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Riemann Shatters The Gordian Knot

Thierno M. SOW∗

July 7, 2018

“Riemann plays dice.”

Abstract

Solving the soaring Riemann Hypothesis is equivalent to face the over-
awing challenge of Alexander the Great to slicing up or to unravel the
conundrum of the Gordian Knot. In this article, we will discuss about
the sufficient conditions to prove the Riemann Hypothesis. Likewise, we
shed the light on some related problems in number theory and Physics.
Thereby, we will vet the proof by revealing how many conjectures are
sewn on the edges of the Riemann Hypothesis like the abc-conjecture, the
twin prime conjecture, the prime number theorem, the Legendre conjec-
ture and beyond. Ultimately, what is peculiar in our research is the one
sentence proof.

Mathematics Subject Classification 2010 codes: Primary 11M26; Secondary 11A41

1 THE RIEMANN HYPOTHESIS PROOF

All sciences lead to Riemann and the most elegant proof of the Riemann Hy-
pothesis can be expressed as follows: there are infinitely many nontrivial zeros
and they all have real part 1/2.

The gleaming Proof.

ˆ
C

ˆ
P

(
1

2
+

1

i2 + log (p)
sπ

)
dsdp = ζ(s), (1)

where i2 = −1, s ∈ C and p ∈ P.

�
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We can observe the“apple”and the perfect symmetry in the following figures.
A seasoned physicist will see immediately, in the polar, the similar gleam floating
on the top of a Black Hole and the Superellipse with concave sides.

Algorithm 1. Code Mathematica

�

�

�

�
PolarPlot[{{Cos[1/2 + (-1 + t Log[t]ˆ(π t))ˆ(-1)]},
Sin[1/2 + (-1 + t Log[t]ˆ(π t))ˆ(-1)]}, {t, −2.5π, 2.5π},
PlotStyle->{Red,Directive[Dashed,Green,Orange]}, PlotRange-> All]

2 THE RIEMANN HYPOTHESIS: THE GIST

In his celebrated article “On the number of primes less than a given magnitude”,
released in 1859, Bernhard Riemann (1826− 1866) depicted the importance of
his “investigation into the accumulation of the prime numbers; a topic which
perhaps seems not wholly unworthy of such a communication, given the interest
which Gauss and Dirichlet have themselves shown in it over a lengthy period”.
In troth, since then, no one didn’t provide the neatest statement of what the
Riemann Hypothesis is or what the Riemann Hypothesis is not. By the way,
Riemann himself was very careful and didn’t provide any sufficient raw material,
his article has just 8 pages. Indeed, before to tackle the problem we need to
catch the philosophy behind. Since the prime numbers were discovered, Mathe-
maticans have been always fascinated by their mysterious distribution. Having
utterly failed in the pursuit of the grail, they reformulate the next prime con-
jecture into the prime number conjecture, whilst their goal was to settle the
gobal pattern behind the distribution of the prime numbers. They said, if we
are not able to determine whether a given integer is prime and then what is
the next prime, we can at least reduce the problem by substitution. Which
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means, if the pattern of the distribution of the primes is printable on canvas,
then, there exists a function on the accumulation of the prime numbers given a
certain quantity. Therefore, counting the number of primes is not the premium
goal of the Riemann Hypothesis but rather the cunning maneuver displayed
by Riemann to handle a more important issue. For instance, computing the
number of primes above a given threshold might be out of reach, in 1859. In-
deed, according to Gauss: “the problem of distinguishing prime numbers from
composite numbers and of resolving the latter into their prime factors is known
to be one of the most important and useful in arithmetic...Further, the dignity
of the science itself seems to require that every possible means be explored for
the solution of a problem so elegant and so celebrated”. This is why, the Rie-
mann Hypothesis may be defined as the Swiss Knife of the number theory, and
may be considered as the most difficult problem in Mathematics because many
conjectures are fettered with the Riemann Hypothesis. So, what is knew?

Bernhard Riemann has introduced three great breakthroughs at the fore-
front of major advancements in number theory. The first is the critical line,
which means that in the non-Euclidean “modern” number theory a line is not
necessarily straight and it passes through one coordinate. The second is the
nontrivial zeros and their real part which are useful, to determine whether
a given integer is prime and, at the same time, to prove that there are infinitely
many primes. At last, to obtain the perfect symmetry, the negative values of
the nontrivial zeros should depend solely on the complex number s.

According to those criteria we define the gist of the Riemann Hypothesis as
follows: there are infinitely many nontrivial zeros which all have real part 1/2.

3 THE INGREDIENTS TO WIELD

In this section we will discuss about the sufficient conditions to prove the Rie-
mann Hypothesis. First, let us pinpoint some confusing statements purpoted
by many people about the Riemann zeta function. The following identity in-
spired by Euler is not the Riemann zeta function but a pretty good knack that
Riemann had picked up to ply the problem.

