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Introduction

Let Ω be a smooth bounded domain in R 2 . In this work we are interested in investigating the behavior of sequences of solutions of nonlinear critical elliptic problems of the form ∆u = f γ (x, u) , u > 0 in Ω , u = 0 on ∂Ω , (0.1)

where ∆ = -div(∇•) and (f γ ) γ is a sequence of Moser-Trudinger type nonlinearities.

A typical but very specic example of such a sequence is given by

         f γ (x, u) = β γ h γ (x)u exp(u 2 ) , lim γ→+∞ β γ = β ∞ ≥ 0 , lim γ→+∞ h γ = h ∞ in C 2 ( Ω) , h ∞ > 0 in Ω , (0.2) 
where the β γ 's are positive numbers and the h γ 's are positive functions in C 2 ( Ω).

Recall that nonlinearities as in (0.2) arise when looking for critical points of the Moser-Trudinger functional any sequence (u γ ) γ satisfying (0.1) and converging weakly in H 1 0 to some u ∞ , the Dirichlet energy is quantied (see also [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF]Section 2]). Namely, up to a subsequence, there exists an integer N ≥ 0 such that

lim γ→+∞ Ω |∇u γ | 2 dy = 4πN + Ω |∇u ∞ | 2 dy . (0.3)
Observe that such a sequence (u γ ) γ is compact in H 1 0 , if and only if it is uniformly bounded, and if and only if N = 0 in (0.3). As a consequence of the very strong interaction generated by an exponentially critical nonlinearity, it is not clear in general whether it is possible to have loss of compactness, i.e. N ≥ 1 in (0.3), together with u ∞ ≡ 0. For instance, for the typical nonlinearities f γ given by (0.2), in order to understand globally the bifurcation diagram of (0.1) and the associated questions of existence of solutions (see [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities II-Existence of solutions of high energies[END_REF]), Druet-Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantication and location of concentration points[END_REF] pushed further the analysis and proved that, for such a noncompact sequence (u γ ) γ , there necessarily holds that u ∞ ≡ 0, so that the limit of the Dirichlet energy in (0.3) has to be 4π times an integer N > 0. In contrast, the purpose of this paper is to show that for dierent families of exponentially critical nonlinearities it is possible to construct bubbling sequences of solutions with non-trivial weak limit in H 1 0 . Let Ω be the unit disk of R 2 centered at 0 and let 0 < λ 1 < λ 2 < ... be the sequence of the simple radial eigenvalues of ∆ in Ω, with zero Dirichlet boundary condition. Let v 1 , v 2 ... be the associated radial eigenfunctions uniquely determined by Ω v 2 k dy = 1 and v k (0) > 0 for all k. Our rst result shows that there exists a sequence (f γ ) γ with Moser-Trudinger type growth for which (0.1) admits a sequence (u γ ) γ of positive radial solutions converging weakly to a multiple of v 1 and with Dirichlet energy approaching any xed value in (4π, +∞).

Theorem 0.1 (Positive case). Let l > 0 be given and let Ω ⊂ R 2 be the unit disk centered at 0. Let λγ be given by λγ = λ 1 -ε γ , (0.4) where ε γ = 4πv1(0) γ λ1 l . Then there exists β γ > 0 such that the equation ∆u = λγ u + β γ u exp(u 2 ) , u > 0 in Ω , u = 0 on ∂Ω , (0.5) admits a smooth solution u γ satisfying u γ (0) = γ, for all γ > 0 suciently large for λγ to be positive. Moreover, for any sequences (β γ ) γ , (u γ ) γ with the above properties, we have that β γ → 0, that

u γ u ∞ weakly in H 1 0 , (0.6) 
where u ∞ = v 1 l λ1 ≡ 0, and that the quantication Observe that (0.5) can be seen as a particular case of (0.1) with f γ (x, u) = λγ u + β γ u exp(u 2 ), (0.8) and it arises when looking at the Euler-Lagrange equation of the Adimurthi-Druet inequality [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF]. We also refer to [START_REF] Mancini | Non-existence of extremals for the Adimurthi-Druet innequality[END_REF], where this Euler-Lagrange equation was studied in this tricky regime λγ → λ 1 , but only in the minimal energy case, where l equals 0 in (0.7). When considering the typical case (0.2), i.e. the Euler-Lagrange equation of the standard Moser-Trudinger inequality, existence results have been obtained using radial analysis [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF] (see also [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]), variational [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF][START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF], perturbative [START_REF] Manuel Del Pino | New solutions for Trudinger-Moser critical equations in R 2[END_REF] or topological methods [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities II-Existence of solutions of high energies[END_REF][START_REF] Lamm | The heat ow with a critical exponential nonlinearity[END_REF][START_REF]Positive solutions of critical semilinear elliptic equations on non-contractible planar domains[END_REF]. According to the previous discussion, contrary to those built in Theorem 0.1, the blow-up solutions obtained in these results always have a zero weak limit in H 1 0 . As a by-product of Theorem 0.1 and its proof below, we also obtain the following result.

Theorem 0.2 (Nodal case). Let l > 0 be xed and Ω ⊂ R 2 be the unit disk centered at 0. Let k ≥ 2 be a xed integer. Then there exist positive real numbers γ = γ(k, l), λγ = λγ (k, l) and

β γ = β γ (k, l) such that λ k -λγ = (1 + o(1)) 4πv k (0) γ λ k l , (0.9) 
as γ → +∞, and such that the equation

∆u = λγ u + β γ u exp(u 2 ) in Ω , u = 0 on ∂Ω , (0.10) 
admits a smooth solution u γ = u γ (k, l) satisfying u γ (0) = γ, for all γ > γ. Moreover, we have that β γ → 0, that (0.6) holds true for

u ∞ = v k l λ k ≡ 0 ,
and that the quantication (0.7) holds true, as γ → +∞.

As v k for k ≥ 2, the solutions u γ 's in Theorem 0.2 are sign-changing and have exactly k nodal regions in Ω. Theorem 0.2 provides new examples of non-compact sequences of nodal solutions for a Moser-Trudinger critical type equation for which the quantication in (0.7) holds true. We mention that Grossi and Naimen [START_REF] Grossi | Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in R 2[END_REF] obtained recently a nice example of a quantized sequence in the sign-changing case. In [START_REF] Grossi | Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in R 2[END_REF], the results of [START_REF] Adimurthi | Multiplicity results for semilinear elliptic equations in a bounded domain of R 2 involving critical exponents[END_REF][START_REF]Nonexistence of nodal solutions of elliptic equations with critical growth in R 2[END_REF] are used as a starting point and the point of view is completely dierent from that of Theorem 0.2.

While the nonlinearities of the form (0.8) clearly have Moser-Trudinger type growth, it should be pointed out that they do not have uniformly critical growth in the sense of the denition of Druet [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF], if β γ → 0 and λγ → λ - k , k ≥ 1 as γ → +∞ as in Theorem 0.1 and Theorem 0.2. However, our techniques can be applied to the study of dierent kinds of nolinearities. For a xed real parameter a > 0, let g : [0, +∞) → R be such that

g(t) = e t 2 -at for t ≥ c 0 > 0, (G1) and g ∈ C 0 ([0, +∞)) with g > 0 in [0, +∞).
(G2) Then, we get the following result.

