
HAL Id: hal-01852236
https://hal.science/hal-01852236

Submitted on 1 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damage localization using experimental modal
parameters and topology optimization

Hanno Niemann, Joseph Morlier, Amir Shahdin, Yves Gourinat

To cite this version:
Hanno Niemann, Joseph Morlier, Amir Shahdin, Yves Gourinat. Damage localization using exper-
imental modal parameters and topology optimization. Mechanical Systems and Signal Processing,
2010, 24 (3), pp.636-652. �10.1016/j.ymssp.2009.10.022�. �hal-01852236�

https://hal.science/hal-01852236
https://hal.archives-ouvertes.fr


 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author deposited version published in: http://oatao.univ-toulouse.fr/  
Eprints ID: 3244 

To link to this article: DOI:10.1016/j.ymssp.2009.10.022 
URL: http://dx.doi.org/ 10.1016/j.ymssp.2009.10.022 
 

To cite this document: NIEMANN, Hanno, MORLIER, Joseph, SHAHDIN, Amir, 
GOURINAT, Yves. Damage localization using experimental modal parameters and topology 
optimization. In : Mechanical systems and signal processing, 2010, vol. 24, n°3, pp. 636-652. 
ISSN 0888-3270 

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@inp-toulouse.fr 
 

mailto:staff-oatao@inp-toulouse.fr
http://oatao.univ-toulouse.fr/


Damage Localization using Experimental Modal Parameters and
Topology Optimization

Hanno Niemanna, Joseph Morlier∗,a, Amir Shahdina, Yves Gourinata

aUniversité de Toulouse, Institut Supérieur de l’Aéronatique et de l’Espace, Departement Mécanique des Structures et
Matériaux
BP 54032

10, Ave. Edouard Belin, 31055 Toulouse Cedex 4

Abstract

This work focuses on the developement of a damage detection and localization tool using the
Topology Optimization feature of MSC.Nastran. This approach is based on the correlation of
a local stiffness loss and the change in modal parameters due to damages in structures. The
loss in stiffness is accounted by the Topology Optimization approach for updating undamaged
numerical models towards similar models with embedded damages. Hereby, only a mass penal-
ization and the changes in experimentally obtained modal parameters are used as objectives. The
theoretical background for the implementation of this method is derived and programmed in a
Nastran input file and the general feasibility of the approach is validated numerically, as well as
experimentally by updating a model of an experimentally tested composite laminate specimen.
The damages have been introduced to the specimen by controlled low energy impacts and high
quality vibration tests have been conducted on the specimen for different levels of damage. These
supervised experiments allow to test the numerical diagnosis tool by comparing the result with
both NDT technics and results of previous works (concerning shifts in modal parameters due to
damage). Good results have finally been archieved for the localization of the damages by the
Topology Optimization.

1. Introduction

In recent years the use of fibre composite materials in aeronautical structures has vastly in-
creased. Due to their superior characteristics, concidering e.g. the specific tensile strength,
composites are used for a variety of lightweight structures, recently even for pressurized airplane
fuselages [1]. Unfortunately, composite structures show a very complex mechanical behavior
concerning dynamic loads and a variety of damage mechanisms, that are hard to classify and
to predict. Some of these damages are fibre or matrix cracking, fibre matrix debonding and ply
delaminations [2].

Composite laminates are susceptible to damages from a wide variety of sources which in-
clude fabrication stress, environmental cyclic loading and foreign object impact damage [3]-[5],
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and which may lead to severe degradation of the mechanical behavior due to the loss of structural
integrity. Therefore, it is even more important to understand the creation and evolution of dam-
ages in composites (damage detection), to identify affected regions (damage localization) and to
evaluate their influence on the structure as a whole (damage classification and quantification).
These steps are the cornerstones of structural health monitoring (SHM) [6]-[8].

In recent years, structural health monitoring using vibration based methods has been rapidly
expanding and has shown to be a feasible approach for detecting and locating damage. A detailed
and comprehensive overview on the vibration based techniques has been presented in references
[7]-[11].

The basic principle of vibration based damage detection can be explained as follows. Any
structure can be considered as a dynamic system with stiffness, mass and damping. Once some
damages emerge in the structures, the structural parameters will change, and the frequency re-
sponse functions and modal parameters of the structural system will also change. This change
of modal parameters can be taken as the signal of early damage occurrence in the structural sys-
tem. Vibration-based structural damage detection refers in this context to detection methods for
structural damage using only the structural characteristics, such as natural frequencies, modal
damping, mode shapes, etc. Structures can be excited by ambient energy, an external shaker or
embedded actuators. Accelerometers and laser vibrometers can be used to monitor the structural
dynamic responses. A variety of broadband excitation signals have been developed for perform-
ing shaker measurements with FFT analyzers, e.g. burst random, burst chirp, etc.. Since the
FFT provides a spectrum over a band of frequencies, using a such an excitation signal makes the
sprectral measurements much faster than using sine dwell or swept sine excitations [12].

Change in natural frequencies is the most common parameter used in the identification of
damaged regions [5],[13]-[17]. Various such methods that use natural frequency information are
reported by Salawu [18]. The advantage of using the change of structural natural frequencies
to detect damage is its convenient measurement and high accuracy. However the measurement
of natural frequencies may not provide enough information for structural damage detection to
relate the changes to a correct damage location. Furthermore, natural frequencies are often not
sensitive enough to initial damage in structures. Therefore, other damage indicators should also
be considered in the damage localization process, like damping or anti-resonances [19].