∞∏
p∈P

1

1− 1

ps

= ζ(s) =

∞∑
n=1

1

ns
. (2)

It tells us that the Riemann zeta function may satisfy a relation between the
product over the primes, in the left hand side, and, the infinite sum of natural
numbers, on the right hand side, without knowing nothing about the prime
numbers. It turns out, that this function has trivial zeros for some negative
integers. Ultimately, we should consider this function as the preliminary rough
outline of a master. Let us call it the Euler-Riemann Identity. Otherwise, here

we are dealing with complex numbers on the form
1

2
+ ε, which means that

computing ζ (2) , ζ (3) and so on, is as asinine as counting the nontrivial zeros.
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Also, the complex variable χ introduced by Dirichlet in 1837 has nothing to do
with the Riemann complex number s. But a question remains because, in some
special cases, s = 0 doesn’t make any sense, even if obviously 0 is a complex
number. For instance, Euler knew that ζ (0) = −1/2.

The second important point refers to the valuable region of the plane. Unlike
what has been reported, the Riemann zeta function is not only defined in the
half-plane � (s) > 1 but in the whole complex plane. The goal of our last
point is twofold. Indeed, whatever the form or the identity of your equation it
should embed two main functionalities: the primality test or the factorization
for any given integer in O (log (n)) and the prime counting function for any given
quantity π (N). The justification is given by the fact that, we assume: there are
many functions satisfying the Euler-Riemann Identity.

Proof.

∞∏
k=1

s

2 (pk + i2)
= ζ(s) =

∞∑
n=0

1

2
pn(i2)s, (3)

where i2 = −1, s ∈ C and pk ∈ P denotes the k-nth prime.

�

We will observe further, the deep connections between the abc-conjecture
proof and the relation above.

Those criteria put the steepness of the slope at the highest magnitude. That’s
just the way it is. Loosely, the Gordian Knot is not the Herakleotikon Hamma.
Isn’t it?

4 HOW TO VET THE PROOF

To vet the Riemann Hypothesis Proof, we release the official check list such that
the neatest proof poised on the following points:

1. Does your equation is useful to determine whether a given integer is prime?

2. Does your equation embeds a prime counting function for a given quantity?

3. Does your equation generates the next prime?

4. Does the symmetry in the complex plane depends on the complex number?

5. Does your equation implies a generalization of the real part?

The purpose of the points 4 and 5 is to hone the generalization of the Riemann
Hypothesis such that you can move and translate the critical line all over the
complex plane. This functionality is very useful in Modern Physics.

Thereupon, your equation generates infinitely many nontrivial zeros which
all have real part 1/2. Congratulations! Your mission has been successfully
accomplished!

�
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5 WHETTING THE EDGES OF THE PROOF

There are infinitely many nontrivial zeros and they all have real part 1/2.
Proof.

∞∏
p∈P

1

2− 2

ps

= ζ(s) =

∞∑
n=1

1

(2n+ 2)
s, (4)

where s =
p2 + 1

4
on the LHS and s =

n2 + 1

4
on the RHS such that

lim
p→∞

1

2− 2p

1

4
(−1−p2)

=
1

2
= lim

∞∑
n=1

1

(2n+ 2)

1

4
(1+n2)

. (5)

Algorithm 2. Code Mathematica

�
�

�
�NSum[1/(2n+2)ˆ((nˆ2+1)/4),{n,1,Infinity}]

�

Now we elaborate the proof hereinafter.

5.1 THE FIRST FLOOR

Here we are. To start the sketch of the proof we recall a very useful relation. If
n = pq where p and q are primes then, p2 + q2 − 2n = (q − p)2 , where p < q.
We can improve this straightforward geometrical relation such that

ζ (s) = s

( ∞∑
n=1

n2 − p4

p2
+

n2 − q4

q2

)
= 0. (6)

This means that factoring implies also additive properties. We will observe
the same phenomena in the abc-conjecture proof. For now, we can conclude
that every integer n has at least a complex number s on the form

ˆ
n2 + α4

4α2
dα = s =

1

2
+ it, (7)

where α denotes every factor of n, i denotes the imaginary part and t is the
complex variable introduced by B. Riemann himself.

For instance if 7.11.23 = n = 1771 then, s7 =
1

2
+16014, s11 =

1

2
+6510 and

s23 =
1

2
+ 1614. It’s interesting to observe how s7 and s23 are peculiar.
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It yields that, we assume: a prime number is an integer greater than one
which has a unique coordinate on the critical line on the form

p2 + 1

4
= sp =

1

2
+ it. (8)

Recall, the purpose is not just to prove if there are infinitely many zeros
between 1/2 and 1. Namely, every prime is fettered with a single nontrivial zero
which embeds a real part a half, that is the Riemann Hypothesis!

