
HAL Id: hal-01852043
https://hal.science/hal-01852043

Submitted on 3 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Angle-of-Arrival based localization using polynomial
chaos expansions

Thomas van Der Vorst, Mathieu van Eeckhaute, Aziz Benlarbi-Delai, Julien
Sarrazin, François Quitin, François Horlin, Philippe de Doncker

To cite this version:
Thomas van Der Vorst, Mathieu van Eeckhaute, Aziz Benlarbi-Delai, Julien Sarrazin, François Quitin,
et al.. Angle-of-Arrival based localization using polynomial chaos expansions. Proc. Workshop on
Dependable Wireless Communications and Localization for the IoT, Sep 2017, Graz, Austria. �hal-
01852043�

https://hal.science/hal-01852043
https://hal.archives-ouvertes.fr


Angle-of-Arrival based localization using
polynomial chaos expansions

Thomas Van der Vorst1, Mathieu Van Eeckhaute1, Aziz Benlarbi-Delaı̈2, Julien Sarrazin2, François Quitin1,
François Horlin1, Philippe De Doncker1
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Abstract—In this paper, polynomial chaos expansions are
applied to angle-of-arrival based localization. By using a poly-
nomial chaos expansion on a least squares estimator, a new
positioning method is designed. Simulation results show that the
proposed method returns precise information about the statistical
distribution of the position.

Index Terms—Polynomial chaos, Localization, Angle-of-
Arrival, Positioning

I. INTRODUCTION

Accurate localization is one of the fundamental require-
ments of future Internet-of-Things (IoT) networks. In a cellular
infrastructure, high localization accuracies allows network
providers to offer additional services related to contextualized
information delivery, targeted advertising or security applica-
tions. Traditional localization approaches based on the esti-
mation of the signal ToA/TDOA rely on high communication
bandwidths, and can thus not be applied to the localization
of IoT nodes (which typically operate with low data rates
and low bandwidths). By contrast, angle-of-arrival (AoA)
based estimation is less dependent on the bandwidth of the
communication system, making it a suitable candidate for IoT
localization.

Recently, the deployment of fixed reference nodes, referred
to as anchors, which can communicate with the user equipment
(UE) to be localized, has been considered [1]. In this work
we propose a localization system for a network of densely
deployed anchors using AoA measurements at the different
anchors. Localization algorithms using AoA measurements
have been previously investigated in literature. In [2] the
authors use a least squares (LS) estimator, and [3] investigates
the use of a linearized LS estimator. While these methods
show good efficiency, they do not take into account from the
outset the uncertainty of each estimated AoA. We propose to
apply polynomial chaos expansion theory to the localization of
a RF transmitter by exploiting the AoA measurements at the
different anchors, associated with their known uncertainties.
This allows us to obtain the location of the transmitter, as well
as its statistical distribution. Polynomial chaos expansions have
already been used in electromagnetics for a variety of applica-
tions, such as ray-tracing [4], angle-of-arrival estimation [5] or
dosimetry [6]. However, to the best of our knowledge, it has
not been used in localization of RF transmitters. Polynomial

chaos expansion (PCE) allows one to determine the statistical
properties of the output of a process, based on the probability
density function (PDF) of the input random variables of the
process [7].

II. METHOD

A. AoA-based localization

We consider the situation where N anchors collect the
angle-of-arrival measurements θi obtained from the signal
emitted by one UE. The actual location of the UE is denoted
as x = (x, y). The locations of the anchors are xi = (xi, yi),
and the AoA measurements are given by θi, for i = 1, ..., N .
If there are more than two anchors in this two-dimensional
problem, the system becomes overdetermined. If the AoA
measurements θi are the actual AoA’s, it is easily shown that
this deterministic problem can be expressed by the following
matrix equation [2]: −x1 sin θ1 + y1 cos θ1

...
−xN sin θN + yN cos θN

 =

 − sin θ1 cos θ1
...

...
− sin θN cos θN

[ x
y

]
(1)

that can be rewritten as

b = Hx (2)

However, if the measurements θi are noisy, equation (2) will
not have any solution, but an estimate of the solution can
be obtained. The least squares estimate of the position x̂ is
obtained by

x̂ = (HTH)−1HTb (3)
≡ H†b (4)

where † is the pseudo-inverse operator.