As listed in [7], several authors have already worked on the idea to correlate damages with
a degradation of structural stiffness and/or mass in numerical simulations, which consequently
changes the dynamic properties of the numerical model. Adapting this idea, a new approach,
using Topology Optimization design variables for localizing damages, has been published [20].
The key of this approach is that, due to the character of Topology Optimization, a search for
defects is performed globally over the entire structure, which distinguishes this method from
earlier proposed methods and offers interesting prospects.

The original goal of Topology Optimization was to find, within a defined discretized solu-
tion domain, a structure of minimal compliance (highest rigidity) by connecting and seperating
trusses or insertion and removal of holes in the structure, meaningly by changing the topology.
This approach had first been proposed in [21] based on a homogenization of microstructural el-
ements with rectangular holes whose size are defined by the design variable. The dimensions of
the holes could vary from 1 (void) to 0 (solid), normalized to the element’s size, and also from
element to element. By homogenization of the discrete elements, the composite microstructure
could be transformed in an equivalent homogeneous material. Since this method had shown to
be rather cumbersome and to deliver hazy results for the optimized structure, a slightly different
approach has been presented in [22], which is often referred to as the Power Law approach. Here,
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the design variables are assumed to be an additional element property that can be understood as a
relative density of the element. By reducing the stiffness and mass of certain elements with their
newly assigned density fraction property, a local change of structural stiffness and mass can be
obtained.

Concerning the damage localization approach, this Topology Optimization variable is now
applied to the design domain of a Finite Element model that is based on the undamaged structure.
By optimizing the system’s stiffness and mass matrix towards those of the damaged structure
by matching modal parameters, the correct location and geometry should then theoretically be
found in terms of elements with a lower density. In this case, the localization of damage is
done by estimating the most probable equivalent damage (local loss of rigidity) which leads
to a minimization of the norm between the baseline (undamaged) FRF and experimental FRFs
of different damage states. This is the principle idea behind the set up topology optimization
formulation for damage localization described in the mentioned article in ref. [20].

In the here presented work, this previous method is implemented in a widely-used commer-
cial code (MSC.Nastran), adding important preliminary tests by computing different Objective
functions for fractional mass penalization and validating the results with experimental tests on
composites. Thus, from the numerical methodology in [20], we propose a direct application
to replace NDE with damage localization by topology optimization with codes, validations and
results.

More precisely, in the cited work, the design responses have obviously been calculated using
a commercial finite element solver, whereas the topology optimization is performed indepen-
dently for each iteration loop. The here presented damage localization approach is translated
into a Nastran input file, since MSC.Nastran is already equipped with a topology optimization
routine as well, which is a supposingly more advanced and more reliant considering the opti-
mization results.

Finally, an experimental validation of the damage localization approach is also tried out on
a CFRP specimen by localizing barely visible damage due to low-energy impacts which is an
important topic in SHM. At the moment, the diagnostic approach is however still limited on
homogeneous isotropic materials due to restrictions in Nastran. Therefore it has been tested on
homogenized quasi-isotropic composite beam models. For acquiring the necessary modal data
for the damage localisation, vibration tests have been performed on such composite beams. The
results offer interesting perspectives considering the damage detection in composite materials
and the ultimate goal would be the development of an automatic diagnosis tool as a mean of
SHM using only experimental modal data.

2. Numerical Estimation of Modal Parameters

2.1. Mechanical Background

In this section, the theoretical background for the numerical approach used in this work is
briefly presented. Basic equations for modal analysis and the calculation of frequency response
functions for a discretized system are given. Also, the optimization problems statement for the
presented damage localization method is developed.

Eq. 1 shows the set of equations of motion in matrix notation for a random discretized
structure. Hereby, the system is considered to be discretized by Finite Elements and M, C and
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K are the system’s mass, damping and stiffness matrices, respectively. The vector ( f ) is a time-
dependent load vector.

Mü + Cu̇ + Ku = f(t) (1)

The analyses consist of the two principal steps, which are displayed in fig. 1. A modal anal-
ysis is performed to determine the principal dynamic characteristics of the system, like natural
frequencies and mode shapes. From these modal parameters the response of the structure to ex-
citation can be calculated. This is similar to solving the homogeneous and particular solution for
the system of differential equations.

Figure 1: Principal steps of dynamic analyses for structural systems, where x is the displacement
vector as a response to the excitation force vector f. H is the matrix of frequency response
functions, where Ω is the excitation frequency

2.2. Modal Analysis
For calculating the natural frequencies, the system is considered to vibrate harmonically,

damping and external forces are neglected. By replacing the displacement vector and its deriva-
tive by a sinusoidal solution function, the general eigenvalue problem can be formulated (eq.
2). (

K − ω2M
)

u0 = 0 (2)

Assuming the existence of the vector u0, meaningly a non-trivial solution of this set of equa-
tions, the system’s determinant has to vanish. This leads to the characteristical equation dis-
played in eq. 3.

det (K − λM) = 0 (3)

The solutions of this equation are the n eigenvalues for a system of n degrees of freedom,
where each eigenvalue λi corresponds to a natural angular frequency ωi as stated in eq. 4.

λi = ω2
i with i = 1, 2, ..., n (4)
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The amplitude vector corresponding to an eigenvalue is the eigenvector or mode shape vector
ψi. The combinations of natural frequencies and mode shape vectors describe preferred states
of vibration of the structure [23]. For the numerical estimation of the eigenvalues, several algo-
rithms are available, e.g. the Lanczos method [24], which is also available in MSC.Nastran.

