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Abstract

We consider in this paper scalar multiplication algorithms over a hyperelliptic curve which are immune against

simple power analysis and timing attack. To reach this goal we adapt the regular modular exponentiation based on

multiplicative splitting presented in JCEN 2017 to scalar multiplication over a hyperelliptic curve. For hyperelliptic

curves of genus g = 2 and 3, we provide an algorithm to split the base divisor as a sum of two divisors with smaller

degree. Then we obtain an algorithm with a regular sequence of doubling always followed by an addition with a

low degree divisor. We also provide efficient formulas to add such low degree divisors with a divisor of degree

g. A complexity analysis and implementation results show that the proposed approach is better than the classical

Double-and-add-always approach for scalar multiplication.

Keywords. Hyperelliptic curve, regular scalar multiplication, divisor splitting, simple power analysis.

I. INTRODUCTION

Elliptic curve cryptography (ECC) was independently introduced by Koblitz [14] and Miller [22] in 1986-87.

It is based on the intractability of the discrete logarithm problem in the group of points of an elliptic curve. The

main advantage compared to the similar scheme over a group (F∗q ,×) is that no subexponential algorithm is known

which computes the discrete logarithm. The key size and the computation time are then reduced. Later Koblitz

suggested in [15] its generalization (HECC) to the Jacobian of a hyperelliptic curve of genus g. Again for low

genus there is no subexponential algorithm for the resolution of discrete logarithm problem. The advantage of using

a hyperelliptic curve H(Fq) instead of an elliptic curve is that the cardinality of the Jacobian Jac(H(Fq)) is close

to qg . This implies that for a given level of security the base field Fq is smaller and the operations like multiplication

and addition are faster. But in counter parts the group law is more complicated than for an elliptic curve. Most

of the research works done on HECC during the past 20 years was meant to improve the efficiency of the group

operations.
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Arithmetic of divisors on an hyperelliptic curve. The first approach to implement the arithmetic on a hyperelliptic

curve is due to Cantor [3]. An element D of Jac(H(Fq)) is a reduced divisor, i.e., it is a formal sum D =∑r
i=1(Pi) − r(∞) with r ≤ g where Pi ∈ H(Fq) and ∞ is the point at infinity. The approach of Cantor uses

the Mumford representation of divisors on J(H(Fq)): Mumford represents a divisor D with two polynomials

(U(X), V (X)) such that the abscissas of the points Pi of the divisor are the roots xi of U(X) and the ordinates

yi of the points Pi are given by V (xi) = yi. The Cantor algorithm for divisor addition or doubling consists in

a composition and a reduction steps, each consisting in a few small degree polynomial operations (multiplication,

gcd and division). On genus 2 hyperelliptic curves the approach of Cantor was improved by Harley in [11] by

expliciting the operations in Fq in order to minimize the overall number of field operations (multiplications and

inversions) in the formulas. Later Lange pursued this idea in [18], [19] introducing a projective coordinate system in

order to avoid field inversions and weighted projective coordinates to further reduce the complexity of the formulas.

The last known improvement is due to Costello and Hisil in [12] which combines the co-Z approach (introduced

by Meloni [21] over elliptic curves) and a new weighted projective coordinates system in order to further reduce

the cost of divisor addition and doubling. We will consider also genus 3 hyperelliptic curves. For this type of curve

the best results for affine coordinates are presented in [25]. In projective coordinates Fan et al. in [9] adapt the

strategy of Lange [18], [19] to genus 3 curves: they provide explicit formulas non-weighted projective coordinate

system over Jac(HFp) and Jac(H(F2m)).

For genus 2 hyperelliptic curves, another strategy takes advantage of Kummer surface to perform efficiently

addition and doubling on the Jacobian. This approach was first used by Duquesne [8] and later a faster approach

was provided by Gaudry in [10]. Gaudry proposes a formula for pseudo-addition (addition D + D′ where D,

D′ and the difference D − D′ are known) which is really efficient compared to arbitrary formulas in Mumford

representation. One drawback of this approach is that we cannot perform usual divisor addition. This reduces the

number of protocols which can be implemented with this approach: the Diffie-Hellman key exchange and a specific

signature algorithm (cf. [10, Sect. 5.3]). Due to this limitation we will not consider this case in the sequel.