B. Polynomial chaos expansions

Consider that each measurement θi is associated with an
uncertainty that is also estimated by the anchors and is
assumed to have a Gaussian distribution with variance σ2

θi
. If

uncertainties are taken into account, the least squares estimate
of the position of the UE is a function of the random variables
θi, and is therefore a random variable. We denote this random
variable by x̂. As shown in [7], x̂ can be expressed as:



x̂ =
∑
α∈NN

cαΨα({θi}Ni=1) (5)

where α is a multi-index and the polynomials
{Ψα({θi}Ni=1)}α∈NN form a polynomial chaos basis of
the adequate Hilbert space containing x̂. These multivariate
polynomials are products of univariate polynomials. For each
input random variable θi, a series of univariate polynomials
ψ
(i)
k , k ∈ N, are constructed so that they are orthogonal with

respect to the scalar product defined by the PDF of θi, ϕθi :

〈ψ(i)
j , ψ

(i)
k 〉 =

∫
ψ
(i)
j (u)ψ

(i)
k (u)ϕθi(u)du = γ

(i)
j δjk (6)

In particular, a Gaussian random variable generates the
well known Hermite polynomials [7]. The coefficients cα can
be obtained by different methods. In this work we use the
projection method. The orthogonality of the polynomials ψ(i)

k

allows one to express the coefficients cα as:

cα =
E [x̂Ψα]

E [Ψ2
α]

(7)

where E is the mathematical expectation operator. A Gauss
quadrature is used to evaluate the integrals appearing in the
mathematical expectations, as described by Sudret [7]

In practice, the series appearing in (5) is truncated at a
certain order such that the number of polynomials taken into
account is typically low. We denote by A the subset of multi-
indices corresponding to these polynomials. The interest of this
method is that knowing the PDF of the input variables allows
one to deduce statistical information of the output values with
a limited number of runs of the LS estimator. Indeed, the mean
and variance of the output are given by:

E[x̂] = c0 (8)

σ2
x̂ = Var

 ∑
α∈A\0

cαΨα

 =
∑

α∈A\0

c2α‖Ψα‖2 (9)

in which the squares of the coefficients are calculated
component-wise.

III. RESULTS

In the simulations, N = 3 anchors have been considered,
each of them making an independent AoA estimation with
Gaussian distributed estimation errors. The position of the
anchors and the AoA estimation error standard deviations are
given in Table I.

TABLE I
PARAMETERS OF THE CALCULATION

Anchor 1 2 3
(xi, yi) (−6, 4) (11,−4.5) (7, 16.6)
σθi 12◦ 10◦ 7◦

Our algorithm based on polynomial chaos was used with
a fifth order quadrature to perform localization. The results
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Fig. 1. Estimation of the position with the polynomial chaos (PC) method,
as well as 90% confidence intervals, calculated with the polynomial chaos
based response surface, with the variances assuming that the response surface
is Gaussian-shaped and by Monte-Carlo

of the calculation are given in Fig. 1. The representation of
the polynomial chaos expansion of the position estimate (5)
is called the response surface. The position estimate shown
in Fig. 1 is the mean of the response surface (8). Moreover,
the PCE of the position estimate allows one to deduce the
statistical distributions of the position coordinates. From these
distributions, the 90% confidence region (CR) of the position
was calculated. The validity of the obtained region has been
assessed with a Monte-Carlo calculation. In Fig. 1, the 90%
CR obtained with the PCE is compared to the 90% confi-
dence region obtained assuming that the distributions of the
estimated position coordinates are Gaussian, with the variance
σ2
x̂ obtained from (9). We observe that the confidence region

obtained from the response surface differs significantly from
the ellipse, assessing the fact that the position distribution
cannot be assumed to be Gaussian.

IV. CONCLUSION

A new two dimension position estimation method based on
polynomial chaos, least squares estimator, and AoA measure-
ments has been proposed. Compared to traditional positioning
methods, it presents the advantage of taking into account
the uncertainties on the AoA estimations from the outset.
This allows one to compute the statistical distribution of the
position, and consequently, confidence regions.
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