2.3. Modal Frequency Response Analysis (Harmonic Analysis)
The cornerstone of modal frequency response analyses is the diagonalization of the system’s

matrices by a modal transformation. In a seperation approach the primary variables are replaced
by a linear combination of the so-called modal coordinates and the mode shape vectors, as shown
in eq. 5, where Ψ is the modal matrix and q is the vector of modal coordinates.

u(t) = ψ1q1(t) + ψ2q2(t) + ... + ψnqn(t) = Ψq(t) (5)

Due to the orthogonality properties of the mode shape vectors, inserting the approach into
eq. 1 and premultiplying the equation by ΨT leads to eq. 6, which are the decoupled equations
of motion for the analyzed system. For diagonalizing the damping matrix by the mode shapes
vectors from the modal analysis, a proportional damping approach [23] has to be assumed.

ΨT MΨq̈(t) +ΨT CΨq̇(t) +ΨT KΨq(t) = ΨT f(t) (6)

The system now consists of n equations of motion for single degree of freedom oscillators in
form of eq. 7, where mi is the modal mass, ci a modal damping coefficient, ki the modal stiffness
and pi a modal force.

miq̈i(t) + ciq̇i(t) + kiqi(t) = pi(t) with pi(t) = ψT
i f (7)

The equation can be normalized by the modal mass, so that the coefficients are expressed in
terms of natural angular frequencies ωi and modal damping ratios ζi, as they are defined in eq. 8.
This leads to eq. 9.

ω2
i = ki/mi and ζi =

1
2

ci
√

kimi
(8)

q̈i(t) + 2ζiωiq̇i(t) + ω2
i qi(t) =

pi(t)
mi

(9)

Eq. 9 is an ordinary differential equation of second order that has the solution stated in eq.
10 which can be derived by a complex approach where Ω is the excitation frequency. Here,
the variable q has already been transformed in the frequency domain which is noted by the
circumflex.

q̂i(Ω) =
1

ω2
i −Ω2 + 2 jζiωiΩ

·
p̂i

mi
(10)

From here the matrix of frequency response functions (FRFs) can easily be derived, since the
frequency response functions are defined as the displacement response functions multiplied by
the inverse of the excitation force vector (eq. 11).

H(Ω) = û(Ω)f̂−1(Ω) =

n∑
i=1

ψiq̂i(Ω)f̂−1(Ω) =

n∑
i=1

ψi
1

ω2
i −Ω2 + 2 jζiωiΩ

·
ψT

i

mi
(11)
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For a certain degree of freedom k, the frequency response function due to an excitation force
at the l-th degree of freedom can than be calculated by eq. 12.

Hkl(Ω) =

n∑
i=1

ψikψil

mi

(
ω2

i −Ω2 + 2 jζiωiΩ
) (12)

If the natural frequencies and damping ratios are known, this equation can be evaluated for
discrete excitation frequencies.

3. Experimental Procedures

3.1. Material and Specimens

The goal is to provide the data which is necessary for performing and validating the damage
localization approach presented later. Several specimens have been fabricated and have under-
gone vibration testing in the undamaged and damaged state [13],[14].

Resin-containing carbon-fiber/epoxy prepregs of T300/914 are used to fabricate the test spec-
imens. The material is supplied by Hexcel composites, the physical properties are set out in tab.
1. The specimens are processed in a press. The curing cycle of the laminates is 2h at 180◦C with
a warming-up cycle of 0.5h at 135◦C. The laminates are cut into beams using a diamond wheel
cutter, following the ASTM D3039/D3470 standards. The specimens have a thickness of 3mm
and consist of 24 plies. The lay-up is chosen as such as the delamination is said to have more
profound effects on the dynamic characteristics [25].

Table 1: Properties of pre-impregnated carbon/epoxy T300/914 plies

Property Symbol Value
Young’s modulus in fibre direction E1 122000MPa
Young’s modulus in transverse direction E2 8500MPa
Shear modulus G12 3570MPa
Poisson ratios ν12; ν23; ν31 0.25; 0.3; 0.017
Fibre volume ratio 60%
Density ρ 1550kg/m3

Number of plies 24
Stacking sequence [(0/90/45/ − 45)3]s

The vibration tests are carried out with two steel masses attached at the ends. The aim of
putting these masses at the ends is to enhance the difference in the modal parameters between
the undamaged and the damaged test specimens [26].

3.2. Vibration Tests

The experimental equipment used for vibration testing is shown in fig. 2b. The experimental
set-up is that of a free-free beam excited at its center, based on the Oberst beam method [27].
This method states that a free-free beam excited at its center shows the same dynamical behavior
as that of a half length cantilever beam. The test specimen is placed centered on a B&K force
sensor (type 8200), which is then assembled on a shaker supplied by Prodera, having a maximum
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(a) CFRP laminate specimen (b) Experimental set-up for vibration testing

Figure 2: Specimens for vibration testing (a) and schematics of the used Oberst beam test set-up
(b). Masses were glued to the ends of the specimens to enhance the change in modal parameters
due to damage [26]

force of 100 N. Furthermore, a fixation system is used to connect the test specimens to the force
sensor. This fixation is glued to the test specimen with a HBM X60 rapid adhesive. Using a laser
vibrometer of type OFV-505, provided by Polytec, the response displacements are measured with
high precision and no contact. The shaker, force sensor and the laser vibrometer are manipulated
by a data acquisition system running with LMS.Testlab software. Before testing, small reflecting
stickers were glued to each of the measurement points on the composite specimens to ensure a
good reflection of the vibrometer’s laser beam (fig. 2a).

The center of the test specimens is then excited by a burst random signal. The excitation
point is marked as point 17 in fig. 3. The signal is averaged 10 times for each measurement point
and the chosen frequency band is 0−1600Hz. Hanning windows are used for both the output and
the input signals. The influence of excitation level is checked and a high frequency resolution
(∆ f = 0.25Hz) for precise modal parameter estimation is used. While the level of the excitation
signal is chosen as 1N, the response is measured at 33 points, which are symmetrically spaced
in three rows along the length of the beam. The modal parameters are extracted by frequency
domain parameter estimation methods (Polymax) integrated in the data acquisition system.