Side channel analysis. Implementation of cryptographic protocols can be threaten by side channel analysis. To get

secret data, this type of attack monitors and analyses either computation time, power consumption, electromagnetic

emanation, ... leaked out by the device performing the cryptographic computation. For example, the basic approach

for scalar multiplication K ·D of a divisor D is the Double-and-add algorithm consisting in a sequence of divisor

doublings followed by an addition when the bit ki of K is equal to one. Simple power analysis [17] monitors

the power consumption and decompose the trace into a sequence of doubling and addition power traces. The

eavesdropper can then deduce the sequence of the bits ki since a bit is equal to 1 when a doubling is followed by

an addition otherwise it is equal to 0. The timing attack [16] exploits the same weakness of the computation of K ·D

with the Double-and-add algorithm. Specifically, with a number of computation time samples, the timing attack

extracts the key bits through a statistical analysis of these samples. Both SPA and timing attack can be defeated

if we render the sequence of additions and doublings not correlated to the key bits. For example we can use the

Double-and-add-always approach proposed by Coron in [6] which results a regular sequence of doublings always
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followed by an addition. More advanced attacks like differential power analysis [17] or horizontal attack [4], [27]

require to randomize the representation of the group elements and the scalar. This can be done in addition to the

regularity of the scalar multiplication (as the Double-and-add-always approach). In the sequel we will only focus

on the prevention of the SPA and timing attack.

Contributions. In this paper we present an extension to HECC of the regular algorithm for modular exponentiation

of [24]. The idea of [24] is to split the base element into two parts and modify the square-and-multiply algorithm in

order to have all squaring followed by a multiplication with half-size element: this reduces the cost of the square-

and-multiply-always approach. In the Jacobian of a hyperelliptic curve of genus 2 we rewrite the base divisor D of

degree 2 as a difference of two degree one divisors D = D1 −D0. We provide an algorithm which performs this

splitting. We can then process the scalar multiplication as a sequence of doublings always followed by an addition

with a degree 1 divisor. We provide efficient formulas for these kind of addition in affine and weighted projective

coordinates of Costello and Hisil [12]. Over genus 3 curves, we split the divisor D as a difference of two degree

2 divisors D = D1 −D0. We provide efficient formulas for addition of a degree 3 divisor with a degree 2 divisor

based on the approach of Costello-Lauter [7]. For the case g = 2 and g = 3 we provide complexity comparison

along with implementation results which show the benefit of the proposed approach compared to classical Double-

and-add-always method.

Organization of the paper. In Section II, we first review the basics on Jacobian of hyperelliptic curve over a

prime field and we recall algorithms used for regular scalar multiplication over hyperelliptic curves. In Section III

we present an algorithm for divisor splitting and Add21 formula (addition of degree 2 with degree 1 divisor).

We provide complexity comparison with best approach of the literature and implementation results. In Section IV

we focus on genus 3 curves, following the same steps as for genus 2, we provide a divisor splitting algorithm,

necessary addition formulas on the Jacobian, complexity used in the proposed regular scalar multiplication. and

implementation comparisons. Finally, in Section V, we provide some concluding remarks.

II. REVIEW OF HYPERELLIPTIC CURVE AND REGULAR SCALAR MULTIPLICATION APPROACHES

In this section we first review the basics of the Jacobian of an hyperelliptic curve. We will then review regular

algorithm for scalar multiplication.

A. Background on the Jacobian of hyperelliptic curve

We consider in this paper imaginary hyperelliptic curves of genus g over a prime field Fp. They are given by an

equation H of the form:

Y 2 = f(X) with deg f(X) = 2g + 1,

and has no singular point on the affine plane. Note that for a point P = (x, y) on the curve, we denote P̄ = (x,−y)

which is also on the curve and we denote ∞ the point at infinity. The set of points on the curve plus the point at

infinity is denoted H(Fp). Elements of the Jacobian Jac(H(Fp)) are reduced divisors D =
∑r
i=(Pi)− r(∞) with
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degree r ≤ g and Pi 6= P̄j for i 6= j. A reduced divisor D can be set in the Mumford representation which defines

a pair u(X), v(X) ∈ Fp[X] such that

u(X) =
∏r
i=1(X − xi),

V (X)2 − f(X) ≡ 0 mod u(X),

When all the points Pi are distinct, the condition on V (X) means that v(xi) = yi for i = 1, . . . r. A group law is

defined on Jac(H(Fp)) as follows: for two reduced divisors D =
∑r
i=(Pi)−r(∞) and D′ =

∑r′

i=1(P ′i )−r′(∞) we

first compose them D′′ =
∑r
i= Pi+

∑r′

i=1 P
′
i −(r+r′)(∞) and we remove the points Pi of D such that P̄i appears

also in D′ (this is called the semi-reduction of D′′). Note that in the specific case where gcd(u(X), u′(X)) = 1

no semi-reduction is required, we just have to compute u′′(X) = u(X)u′(X) and v′′(X) such that v′′(X) mod u(X) = v(X),

v′′(X) mod u′(X) = v′(X).

