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Developmental Learning for Social Robots in Real-World Interactions

Alexandre Galdeano!, Alix Gonnot?, Clément Cottet®, Salima Hassas*, Mathieu Lefort’, and Amélie Cordier®

Abstract— This paper reports preliminary research work on
applying developmental learning to social robotics for making
human-robot interactions more instinctive and more natural.
Developmental learning is an unsupervised learning strategy
relying on the fact that the learning agent is intrinsically
motivated, and is able to incrementally build its own repre-
sentation of the world through its experiences of interaction
with it. Our claim is that using developmental learning in social
robots could dramatically change the way we envision human-
robot interaction, notably by giving the robot an active role in
the interaction building process, and even more importantly,
in the way it autonomously learns suitable behaviors over
time. Developmental learning appears to be an appropriate
approach to develop a form of “interactional intelligence” for
social robots. In this work, our goal was to set up a common
framework for implementing, experimenting and evaluating
developmental learning algorithms with various social robots.

Index Terms—Developmental Learning, Social Robotics, In-
teractions, Intrinsic Motivation, Hierarchical Learning, Enac-
tion.

I. INTRODUCTION

Developmental learning is an artificial intelligence ap-
proach drawing inspiration from psychology, and more
specifically from the way children learn and build incremen-
tally their own representation of the world by experimenting
their environment through interactions [1], [2]. In robotics,
developmental learning has been used to address problems
such as reaching and grasping [3], exploration and curiosity
[4], navigation [5], speech acquisition [6], [7], and adaptation
to arm and leg damage [8].

In the field of social robotics, developmental learning
appears to be an interesting approach to consider, notably
because of its potential to bring answers to problems such
as life-long learning, unsupervised learning without prior
knowledge, and, last but not least, its incremental capacity
to learn from few data.

In this paper, we present preliminary investigations on
applying developmental learning for improving human-
machine interaction in the field of social robotics. The
work reported here was performed within the project BE-
HAVIORS.AI (an Engine enHancing verbAL and non-Verbal
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InteractiOns of RobotS, based on Artificial Intelligence).
BEHAVIORS.AI is a joint laboratory! involving academic
researchers and social robotics engineers which aim is to
design and develop solutions to make human-robot inter-
action more instinctive and empathic. For that purpose, we
explore the opportunities offered by developmental learning,
we propose implementations on social robots, and we use the
social robots field to implement and improve this framework.

Our goal is to implement a form of “interactional intelli-
gence” in social robots. For that purpose, we focus on several
aspects of social interactions: emotional intelligence, timing
of the interaction, adaptability to the changing context, pref-
erence learning, etc. In the context of this project, we focus
on how developmental learning could enable continuous
learning of interaction skills and, ultimately, lead to the
emergence of appropriate (and unique) behaviors in social
robots. In this work, our goal was to set up a common
framework for implementing, experimenting and evaluating
developmental learning algorithms with various social robots.
For bootstrapping our research, we decided to start with a
very simple developmental learning algorithm that we chose
because it is easy to implement and to analyze, and it offers
interesting challenges (hierarchical learning, implementation
of motivational systems, etc.). In the future, we will focus
on more advanced algorithms.

This paper is organized as follows. In the next section,
we briefly introduce developmental learning and we describe
some of the theoretical hypotheses we rely on. In section III,
we describe our work in progress and report on two dis-
tinct contributions. First, we present a first implementation.
This implementation validates the potential of developmental
learning algorithms to enhance the intelligence of interac-
tions in social robots and highlights the next challenges to
face. Next, we present a visualization tool that we have
designed in order to help researchers better design devel-
opmental algorithms for social robots. The paper ends with
a discussion on the challenges and perspectives we foresee
for the next steps of the project.