The composite beams are analysed in the three different states: An undamaged state (UD), a
first damage state due to four impacts (D1) and a second damage state after eight impacts (D2).
The locations of the impacts are also shown in fig. 3. Vibration tests are carried out at each of
these three states. A simple case is studied where the impact points are chosen as such as the
damage is symmetrical on both sides of the two axes of symmetry

After the estimation of the set of frequency response functions, the modal parameters can
be determined. This is done by decomposing the frequency response functions into the discrete
modes of the system by calculating the poles of the FRF [28]. An enhanced version of this
identification is automatically performed by the LMS.Testlab software by using the PolyMAX
method. Tab. 2 shows the experimentally obtained natural frequencies for a composite beam in
the undamaged state and for the damage states D1 and D2 after impacts with 8J.

Furthermore, fig. 4 shows the experimentally obtained frequency response functions for one
measurement point on the surface of the composite laminate that has been impacted by 8J. A
remarkable shift in resonances due to impact damage damage can be noticed, especially for
higher frequencies.

7



Figure 3: Location of impacts and measurement points on composite beams [13]

Table 2: Estimated resonance frequencies for a composite beam before and after impacting (Im-
pact energy: 8J / PolyMAX method)[13]

Frequencies [Hz]
State 1st bending mode 2nd bending mode 3rd bending mode 4th bending mode

undamaged 35.9 284.2 717.0 1416.8
4 Impacts 36.4 279.2 687.9 1363.3
8 Impacts 36.1 270.8 678.7 1236.5

Figure 4: Frequency response functions for point 2 (cp. fig. 3) for a beam impacted with 8J ob-
tained by vibration testing. This figure qualitatively highlights the shifts in resonance frequencies
from tab. 2
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4. Optimization Problem Formulation for Damage Localization

For formulating general optimization statements suitable for computation, some general def-
initions have to be established. In the beginning, an objective of the optimization has to be
identified as a function of the design variables that are changed in the course of the optimiza-
tion. Since the principle objective of the performed optimizations is the matching of a set of
modal parameters, any kind of matching function (e.g. least square formulations) can be consid-
ered. In the present case, due to the nature of the BigDOT optimization algorithm [29], which is
based on exterior point penalty functions, a pseudo objective function formulation is constructed
where the parameters, which are to be matched, are included as constraints. By the automatic
performance of convergence checks for each of the frequency constraints, the number of consid-
ered design responses is practically dynamically adapted in every optimization cycle, depending
on the fulfillment or non-fulfillment of the constraints. In preliminary tests, this formulation
also generally gave more precise results compared to alternative formulations based on finding a
search direction from minimizing the least square of all responses together, for example.

Such an exemplary pseudo objective function is shown in eq. 13, where f is the original ob-
jective function, and P a penalty function consisting of a set of inequality or equality constraints,
which are g and h, respectively. The parameter rp is a further penalization coefficient that can be
applied to the constraints.

min : Φ(χ) = f (χ) + P(rp,h(χ), g(χ)) (13)

The vector of design variables χ consists of the Topology design variables corresponding
to the Power Law approach [22].These design variables are principally an additional element
property that can be understood as a relative density of each element e as stated in eq. 14.

χe =
ρe

ρ0
subject to 0 ≤ χmin ≤ χ ≤ 1 (14)

Since the variable is normalized by the original densities, it can only assume values between
0 and 1, as stated in the side constraints. Due to numerical reasons, 0 is replaced by a minimum
threshold. This design variable is then multiplied by the corresponding element’s stiffness and
mass and thereby alters the properties of the element (eq. 15).

Ee = χ
p
e E0 and me = χ

q
em0 (15)

The design variable is also penalized, which is supposed to help in getting a clearer solid-void
solution by making intermediate design variables more "costly". The values of the penalization
exponents p and q are problem-dependent, but a penalization factor of about 3 is generally pro-
posed in common literature [30].

In the following, the constraints consisting of modal parameters are defined, where the
primed value (ω) always denotes the reference data of the damaged structure, and the plain
value (ω) corresponds to the current data of the optimized model. Since the goal is to minimize
the difference between these values, a proximity ε is usually defined. The first set of constraint
equations gω requires the nω chosen angular resonance frequencies to be within the proximity εω
of corresponding resonance frequencies of the damaged structure (eq. 16).

gωi =
(
ω2

i − ω
2
i

)2
< εω for i = 1, 2, ..., nω (16)
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This formulation has a global character, since the resonant frequencies are global parameters
for the structure. In [20], it is shown that local modal data is necessary for archieving better
results, which is why the use of anti-resonances is proposed. Whereas resonances can be found
at the peaks of the frequency response functions, their local minima are called anti-resonances
(fig. 5). These minima result from the additional contribution of two neighboring modes with a
180 degree phase shift [31]. Anti-resonances are unique for any point on the structure and are
therefore considered as local data. The squares of the natural angular frequencies are used for a
closer correspondance with the governing equations of this subproblem, namely the undamped
system’s equations of motion in eq. (2).