Theorem 0.3. Let Ω⊂ R 2 be the unit disk centered at 0 and let a > 0 and g ∈ C 0 ([0, +∞)) be given so that (G1) and (G2) hold. For any γ > 0 there exists a unique β γ > 0 such that the equation

∆u = β γ ug(u) , u > 0 in Ω , u = 0 on ∂Ω , (0.11)
admits a (unique) smooth radially symmetric solution u γ satisfying u γ (0) = γ. Moreover, as γ → +∞ we have

β γ → β a 2 > 0, that u γ u a 2 weakly in H 1 0 ,
(0.12) and that the following quantication holds true

Ω |∇u γ | 2 dy = 4π + Ω |∇u a 2 | 2 dy. (0.13)
It is interesting to notice that the value at 0 of the weak limit of the sequence (u γ ) γ in Theorem 0.3 depends only on the choice of a, that is on the asymptotic behavior of the function g. We stress that for any a > 0 one can easily construct a function g satisfying (G1) and (G2) such that g(t) = 1 for t ≤ a 2 . For such function g, the nonlinearities f γ (x, u) = β γ ug(u) have uniformly critical growth according to Druet's denition in [START_REF] Druet | Multibumps analysis in dimension 2: quantication of blow-up levels[END_REF]. Moreover, since the u γ 's are positive and radially decreasing, one has β a 2 = λ 1 and u a 2 = a 2v1(0) v 1 so that the quantication result of Theorem 0.3 reads as

Ω |∇u γ | 2 dy → 4π + a 2 λ 1 4v 1 (0) 2 .
(0.14) Note that the value in the RHS of (0.14) can be arbitrarily large or arbitrarily close to 4π depending on the choice of a.

1. Proof of Theorem 0.1

In the whole paper, Ω = B 0 (1) is the unit disk centered at 0 in R 2 . If f is a radially symmetric function, since no confusion is possible, we will often write

f (|x|) instead of f (x) .
(1.1) In the sequel, we let λ 1 and v 1 be as in Theorem 0.1. For all R > 0, it is known that the smallest eigenvalue λR of ∆ in B 0 (R) with zero Dirichlet boundary condition is given by

λR = λ 1 R 2 .
(1.2)

Let ṽR ≥ 0 be the (radial) eigenfunction associated to λR such that Ω ṽ2 R dy = 1.

We get rst the following existence result.

Lemma 1.1. Let λ ∈ (0, λ 1 ) and γ > 0 be given. Then there exists β > 0 and a smooth function u in Ω such that u(0) = γ and such that u solves ∆u = λu + βu exp(u 2 ) , u > 0 in Ω , u = 0 on ∂Ω .

(1.3)

Proof of Lemma 1.1. Let λ ∈ (0, λ 1 ) and γ > 0 be xed. For all given β ≥ 0, there exists a unique smooth and radially symmetric solution u β of

∆u = λu + βu exp(u 2 ) , u(0) = γ , (1.4) 
well dened in R 2 . Indeed, if [0, T β ) is the maximal interval of existence for u β , we know from rather standard theory of radial elliptic equations that T β ∈ (0, +∞], and that T β < +∞ implies that

lim sup t→T - β |u β (t)| + |u β (t)| = +∞ .
(1.5)

Now observe that E(u β ) : [0, T β ) → R given by E(u β ) = (u β ) 2 + λu 2 β + β exp(u 2 β )
is nonincreasing in (0, T β ) by (1.4). Then, (1.5) cannot occur and T β = +∞ as claimed. Now, given β > 0, there exists an ε β > 0 such that u β (s) > 0 for all s ∈ [0, ε β ] by continuity. Then, since the RHS of the rst equation of (1.4) is positive for u β > 0, and since

-ru β (r) = r 0 (∆u β )(s)sds , (1.6) 
we get that

u β (r) ≤ γ + log ε β r ε β 0 (∆u β )(s)sds , (1.7) 
for all r ≥ ε β such that u β > 0 in [ε β , r]. Setting now

R β = sup {r > 0 s.t. u β (s) > 0 for s ∈ [0, r]} , (1.8) 
we clearly get from (1.7) that 0 < R β < +∞. Then we have u β (R β ) = 0 and u β > 0 in [0, R β ). Now, since (β, r) → u β (r) is continuous, and since we have that u β (R β ) < 0 by (1.6), we get that

β → R β is continuous in [0, +∞) . (1.9)
It is clear that R 0 = λ 1 /λ > 1 by (1.2) and (1.4). Independently, multiplying (1.4) by ṽR β > 0 and integrating by parts in B 0 (R β ), we get that

λR β B0(R β ) u β ṽR β dy = B0(R β ) ∇u β ∇ṽ R β dy , = B0(R β ) (λ + β exp(u 2 β ))u β ṽR β dy , > β B0(R β )
u β ṽR β dy , so that λR β → +∞ and then that R β → 0 as β → +∞, using (1.2). Thus by (1.9), we get that there exists β > 0 such that R β = 1, which concludes the proof of Lemma 1.1.

Proof of Theorem 0.1. Let l > 0 be a xed real number. Let λγ , λ 1 and v 1 > 0 in Ω be as in the statement of Theorem 0.1. By Lemma 1.1, there exists β γ > 0 such that the equation (0.5) admits a smooth solution u γ satisfying u γ (0) = γ, for all γ > 0 suciently large for λγ to be positive. First, we check that

β γ = O 1 γ , (1.10) 
which implies that β γ → 0 as γ → +∞, as claimed in Theorem 0.1. For this, it is sucient to multiply the rst equation in (0.5) by v 1 and to integrate by parts:

(λ 1 -λγ ) Ω v 1 u γ dy = β γ Ω v 1 exp(u 2 γ )u γ dy ≥ β γ Ω v 1 u γ dy .
(1.11)

In view of (0.4), this clearly implies (1.10). Now, we perform the blow-up analysis of the u γ 's as γ → +∞, in order to get (0.6)-(0.7). Observe that we do not assume here that (u γ ) γ is bounded in H 1 0 , as in [START_REF] Mancini | Non-existence of extremals for the Adimurthi-Druet innequality[END_REF]. But since we are in a radially symmetric setting, we are able to start the analysis and to prove that the u γ 's can be rescaled around 0 in order to detect a bubble of Moser-Trudinger critical type. Observe that our choice of λγ in (0.4) plays a key role for this to be true. Let µ γ > 0 be given by

β γ γ 2 exp(γ 2 )µ 2 γ = 4 , (1.12) 
and τ γ be given by

u γ (µ γ y) = γ - τ γ (y) γ .
(

Observe that, since ∆u γ > 0 in (0.5), u γ is radially decreasing in Ω, so that

u γ (r) ≤ u γ (0) = γ , for all r ∈ [0, 1] . (1.14) 
Here and often in the sequel, we use the identications of (1.1).