So far, we can observe the perfect symmetry in the following figure:

Algorithm 3. Code Mathematica

�

�

�

�
Plot3D[(nˆ2 + xˆ4)/(4 xˆ2), {n, -1.8, 1.8}, {x, -1.8, 1.8}, Mesh->None,
PlotStyle->Directive[Red,Specularity[White,20],Opacity[0.8]],
ExclusionsStyle->{None,Red}, BoxRatios->Automatic]

We can also observe the perfect convergence.
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Algorithm 4. Code Mathematica

�
�

�
�ContourPlot[(nˆ2 + xˆ4)/(4 xˆ2), {n, -1.76846, 1.76846}, {x, -1.76846, 1.76846}]

Algorithm 5. Code Mathematica

	



�
�

Manipulate[Plot3D[(nˆ2 + xˆ4) / (4 (xˆ2)), {n, 1, 100}, {x,1,100},
ColorFunction->(Red &), Mesh->None, BoxRatios->1]]

This is the most important breakthrough in the RSA encryption. Indeed,
factoring is now feasible in O (log (n)) , since for every n = pq where p and q
are primes, there exists a unique complex number. Namely, you don’t need to
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build a table of primes and you don’t need anymore to divide n by the primes
less than n. For instance, let n = 1337 so, you can find 7 and 191, simply by

plugging the complex number sp,q =
1

2
+ 9132.

Of course, we know how to find the complex variable for any RSA number,
but for security reasons, in a fickle world, we will not put the complete statement
on a public wall. In the other hand, keep in mind, the RSA encryption is known
to be billion times harder to crack than the Enigma machine, i.e.. So, you can
call it The Secret Theorem and feel free to find the solution by yourself. Hint:
the sieve may be modular in ≡ 5 (mod 10θ/2) where θ depends on the scale and
the number of digits of n.

Fortunately, the Riemann Hypothesis proof implies the smartest encryption
for the next generations.

1. Does your equation is useful to determine whether a given integer is prime?

YES!

�

5.2 THE SECOND FLOOR

We shall write and define � (p) for the Riemann counting function for the num-
ber of primes less than p. At the first sight, we might think that � (p) and π (N)
are slightly different. Let β ∈ R, it follows:

� (p) =
p2 + i2

4?
± β. (9)

For instance

6 = � (13) =
42

7
= π (13) , (10)

and

169 = � (1009) = 1 +
254520

1515
= π (1009) . (11)

Since � (p) holds for a given prime p, so, let us merge the both equations
such that

� (p) = p2 + 4α (β − π (N)) + i2 = 0. (12)

We assume: there will always exist (α, β) ∈ R2 and ε =
1

2
+ it such that

� (p) =

ˆ
P

ˆ
R

(
p2 + i2

4α
± β

)
dpdα = π (N) + ε. (13)
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For instance

π (N) ⇐⇒ � (p)− ε
4 = π (10) = 0 + 102 − 1 / 22.5

25 = π
(
102
)

= 0 + 102
2 − 1 / 22.97

169 = π
(
103
)

= 0 + 103
2 − 1 / 25.55.59

1229 = π
(
104
)

= −2 + 104
2 − 1 / 233.33.5.7

9592 = π
(
105
)

= −88 + 105
2 − 1 / 267.7

(14)

You can obtain a very computational set with a discrete algorithm and im-
prove the results by yourself such that β = 0 for all π (N) but, keep in mind
that � (p) holds for p prime.

The precise number of primes less than n is given by the following:

Algorithm 6. Code Mathematica

�
�

�
�PrimePi[n]

1. PROVED

2. Does your equation embeds a prime counting function for a given quantity?

YES!

�

5.3 THE THIRD FLOOR

In our previous articles, we shown that the distribution of the primes depends
on their last digit and how to build an infinite tree of primes from any given
odd number. We have also proved that every prime number has it’s own satel-
lite which is also prime. Those results deserve to be considered as the most
important breakthrough in number theory. In this section, we will complete
the proof of the Next Prime theorem. This tightrope walker’s step is obviously
the most difficult because, we are looking for an equation which is able to gen-
erate a prime number without any computational complexity and without any
primality test protocol.

First, let n = pq where p and q are primes and α as any factor of the odd
number n and β ≡ 5 (mod 10) such that

n2 + (βα)2

2α2
= Prime. (15)

Now if we replace n by any given prime p such that α = 1, we obtain the
following iteration primes partition:

3 7 11 19
17 37 73 193
317 137 173 1193
617 337 373 1693

(16)
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There are specific conditions for which you will not obtain a prime. For
instance, when p = 3 and β = 15, simply because β is divisible par 3 and so on.
Otherwise, as we saw it your constellation of primes depends on the last digit
of your original prime or odd number. We can observe this phenomena in the
four basis of the DNA as well as in some planetary systems or in the Quantum
Fields, as illustrate hereinafter:

Now, let us see the connections with our original equation. To fulfil the
purpose in view and complete the proof, we merge the both equations such that

n2 + (βα)
2

2− 2

ns

= O. (17)

For instance, let β = 5 and s = 7, according to the scale of n. We assume: O
will always contain the satellite prime number of α. Recall that α is a factor of
n. This is why we call such numbers the Euler Satellites or E-Sat as mentioned
in the figure above, because the proof is given by means of the Euler product.
For instance, let n = 187, we have

1872 + (5.11)
2

2− 2

1877

= 112.157 (18)

and
1872 + (5.17)

2

2− 2

1877

= 172.73 (19)

As you can see it
(
112 + 52

)
/2 = 73 and

(
172 + 52

)
/2 = 157, which means

that the prime satellite of 11 will always be 73 as well as the E-Sat of 17 remains
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157, which is very useful for factoring. If we plot the Euler-Sat, we observe the
function of the primes as Gauss had predicted. In the polar below, you can see
how this function is leaded by the complex number s. Indeed, if s is even you
will obtain a perfect cross, otherwise, you will obtain a single line. With s = 2,
we obtain a fancy logo for a brilliant Polytechnician.