Figure 5: Resonances and anti-resonances in frequency response functions

Due to limitations in Nastran, anti-resonances cannot be directly considered as constraints,
but nodal frequency response functions, so that anti-resonances can still be included in the op-
timization by evaluating the FRFs at the corresponding frequency. Thus, the second used set
of constraint equations (gH) requires that the magnitude value of the nodal FRF (FRF of an FE
node) at a certain excitation frequency Ω j is within the proximity of that of the damaged struc-
ture at the same frequency (17). As before, the constraints are formulated based on the governing
equations in eq. (11). It has however to be noted that the frequency response functions have to
be transformed in polar form and only the magnitude is yet used as a constraint.

gH
j =

(
|Hkl(Ω j)| − |Hkl(Ω j)|

)2
< εH for j = 1, 2, ..., nH (17)

Since preliminary simulations with the programmed input file delivered unsatisfying results,
a further penalization function is implemented as an additional objective in the optimization. As
in these first tests not only the density of the elements in the anticipated region was reduced, but
the density of random elements all over the structure, which then led to a unreasonable reduction
in global structural mass, the additional function had the objective to penalize the structural mass
and thereby guide the optimization towards anticipated results. Furthermore, since the fibre
composites do not actually lose mass due to the impacts, it is desired to keep the structural mass
close to the original mass, for example. Still, the mass penalization has to be adjusted to the
given damage type or material, as shown in the paragraphs dealing with the actual case studies.
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Since the design variables are the elements’ fractional densities, it is more practical to use
also fractional masses for the objective functions, as defined in eq. 18, where m0 is the mass
when the design variables is 1 (solid).

m f ractional =

ne∑ me

m0
(18)

Here, ne is the number of elements in the design domain. Due to the constant design volume,
this fractional mass is equal to the sum of all fractional densities as shown in eq. 19. Several
objective functions have been tested, which are laid out in tab. 3.

m f ractional =

ne∑ V0ρe

V0ρ0
=

ne∑
χe (19)

Table 3: Objective functions for fractional mass penalization

Number Function Derivative
(1) L = m f rac(1 − m f rac) L′ = 1 − 2m f rac

(2) L = |1 − m f rac| L′ = −1 for m f rac < 1
(3) L = (1 − m f rac)2 L′ = −1 + 2m f rac

In fig. 6 it can then be seen that all functions show a relative minimum at the right end of
the domain where all fractional densities are 1, but they possess different derivatives, which are
important for the sensitivity analysis and basically characterize the penalization. The derivative
of function (2) is constant over the whole domain ([0;1]), the derivatives of the other functions
are variable with the fractional mass. Whereas the derivative value of function (1) approaches
the value of the derivative of function (2) close to the right boarder, the derivative of function
(3) approaches zero. Therefore, similar results have been obtained using functions (1) and (2)
during the simulations. Also, they generally gave better results than function (3).

4.1. Sensitivity Analysis

Since mathematical programming methods usually involve the calculation of gradients of the
objectives for the sensitivity analysis, the derivatives of the constraints with respect to the design
variables are presented in this section. Eq. 20 gives the gradients of the resonance frequencies
that can be derived from eq. 2 in the frequency domain form as shown in reference [30], where
ψie and ψ je are the components of the eigenvectors with respect to the nodal degrees of freedom
of the element e.

∂ω2
i

∂χe
= ψT

ie

(
∂Ee

∂χe
− ω2

i
∂Me

∂χe

)
ψ je (20)

The partial derivatives of the frequency response functions have been derived in [32]. Based
on eq. 11, the frequency response function can be written as eq. 21.

H(Ω) = Ψq̂(Ω)f̂−1(Ω) (21)
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Figure 6: Objective functions for fractional mass penalization (see. tab. 3. Each function posses
a relative minimum at m f rac = 1, that helps to keep the optimization close to the original model

Then, the gradients of the frequency response functions with respect to the element density
fraction χe are calculated as in eq. 22.

∂H(Ω)
∂χe

= ΨSq̂(Ω)f̂−1(Ω) (22)

Here, S is the sensitivity matrix as defined in eq. 23, where ωi is the ith natural frequency
and ζi the corresponding damping ratio. As before, Ω is the exciting frequency.

S i j =
−1

ω2
i −Ω2 + i2ζiωiΩ

ψT
ie

(
∂Ee

∂χe
−Ω2 ∂Me

∂χe

)
ψ je (23)

In both cases the gradients of the stiffness and mass matrices can be calculated as in eq. 24.
These calculations are principally performed in an enhanced form in Nastran.

∂Ke

∂χe
=

∫
Ve

(DN)T ∂Ee

∂χe
DNdV

∂Me

∂χe
=

∫
Ve

NT ∂ρe

∂χe
NdV (24)

4.2. Set-up of Topology Optimization Formulation for Damage Localization in Nastran

This section presents the Nastran input file parameters for the damage localization approach.
The models that are used for a numerical validation of this method, as well as the modeling of the
specimens described in the previous sections are also explained. The latter models are supposed
for an experimental validation of the damage localization method.

MD Nastran seemed therefore suitable for an implementation of the localization approach
by Lee et al. [20], as with the release of the version MSC Nastran 2005 r2, the embedded
optimization libraries were enhanced by a topology optimization capability and the introduction
of the BIGDOT optimizer. Especially this new optimization library provided the capability to
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deliver practical results dealing with the large amount of design variables that are common in
topology optimization. Thus, only Nastran was available for an "all at once" implementation of
the described method combined with low calculation time.

For the optimization of the structure, several new cards have to be added to the input file. At
first, the design variable has to be defined. In the case of topology optimization, this is explicitly
done by the card TOPVAR. The structure of this card is exemplary shown in tab. 4 with the
corresponding symbols from section 4.

Table 4: Definition of Topoloy Optimization variable in Nastran

Command ID Label Type of property χ0 χmin ∆χ p Property ID
TOPVAR 1 DREGION PSHELL 0.99 0.0001 0.2 3 4

Here, type of property characterizes the elements, that are included in the optimization, con-
cerning their deformation behavior. This definition has to be in accordance with the elements of
the defined design region, which is called by the Property ID that has been assigned prior to the
corresponding elements.

