrix  

j = Imaginary axis in the complex plane 

* = Complex conjugate 

ω(k) = Modal damped frequency for kth mode (rad/s) 

p(k) = Pole location for the kth mode 

R(k) = Residue magnitude (FRF/s) 

σ (k) = Modal damping for kth mode 

ωn = Undamped natural frequency (rad/s) 

ωd = Damped natural frequency (rad/s) 

C = Structural damping matrix (force/velocity) 

K = Stiffness matrix (force/displacement) 

M = Mass matrix  

fk = Resonance frequency (Hz) for the kth mode 

ζ k = Damping ratio (%) for the kth mode 
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