Algorithm 7. Code Mathematica

	



�
�

PolarPlot[(tˆ2+(5t)ˆ2)/(2-(2/(tˆ2))), {t,−2π,2π},
PlotStyle->{Red,Directive[Dashed,Green,Orange]}, PlotRange-> All]

As a side note, we would like to say something much more relevant to the
debate today. I have discovered that the distribution of the primes depends
on their last digit when I was 12, but, let us recall that, such conjectures,
which are engrossing puzzles, have intrigued scientists for over 3, 000 years.
Indeed, proving the Next Prime theorem is equivalent to prove the prime number
theorem and the infinitude of the primes, all at once. In the other hand, we
recall that counting the number of primes is totally trite. Namely, if your proof
of the prime number conjecture doesn’t contain the next prime, sorry but you
didn’t. You had just brought to us another primes statistic report.

1. PROVED

2. PROVED

3. Does your equation generates the next prime?

YES!

�
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5.4 THE DUPLEX

This floor is the last step of our journey with B. Riemann, through the sketch
of the proof, because as we said, the purpose of the points 4 and 5 is to hone
the generalization of the RH, see Section 4.

Therefore, if we reduce all the terms of our original equation, with some
insightful sophistications, we obtain the one sentence proof

s

ˆ +∞

−∞

(
1

2
+

1

i2 + log (p)
π

)
ds = ζ(s), (20)

where i2 = −1, s ∈ C and p ∈ P.

Whereupon, we can observe immediately that the symmetry depends solely
on the complex number s. Otherwise, since we are not interested by ζ (0) , then,
to obtain a steady equation, we can use multiple layouts to toggle s, pinning it
in the right place, as shown below. Also, we generalize the real part such that,
we assume: for every prime p, there are infinitely many complex numbers s such
that ˆ

C

ˆ
N

ˆ
P

(
1

n
+

1

i2 + log (p)
sπ

)
dsdndp = ζ(s), (21)

where i2 = −1, n ≥ 1, s ∈ C and p ∈ P.

Also, to extend the real part, if you want, you can add another parameter
like nx.

Ultimately, if you think that the equation above is straightforward, so you
didn’t understand. Indeed, a pilot steers the most advanced and sophisticated
jet fighter by means of a simple joystick control. Therefore, this equation maybe
thought as of the perfect joystick to wield the complex Riemann zeta function.

�

6 THE PROOF REPORT

1. PROVED

2. PROVED

3. PROVED

4. PROVED

5. PROVED

The Edifice of the Proof is now complete.:

�
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7 THE CONSEQUENCES OF THERH PROOF

The discussion then boils down to how the harvest solution of the Riemann Hy-
pothesis implies the proof or disproves other related conjectures, like a Domino.

7.1 THE ABC THEOREM

The genuine formulation of the abc-conjecture is: for every ε > 0, there are only
finitely many triples of coprime positive integers a + b = c such that c > d1+ε,
where d denotes the product of the distinct prime factors of abc. Any other
formulation of the abc conjecture is a total nonsense.

Theorem. There doesn’t exist any triple of coprime positive integers a+b =
c such that c > d1+ε.

The one sentence Proof.

log (πc)

log
(√

π2abc
) = d1+ε =

1

ac
+

1

bc
< 1 < c. (22)

�

After the publication of the article“Stealth Elliptic Curves and the Quantum
Fields”, in 2013, the University of Leiden has stoped the abc@home project,
whilst, some people were trying to reformulate the abc conjecture. Also, it
was quite interesting to observe the sparkling and the media turnmoil around
the Terence Tao and Shinichi Mochizuki productions. We assume, none got
through and none of them actually cleared up the problem. In the other side,
the math community was utterly aware about this issue. For instance, you can
see here that the question has been discussed on wikipedia but, mysteriously,
some people (who are they?) decided to hide the proof and to delete from the
Internet any related link. Therefore, I submitted the proof to the ICM and the
complete abstract was accepted by the organizing committee of the International
Congress of Mathematicians, as the Keynote part of the short communications
at Coex in Seoul 2014. This is a glimpse of the storytelling, see here.

7.1.1 RIEMANN AND THE ABC THEOREM

In this subsection, we will release two valuable proofs of the Riemann Hypothesis
by means of the abc theorem. Recall: there are infinitely many nontrivial zeros
and they all have real part 1/2.

The one sentence Proof.

∞∏
d1+ε

⎛
⎝1

2
+

log (πc)

log
(√

π2abc
)
⎞
⎠ s = ζ (s) . (23)
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We recall: For every (a,b,c) triples, there exists a quality 1 < Q
...
abc

< 2 such

that
log (πc)

log
(√

πab
) = Q

...
abc

= 1 +
log (πc)

log
(√

πbc
). (24)

If a = 1, then replace πab by π2ab and πbc by π2bc.
For the second time. We assume: there are infinitely many nontrivial zeros

and they all have real part 1/2.
The one sentence Proof.