Then, the chosen modal parameters of the structure that build up the constraints and objec-
tives have to be included in the calculations. In Nastran, these parameters are referred to design
responses and they are accessed by the DRESPi entries. For each desired structural response,
such a DRESPi entry has to be defined, where the index i denotes the type of design response
formulation.

The design responses can then be constrained by referencing the corresponding DRESPi entry
in a DCONSTR command and by defining the boundaries there. All the responses and constraints
can be called, either by themselves or as a linear combination, by the global objective function
(DESOBJ) or the global constraint command DESGLB in the case control section, or, as subcase
dependent constraints, by a DESSUB command for each subcase. Figure 7 shows how responses,
constraint and objectives can principally be connected. More precise definitions of each of the
commands are given in [33] and [34].

In each optimization cycle, two subcases have to be evaluated: the modal analysis and the
modal frequency response analysis. Each subcase thereby calls its own set of design constraints
via the DESSUB command. An exemplary input file can be found in the appendix A, where the
design constraints and corresponding design responses, like the model itself, are sourced out into
external files to keep input file mostly model-independent.

4.3. Numerical Modeling

Several numerical models are proposed to test the feasability of the described damage local-
ization method. These models basically consist of two types of specimens, a simple cantilever
beam with isotropic material properties for numerical validation and the model of the composite
beam for experimental validation.

The procedure for numerical validation is to create an undamaged Finite Element model,
copy it and modify the copy by deleting elements at certain points of geometry. This way,
a local loss of stiffness can be generated due to the deletion of elements. Modal frequency
response analyses are then performed on this template model to obtain the modal parameters
of the undamaged and the damaged case. Hereby, the damage localization can be tested on
numerical models that lack an experimental base but show sufficient validity for amelioration of
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Figure 7: Construction of objective functions and global or subcase design constraints in Nastran
input files.

the method prior to the performance of experiments. This process has also been performed in the
article by Lee et al. [20].

A cantilever beam test model with homogeneous isotropic material properties is shown in fig.
8a, which was meshed with iso-parametric membrane-bending shell elements. This figure also
shows the applied constraints and load. On the free end of the beam a nodal frequency-dependent
excitation force with constant amplitude was applied.

(a) Finite element model of a cantilever beam
with applied forces and constraints that has been
used as the initial design for preliminary tests of
the damage localization method.

(b) Finite element model for analysed compos-
ite beams. The point used for comparison of fre-
quency response functions is marked.

Figure 8

The experimentally tested beams have also been modeled by shell elements. Due to the
symmetry of the beams and the vibration test setup, it was sufficient to model only a half beam
with the corresponding boundary constraints at the intersection of the the two halves [27]. For
the nodes at this intersection the displacements in direction of the excitation force were allowed,
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whereas all other degrees of freedom had to be constrained. Furthermore, the connecting piece
and the end masses that were glued to the specimens for the vibrations tests had to be explicitely
modelled by three-dimensional solid elements. A distributed load with a combined amplitude of
1N has been applied to the bottom of the connecting piece to simulate the excitation force of the
shaker pot.

Since, at the moment, the topology optimization feature in Nastran is still limited to isotropic
materials only, the application of the code is also limited to thin quasi-isotropic laminates, for
which a plane stress state assumption can be made. Mean stiffnesses can then be calculated
based on the laminate theory [1], reducing whole laminate to a two-dimensional shell. Using
material properties calculated from such a homogenization of the laminate, the composite beams
can be modeled by membrane-bending shell elements as shown in fig. 8b. As mentioned before,
damping is not considered in the updating process, since there is no response for damping values
implemented in the optmizition module of Nastran. Therefore, a low constant modal damping
value of 0,3% has been chosen.

Still, the simple model suceeded to reproduce the dynamic response sufficiently accurate
for the present case, since the experimental measured FRF for a randomly chosen point on the
surface of the beam fits well with the numerical calculated FRF of the corresponding node (fig.
9).

Figure 9: Experimental and numerical estimated frequency response functions of the composite
beams for the point marked in fig. 8b.

5. Results and Discussion

5.1. Numerical Validation on Models with isotropic Material Properties
The Nastran input file has then been applied to the described models. Figure 10 shows such

an obtained simulation result in terms of the optimized density distribution. Here, the first ten
natural frequencies and the resonance and anti-resonance peaks of the FRF at the excitation point
in a bandwith from 0 to 500Hz were used as matching data. Hereby, the optimization responses
were desired to be within a randomly chosen proximity of 5% (ε < 0.05) of the target value and
the penalization mass was set 97.5%, which is the actual fraction of the number of elements of
the damaged to the undamaged structure (ten elements of a total of 400 elements were deleted
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for creating the cut out in the damaged template model 10). Although, this test case is based only
on numerical models, where the location of damage and the loss in mass was known in advance,
the approach can be considered as reproducible with physical specimen. Since, in the actual case
of a loss of mass due to impacts in physical specimen, the mass target fraction can be determined
by weighing the undamaged and damaged structure. If no difference in mass can be measured,
the mass target has simply to be set almost equal to 100%, as it is done with the later presented
composite beam.

The density distribution resulting form the optimisation (fig. 10a) is then in quite good con-
cordance with the goal geometry (fig. 10b), since the brighter regions are regions of lower
densities that are supposed to represent the damages.

(a)

(b)

Figure 10: Results of Topology Optimization on a two-dimensional isotropic model: (a) Result-
ing density distribution; (b) target model with a cutout.