Step 1.1. We have that

lim γ→+∞ µ γ γ = 0 (1.15)
and

lim γ→+∞ τ γ = T 0 := log(1 + | • | 2 ) in C 2 loc (R 2 ) .
(1.16)

Proof of Step 1.1. By (1.12), (1.15) is equivalent to

lim γ→+∞ β γ exp(γ 2 ) = +∞ .
(1.17)

In order to prove (1.17), assume by contradiction that

β γ exp(γ 2 ) = O(1) , (1.18) 
up to a subsequence. Then, if w γ is given by u γ = γw γ , we have that 0 ≤ w γ ≤ 1 and w γ (0) = 1. Moreover, by (0.4), (0.5), (1.14), (1.18) and standard elliptic theory, we get that

lim γ→+∞ w γ = w ∞ in C 1 ( Ω) , (1.19) 
where w ∞ (0) = 1. Then, since w ∞ > 0 in a neighborhood of 0, we have that

∆w γ ≥ λ 1 (1 + o(1))w ∞ > 0
around 0, so that there exists ε 0 ∈ (0, 1) such that

ε 0 |x| 2 ≤ 1 -w γ (x) , for all x ∈ Ω , (1.20) 
using that w γ is radially symmetric and decreasing. Thus, using (1.18), (1.20) and 0 ≤ w γ ≤ 1, we get that

β γ Ω v 1 exp(u 2 γ )u γ dx = β γ exp(γ 2 )γ Ω v 1 exp(-γ 2 (1 -w 2 γ ))w γ dx , = O γ Ω exp(-ε 0 γ 2 |x| 2 )dx , = o (1)
.

(1.21) Independently, since w ∞ ≥ 0 and w ∞ ≡ 0, we get from (1.19) that

γ = O Ω v 1 u γ dx .
( Next, we prove that β γ does not converge to zero too fast. In the sequel it is useful to denote

t γ (r) := T 0 r µ γ = log 1 + r 2 µ 2 γ .
(1.23)

Step 1.2. We have that

| log β γ | = o(γ 2 ) .
(1.24)

Proof of Step 1.2. In view of (1.10), assume by contradiction that

lim γ→+∞ log 1 βγ γ 2 > 0 .
(1.25)

Here and in the sequel, we argue up to subsequences. Let r γ ∈ (0, 1) be given by

β γ exp(u γ (r γ ) 2 ) = 1 .
(1.26) By (1.10), (1.17), and since u γ is radially decreasing and zero on ∂Ω, r γ is well dened. In particular, we have that

β γ exp(u 2 γ ) > 1 in [0, r γ ) , β γ exp(u 2 γ ) ≤ 1 in [r γ , 1] .
(1.27) By (1.25) and (1.26), we have that

lim γ→+∞ u 2 γ (r γ ) γ 2 > 0 .
(1.28)

Observe also that r γ µ γ by (1.13), (1.16), (1.17) and (1.26). Now, we prove that

u γ = γ - t γ (1 + o(1)) γ uniformly in [0, r γ ] , (1.29) 
as γ → +∞, where t γ is given by (1.23). For this, for any given η ∈ (0, 1), we let r γ be given by

r γ = sup r ∈ (0, r γ ] s.t. u γ -γ - t γ γ ≤ η t γ γ in (0, r] .
(1.30)

In order to get (1.29), since η may be arbitrarily small, it is sucient to prove that

r γ = r γ , (1.31) 
for all γ 1. Observe that (1.28) and (1.30) imply that

lim γ→+∞ t γ (r γ ) γ 2 < 1 , (1.32) 
if η was chosen small enough. By the denition of r γ in (1.30), for any r ∈ [0, r γ ],

we have that

u γ (r) 2 ≤ γ 2 + t γ (r) -2 + 2η + t γ (r) γ 2 (1 -2η + η 2 ) .
(1.33)

In particular,by (1.12), (1.14), (1.32) and (1.33), for any suciently small η there exists κ = κ(η) > 1 such that

β γ exp(u 2 γ )u γ ≤ 4 γµ 2 γ exp(-κt γ ) , (1.34) in [0, r γ ],
for suciently large γ. Let (s γ ) γ be an arbitrary sequence such that s γ ∈ [0, r γ ], for all γ. If s γ = O(µ γ ), then, arguing as in (1.6), we get from (1.13), (1.16), and (1.23) that

u γ (s γ ) + t γ (s γ ) γ = 1 γs γ sγ µγ 0 ((∆τ γ )(s) -(∆T 0 )(s))sds = o s γ µ 2 γ γ . (1.35) If instead s γ µ γ , then given R 1 we compute sγ 0 (∆u γ )(s)2πsds = O Rµγ 0 γsds + O sγ Rµγ (β γ exp(u 2 γ )) ≥1 u γ sds + β γ Rµγ 0 exp(u 2 γ )u γ 2πsds , = o 1 γ + 1 γ O +∞ R exp(-κT 0 )rdr + 1 γ sγ /µγ 0 8πr (1 + r 2 ) 2 dr ,
(1.36) using (0.5), (1.12), (1.13), (1.15), (1.16), (1.27) and (1.34). Then, as R may be arbitrarily large in (1.36), we get that sγ 0

(∆u γ )(s)2πsds = o 1 γ + 1 γ sγ /µγ 0 8πr (1 + r 2 ) 2 dr , = o 1 γ - 1 γ sγ 0 (∆t γ )(s)2πsds .
(1.37)

In any case we obtain that 

u γ (s γ ) + t γ (s γ ) γ = o t γ (s γ ) γ , (1 
u γ (r) - log 1 r 2 γ = o log 1 r 2 γ + O ( u γ 2 ) , (1.41) 
for all r ∈ [r γ , 1] and all γ, using the fundamental theorem of calculus and u γ (1) = 0. Now, we evaluate u γ (r γ ) in both formulas (1.29) and (1.41). Since (1.12) and (1.23) imply that

γ - t γ (r) γ = 1 γ log 1 β γ (µ 2 γ + r 2 ) + O log γ γ (1.42)
for any r ∈ [0, 1], and that log 1 (1.43)

In order to conclude the proof, we now show that (1.43) contradicts our choice of ε γ in (0.4). First, observe that r γ → 0, as γ → +∞. Otherwise, since (1.28) implies 

γ = O(u γ ) in [0,
u γ (r γ ) -u γ (r) γ(r -r γ ) 2 ∈ (0, +∞] .
(1.45) From (0.5), (1.14), (1.27), (1.43) and standard elliptic theory, we get that there exists a function v such that 

lim γ→+∞ u γ u γ 2 → v in C 1 loc ( Ω\{0}) , v ≥ 0 in Ω\{0} . ( 1 
u γ (r γ ) -u γ (r) γ(r 2 -r 2 γ ) ∈ (0, +∞],
(1.47) which concludes the proof of (1.45). Now, we compute

1 0 v 1 β γ exp(u 2 γ )u γ 2πsds = rγ 0 v 1 β γ exp(u 2 γ )u γ 2πsds + 1 rγ v 1 exp(u 2 γ -u γ (r γ ) 2 )u γ 2πsds , = O 1 γ + O u γ ∞ 1 rγ exp(-u γ (r γ )(u γ (r γ ) -u γ ))sds = O 1 γ + O γ 1-rγ 0 exp(-ε 0 γ 2 r 2 )(r + r γ )dr = O 1 γ + O(r γ ) .
(1.48)

The rst equality in (1.48) uses (1.26); the second one uses (0.5), (1.39), and u γ ≥ 0; in the third one, the existence of such a positive ε 0 is given by (1.28) and (1.45). Independently, (1.43) and (1.46) with v ≡ 0 imply that

γ = O 1 0 v 1 u γ rdr .
(1.49)

But the equality in (1.11), and (1.48)-(1.49) clearly contradict our denition of ε γ in (0.4). Then (1.25) cannot be true. This concludes the proof of (1.24) and that of Step 1.2.