In the general case we can have gcd(u(X), u′(X)) 6= 1, in this case Cantor proposes in [3] to use Algorithm 1 for

the composition and semi reduction of divisors.

Algorithm 1 Cantor algorithm for divisor composition [3]
Require: D = (u(X), v(X) and D′ = (u′(X), v′(X)) two reduced divisors

Ensure: D′′ = D +D′ semi-reduced

d′ ← gcd(u, u′) = eu+ e′u′

d← gcd(d′, v + v′) = cd′ + c′(v + v′)

s← ce, s′ ← c′e′, s3 ← c′

u′′ ← uu′/d2

v′′ ← suv′+s2u
′v+s3(vv′+f)
d mod u

After the composition we can possibly have a divisor D′′ with degree larger than g, i.e., D′′ =
∑r
i=0 P

′′
i −r(∞)

with r > g. To reduce such divisor we subtract well chosen principal divisor (divisor of a rational function on the

curve) which reduces the number of points in the divisors, i.e., the degree of u′′(X). When it is done a sufficient

number a of time we get a reduced divisor, i.e., a divisor of degree ≤ g. Cantor proposes in [3] Algorithm 2 which

performs the reduction of a divisor in Mumford representation. For more details on hyperelliptic curves and Cantor

algorithm the author may refer to [29], [5].

Cantor’s approach is generic: it works over any field and for curves with any genus. Over genus 2 curves

Harvey [11] optimizes this approach by expliciting the formula deduced from Cantor algorithm. A number of

works followed this strategy: Lange [18], [19], Costello-Lauter [7] and Costello-Hisil [12] which further improved

the complexity addition and doubling formula over genus 2 hyperelliptic curves. Over genus 3 curves, Fan et al.

in [9] provides inversion free formulas and review the formulas of Nyukai et al. [25] for affine coordinates.
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Algorithm 2 Cantor algorithm for reduction [3]
Require: D′′ = (u′′(X), v′′(X)) semi-reduced divisor in Jac(H(Fp))

Ensure: D′′′ = (u′′′, v′′′) reduced satisfying D′′′ ∼ D′′

u′′′ ← u′′, v′′′ ← v′′

while deg u′′′ > g do

u′′′ ← f−v′′′2
u′′′

v′′′ ← −v′′′ mod u′′′

return (u′′′, v′′′)

B. Scalar multiplication algorithms

Given an integer K and an element D ∈ Jac(H(Fp)), we would like to efficiently compute the scalar multi-

plication K · D. A basic approach to compute this scalar multiplication K · D is the Double-and-add algorithm.

This approach computes K ·D with a sequence of doublings and additions in Jac(H(Fdp)). This algorithm scans

the binary representation of K and for each bit ki it performs a doubling and an addition only when the bit ki

is equal to one. Unfortunately the Double-and-add approach is not secure against some side channel analyses. For

example the simple power analysis can find the secret scalar K with a single power trace. If a doubling and an

addition have different power traces, the power trace of a scalar multiplication can be decomposed as a sequence

of doubling and addition power traces. The attacker can then deduce all the bits of the secret K.

In the literature there are several Double-and-add variants which are secure against SPA attack. The first one is

the Double-and-add-always approach [6], where a dummy addition is performed when the bit is equal to 0. This

approach is depicted in Algorithm 3. A second approach [13] uses a representation of K in base 2 with digits in

{1,−1}. This representation is obtained by replacing the sequence of zeros in a binary representation 1000 . . . 001

by the equivalent expression 111̄1̄ . . . 1̄1̄1̄ where 1̄ = −1. The scalar multiplication is computed with a sequence of

doublings followed by either and addition or a subtraction. We will see later that on Jac(H(Fp)) this approach is

advantageous compared to the classical Square-and-multiply-always approach when some specific formula (co-ZW)

are used for divisor operation.

Algorithm 3 Double-and-add-always
Require: D ∈ Jac(H(Fp)) and K = (k`−1, . . . , k0)2

1: R0 ← O, R1 ← O

2: for i from `− 1 downto 0 do

3: R1 ← 2 ·R1

4: Rki ← Rki +D

5: return R1

Remark 1. The Montgomery-ladder [23] is also a popular approach to counteract SPA attack since it is done
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Algorithm 4 Signed-double-and-add-always
Require: D ∈ Jac(H(Fp)) and K = (k`−1, . . . , k0)2 with ki ∈ {−1, 1}

1: R← O, D1 ← D,D−1 ← −D

2: for i from `− 1 downto 0 do

3: R← 2 ·R

4: R← R+Dki

5: return R

through a regular sequence of doubling always followed by an addition. As we will see later, we will use

projective coordinates on hyperelliptic curves. These coordinates renders the Montgomery-ladder less efficient

since it involves full projective additions while the Double-and-add-always (resp. Signed-double-and-add-always)

algorithm is computed with mixed additions (resp. Co-Z additions) which are more efficient.