These result have also been processed by the imhmax-function that is available in Matlab and
presented in reference [35]. This function supresses all maxima in the intensity image whose
heights are less than a threshold, which leads to an even better estimation of damage locations
by thresholding the resulting density distribution and supressing false negative damaged regions.
The results of the image processing are shown in fig. 11b.

(a) Original results (cp. fig. 10a)

(b) Processed images

Figure 11: Results of Topology Optimization on a two-dimensional isotropic model after pro-
cessing with the imhmax-function provided in Matlab [35]. This function supresses false damage
regions and leads a better estimation for damaged regions (fig. 11b)

Furthermore, the frequency response functions and the natural frequencies of the analyzed
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model and the target model match very well, as displayed in fig. 12 and tab. 5.

Figure 12: Frequency response functions at the excitation node for the damaged (target) model
and the optimization model before and after optimization

Table 5: Natural frequencies of the 2D isotropic test beam with a cutout and the model with
optimized density distribution

Natural Frequencies / Hz
Mode Target model Optimized model
1 16 16
2 94 94
3 238 238
4 256 254
5 257 256
6 513 516

However, the calculation on isotropic materials is performed only for a reproduction of simi-
lar results as in [20] and validation of the method’s adaption in Nastran. Hereby, the application
of this method to localize such evident damage as the cutout in the aluminium beam is not really
reasonable, but it becomes all the more interesting when used for localizing non-evident damage
in composite beams, as presented in the next sections.

5.2. Experimental Validation on composite beams

The optimization algorithm has then been tried out on the models of the composite speci-
mens. Here, the data used for constraints were the natural frequencies and FRFs that had been
obtained by the vibration tests of the damaged specimens (cp. tab. 2 and fig. 4). Since no actual
cutout was present, that would justify a penalization mass target as in the numerical validation,
the mass target was set to 99%. In the case of the damaged composite specimen, it is reasonable
to keep the mass as close the original mass as possible. However, a slight reduction in mass has
to be included, allowing some changes in element density and the most suitable mass target value
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has yet to be determined depending on the problem, which is a limitation of the method at the
moment.

In the following, some Topology Optimization results are presented for the modal parameters
of the beam that was impacted with an energy of 8J. Thereby, two sets of damage state modal
parameter data existed for the beams (D1 and D2). Thus, topology optimization was performed
with the goal to either localize the first four impact sites or all eight. It has to be reminded, that
the beams were considered to be symmetrical, thus each side of the beam has undergone two and
four impacts, respectively. The results for the both cases using only resonance frequencies as
constraints are shown in fig. 13 and 14 with the corresponding ultra-sound scan.

Figure 13: Comparison between C-SCAN results (top) and Damage Localization by TO (bottom)
for the damage state D1 - The two middle points are blackened as they correspond to the damage
state D2. The applied algorithm is able to easily detect this kind of damage (2 isolated impacts)
with high accuracy.

For the first two impacts the right locations have effectively been found with similar sizes
as in ultra-sonic images that have been produced after vibration testing (fig. 14; the outer two
impact damage sites have been introduced at first (D1), the two inner impacts later (D2, see fig.
3); ultra-sonic testing could only be performed after all other testing had been completed.)

For the more damaged beam with four impact sites only a rather uncertain region of damaged
material with lower densities could be located (fig. 14), but not the discrete impact points as
shown in the ultra-sound picture, since the damage is very closely spaced and is difficult to
differenciate. However, the displayed region of lower densities is still close to a damage region
geometry if the delamination regions due to the impacts, that are shown in the ultra-sound image,
were merged. Still, for both cases, the FRFs and resonance frequencies show a relatively good
match with the damaged cases (fig. 15 and tab. 6).

From the obtained results it can be concluded that their quality depended vastly on the choice
of the optimization parameters. These optimization sensitive parameters can be divided in two
principle groups. The first on consist of the parameters related to the optimization process,
i.e. penalization exponents and objective functions, and the other depends on the set of chosen
constraints and quality of the experimental results.

This choice of design constraints is not very intuitive. Since higher resonance frequencies
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Figure 14: Comparison between C-SCAN results (top) and Damage Localization by TO (bottom)
for damage state D2. The developed method highlights here a real limitation: Damage can be
detected but it cannot be distinguished between each of the damage sites. The applied algorithm
is only capable to show a damage zone delimiting the 4 impacts.

Table 6: Resonance frequencies of tested CFRP beams after 4 and 8 impacts and of the corre-
sponding model with optimized density distribution. Especially the higher frequencies show a
relatively good match.

Frequencies / Hz
Mode 4 Impacts 8 Impacts

Target Optimization Target Optimization
1 (1st bending) 37 30 36 32
2 (2nd bending) 157 148 155 156
3 (3rd bending) 687 679 678 679
4 (4th bending) 1363 1351 1326 1326

(a) (b)

Figure 15: Experimentally obtained FRF for the composite beams and calculated FRF of the
FEM model at the same point (cp. fig. 8b), before and after optimization using only resonance
frequency constraints : (a) for 4 impacts; (b) for 8 impacts.

19



show usually a higher shift due to introduced damages, it seems obvious to use modal parameters
of a large spectrum. But with higher frequencies the necessary modal identification becomes
more difficult as higher modes are more susceptible to noise and participate less and less in the
actual dynamic response.

The presented Topology Optimization approach is also limited to modal parameter shifts
due to loss in stiffness and mass, but does not take into account damping, which has proven in
experimental results to be more sensitive to damage than stiffness changes ([13],[14],[36]). In
the current formulation it is not possible to consider changes in damping as constraints in the
optimization, since no direct response for damping is available in Nastran so far.