Let t γ be as in (1.23) and let ρ 1,γ , ρ γ , ρ 2,γ > 0 be given by

t γ (ρ 1,γ ) = γ , t γ (ρ γ ) = γ 2 2
and t γ (ρ 2,γ ) = γ 2 -γ .

(1.50)

Since we have now (1.24), resuming verbatim the argument in [14, Step 3.2], there exists C > 0

u γ -γ - t γ γ ≤ C 1 + t γ γ 3 , (1.51) in [0, ρ γ ],
and that

β γ u γ exp(u 2 γ ) - 4 exp(-2t γ ) γµ 2 γ ≤ 4 C 3 exp(-2t γ )(1 + t 2 γ ) γ 3 µ 2 γ , (1.52) in [0, ρ 1,γ ],
for all γ. Observe that (1.50) and (1.24) imply

ρ γ ρ 1,γ = µ γ exp(γ(1/2 + o(1))) µ γ , (1.53) 
and that

ρ 2 1,γ γ = o 1 γ 3 .
(1.54)

Note that (1.52), (1.53) and (1.54) with u γ ≤ γ imply that

ρ1,γ 0 (∆u γ )2πrdr - 4π γ ≤ 4π C + o(1) γ 3 .
(1.55)

Let r γ ∈ (0, 1] be given by

β γ exp(u γ (r γ ) 2 ) = 1 γ 2 if β γ = o 1 γ 2 , r γ = 1 otherwise .
(1.56)

Using u γ (0) = γ, u γ (1) = 0 and (1.24), r γ is well dened and positive. We have in addition that

β γ exp(u 2 γ ) ≥ 1 γ 2 in [0, r γ ] , β γ exp(u 2 γ ) ≤ 1 γ 2 in (r γ , 1] .
(1.57)

Moreover, since (1.12) and (1.24) give

t γ ≤ γ 2 (1 + o(1)) in [0, 1], (1.58) 
we get from the denition of ρ γ in (1.50) and (1.51) that u γ (ρ γ ) 2 = γ 2 4 + O(1), so that (1.24) and (1.56) give

r γ ≥ ρ γ ,
(1.59) for γ large enough, this inequality being obvious if r γ = 1. Finally, we dene

ρ γ = min(ρ 2,γ , r γ ) .
(1.60)

Step 1.3. Let C be as in (1.51), (1.52) and (1.55). For any R 0 > C we have

u γ -γ - t γ γ ≤ R 0 γ in [0, ρ γ ] , (1.61) 
for suciently large γ. Moreover, (1.62)

Proof. For a given R 0 > C, let ρ γ > 0 be given by 

ρ γ = sup r ∈ (0, ρ γ ] s.t. u γ -γ - t γ γ ≤ R 0 γ in [0, r] . ( 1 
β γ exp(u 2 γ )u γ rdr ≤ ρ2,γ ρ1,γ exp(-2t γ + (t 2 γ /γ 2 ) + O(1)) γµ 2 γ rdr = o 1 γ 5 .
( 

u γ -γ - t γ γ s ρ1,γ ≤ C + o(1) γ 3 log s 2 ρ 2 1,γ
, so that

u γ (s) -γ - t γ (s) γ ≤ C + o(1) 1 + t γ (s) γ 3 , (1.68) 
for all s ∈ [ρ 1,γ , ρ γ ], by (1.51) at ρ 1,γ and (1.53). Then we get

ρ γ = ρ γ ,
(1.69) using R 0 > C and ρ γ > ρ 1,γ . The proof of (1.61) is complete. Finally, the estimate in (1.62) follows from (0.5), (1.57), (1.65) and (1.69).

Step 1.4. We have that

lim inf γ→+∞ u γ 2 ∈ (0, +∞] .
(1.70) Moreover, we have

ρ γ → 0 , (1.71) 
and

u γ (r) = log 1 r 2 γ + o( u γ 2 ) + v 1 (r) u γ 2 in [ρ γ , 1] (1.72) as γ → +∞ .
Proof. First, coming back to (1.11), we get that

4πv 1 (0) + o(1) γ = β γ ρ1,γ 0 v 1 u γ exp(u 2 γ )2πrdr ≤ λ 1 -λγ 1 0 v 1 u γ 2πrdr = O u γ 2 γ ,
by (1.52), the Cauchy-Schwarz inequality and our denition of ε γ below (0.4). This, clearly implies (1.70).

In order to prove (1.71), we observe that (1.50), (1.60) and (1.61) imply

u γ ≥ u γ (ρ γ ) = γ - t γ (ρ γ ) γ + o(1) ≥ γ - t γ (ρ 2,γ ) γ + o(1) = 1 + o(1) ,
in [0, ρ γ ] and then that

ρ 2 γ = O ργ 0 u γ (s)2πsds = O ργ 0 ∆u γ (s)2πsds = O 1 γ ,
by (1.55) and (1.62). Now, we turn to the proof of (1.72). Note that 

β γ exp(u 2 γ ) = o(1) in (ρ γ , 1] . ( 1 
(∆u γ )(r)2πrdr = ργ 0 (∆u γ )(r)2πrdr + O(s γ u γ 2 ) = 4π γ + o 1 γ 2 + O(s γ u γ 2 ) , (1.75) 
for any sequence s γ ∈ [ρ γ , 1]. Estimating u γ by (1.75) in the spirit of (1.6), using the fundamental theorem of calculus and u γ (1) = 0, and noting that 1 

γ 2 log 1 ρ 2 γ = O( u γ 2 ), we obtain that u γ - log 1 r 2 γ = O ( u γ 2 ) , (1.76 
log 1 βγ γ = u γ 2 v 1 (0) + o ( u γ 2 ) ,
(1.79) so that in particular

β γ = o 1 γ , (1.80) 
by (1.70). Then, arguing as in (1.73) but using (1.80) instead of (1.10) if ρ γ = ρ 2,γ , we get that

β γ exp(u 2 γ ) = o 1 γ in (ρ γ , 1] . (1.81)
Now, on the one hand we have (1.83)

β γ 1 0 v 1 exp(u 2 γ )u γ 2πrdr = 4πv 1 (0) + o(1) γ + o u γ 2 γ (1.82) using (1.52) for r ≤ ρ 1,γ , (1.62) for ρ 1,γ ≤ r ≤ ρ γ ,
Then, by the equality in (1.11), (1.82), (1.83) and our denition of ε γ below (0.4), we get that

u γ 2 = l λ 1 + o(1) .
(1.84) Now, by (0.5), we have that

Ω |∇u γ | 2 dx = λγ Ω u 2 γ dx + β γ Ω u 2 γ exp(u 2 γ )dx,
(1.85) and, using (1.51), (1.52), (1.62) and (1.81), that 1) by (0.4), we prove that (0.7) holds true. Moreover, by (0.7) with (1.71) and (1.72), there must be the case that (0.6) holds true. Thus, Theorem 0.1 is proved.