Scalar multiplication with divisor splitting. This approach is adapted from [24] it performs the exponentiation

using a multiplicative half-size splitting of the base element. Over the Jacobian of an hyperelliptic curve we get

regular scalar multiplication using an additive splitting of the base divisor. This method is depicted in Algorithm 5.

This approach becomes more efficient than the above mentioned method of the literature (Double-and-add-always

and Montgomery-ladder methods) if the additions with D0 and D1 are less expensive than a regular addition.

Algorithm 5 Regular scalar multiplication with additive splitting of the base divisor
Require: D ∈ Jac(H(Fp)) and K = (k`−1, . . . , k0)2

Ensure: r = k · P

1: Split. D = D1 −D0 for D0, D1 ∈ Jac(H(Fp)).

2: R← −D0

3: for i from `− 1 downto 0 do

4: R← 2 ·R+Dki

5: R← R+D0

6: return r

The following lemma establishes the validity of Algorithm 5, i.e., that it correctly computes R = K ·D.

Lemma 1. Let K = (k`−1, . . . , k0)2 with ki ∈ {0, 1} be an `-bit integer and let D be an element Jac(H(Fp)). If

we set Ki = (k`−1, . . . , ki)2, then the value of R after the i-th loop iteration satisfies:

R = Ki ·D −D0.

Proof. We prove the assertion of the lemma by a decreasing induction on i: we assume it is true for i and we

prove it for i− 1. By induction hypothesis, Ri the value of R after the execution of loop i in Algorithm 5 satisfies
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Ri = Ki ·D −D0.

• If ki−1 = 1 the execution of loop i−1 gives: Ri−1 = 2·Ri+D1 = (2Ki)·D+(−2D0)+D1 = Ki−1 ·D−D0.

• If ki−1 = 0, the execution of loop i−1 gives: Ri−1 = 2·Ri+D0 = (2Ki)·D+(−2D0)+D0 = Ki−1 ·D−D0.

The goal of this paper is to render Algorithm 5 efficient on a hyperelliptic curve for the two practical cases genus

2 and 3 over a prime field Fp.

III. REGULAR SCALAR MULTIPLICATION ON A GENUS 2 HYPERELLIPTIC CURVE

In the remaining of this section we focus on genus 2 hyperelliptic curves. Our goal is to have an efficient version

of the regular algorithm with split base element (Algorithm 5). In the context of hyperelliptic curves of genus 2

this means that we have to split a divisor of degree 2 as a sum of two divisors of degree 1.

In the sequel we first explain how to perform the splitting of a degre 2 divisor for a genus 2 hyperelliptic curve

H(Fp). We also provide formulas to add degree 1 divisor with a degree 2 divisor in affine and weighted projective

coordinates to get an efficient version of Algorithm 5.

A. Splitting of divisors in H(Fp)

Given a degree 2 divisor D = (u(X), v(X)) on Jac(H(Fp)) of order N , we want to find two degree 1 divisors

D0 and D1 such that

D = D1 −D0.

We can get this decomposition if we can factorize u(X) = (X − x0)(X − x1) since then if we set

v1 = v(X) mod (X − x1),

v0 = −v(X) mod (X − x0),

we obtain D = D1 − D0 with D1 = (X − x1, v1) and D0 = (X − x0, v0). Consequently, to split D the main

problem is to factorize a degree 2 polynomial u(X) = X2 + u1X + u0 in Fp[X]. To factorize such polynomial

we compute the discriminant ∆ = u2
1 − 4u0 of u(X). Then if ∆ is a square in Fp, we compute its square root

δ =
√

∆ and deduce the two roots of u(X)

x0 =
−u1 + δ

2
and x1 =

−u1 − δ
2

.

If ∆ is not a square then we cannot factorize u(X) and we cannot split the divisor in Jac(H(Fp)). In this case

we compute D′ = 2 ·D and at the same time we divide the scalar by two K ′ = K/2 mod N (this is possible if

gcd(2, N) = 1). We get a new couple D′,K ′ such that

K ·D = K ′ ·D′.

Then we can apply the same process to the new divisor D′. This approach is depicted in Algorithm 6.

July 31, 2018 DRAFT



8

Algorithm 6 Divisor splitting for a genus 2 hyperelliptic curve
Require: A degree 2 divisor D = (u(X), v(X)) of odd order N and a scalar K ∈ [0, N [.

Ensure: two degree one divisors D′0, D
′
1 and K ′ such that D′ = 2t ·D and D′ = D′1 −D′0 and K ′ = K × 2−t

mod N for some t ≥ 0.