∞∏
Q...
abc

⎛
⎝1

2
+

log (πc)

log
(√

πbc
)
⎞
⎠ s = ζ (s) . (25)

For more details see: “Stealth Elliptic Curves and the Quantum Fields.
To complete the proof we merge the both equations such that

∞∏
Q...
abc

⎛
⎝1

2
+

log (πc)

log
(√

πbc
)
⎞
⎠ s = ζ (s) =

∞∏
k=1

s

2 (pk + i2)
, (26)

where i2 = −1, s ∈ C and pk ∈ P denotes the k-nth prime.
For more details about the Right Hand Side, please, see the Section 5.

The easiest way to visualize the connections between the abc theorem and the

Riemann Hypothesis is to plot
c

2b
and

s

2 (p+ i2)
such that

�
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7.2 THE TWIN PRIME THEOREM

Theorem. There are infinitely many odd twin primes P satisfying

lim inf
i→∞

P∑
pi>2with pi−pj≥2

and i�=j

pi
= �k, (27)

where �k denotes the Riemann constant 1/2.
The one sentence Proof.

∞∏
k=1

Pk∑
pi>2with pi−pj≥2

and i�=j

pi
= 0. (28)

Therefore, we observe that all the twin primes fetch the critical line. Finally,
to complete the proof, we assume: the numerator p will always be the second
twin of the given prime pair such that p− 2 is prime, which proves clearly that
the smallest gap between consecutive primes corresponds to 2 such that

lim inf
n→∞ (pn+1 − pn) = 2, (29)

where pn denotes the n-th prime.
For more details, see the article “RSA-T. The Oval Pylon”. We have com-

puted the Riemann Twin Primes or the Royal Primes over 1.5312564× 107.
Here we get an excerpt:

�
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A side note. We will not dwell on that issue. Nevertheless, for aught I know,
Yitang Zhang didn’t solve anything but suddenly, he was propelled into the
spotlight by an orchestrated massive propaganda campaign fostered by who?
The conjecture is clear enough, to solve the twin prime problem you have to
prove that for infinitely many primes, p − 2 will always be a prime, which
corresponds to the smallest gap between twin primes. But, please, don’t waste
our time with finitely many pigeons (Bird Strike). Indeed, The rationale of Y.
Zhang’s article seems rather specious and rotten, in trying to justify a haphazard
primes gap. Finally, we shall be suggesting to our colleagues that we hold harvest
discussions to achieve genuine equality.

7.2.1 RIEMANN AND THE TWIN PRIME THEOREM

Through this Subsubsection, we pay tribute to the Great British Mathemati-
cians G. H. Hardy and John Littlewood who are the pathfinders, about the
connections between the Riemann Hypothesis and the Twin Prime conjecture.
Indeed, we assume: the first Hardy-Littlewood conjecture is equivalent to

∞∏
p∈P
p≥3

(
1− 1

(p+ i2)
2

)
≈ C2 ≈ lim

∞∑
n=1

1

(2n+ 2)

1

4
(1+n2)

, (30)

where C2 ≈ 0.6 denotes the twin prime constant and i2 = −1.
What’s more, we have shown in the previous article: “The Riemann Hypoth-

esis Proof and the Quadrivium Theory”, how the last digit and some fractions
play an important role in the distribution of the primes. As for the connections
between the RH and the Hardy-Littlewood conjecture we can observe

∞∏
p∈P
p≥3

(
1− 1

(p+ i2)
2

)
≈ π

5
≈ 1

2

3
+

1

6
+

1

2
+

1

3

. (31)

Note: 2111 and 3623 are primes. Every fraction generates a specific “class”
of primes, according to their last digit. Finally, to complete the proof, we
generalized the RHS such that, we assume:

Theorem. The smallest gap between consecutive primes corresponds to 2.
Proof.

lim inf
n→∞ (pn+1 − pn) = 2 = lim

n→∞
1

1

2
+

7

2pn

, (32)

where pn denotes the n-th prime. You can replace 7 by any constant k > 0.
Namely, this maybe considered as an important result in the history of the

resolution of the Riemann Hypothesis. For more details about the Right Hand
Side, please, see the Section 5.

�
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7.3 THE LEGENDRE CONJECTURE PROOF

7.3.1 THE FORMULATION

Adrien-Marie Legendre (1752− 1833) is a brilliant French Mathematician, who
deserves an outstanding tribute, for having formulated the most important prob-
lem in number theory, after the Riemann Hypothesis. We will try to prove why.
So far, more than two hundred years ago (i.e. 1798, according to M. Desboves),
Adrien-Marie Legendre had conjuctured that: there exists, at least, a prime
between n2 and (n+ 1)

2
for any n ≥ 1.