β γ Ω u 2 γ exp(u 2 γ )dx =γ(1 + o(1))β γ ρ1,γ 0 exp(u 2 γ )u γ 2πrdr + O γ ργ ρ1,γ ∆u γ 2πrdr + o u γ 2 γ =4π + o 1 γ (1.86) By (1.83)-(1.86), since λγ = λ 1 + o(

Proof of Theorem 0.2

Let Ω ⊂ R 2 be the unit disk centered at 0. Let λ 1 , λ 2 , . . . and v 1 , v 2 , . . . be as above Theorem 0.1. By Bessel functions' theory, v 1 extends in a unique way to a radial function v1 , satisfying ∆v 1 = λ 1 v1 in R 2 . It is known that v1 vanishes exactly for |x| = r n := λ n /λ 1 with v 1 (r n ) = 0 (see (1.1)) for any n ≥ 1. Moreover, we have that vn := v1 (r n •) is proportional to v n in Ω, namely

v n = r n √ α n v1 (r n •) where α n = B0(rn) v2 1 dx , (2.1) 
for all integer n ≥ 1. Let l > 0 be a xed real number and k ≥ 2 be a xed integer.

Let us dene

λγ := λ 1 - 4πv 1 (0) γ λ 1 l with l = l α k .
(2.2) By Theorem 0.1 (with l = l) for all γ large enough, there exist βγ > 0 and a smooth radial function ũγ such that

     ∆ũ γ = λγ ũγ + βγ ũγ exp(ũ 2 γ ), ũγ > 0 in Ω , ũγ = 0 on ∂Ω , ũγ (0) = γ , (2.3)
and we have

βγ = o(1) and ũγ → ũ∞ := v 1 l λ 1 in C 1 loc ( Ω\{0}) ∩ L 2 (Ω) ,
(2.4) as γ → +∞. Moreover, as discussed in Lemma 1.1, we have that ũγ is globally dened on R 2 and, as a consequence of (2.4) and standard ODE theory, we nd that

ũγ → v1 l/λ 1 in C 1 loc (R 2 \{0}) ∩ L 2 loc (R 2 ).
(2.5) Besides, by the implicit function theorem and ODE theory, there exists ε 0 > 0 and γ 1 large such that ũγ vanishes exactly once in I k := (r k -ε 0 , r k + ε 0 ) at some r k,γ , for all γ ≥ γ (indeed ũγ vanishes exactly k-times in [0, r k + ε 0 ) for γ 1). By construction, we also have that r k,γ = r k + o(1) as γ → +∞. Setting u γ := ũγ (r k,γ •), we get from the above discussion that u γ solves (0.10) with ). Besides (2.5) implies

β γ = r 2 k,γ βγ and λγ = r 2 k,γ λγ = λ k + o(1
u γ → v1 (r k •) l λ 1 = v k l λ k in C 1 loc ( Ω\{0}) ∩ L 2 (Ω) , (2.6) 
as γ → +∞. Then, using the invariance of the L 2 -norm of the gradient under dilation in dimension 2, (0.7) for ũγ if |x| ≤ 1/r k,γ , and (2.6) if |x| ≥ 1/r k,γ , we get that

Ω |∇u γ | 2 dx = Ω |∇ũ γ | 2 dy + Ω\B0(1/r k,γ ) |∇u γ | 2 dx , = 4π + l + l B0(r k )\Ω v2 1 dy + o(1) , = 4π + l + o(1) , (2.7) 
so that (0.7) holds true. Clearly (2.6) and (2.7) give also (0.6). Finally, we shall prove that (0.9) holds. In order to do this, we may multiply (0.10) by v k , integrate by parts and use (2.6) to get

λ k -λγ (1 + o(1)) l λ k = λ k -λγ Ω u γ v k dy = β γ Ω u γ exp(u 2 γ )v k dy . (2.8) 
Arguing as in (1.81)-(1.83) for the ũ γ s, we nd that

β γ B0( 1 r k,γ ) u γ exp(u 2 γ )v k dy = βγ Ω ũγ exp(ũ 2 γ )v k dy = 4πv k (0)(1 + o(1)) γ , (2.9) 
and that βγ = o( 1 γ ), so that (2.6) implies

β γ Ω\B0( 1 r k,γ ) u γ exp(u 2 γ )v k dy = o 1 γ .
(2.10) Using (2.8)-(2.10) we conclude the proof of (0.9), and Theorem 0.2 is proved.

Proof of Theorem 0.3

As in Section 1, we rst prove the existence part of Theorem 0.3. The argument is similar to the one of [12, Proof of Theorem 1]. Lemma 3.1. Let g be as in Theorem 0.3. For any γ > 0 there exist a unique real number β γ > 0 and a unique smooth radial function u γ in Ω solving

     ∆u = β γ ug(u) , u > 0 in Ω , u = 0 on ∂Ω , u(0) = γ . (3.1)
Moreover, we have

0 < β γ < λ 1 inf [0,+∞] g -1 . (3.2) 
Proof. Let f : R → R be the continuous odd extension of the function t → tg(t), t ≥ 0. For any γ > 0, let w γ be the solution the ODE

∆w γ = f (w γ ) , w γ (0) = γ . (3.3) 
Arguing as in the proof of Lemma 1.1, we get that w γ is dened on R 2 , since the function

E(w γ ) = 1 2 |w γ | 2 + F (w γ ) with F (t) = t 0 f (s)
ds is nonincreasing in the existence interval for w γ , and since F (t) → +∞ as t → +∞. Let now

R γ = sup {r > 0 s.t. w γ > 0 in [0, r]} .
(3.4) Clearly R γ > 0 and for any xed ε γ ∈ (0, R γ ) and and r ∈

[ε γ , R γ ) have -rw γ (r) = r (∆w γ )(s)sds ≥ εγ 0 f (w γ (s))sds > 0 . (3.5)
Using the fundamental theorem of calculus as in (1.7) we get that R γ < +∞, so that R γ is the rst zero of w γ . Then, the function u γ = w γ (R γ •) satises (3.1) with

β γ = R 2 γ .
Multiplying the equation in (3.1) by v 1 and integrating by parts, we get that

λ 1 Ω v 1 u γ dx = β γ Ω v 1 u γ g(u γ )dx ≥ β γ inf [0,+∞] g Ω v 1 u γ dx ,
which gives (3.2). Note that (G1) and (G2) imply inf [0,+∞] g > 0. Finally, we observe that β γ and u γ are uniquely determined by γ and g. Indeed if β > 0 and ū ∈ C 1 ( Ω) are such that

         ∆ū = β ūg(ū) , ū > 0, in Ω ū = 0 on ∂Ω, ū(0) = γ,
ū is radially symmetric in in Ω , then uniqueness theory for solution of ODEs implies ū( • √ β ) = w γ . In particular

β = β γ = R 2 γ and ū = u γ .
For any γ > 0 let β γ and u γ be as in Lemma 3.1. As in Section 1 we shall rescale around 0 and prove that the u γ 's are close to a Moser-Trudinger bubble up to a suciently large scale. However, here more precise expansions (see (3.13) and (3.31)) are needed in order to detect the eect of the term e -au on the shape of such bubble.

Let us dene µ γ > 0 such that

µ 2 γ β γ γ 2 g(γ) = 4.
(3.6) Note that µ γ → 0 as γ → +∞.