1: D′ ← D

2: K ′ ← K

3: ∆′ = u′21 − 4u′0

4: s← JacobiSymbol(∆′)

5: while s = −1 do

6: D′ ← DoublingAff(D′)

7: K ′ ← K ′ × 2−1 mod N

8: ∆′ = u′21 − 4u′0

9: s← JacobiSymbol(∆′)

10: δ′ ← SquareRoot(∆′)

11: x′0 ←
−u′1+δ′

2 , x′1 ←
−u′1−δ

′

2

12: D′0 ← (X − x′0, v′1 × x′0 − v′0)

13: D′1 ← (X − x′1,−v′1 × x′1 + v′0)

The cost of Algorithm 6 depends on the number of time we stay in the loop while. Indeed, in a loop iteration we

have to compute a Jacobi symbol and perform a divisor doubling which are costly operations. The average number

of loop iteration is given in the following lemma.

Lemma 2. The average number of times we execute the while loop iteration in Algorithm 6 is equal to 1.

Proof. The probability that u(X) factorizes is equal to the probability that ∆ is a square in Fp. And since there

are (p− 1)/2 + 1 squares and (p− 1)/2 non-squares we have

α = P[u(X) factorizes ] =
(p− 1)/2 + 1

p
=

1

2
+

1

2p
.

and consequently the probability that u(X) does not factorize is 1−α = 1
2 −

1
2p . Now the probability that we have

to execute i times exactly the main loop in Algorithm 6 until we get a splitting is equal to (1− α)iα. Then, if N

is the random variable corresponding number of time we compute stay in the loop while, we have the following

expected value

E[N] =

∞∑
i=1

i× P[N = i] =

∞∑
i=1

i(1− α)iα.

For p sufficiently large we assume that α ∼= 1/2 and 1 − α ∼= 1/2. Then replacing x by 1/2 in the following

identity of formal series:
∞∑
i=1

ixi+1 =
x2

(1− x)2
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leads to E[N] = 1.

In Algorithm 6 there are two things we need to explicit to get an fully functional algorithm: the first one is the

computation of the Jacobi symbol of ∆′ which is equal to 1 if ∆′ is a square and −1 otherwise, the second one

is the computation of the square root of ∆′. We discuss these issues in the following subsections.

B. Computation of the Jacobi Symbol

There are two strategies to compute the Jacobi symbol
(
a
p

)
of an element a ∈ Fp: the first one is done with an

exponentiation in Fp and the second one with an algorithm similar to the Euclidean algorithm.

• Exponentiation approach. This approach computes the Jacobi symbol using the following expression of the

Jacobi symbol: (
a

p

)
= a(p−1)/2 mod p.

It can be computed with, in average, log2(p) squarings and log2(p)
2 multiplications in Fp (i.e., more precisely

log2((p−1)/2) squarings and HW ((p−1)/2) multiplications, where HW means Hamming weight) using the

square-and-multiply algorithm.

• Euclidean-like approach. This method is due do Eisenstein and can be found in [28]. First, we split ∆′ = 2t∆′′

where ∆′′ is odd then we have (
∆′

p

)
=

(
2

p

)t(
∆′′

p

)
.

For the term
(

2
p

)t
, the value

(
2
p

)
can be precomputed and this leads to

(
2
p

)t
=
(

2
p

)t mod 2
. We need now to

compute
(
a
b

)
where a and b are two odd integers (here a = ∆′′ and b = p). In this case the reciprocity law

provides that (
a

b

)
= (−1)

a−1
2

b−1
2

(
b

a

)
= (−1)

a−1
2

b−1
2

(
b mod odd a

a

)
.

The odd modular reduction mod odd consists to choose the odd value of (b mod a) in {−(a−1), . . . , 0, . . . , a−

1}. The new expression involves two smaller integers. We can then compute
(

∆′′

p

)
by repeating the above

process. This leads to a sequence of Euclidean division with odd remainders starting from a1 = p and a2 = ∆′′

as follows:
a1 = q1a2 + ε3a3 with ε3 = ±1 and 0 ≤ a3 < a2 and a3 odd,

a2 = q2a3 + ε4a4 with ε4 = ±1 and 0 ≤ a4 < a3 and a4 odd,
... =

...

an−2 = qn−1an−1 + εnan with ε3 = ±1 and an = 1.