7.3.2 LEGENDRE AND THE TOP GUN REPORT

In number theory, simple is the neatest word to define the complexity. By the
way, two weeks ago, a pilot asked me a tough question: “During a battle, if I
lose the control of my navigation instruments, how can I find the nearest airport,
according to a given amount of fuel and without any computational complexity?”.
Obviously, the answer would be: “Ask Google Map! Do you copy Maverick?”.
For crafty mathematicians, such interesting questions, even if the mileage may
vary, fetch the Legendre conjecture. So, I spent exactly one hour on this issue,
which may be considered as a critical time situation for a flying pilot with a
minimum amount of fuel. In this Subsubsection, we will elaborate the sketch
of the proof by starting from the end. Indeed, the main purpose behind the
Legendre conjecture is to generalize the prime number theorem and to solve the
next prime conjecture. Therefore, follow up to Gauss, let us define π(N) as the
number of primes less than n . We assume:

Theorem. For every n ≥ 1, there exists {(α, β) ∈ R
2 : log (2)πβ 	= nα} and

ε > 0 such that

ˆ
R

n (n+ 3)

2 (nα± log (2βπ))
dα = π(N) + ε. (33)

�

7.3.3 RIEMANN AND THE LEGENDRE THEOREM

Recall: there are infinitely many nontrivial zeros and they all have real part 1/2.
The one sentence Proof.

s

ˆ
C

ˆ
N

ˆ
R

n (n+ 3)

2 (nα± log (2βπ))
dsdndα = ζ (s) , (34)

where (α, β) ∈ R2, s ∈ C and n ≥ 1.
Finally, we can observe the perfect symmetry as well as we can generalize

the real part.

�
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To compute π (N) over 109 with the Legendre set and to obtain a time
machine precision, we define π = 3.14159 such that

Algorithm 8. Code Mathematica

INPUT OUTPUT

Solve[Legendre ==4 && y=2 && n==10,{x}] x -> 1.625 + ε

Solve[Legendre ==25 && y=2 && n==10ˆ2,{x}] x -> 2.06 + ε

Solve[Legendre ==168 && y=17 && n==10ˆ3,{x}] x -> 2.985119047619048 + ε

Solve[Legendre ==1229 && y=325 && n==10ˆ4,{x}] x -> 4.0695687550854345 + ε

Solve[Legendre ==9592 && y=325 && n==10ˆ5,{x}] x -> 5.212833611342786 + ε

Solve[Legendre ==78498 && y=325 && n==10ˆ6,{x}] x -> 6.369608142882621 + ε

Solve[Legendre ==664579 && y=325 && n==10ˆ7,{x}] x -> 7.523562285296405 + ε

Solve[Legendre ==5761455 && y=325 && n==10ˆ8,{x}] x -> 8.678363625160658 + ε

Solve[Legendre ==50847534 && y=325 && n==10ˆ9,{x}] x -> 9.833318593188807 + ε

Ultimately, we can observe in the partition above how the Legendre set is
useful to determine the precise number of primes less than a given quantity.

�

Now let us elaborate the reel. We assume, for every n ≥ 1, there exists α ∈ R

such that
n2 < n (n+ 1)± α︸ ︷︷ ︸

Prime

< (n+ 1)2 . (35)

In the general case α = ±1 and for some special cases α = ±

⎛
⎜⎝(n+ 1)

2 − n2︸ ︷︷ ︸
Prime

⎞
⎟⎠.

We can improve this relation such that

n2 < n2 + 3n± α︸ ︷︷ ︸
Prime

< (n+ 1)
2
. (36)

This harvest solution is very computational since it fails only for some specific
cases, which you can predict in your algorithm. For instance, you will not obtain
a prime number, if n2 + 3n is mod {0, 4, 8, . . .} and so on. Otherwise, we can
observe that there exists an homogeneous linear recurrence relation which gen-
erates what has to be called the Legendre numbers, as well as Fibonacci has
his own. The first sequences are {2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, . . .}, which
can be generalized as follows:

an =
1

2

(
n2 + 3n

)
. (37)

We can observe hereinafter the deep connections with the nontrivial zeros of
the Riemann zeta function.
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Algorithm 9 & 10. Code Mathematica



�

�

�

PolarPlot[Cos[2/Abs[t (3 + t)]]ˆ2, {t,−4π,4π}]
&
PolarPlot[Sin[Abs[t (3 + t)]/2], {t, −π, π}, PlotStyle->Red]

Algorithm 11 & 12. Code Mathematica



�

�

�

PolarPlot[Sin[Abs[t (3 + t)]/2]ˆ2, {t, −π, π}, PlotStyle->Red]

&
PolarPlot[ArcTan[(θ (3 + θ))/2], {θ, -100, 100}]

Ultimately, if we merge the both relations we obtain π(N).