(3.7) Otherwise, by (3.6), we could nd a subsequence such that β γ γ 2 g(γ) = O(1). Since u γ ≤ u γ (0) = γ in Ω and since g(γ) → +∞ as γ → +∞, the assumptions (G1) and (G2) imply that g(u γ ) ≤ g(γ) for large values of γ. Hence, we would have

∆u γ ≤ β γ γg(γ) = O(γ -1 ),
which contradicts u γ (0) = γ → +∞ by standard elliptic estimates. Now let τ γ be dened as in (1.13) with µ γ as in (3.6). Then, we will show that

τ γ → T 0 and γ(τ γ -T 0 ) → aS 0 in C 2 loc (R 2 ),
where T 0 is as in (1.16) and

S 0 (x) = - 1 2 T 0 (x) + 1 2 |x| 2 1 + |x| 2 .
(3.8) Note that we have

∆T 0 + 4 exp(-2T 0 ) = 0 in R 2 , (3.9) and ∆S 0 -8 exp(-2T 0 )S 0 = 4T 0 exp(-2T 0 ) in R 2 .
(3.10) More precisely, setting

t γ = T 0 • µ γ and S γ = S 0 • µ γ , (3.11) 
and letting ρ γ > 0 be dened by

t γ (ρ γ ) = γ 2 2 , (3.12) 
we get the following expansion in [0, ρ γ ].

Step 3.1. As γ → +∞, we have that

u γ = γ - t γ γ + aS γ γ 2 + O t γ γ 3 in [0, ρ γ ] , (3.13) 
with T γ and S γ as in (3.11). Moreover, we have that

B0(ργ ) ∆u γ dy = 4π γ + 2πa γ 2 + O 1 γ 3 , (3.14) 
and that

B0(ργ )
u γ ∆u γ dy = 4π + o(1) .

(3.15)

Proof. The proof of Step 3.1 is similar to the one of [START_REF] Mancini | Non-existence of extremals for the Adimurthi-Druet innequality[END_REF]Step 3.2]. Observe that (G1), (3.2) and (3.6) imply that µ -2 γ = O(γ 2 exp(γ 2 )). Then, we get

t γ (r) ≤ log 1 + 1 µ 2 γ = O(γ 2 ) , (3.16) 
for any r ∈ [0, 1]. This will be used several times in the sequel. Let w γ be dened by

u γ = γ - t γ γ + aw γ γ 2 ,
(3.17) and let

ρ γ = sup{r ∈ [0, ρ γ ] : |w γ -S γ | ≤ 1 + t γ }.
(3.18) First, by (3.12) and (3.16)-(3.18), one has that u γ ≥ γ 2 + O(1) in [0, ρ γ ], so that (G1) gives g(u γ ) = exp(u 2 γ -au γ ) for γ suciently large. Moreover, (3.16), (3.17) and (3.18) imply that

u 2 γ -au γ = γ 2 -aγ -2t γ + ψ γ + O 1 + t γ γ 2 , (3.19) in [0, ρ γ ],
where

ψ γ = a 2w γ + t γ γ + t 2 γ γ 2 - 2at γ w γ γ 3 .
Using the simple inequality |e x -1 -x| ≤ e |x| |x| 2 for x ∈ R, we get that

exp (ψ γ ) = 1 + ψ γ + O exp (|ψ γ |) ψ 2 γ = 1 + a 2w γ + t γ γ + O 1 + t 2 γ γ 2 + O exp(|ψ γ |) 1 + t 4 γ γ 2 = 1 + a 2w γ + t γ γ + O exp(|ψ γ |) 1 + t 4 γ γ 2 , (3.20) in [0, ρ γ ]. Since u γ = γ 1 + O 1+tγ γ 2
by (3.16), (3.17) and (3.18), using (3.1), (3.16), (3.19), (3.20) and the denition of µ γ in (3.6), we obtain that

∆u γ = β γ γg(γ) exp(-2t γ + ψ γ ) 1 + O 1 + t γ γ = 4 γµ 2 γ exp (-2t γ ) 1 + a 2w γ + t γ γ + O exp(|ψ γ |) 1 + t 4 γ γ 2 , (3.21) in [0, ρ γ ].
In particular, (3.9), (3.10), (3.17) and (3.21) yield

∆(w γ -S γ ) = 4 µ 2 γ exp(-2t γ ) 2(w γ -S γ ) + O exp(|ψ γ |) 1 + t 4 γ γ .
(3.22)

Note that, since t γ ≤ γ 2 2 in [0, ρ γ ] by (3.12), we get

-2t γ + |ψ γ | = t γ -2 + t γ γ 2 + O 1 γ + o(1) , ≤ t γ - 3 2 + O 1 γ + o(1) .
Hence, there exists κ > 1 such that 

(1 + t 4 γ ) exp(-2t γ + |ψ γ |) = O(exp(-κt γ )) in [0, ρ γ ] , (3.23 
≤ C 1 r r 2 µ 2 γ 1 + r 3 µ 3 γ w γ -S γ L ∞ ([0,ρ γ ]) + C 1 γ r 2 µ 2 γ 1 + r 2 µ 2 γ ,
for any r ∈ [0, ρ γ ]. Therefore we have that

|(w γ -S γ ) (r)| ≤ C 2 r µγ 1 + r 2 µ 2 γ w γ -S γ L ∞ ([0,ρ γ ]) + 1 µ γ γ , (3.24) 
for some constant C 2 > 0. We claim now that

(w γ -S γ ) L ∞ ([0,ρ γ ]) = O 1 µ γ γ .
(3.25)

Otherwise there exists 0 < ρ γ ≤ ρ γ such that (3.27)

µ γ γ (w γ -S γ ) L ∞ ([0,ρ γ ]) = µ γ γ|(w γ -S γ ) (ρ γ )| → +∞.
We dene

z γ = (w γ -S γ )(µ γ •) µ γ (w γ -S γ ) L ∞ ([0,ρ γ ])
, so that we have 

|z γ | ≤ 1 in [0,
γ → z 0 in C 1 loc (B 0 (δ 0 )), but we also get that z γ (ρ γ ) → z 0 (δ) as γ → +∞, where z 0 ∈ C 1 (B 0 (δ)) satises ∆z 0 -8 exp(-2T 0 )z 0 = 0 in B 0 (δ 0 ) ∩ B 0 (δ) , z 0 (0) = 0 .
But, since z 0 is radially symmetric, we get z 0 ≡ 0 and then z γ (ρ γ ) → 0. But this contradicts our denition of ρ γ in (3.26), which gives that |z γ (ρ γ )| = 1. Hence, (3.26) cannot hold and (3.25) is proved. Then (3.24) reads as

|(w γ -S γ ) | ≤ 2C 3 µ γ γ r µγ 1 + r 2 µ 2 γ = C 3 γ t γ (r) , in [0, ρ γ ].
In particular, using the fundamental theorem of calculus, we get (3.28)

Note that the expansion in (3.13), (3.8), and (3.28) imply that

u γ (ρ γ ) = γ - t γ (ρ γ ) γ 1 + a 2γ + o t γ (ρ γ ) γ 2 , (3.29) 
as γ → +∞. Let us now x any c 1 > max{c 0 , a 2 }, where c 0 is as in (G1). Let r γ > 0 be such that

u γ (r γ ) = c 1 .
(3.30) We shall prove that an expansion similar to (3.29) holds uniformly in [ρ γ , r γ ].