The fact that an = 1 comes from gcd(∆′, p) = 1 since p is prime and that the above sequence of Euclidean

division is a specific execution of the Euclidean algorithm. At the end we have:(
∆′

p

)
=

(
2

p

)t
(−1)

a1−1
2

a2−1
2

n−1∏
i=2

(−1)
εiai−1

2

εiai+1−1

2 .
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C. Computation of the square root

For the computation of the square root of an element a ∈ Fp we use the method of Shanks-Tonelli [26]. We

assume that p − 1 = q × 2t with t not too large. Let g be a generator of F?p then γ = gq generates the subgroup

of order 2t of F?p. Let a′ = aq , then the approach of Shanks-Tonelli is based on the following expression of the

square root of a:
√
a = a(q+1)/2 × (

√
a′)−1.

The above expression is correct since we have

(a(q+1)/2 × (
√
a′)−1)2 = aq × a× a′−1 = a

We can compute a′ = aq and a(q+1)/2 using a single exponentiation: we first compute a(q−1)/2 and then we get

a′ = (a(q−1)/2)2 × a and a(q+1)/2 = a(q−1)/2 × a.

To compute
√
a′
−1

we first compute the discrete logarithm e of a′ in base γ the generator of the subgroup of

order 2t of F?p. To do this Shanks and Tonelli suggest to use the Pollig-Hellman approach to compute e = logγ(a′).

This requires (t− 1)(t− 2)/2 squarings and t multiplications in Fp. This method is shown in Algorithm 7. When

we obtain e = logγ(a′) with this algorithm, we can get
√
a′
−1

by computing (γ−1)e/2 assuming that γ−1 is

precomputed and e i seven.

Algorithm 7 Computation of logγ

Require: b a 2t-th root of unity and γ a primitive 2t-th root of unity.

Ensure: e = logγ(b)

Precomputation: T [i] = γ−2i

for i = 1, . . . , t− 1.

for i = t− 1 to 0 by −1 do

c← b2
i

if c 6= 1 then

e← e+ 2t−1−i

b← b× T [t− 1− i]

return e

Complexity of Algorithm 7. The overall computation of a square root first requires an exponentiation a(q−1)/2

which costs in average log2(p)
2 M + log2(p)S. It also requires one execution of Algorithm 7 which has a cost of

tM+ t(t+1)
2 S. The final operations are the computation

√
a′
−1

from e and γ−1 which has a complexity of tS+tM ,

and a final product a(q−1)/2 ×
√
a′
−1

. The overall complexity is as follows:

(
log2(p)

2
+ 2t+ 1)M + (log2(p) + t(t+ 3)/2)S.
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D. Complexity of divisor splitting

Let us now evaluate the complexity of a divisor splitting. We assume that a Jacobi symbol is computed with

the exponentiation method which requires in average log2(p)
2 M + log2(p)S. Since we execute in average one loop

while iteration, we get the contribution of each step of Algorithm 6 and the total cost of the divisor splitting as

shown in Table I. Not that we assume that a multiplication by small constant has the same cost as an addition in

Fp.

Table I

COMPLEXITY OF DIVISOR SPLITTING ON GENUS 2 HYPERELLIPTIC CURVES

Steps Operations Cost

(Step 3) + (Step 8) Discriminant ∆′ 2S + 4a

(Step 4) + (Step 9) Jacobi symbol log2(p)M + 2 log2(p)S

(Step 6) Divisor doubling 1DoublingAff

(Step 7) Division by 2 1a

(Step 10) Square root (Step 10:) (
log2(p)

2
+ 2t + 1)M + (log2(p) + t(t + 3)/2)S

(Step 11) Roots x′
0, x

′
1 5a

(Step 12) +(Step 13) D′
0, D

′
1 2M + 4a

Total cost
(
3 log2(p)

2
+ 2t + 3)M + (3 log2(p) + 2 + t(t + 3)/2)S

+1DoublingAff + 14a

E. Addition formula in affine coordinates of a degree 2 with a degree 1 divisor

In the considered approach for scalar multiplication (Algorithm 5) we need to perform at each loop an addition

of a divisor of degree 2 with a degree 1 divisor. To render this approach efficient on the Jacobian of a genus 2

hyperelliptic curve H(Fp) we need efficient formula for this kind of divisor addition.

In [7] Costello and Lauter provide formulas for the addition and doubling of degree 2 divisors. Let us adapt their

approach to provide, in affine coordinates, a formula for the addition of a degree 2 divisor with a degree 1 divisor.

In [7] Costello and Lauter consider the divisor composition and reduction as algebraic operations on the divisor

coordinates instead of arithmetic of polynomials as it is done in Algorithm 1 and 2. We apply their method for

the case of an addition of a degree 2 divisor D = (u(X), v(X)) and degree 1 divisor D′ = (u′(X), v′(X)). For

the composition of the two divisors we assume that we do not have to perform a semi-reduction which means that

gcd(u, u′) = 1. In the composition of the two divisors we compute l(X) =
∑3
i=0 liX

i satisfying

l(X)− v(X) ≡ 0 mod u(X),

l(X)− v′(X) ≡ 0 mod u′(X).