�
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The first consequence is related to the Goldbach conjecture since there
exists an embedded Goldbach function on the form

G(n)
n→+∞

= 2 (n+ 2) ≡ 0 (mod 2), (38)

which is, indeed, the simplest formulation of

(n+ 1)
2
+ 3 (n+ 1)− (n (n+ 3)) . (39)

Thereupon, one can see that for some cases π(N) can be expressed as follows:

π(N) ≈ G (n)

?
. (40)

The second consequence, we assume: there are infinitely many primes
which can be expressed as the sum of two squares such that

n2 + (n+ 1)2 = Prime. (41)

This set of primes is very computational since it generates only primes ended
by {1, 3}, otherwise the prime lies in ≡ 0 (mod 5). Also, the distribution of
the prime numbers follows a very precise pattern. Indeed, you will never ob-
tain two consecutive primes ended by 3. You can generate the first sequences
{{n− > 1, p− > 5} , {n− > 2, p− > 13} , {. . .} , {n− > 974, p− > 1899301}} with
the following algorithm.

Algorithm 13. Code Mathematica

�
�

�
�Solve[nˆ2+(n+1)ˆ2==p && Element[p,Primes] && 0<n<10ˆ3, {n,p}, Integers]

We can observe the perfect illustration by the following patterns:

Algorithm 14 & 15. Code Mathematica



�

�

�

PolarPlot[Sin[Abs[tˆ2 + (1 + t)ˆ2]], {t, −π, π}]
&
PolarPlot[tˆ2 + (1 + t)ˆ2, {t, −6π, 6π}, PlotStyle->Red]
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7.3.4 THE PENULTIMATE PRIME THEOREM

We are now well poised to elaborate the leer of the proof. Indeed, to settle
completely the Legendre conjecture, we will articulate the sketch of the proof
around three steady points. Above all else, we will determine whether there
exists an odd number between n2 and (n+ 1)

2
for every n ≥ 1. In the second

time, we will prove that there exists at least a prime in the given interval. At
last, we will see how to obtain the previous or the next prime for any given
interval.

Step 1.
Theorem. For every n ≥ 1, there exists at least an odd number α between

n2 and (n+ 1)
2
.

Proof. If (n+ 1)
2 ≡ 0 (mod 2), then there exists β ≡ 1 (mod 2), and vice

versa , such that with β ≤ (n+ 1)2 − n2

(n+ 1)2 − β = α, and
5

2
(1 + (−1)α)︸ ︷︷ ︸
α odd=0

. (42)

Step 2.1. Honestly, there are many different ways to solve this issue. Nev-
ertheless, we will introduce two elegant solutions, among others.

Theorem. For every n ≥ 1, there exists at least an odd prime p between n2

and (n+ 1)2 .
Proof.

Ω± α = δ, (43)

where α is any integer, δ ≡ 0 (mod p), and Ω denotes the product of n2 and

(n+ 1)
2
. For instance

n p (n+ 1)2 Ω− α = δ
1 2, 3 4 Ω− 12 = 3
2 5, 7 9 Ω− 12 = 5.7
3 11, 13 16 Ω− 12 = 11.13
4 17, 19, 23 25 Ω− 32 = 17.23
5 29, 31 36 Ω− 12 = 29.31
6 37, 41, 43, 47 49 Ω− 12 = 41.43
′′ ′′ ′′ Ω− 52 = 37.47
7 53, 59, 61 64 Ω− 32 = 53.59
8 67, 71, 73, 79 81 Ω− 12 = 71.73

(44)

As we can see it in the partition above, most of the time α is a square and
δ = pq where p or q lies between n2 and (n+ 1)2 . In cryptography, this is very
useful for factoring. Moreover, you can build an infinite set of twin primes.
Ultimately, we proved with the first sequence, with

√
Ω− 3 = 1, that 3 is the

penultimate prime between n2 and (n+ 1)2 .
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Step 2.2. For the second time.
Theorem. For every n ≥ 1, there exists at least an odd prime p between n2

and (n+ 1)2 .
Proof.

lim
α→±∞

n3 (n+ 1)
4

α2
= eiπ = −1, (45)

where the integer α 	= 0.
Nevertheless, to elaborate the proof, we will consider the equivalent version,

which is slightly different, but more computational. It follows, with n ≥ 2

ˆ
n4 (n+ 1)4 − nα2

nα2
dα = Prime+ ε. (46)

Note that n2 + n = α corresponds to the threshold from which you can
dive into the interval and find the primes between n2 and (n+ 1)

2
. Moreover,

according to α, you can generate at least a prime less than n, as well as the
next prime. Ultimately, we can observe the deep connections between ε and the
nontrivial zeros of the Riemann zeta function. For instance

72 <
73 (7 + 1)

4

1512
= 61 + ε < (7 + 1)2 . (47)

With α = 144 you obtain 67 + ε which is the next prime. We can illustrate
the situation with the Royal Throne hereinafter.

Algorithm 16. Code Mathematica

�

�

�

�
Plot3D[(nˆ4 (1 + n)ˆ4 - n xˆ2)/(n xˆ2), {n, -8.6, 6.5}, {x, -6.5, 8.6}, MeshStyle->None,
PlotStyle->Directive[Red,Specularity[Blue,20],Opacity[0.8]],
ExclusionsStyle->{None,Red}, BoxRatios->{1, 1, 1}]
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Step 3.1. The Next Prime
Theorem. For every n ≥ 1, there exists β ≡ 5 (mod 10) and α integer such

that, at least an odd prime p lies between n2 and (n+ 1)
2
.