Considering the used optimization algorithm, the implemented BigDOT optimizer in Nastran
is an up-to-date algorithm with high efficiency and reliability. Since it is based on mathemati-
cal programming, it shows however common problems like possible wrong local optima and is
certainly subjected to further developments in numerical optimization. Therefore, for a more
detailed validation of the here presented tool, more studies on the optimization parameters and
other damage cases are necessary. Still, BigDOT is one of the most capable optimization solu-
tions readily available at the moment and it is especially capable of solving topology optimization
problems [29]. Further studies using different optimisation algorithms (stochastic or evolution-
ary methods, etc.) are encouraged, the principal problem in this damage localisation approach is
however still the inclusion of further design responses that are sensitive to damages in the fibre
composites.

6. Conclusions

In this paper an enhanced Topology Optimization technique for damage localization is devel-
oped based on the works of Lee et al. [20]. In the first part of this paper, the theoretical aspects
of this technique are explained, and in the second part, validations of this technique are carried
out on numerical models and also composite beams.

The presented damage localization approach can also be divided into two sub-problems, the
optimization routine using Topology Optimization and the experimental estimation of modal
parameters with the correct numerical modeling.

Concerning the results of the numerical validation, it can be concluded that the feasibility of
applying the Topology Optimization approach for damage localization is proven also for an im-
plementation in Nastran. This provides the opportunity for a broader application of the method,
especially to more complex structures, that can be more efficiently analyzed in standard industrial
finite element codes than in self written codes.

In the process of experimental validation, we succeed in localizing seperate damage zones,
but the results become less clear and the optimization might get stuck in wrong local optima
regarding the results of C-Scans of the specimens. But it can be assumed, that the poor results
for the D2 damage case follow from the simplistic modeling, the lack of constraint data and not
taking into account damping changes, rather than due to a conceptional error in the approach.
Still, with a suitable choice of parameters, some good results with correct localization of the
impacts on the composite beams can be archieved.

However, the approach has yet only been validated for one composite laminate beam. In the
near future, this study shall be extended to all the other composite beams tested in reference [14].
The approach shall also be applied to localizing damage in standard sandwich specimens with
honeycomb and foam cores, as C-Scan testing is not very capable of detecting damage in com-
posite sandwiches. Further prospects of this work could be an optimization using more design
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responses, like directly addressing the mentioned anti-resonances or mode shapes by referencing
the imaginary part of the FRFs, and to increase the analysed frequency bandwidth to take into
account higher modes.
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Appendix

A. Nastran Input File for Damage Localization by Topology Optimization

This Nastran input file can generally be applied to finite element models when the correct
model geometry and optimization constraints are included and the commented parameters are
adjusted.

$--------File Managementsection-----------------------
$--------Executive Control Section--------------------
SOL 200
TIME 20
CEND
$--------Global Case Control Section------------------
TITLE = Damage localization
ECHO = NONE
$--SOL 200 specific Parameters:
MAXLINES = 999999
SET 1 = 101 $ Excitation Loadset
SET 2 = 459,254 $ Nodes to be included in Calculation
DESOBJ = 201 $ Design Object referencing a Design Response
$---------------Subcases------------------------------
SUBCASE 1
$--Name of Subcase:
SUBTITLE = Modal Analysis
ANALYSIS = MODES
METHOD = 1 $ Lanczos method
SPC = 2
DESSUB = 300 $ Set of design constraints associated with natural frequencies
DRSPAN = 1 $ FRMASS response calculation

SUBCASE 2
$--Name of Subcase:
SUBTITLE = Frequency Response
ANALYSIS = MFREQ $ Modal frequency response analysis
METHOD = 1
FREQUENCY = 1 $ Frequency table for FRF calculation
SPC = 2
DLOAD = 2
LOADSET = 4
SDAMPING = 1 $ Damping included
DISP(PHASE) = 2
DESSUB = 320 $ Set of Design Constraints FRF Data

$---------------Bulk Data Section---------------------
BEGIN BULK
$---------------Parameters----------------------------
PARAM POST 0
PARAM PRTMAXIM YES
$--FE Analysis related parameters:
PARAM RESVEC YES
$--Optmization related parameters:
PARAM DESPCH 10
$--Frequency table for FRF calculations
FREQ1 1 0. 1. 1600
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$--Table for modal damping ratios
TABDMP1 1 CRIT

0. 0.003 1600. 0.003 ENDT
$--Eigenvalue extraction table
EIGRL 1 20 0
$---------------Geometry------------------------------
$--Include Model file here (*.bdf)
INCLUDE ’modelgeometry.bdf’
$---------------BCs-----------------------------------
$--referencing BCs in geometry file
SPCADD 2 1
$---------------LOADs---------------------------------
$--referencing Loads in geometry file
RLOAD1 3 5 1
LSEQ 4 5 1
DLOAD 2 1. 1. 3
$--Frequency dependent load amplitude
TABLED1 1

0. 1. 1600. 1. ENDT
$---------------Further Parameters--------------------
$--Topoly Optimisation Variable
$--(Choice of correct design domain!)
TOPVAR 1 PSHELL PSHELL 0.99 .0001 .3 2. 4
$--Include optimization constraints file here
INCLUDE ’optimizationconstraints.bdf’
$--Objective Function
DRESP1 101 OBJ FRMASS
DRESP2 201 EQART 401

DRESP1 101
$--Objective Functions
$ 1
$DEQATN 401 F1(X)=0.99*X-X**2
$ 2
DEQATN 401 F1(X)=ABS(0.99-X)
$ 3
$DEQATN 401 F1(X)=(0.99-X)**2
$--Optimisation Parameters
DOPTPRM CONV1 .001 DESMAX 50 CONVDV 1e-6 CONVPR 1e-6
$--------------End------------------------------------
ENDDATA
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