II. DEVELOPMENTAL LEARNING

Developmental learning is a constructivist approach, in-
spired by theories on the cognitive development of human
being (learn like a baby) [1], [2], [9], that aims to address
the “Symbol Grounding problem” [10] by making an agent
interacting with its environment “constructs sensorimotor
transformation knowledge rather than an internal mirror of
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Fig. 1. Traditionally, the agent receives an input (observation) and computes
the output (action). However, in our approach, the agent initiates the cycle
by acting (experiment) then perceives the consequences (result). This is a
way to implement an intrinsically motivated learning algorithm. Reprinted
from [19, p. 246].

some external reality” [11, p. 164]. As such, the learning
process occurs through the experience developed by the
agent along its interaction with its environment [12], and,
according to some authors, learning these sensorimotor con-
tingencies may even lead to some kind of consciousness [13].
Moreover, the agent’s behavior is driven by an intrinsic
motivation and its value function depends on the agent’s
behavior rather than of the environment states. We claim that
such an approach has the necessary ingredients to develop
autonomous robots that are able to adapt to highly dynamic
environments that include humans. Using active perception
may help the agent to deal with complex environments
[13] and autonomously adapt to new situations thanks to its
incremental learning and its intrinsic motivation. Learning
from its experience of interaction with humans, including
imitating them or drawing inspiration from their behaviors,
allows for more natural interactions.

This learning paradigm may be implemented in several
ways. For instance, in [14], the authors use an implemen-
tation based on neural networks to detect contingencies in
sensorimotor networks. In [15] developmental learning is
based on a set of “tripartite structure[s] comprising a context,
action, and result” called schema, this structure is then
completed in [16] by adding a target value, and in [17] the
original schemas have been extended to “improve the original
learning criteria to handle POMDP domains”.

In this preliminary work, we chose to rely on a hierarchical
implementation of schemas, drawing inspiration from the
intrinsically motivated schema mechanism proposed in [18].
We made this choice because it is a simple and intuitive
way to envision developmental learning. Our goal is to
demonstrate that rudimentary implementations of develop-
mental learning algorithms could be performed on social
robots and could lead, in the long run, to new ways of
implementing unsupervised learning abilities on these robots.
More complex approaches and implementations are kept for
future work.

This model is grounded on several key concepts:

« An interaction is an atomic element defined as a couple
composed of the experiment performed by the agent and
the result obtained for this experiment (see figure 1).
Focusing on the interaction implements a form of active
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Fig. 2. Example of a composite interaction with its weight and valence,
and its sub-interactions. Here, a complex move performed by the robot is in
fact a sequence of primitive moves. One can observe that the background
color of the symbols changes: it reflects the result perceived by the agent,
i.e., blue for “my head has been touched” and white for “my head has not
been touched”.

perception. Moreover, the agent does not require any
direct access to the state of the environment.

« An intended interaction is an interaction that the agent
tries to perform (i.e., it is an action and an expected
result for this action).

e An enacted interaction is an interaction that the agent
has actually performed (i.e., an action and its result, that
may be different from the expected result).

o The valence of an interaction is the internal value
associated by the agent to it. It can be seen as the cost
of doing the interaction from the agent’s perspective.

o The proclivity is a weighted value computed by the
agent, depending on its internal emotional state. At
each step, the agent computes the proclivity of all the
interaction that it can enact and chooses the best one
given its current decision-making strategy (depending
on its emotional state).

In our approach, we observe the following properties.

o The agent reacts to its active perception of the en-
vironment, after experimenting an interaction with it,
by attempting a new experiment based on its internal
evaluation of its perception (difference between its
prediction and the actual result of the experiment).

o The agent creates hierarchical aggregated schemas (a
kind of abstraction). It memorizes the enacted interac-
tions and aggregates them hierarchically, thus creating
composite interactions. A composite interaction is an
interaction composed of several primitive or composite
interactions that can be performed in a row (see figure 2
for an example). Composite interactions can be seen as
higher level representations of the abilities of the agent.

o The agent implements a strategy to balance exploration
and exploitation. The agent chooses what to do next
based on the set of enacted interactions using different
strategies depending on the agent’s internal state, the
interactions’ proclivity, and the previous interactions.
Typically, the agent chooses the interaction with the
highest proclivity but the agent’s internal state may
make it choose another interaction. This mechanism im-
proves the diversity of enacted interactions and allows
a better exploration of the interaction space.