Proof.
αβ ± n2 (n+ 1)

2 ≡ 0 (mod p). (48)

For instance
2.5− 4 = 2.3
67.85− 82.92 = 7.73
71.425− 82.92 = 67.373

(49)

where 1 < 2, 3 < 4 and 82 < 67, 71, 73, 79 < 92. To obtain the Next Prime,
you have to shift β, like a gear, such that for instance

3β − 4 ⇔ 11, 41, 71, 101, 131, 191, . . . , 911, . . . , 2861, . . . (50)

As you can see it, the distribution of the primes depends on their last digit.
Also, there are some exceptions for which you will not obtain a prime. For
example if β or the output is divisible by a previous prime. The set is very
computational. You can use the following to generate the first sequence < 103.

Algorithm 17. Code Mathematica

�
�

�
�Solve[3β-4==p && Element[p,Primes] && Mod[β,5]==0 && 1<β<10ˆ3, {β,p}, Integers]

Step 3.2. Now, for the generalization, we introduce the Adrien-Marie Leg-
endre modular constellation of primes on the form

kab− a2 + b2 ≡ 0 (mod c), (51)

where, b − a = 1 and a + b ≡ 0 (mod c) as the roots of the Legendre Next
Primes function and k = 3. So, from a = 2 and b = 3 we have

3.2.3 − 22 + 32 = 5
3.7.8 − 72 + 82 = 5.11
3.12.13 − 122 + 132 = 5.31
3.17.18 − 172 + 182 = 5.61
3.22.23 − 222 + 232 = 5.101
3.27.28 − 272 + 282 = 5.151
3.32.33 − 322 + 332 = 5.211

(52)

Algorithm 18. Code Mathematica

	



�
�

Solve[(3ab)-(aˆ2+bˆ2)==5z && a+b==c && b-a==1 && a<b && Mod[c,5]==0 && Ele-
ment[z,Primes] && 1<a<50 && 1<b<50 && 1<z, {a,b,c,z}, Integers]

You can change the core parameters, to obtain another modular distribution
of primes with another last digit. Ultimately, we enhanced completely the proof,
ultra-petita.

�
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8 MISCELLANEOUS

8.1 ABOUT π

The Euler–Mascheroni constant.
In the movie “Hidden Figures”, did Kevin Costner said: “here at NASA, we

all π the same color?” It’s a nice touch. Isn’it? In French the prononciation is
a little bit confusing, but what would be the color of π? There is an interesting
question whether the Euler–Mascheroni constant γ is rational? We assume:
there exists χ ∈ R and ε > 0 such that

π ≈
√
(χ+ ε)

γ

γ
, (53)

where, for instance γ ≈ 0, 5772156649 and χ + ε ≈ 7, 86386724. Which
means that the Euler–Mascheroni constant may not be rational. But, this is
not a complete proof.

The Golden Ratio.
We assume there exists a complex number s such that

1 +
√
5

2
≈ 1 +

√
3

πs
, (54)

where s ≈ 0, 9002280645.

8.2 PALINDROMIC PRIMES + SPECIAL NUMBERS

Last week, my daughter Wurus, who is 5 years old, said that computing is
boring because, over 10 all numbers are similar. Therefore, she asked me to
nudge her (i.e., R. Thaler and C. Sunstein) how to compute the most special
number with her App. So, I asked back: “why?”. She said that she wants to
teach something new to her fellows. First, I recall that: “you are rather supposed
to learn at school, not to teach!”. Whilst, I asked her: “what a special number
would look like?”. She said: “a number which grows from the left and decreases
towards the right or a number which grows from the middle with the same edges”.
“Shrug”, I replied. After 5 minutes, I realized how hard is the problem. Indeed,
it’s beyond the classical recreational Mathematics. On the Internet, it turns out
that the largest palindromic prime, as of Nov 2014, has 474501 digits. By the
way, many Great Mathematicians have been working on such questions. Here
we are.

Theorem. There are infinitely many integers on the form

2Θ2 − 1−∆, (55)

where Θ is any natural repdigit and ∆ denotes the adjustment factor.
For instance

2
(
33332

)− 1− 19996000 = 2221777. (56)
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8.2.1 THE WURUS NUMBER

Wurus means gold, but the Wurus number is not the Golden Ratio. The Wurus
number is an Ambidextrous number which swells from the both edges, in
a perfect symmetry. So, to obtain the mirror of the infnity, we define the
generalization of the Wurus number as follows:

(Θ + 1)
2 − kΘ −∆, (57)

where Θ is a repunit number, k any constant and ∆ denotes the adjustment
factor.

For instance, with k = 3, Θ = 1111111111︸ ︷︷ ︸
10

and ∆ = 1111111109888888890

Wurus = 123456789987654321. (58)

The prime factors are

Wurus = 32.11.37.41.271.9091.333667. (59)

Now, we know how to raise a number from the middle while keeping the
same edges, with a deft hand. This is completely new in number theory.

For the music of the primes: There Is Something New Under The Sun.

MEMENTO MORI

�
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