Step 3.2. As γ → +∞, we have that 

u γ = γ - t γ γ 1 + a 2γ + o t γ γ 2 ( 
T γ = O(γ 2 ) (3.33) in [0, 1]. For any xed η ∈ (0, 1) we set r γ = sup r ∈ [ρ γ , r γ ] : u γ -γ - T γ γ ≤ ηT γ γ 2 .
Note that r γ > ρ γ by (3.29). We claim that there exists δ > 0 such that

r γ ργ ∆u γ 2πr dr = O exp - δ 2 γ .
(3.34)

As in the proof of Step 3.1, we write

u γ = γ - T γ γ + ϕ γ γ 2 with |ϕ γ | ≤ ηT γ in [ρ γ , r γ ] . (3.35) 
In particular, using (3.33) and (3.35), we can write

u 2 γ -au γ ≤ γ 2 -aγ -2T γ + aT γ γ + T 2 γ γ 2 + C 1 ηT γ γ + C 2 ,
where C 1 ,C 2 > 0 do not depend on the choice of η. Since c 1 > c 0 and u γ is radially decreasing, (G1), (3.1) and (3.6) imply that

∆u γ = β γ u γ exp(u 2 γ -au γ ) , β γ γ exp(γ 2 -aγ) exp -2T γ + aT γ γ + T 2 γ γ 2 + C 1 η T γ γ , 4 µ 2 γ γ exp -2T γ + aT γ γ + T 2 γ γ 2 + C 1 η T γ γ .
Integrating in the interval [ρ γ , r γ ] and using the change of variable τ = T γ (r) so that

r dr µ 2 γ = exp( τ αγ )dτ 2α γ , we get that r γ ργ ∆u γ 2πr dr τ (r γ ) τ (ργ ) 1 γ exp -2τ + aτ γ + τ 2 γ 2 + C 1 ητ γ + τ α γ dτ .
Since

1 αγ = 1 -a 2γ + O( 1 γ 2 ) and τ γ 2 ≤ T (r γ ) γ 2
= O(1) by (3.33), we nd that

r γ ργ ∆u γ 2πr dr 1 γ τ (r γ ) τ (ργ ) exp -τ 1 - a 2γ - τ γ 2 - C 1 η γ dτ .
(3.36) Now, by denition of r γ and r γ , we know that

c 1 = u γ (r γ ) ≤ u γ (r γ ) ≤ γ - T γ (r γ ) γ + η T γ (r γ ) γ 2 ≤ γ - T γ (r γ ) γ + C 2 η .
Since c 1 > a 2 and C 1 , C 2 > 0 do not depend on η, we can nd δ > 0 such that

1 - a 2γ - τ γ 2 - C 1 η γ ≥ c 1 - a 2 -η(C 1 + C 2 ) 1 γ ≥ δ γ ,
for any τ ≤ T γ (r γ ) and any suciently small η. Thus, (3.36) implies that

r γ ργ ∆u γ 2πr dr 1 γ τ (r γ ) τ (ργ ) exp -τ δ γ dτ , 1 γ ∞ γ 2 2 exp -τ δ γ dτ , = O exp - δ 2 γ ,
where we have also used that

T γ (ρ γ ) = αγ γ 2 2 ≥ γ 2
2 . This completes the proof of (3.34). Now, observe that (3.14) and (3.34) imply that In particular we nd that Then we must have r γ = r γ for any large γ (and in particular (3.32) follows from (3.34)). Since η can be arbitrarily small, we get (3.31).

Step 3.3. As γ → +∞ we have β γ → β a 2 > 0 and u γ → u a 2 in C 1 loc ( Ω \ {0}).

Proof. Let c 1 , ρ γ and r γ be as in (G1), (3.12), and (3.30). Since u γ ≤ c 1 in B 0 (1) \ B 0 (r γ ), (3.1), (3.2), (3.14) and (3.32) give that ∆u γ is bounded in L 1 (Ω).

Hence, we have that

u γ (r) = O log 1 r
for r ∈ (0, 1], so that u γ is locally bounded in Ω \ {0}. By (3.1), (3.2) and elliptic estimates, up to a subsequence we have that where the last inequality follows from (3.14) and (3.32). Then necessarily r γ → 0, otherwise we would have u ∞ ≡ c 1 in B 0 (δ) \ {0}, for some δ > 0, which contradicts (3.37). Then, since u γ ≤ c 1 in [r γ , 1] implies u ∞ ≤ c 1 in (0, 1], by (3.37) and standard elliptic regularity we get that u ∞ ∈ C 1 ( Ω) and that u ∞ solves (3.44)

β γ → β ∞ ∈ [0, +∞) and u γ → u ∞ in C 1 loc ( Ω \ {0}), where u ∞ solves ∆u ∞ = β ∞ u ∞ g(u ∞ ), in Ω \ {0} , u ∞ = 0, in ∂Ω . ( 3 
∆u ∞ = β ∞ u ∞ g(u ∞ ) in Ω , u ∞ = 0 on ∂Ω. ( 3 
Note that one cannot have β ∞ = 0, otherwise (3.38) would imply u ∞ ≡ 0 in B 1 (0) and in particular u ∞ (0) = 0, which contradicts (3.44). Then, we have β ∞ > 0, so that (3.44) implies u ∞ (0) = a 2 . The uniqueness result of Lemma 3.1 implies that

β ∞ = β a
2 and u ∞ = u a 2 . In view of Step 3.3, in order to prove Theorem 0.3 it remains to prove that the quantication in (0.13) holds true. Indeed, at that stage, this also implies that u γ → u a 2 weakly in H 1 0 (Ω), as claimed in (0.12). By Step 3.3, we can nd (σ γ ) γ such that u γ -u a

Ω |∇u γ | 2

 2 dy = 4π + l + o(1) , (0.7) holds true as γ → +∞.

r 2 γ= O log 1 µ 2 γ=

 22 O(γ 2 ), we get from (1.25), (1.29), (1.41), and (1.42) that lim γ→+∞ u γ 2 γ > 0 .

1 0v 1 u

 11 and (1.81) with the Cauchy-Schwarz inequality to estimate the integral in [ρ γ , 1]. On the other hand, using (1.54) with u γ ≤ γ for r ∈ [0, ρ 1,γ ], (1.62) with ∆u γ ≥ λγ u γ in [ρ 1,γ , ρ γ ], and (1.70)-(1.72) in [ρ γ , 1], we obtain that γ 2πrdr = u γ 2 (1 + o(1)) .

  ) for suciently large γ. By (3.22) and (3.23), we can nd C 1 > 0 such that r|(w γ -S γ ) (r)| ≤ r 0 |∆(w γ -S γ )|sds , ≤ 8 w γ -S γ L ∞ ([0,ρ γ ]) (-κt γ (s)))s ds ,

( 3 .

 3 26)Note that (3.24) and (3.26) imply ρ γ = O(µ γ ) and µ γ = O(ρ γ ) = O(ρ γ ), so that, up to a subsequence we getρ γ µ γ → δ ∈ (0, +∞) and ρ γ µ γ → δ 0 ∈ [δ, +∞] .

  ρ γ µγ ]. Using (3.27), z γ (0) = 0 the fundamental theorem of calculus, and then the ODE (3.22) and (3.26), we observe thatz γ L ∞ ([0,ρ γ /µγ ]) γ and ∆z γ L ∞ ([0,ρ γ /µγ ]) γare both bounded sequences. Then by radial elliptic estimates, up to a subsequence we do not only get that z

2 γ = µ 2 γ exp γ 2 2 - 1 .