In the above identities, if we explicit the expressions of u(X), v(X), u′(X), v′(X) and l(X), and then reduce the
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resulting expression modulo u(X) and u′(X), we get the following identities

(l1 − l2u1 − v1)X + (l0 − l2u0 − v0) = 0,

l2u
′2
0 − u′0l1 + l0 − v′0 = 0.

These two polynomial identities can be set in a 3× 3 linear system
1 0 −u0

0 1 −u1

1 −u′0 u′20



l0

l1

l2

 =


v0

v1

v′0


Subtracting the first row to the last one in the above system provides the following 2× 2 linear system: 1 −u1

−u′0 u′20 + u0

 l1

l2

 =

 v1

v′0 − v0


We solve this system using Cramer’s method and this leads to the following expression for l2, l1 and l0:

l2 =
u′0v1 + v′0 − v0

u′20 + u0 − u1u′0
and

 l1 = v1 + u1l2

l0 = v0 + u0l2
(1)

The next step is the reduction of the divisor (u(X) × u′(X), l(X)). To reduce it we first compute u′′(X) =

l(X)2−f(X)
u(X)u′(X) : the coefficients of u′′(X) are as follows

u′′1 = −l22 − (u1 + u′0)

u′′0 = −(u0 + u1u
′
0 + u′′1(u1 + u′0)− 2l1l2 + f3

(2)

Finally we compute the coefficient v′′0 and v′′1 from v′′(X) = −l(X) mod u′′(X) using a direct approach. The

resulting formula is given in Algorithm 8. Its complexity is equal to:

10M + S + I + 18a.

Algorithm 8 Add21Aff(u1, u0, v1, v0, u
′
0, v
′
0)

l2 ← (v′0 − v0 + u′0 × v1)/((u′0 − u1)× u′0 + u0) //3M + I + 4a

l1 ← v1 + u1 × l2 //M + a

l0 ← v0 + u0 × l2 //M + a

u′′1 ← −l22 − (u1 + u′0) //S + 3a

u′′0 ← −(u0 + u1 × u′0 + u′′1 × (u1 + u0))− 2l1 × l2 + f3 //3M + 7a

v′′1 ← (l2 × u′′1 − l1) //M + a

v′′0 ← (l2 × u′′0 − l0) //M + a

return u′′1 , u
′′
0 , v
′′
1 , v
′′
0 // Total = 10M + S + I + 18a
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F. Inversion free formula for addition of a degree 2 with a degree 1 divisor

Tanja Lange introduced in [19] an inversion free formula by using a projective form of the Mumford representation.

In this coordinate system a degree two divisor D is given by five field elements

(U1, U0, V1, V0, Z) such that D = (X2 + (U1/Z)X + U0/Z, (V1/Z)X + V0/Z).

Tanja Lange took advantage of this system of coordinates by replacing a costly field inversion in the doubling and

addition formulas, with a number of multiplications and additions in Fp, leading to a more efficient formula. The

formulas of Lange for addition and doubling was later slightly improved by Costello and Lauter in [7].

Recently, Costello and Hisil in [12] considered a new set of projective coordinates, the following ZW Jacobian

coordinates:

(U1, U0, V1, V0, Z,W ) such that D = (X2 + (U1/Z
2)X + U0/Z

4, (V1/(Z
3W ))X + V0/(Z

5W )).

Using these projective coordinates they could modify the formula of Costello-Lauter [7] and reduce the number

of field operations. Moreover their addition formula take as input two divisors D1 and D2 with the same value

for Z and W . This kind of formula is called co-ZW formula (co-Z formula was originally introduced in [21] for

Jacobian coordinates over elliptic curve).

The doubling and addition formulas of Costello and Hisil are the most efficient inversion free formula of degree

two divisors in Jac(H(Fp)). In order to use their formulas in our regular scalar multiplication (Algorithm 5) we

need an addition formula in the ZW Jacobian coordinate system of a degree 2 with a degree 1 divisor as inputs.