This approach has been successfully applied on several
toy problems. Albeit it seems a promising way to address
the problem of unsupervised and intrinsically motivated
learning without any prior knowledge on the environment,



it also raises numerous concerns. Just to list a few, we
could mention the memory consumption (the current naive
implementation is very costly as it records all interactions
from the start), the sensitivity to noise, the required regularity
of the environment, and the convergence of the learning
process.

Our goal in the preliminary work reported here was to
implement this approach on social robots, first to validate that
they could at least provide the same results as in simulation,
and second, to better identify the problems related to the
reality gap. These contributions are described in the next
section.

III. CONTRIBUTIONS

We started with toy implementations and we plan to
gradually increase the complexity of our experiments.

A. Simple Experiment on a Social Robot

In this experiment we wanted to demonstrate that devel-
opmental learning could be used to make a social robot able
to favor specific actions according to the reactions of the
human. In the scope of social interaction, the robot’s user
act as the environment.

Using this approach, we were able to make a Nao robot
learn sequences of two actions according to the preferences
of the human interacting with it. In this experiment, Nao can
do four primitive actions: 1) turn its head to the left; 2) turn
its head to the right; 3) rise its left arm; 4) rise its right
arm. After each movement, the robot waits a few seconds
for the environment’s feedback—here the user touching, or
not, the robot’s head. Each pair (movement, feedback) is
an interaction. All the interactions which feedback is “The
head sensor has been triggered” have a positive valence and
the other interactions have a null valence. Starting from
the second interaction enacted, the robot memorizes every
distinct pair of interactions it enacts—i.e., if the robot enacts
ABC, it memorizes AB and BC, and then associates a
weight to it. The weight goes up every time the pair of
interactions is enacted and starts at 1 when the pair is enacted
for the first time. Each pair of interaction, called composite
interactions, is considered as an interaction so that it can
be combined with others. The valence of the composite
interaction is equal to the valence of its last interaction.

The robot alternates regularly between exploration and
exploitation. Exploitation. The robot chooses which simple
interaction should enable it to enact the best composite
interaction. The best composite interaction is the one with
the highest proclivity (in this implementation, proclivity =
valence x weight). Exploration. The robot chooses a ran-
dom action in order to learn a new composite interaction.

With this experiment, we showed that we were able to
perform a robot implementation of a previous algorithm
performing well in simulation. Besides, when using this
algorithm, the robot is able to learn a simple behavior
adapted to the user’s preferences.

We learned a lot about the problems we will face when
increasing the complexity of our algorithms. We identified
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Fig. 3. Visualization tool is used for the developmental algorithm presented
in section III-A. The robot’s memory and history of actions, the current type
of behavior it has, and what it is about to do are displayed in real-time. The
valence of each sequences may be altered for experimental purposes.
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two obvious obstacles. First, the robot’s movement and the
user’s reactions are a few seconds long which—compared to
the near-instantaneous reaction times in simulation—is very
long and that makes the execution of the algorithm with the
robot a lot slower than in a simulation. Our research question
here is to manage timing, i.e., to find a strategy to decide
when and how to gather feedback from the environment
and to match it with the active perception strategy of the
agent. Second, the robot and the environment are less reliable
than the computer and some errors may occur during the
execution of the algorithm, causing the robot to learn wrong
behaviors and to have to deal with noisy information. To go
further and to facilitate the research work, we implemented
a tool for the researchers for accelerating the design and the
tunning of developmental learning algorithms.

B. Web Application for Visualization Experiment Control

The interface enables us to visualize the execution trace of
the algorithms and to modify it on the fly (see figure 3). The
interface displays the mental state of the robot in real-time
by showing every simple interaction the robot ever enacted,
the content of its memory (i.e., all the enacted composite
interactions with weights and valences) and the type of
behavior it is currently in (i.e., exploration or exploitation).

Elements currently active in the decision and memory
processes are highlighted on the screen in real-time. This
interface also allows the control of the agent’s memory by the
designer: increasing or decreasing the weight of a composite
interaction, modifying the valence of a composite interaction,
or add a new composite interaction like it was enacted.
Modifying these elements through the interface enables us
to observe how the learning process is impacted without re-
enacting the experiment from scratch.