 221 w γ -S γ = O( tγ γ ) in [0, ρ γ ], so that ρ γ = ρ γ for large γ and (3.13) holds. Finally, (3.14) and (3.15) follow from (3.21), (3.23) and ρ

γ = 4π γ α γ + O 1 γ 3 ,

 3 B0(r) ∆u γ dy = B0(ργ ) ∆u γ dy + O exp -δ 2 for any r ∈ [ρ γ , r γ ]. Moreover, by (3.11) and (3.28), we have that B0(r)∆t γ dy = -2πrt γ (r) = -

2 ,

 2 for any r ∈ [ρ γ , r γ ]. Applying the fundamental theorem of calculus and using (3.29), we nd thatu γ (r) -γ -T γ (r) γ = u γ (ρ γ ) -γ -T γ (ρ γ )

log r 2 γ r 2 ,

 22 .37) Note that for r ∈ [0, r γ ], we have u γ (r) ≥ c 1 andu γ (r) = c 1 + rγ r 1 2πs B0(s)∆u γ dy ds ≤ c 1 + 1 + o(1) γ

  .38) Now, let us take a sequence (σ γ ) γ such that r γ ≤ σ γ → 0,u γ -u ∞ C 1 ( Ω\B0(σγ )) → 0 ,

( 3 .

 3 40)Applying the fundamental therorem of calculus and using (3.14), (3.32), (3.39) and (3.40) we get thatu γ (r γ ) = u γ (σ γ ) + σγ rγ 1 2πr B0(r)∆u γ dy dr , = u γ (σ γ ) +

( 3 .

 3 41)Note that, since u γ (r γ ) = c 1 , one has necessarily that

  can compute u γ (r γ ) according to the expansion in (3.31) and ndu γ (r γ ) = γ -1 + a 2γ t γ (r γ ) γ + o(1) ,

  .38) either by(1.35) if s γ = O(µ γ ), or by (1.37) arguing as in (1.6) if s γ µ γ . Then, using that u γ (0) = γ, t γ (0) = 0, and the fundamental theorem of calculus, we get (1.31) from (1.38) and then conclude the proof of (1.29). Observe further that Now, let (s γ ) γ be such that s γ ∈ (r γ , 1] for all γ. We have that

	0	rγ	(∆u γ )(s)2πsds =	4π + o(1) γ	,	(1.39)
	by (1.37). sγ					rγ
	(∆u γ )(s)2πsds -	(∆u γ )(s)2πsds
	0					0
	≤ (λ 1 + 1)	sγ	u γ (s)2πsds ,	(1.40)
	rγ ≤ s γ (λ 1 + 1) √	π u γ 2 ,
	by (0.5), (1.27) in [r					

γ , s γ ], and the Cauchy-Schwarz inequality, where • p stands for the L p norm in Ω. Then, estimating u γ as in (1.6), we get from (1.39) and (1.40) that

  .46) Moreover, by(1.14) and (1.43), we get that u γ / u γ 2 → v strongly in L 2 , so that

	lim inf γ→+∞	inf r∈(rγ ,1]

Ω v 2 dx = 1 and then that v ≡ 0 in Ω. Using (0.5), (1.43),

(1.46

) and the radial decay of the u γ 's, there exists δ ∈ (0, 1) such that γ u γ ∆u γ in [0, δ]. Then, estimating u γ as in (1.6) we nd -u γ (r) γr in [0, 1], and from the fundamental theorem of calculus that

  +∞ exponentially fast as γ → +∞ by (1.53), we also get that

	Since ργ µγ → sγ 0	(∆t γ )2πrdr = -4π + o	1 γ 2 .	(1.67)
	Now (1.66) and (1.67) give an estimate on u γ + by the fundamental theorem of calculus, we get	t γ γ in [ρ 1,γ , ρ γ ] as in (1.6) so that,
									.65)
	Then, from (1.55), (1.64) and (1.65) we get that		
	0	sγ	(∆u γ )2πrdr -	4π γ	≤	4π C + o(1) γ 3	.	(1.66)

  .73) Indeed (1.73) follows directly from (1.57) if ρ γ = r γ , while if ρ γ = ρ 2,γ then (1.61) gives u γ = O(1) in [ρ γ ,[START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF] and (1.73) follows from (1.10).

	Then, by (0.4), (0.5) and
	(1.73), we always get that	
	∆u γ = (λ 1 + o(1))u γ in [ρ γ , 1] .	(1.74)
	By elliptic estimates, this implies that (1.46) holds true with v satisfying ∆v = λ 1 v
	in Ω \ {0}. We shall now prove that v = v 1 . By (1.55), (1.62) and (1.74), we get
	that	
	sγ	
	0	

  Now, we conclude the proof of Theorem 0.1. Comparing (1.61) (with (1.42)) and (1.72) at ρ γ , we obtain that

			u γ u γ 2	-v	C 0 ( Ω\B0(σγ ))	→ 0 ,	(1.77)
	min(σγ ,sγ )			ργ	
			(∆u γ )(r)2πrdr =		(∆u γ )(r)2πrdr
	0					0		
						min(σγ ,sγ )
				+ =	ργ 4π γ	+ o	(∆u γ )(r)2πrdr , γ 2 + o(min(σ (1.78) 1
	In order to get the second equality in (1.78), we estimate the integral up to ρ γ by
	(1.55) and (1.62), and the integral for ρ γ ≤ r ≤ min{σ γ , s γ } by (1.74) and (1.76).
	Using (0.4), (1.77) and (1.78), we nd that	
	0	sγ	(∆u γ )(r)2πrdr =	4π γ	+ o(s γ u 2 ) + λ 1 u 2	0	sγ	v 1 (r)2πrdr,

) for all r ∈ [ρ γ

, 1]

. By (1.70),

(1.71

) and (1.76) we get that v is bounded with bounded laplacian around {0}, and then v ∈ C 1 ( Ω). Take now a sequence (σ γ ) γ such that σ γ ≥ ρ γ , σ γ = o(1) and as γ → +∞. Using u γ ≤ γ with (1.54) for r ≤ ρ 1,γ , (1.76) for ρ 1,γ ≤ r ≤ σ γ and (1.77) otherwise, we get that (u γ / u γ 2 ) γ converges to v in L 2 on the whole disk, so that Ω v 2 dx = 1, v > 0 in Ω and v = v 1 . Finally, we observe that for any sequence s γ ∈ [ρ γ , 1] we have that γ , s γ ) u 2 ) . for any sequence s γ ∈ [ρ γ , 1]. Then, (1.72) follows, using again the fundamental theorem of calculus, with (1.6) and u γ (1) = 0.

  3.31) uniformly in [ρ γ , r γ ]. Moreover, there exists δ > 0 such that Proof. Let us denote α γ = 1 + a 2γ and T γ = α γ t γ . Arguing as in (3.16), we get that

	(3.32)

B0(rγ )\B0(ργ )

∆u γ dy = O(exp(-δγ)).

C 1 (B0(1)\B0(σγ )) → 0 and r γ ≤ σ γ → 0 ,
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as γ → +∞, where r γ is as in (3.30). Then, by (3.1) we have

and, since