Next, we created a second version of this interface with
additional features (see figure 4). This new version is capable
of displaying complex composite interactions and have some
control on the algorithms, particularly with a virtual agent:
(i) start, pause, and stop the agent’s execution, (ii) define
the agent’s execution rate, i.e., how many milliseconds are
between each steps, (iii) define the policy that will have the
best valence and (iv) define some of the agent’s preferences.

These two interfaces help us to have a better understanding
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Fig. 4.  This version is an improvement to the first one. The robot’s

memory and history of actions, its mood are displayed. The algorithm can
be controlled and configured—to some extent—through this interface.

of how our algorithms behave under different and changing
configurations. The control features can be used to speed
up the robot’s learning and therefore constitute useful tools
for researchers and interaction designers in an experimenta-
tion context. They can quickly test and validate hypotheses
through this tool, in order to produce configuration ready to
be tested in real-world experiments.

C. Multi-robots implementations and experimentations

So far, we have built an architecture enabling us to
experiment different developmental learning algorithms on
various robots, including virtual robots (agents in a simu-
lation environment). We have conducted experiments with
Nao and Pepper, and we have an ongoing implementa-
tion for Cozmo. A virtual agent—combined with a virtual
environment—has also been implemented in order to enable
us to debug and test the behavior of an algorithm under
various—and possibly varying—conditions quickly. We have
proposed three different implementations of developmental
learning algorithms, with increasing complexity, in different
contexts, but their description is out of the scope of this
paper. Demonstrating that the same algorithms behave well
with different robots and for different application purposes
is important as it shows that active perception and intrinsic
motivation are key factors to enable learning without prior
knowledge on the environment.

IV. DISCUSSION AND FUTURE WORK

We defended the idea that developmental artificial intelli-
gence is a relevant approach for developing social robots that
can interact in a more natural way with humans. Indeed, the
developmental paradigm is intrinsically defined to provide
autonomy, lifelong learning and adaptability to an agent,
which are required properties for a social robot. Moreover,

taking inspiration from human may provide more natural
behaviors to robots. Preliminary experiments show that a
developmental architecture, based on interaction, can lead
a robot to learn a behavior desired by the human, providing
indirect feedback through its actions. However, developmen-
tal Al is a recent research field and some major questions
still have to be answered. To go beyond, we developed a web
application that allows to monitor (and eventually to modify)
the internal representations learned by the agent.

Our preliminary work is a starting point, raising several
issues that we have to address to reach the objectives of
our project. For instance, to go further, we will need to
address scalability issues and robustness to noisy environ-
ments. Some other issues are related to improving the im-
plementation and optimizing memory usage, choosing more
complex—but more efficient—approaches, dealing with for-
getting issues, etc. But more broadly, in the context of the
BEHAVIORS.AI project, we want to study:

a) How to choose the next best action to perform (de-
pending on several parameters such as the intrinsic
motivation, the trade-off between exploration and ex-
ploitation, the context), and how to take into account
the timing in the process, which is of particular impor-
tance in social interactions?

b) Using high level actions and perceptions may produce
more complex behaviors without significantly increas-
ing the search space’s size, but how does it affect
the algorithm’s adaptability and relevance? In addition,
the environment is, by definition, noisy. How to deal
with noise and the potential lack of consistency of the
environment?

¢) How to include a form of emotional intelligence,
through empathy, in the process. Could we envision a
way to share representations of the interactional con-
text between humans and robots to globally improve
the interactions?

d) Could we include multimodality in the process in order
to combine verbal and non-verbal interactions in the
context understanding process?

e) Could we estimate how developmental learning mecha-
nisms implemented in social robot’s applications affect
the user’s experience?

Last, we are deeply interested in finding ways to evalu-
ate the performances of developmental learning. Evaluating
performances of such algorithms, when we cannot identify
an a priori goal, is never easy. How can we assess that a
solution performs well, or better than another, when the goal
is not defined? How can we measure the impact on the user
experience? Proposing tools for evaluating both the technical
performances of our contributions and the improvements they
bring on the user experience is a major objective for our
future work.
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