Specifically we use the following coordinate system for a degree 1 divisor

(U0, V0, Z,W ) such that D = (X + U0

Z2 ,
V0

Z5W )

We then modify the affine formula of Algorithm 8 in order to obtain a co-ZW formula for addition of a degree

2 divisor with a degree 1 divisor. Injecting the ZW Jacobian coordinates of D = (U0, U1, V0, V1, Z,W ) and

D′ = (U ′0, V
′
0 , Z,W ) in Algorithm 8, and arranging the resulting formula we could get the following expressions

for the computation of the coordinates (U ′′0 , U
′′
1 , V

′′
0 , V

′′
1 , Z

′′,W ′′) of D′′ = D +D′:

A = (V ′0 − V0 + U ′0V1),

B = (U ′0 − U1)U ′0 + U0,

L1 = (BV1(BW )2 + U1A(BW )2),

Z ′′ = BZW,

W ′′ = 1,

U ′′1 = A2 − (U1 + U ′0)BW,

U ′′0 = −U0(BW )4 − ((U1(BW )2)U ′0(BW )2) + (BW )4f3Z
4 − U ′′1 (U1(BW )2 + U ′0(BW )2),

−2L1(BW )2A,

V ′′1 = (AU ′′1 − L1),

V ′′0 = (A(U ′′0 − U0(BW )2)− V0B
4W 5).

(3)
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For completeness we provide a quick proof of the validity that the above expressions (3) lead to the correct ZW

Jacobian coordinates of D′′ = D + D′ in the appendix. We provide in Algorithm 9 a method to compute the

above expressions (3) step by step. We also provide the complexity of each step and the overall complexity for

Add21Proj coZW.

Algorithm 9 Add21Proj coZW(U1, U0, V1, V0, Z,W,U
′
0, V

′
0 )

A← (V ′0 − V0 + U ′0 × V1) // 1M +2a

B ← (U ′0 − U1)× U ′0 + U0 // 1M +2a

BW ← B ×W // 1M

BW2← (BW )2 // 1S

NU1 ← BW2× U1 // 1M

NU ′0 ← BW2× U ′0 // 1M

temp← NU1 +NU ′0 // 1a

U ′′1 ← −A
2 − temp // S+2a

BW4← BW22 // S

NU0← BW4× U0 // 1M

NV 1← B × V1 × BW2 // 2M

L1BW2← (NV 1 +NU1× A) // 1M+a

U ′′0 ← −NU0 − (NU1 ×NU ′0) + BW4× f3 × Z4 − U ′′1 × temp− 2(L1BW2)× A // 4M+2S+D+5a

V ′′1 ← A× U ′′1 − L1BW2 // 1M+a

NV0 ← V0 × B × BW4 // 2M

V ′′0 ← A× (U ′′0 −NU0)−NV0 // 1M+2a

Z′′ ← BW × Z // 1M

return U ′′1 , U
′′
0 , V

′′
1 , V

′′
0 , Z

′′, 1, NU1, NU0, NV1, NV0 // Total = 18M+D+5S+16a

The formula Add21Proj coZW outputs in addition to D′′ = D+D′ the four coordinates NU1, NU0, NV1, NV0.

These coordinates are the ones of D such that D and D′′ are co-ZW . In other words

(NU1/Z
′′2, NU0/Z

′′4, NV1/Z
′′3, NV0/Z

′′5) = (U1/Z
2, U0/Z

4, V1/(Z
3W ), V/(Z5W )).

This can be useful when we have to re-add D to D′′ since then we can use the co-ZW addition formula of [12].

G. Complexity results and comparison

In this subsection we analyze and compare the complexities of divisor operations and the regular scalar multi-

plication algorithms on Jac(H(Fp)).

• Addition and doubling complexity comparison. In Table II we review the complexity of the formulas of the

literature for the divisor operations on Jac(H(Fp)). We also provide the complexity of the proposed formulas

for Add21. For doubling and addition in ZW Jacobian coordinates the best formulas are due to Costello and

Hisil [12]. Their formula Add22 CoZW requires that the two inputs have the same Z and W coordinates. For

the affine coordinates the best approaches for Add22 and Doubling2 are from [7]. If we consider Add21 in affine

coordinates the best approach before this work was in [19]. We can see that the proposed formula of Algorithm 8

improves the approach of [19] by 6 additions. In projective coordinates we could not find any formula in the

literature to add a degree 2 with a degree 1 divisor. If we compare our formula Add21Proj ZW (Algorithm 9)
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with the full addition of divisor Add22Proj coZW: we notice that the number of multiplications/squarings is

reduced by 5 and the number of additions by 6.

Table II

COST OF THE OPERATIONS ON THE JACOBIAN OF A GENUS 2 HYPERELLIPTIC CURVE

Operation Coordinate Syst. Cost

Add22Aff [7] Affine 17M + 4S + I + 56a

Doubling2Aff [7] Affine 19M + 6S + I + 54a

Add21Aff [18] Affine 10M + 1S + I + 24a

Proposed Add21Aff Affine 10M + S + I + 18a

(Algorithm 8)

Doubling2Proj [12] ZW Jac. Proj. 26M + 8S + 2D + 25a

mAdd22Proj [12] ZW Jac. Proj. 32M + 5S + 22a

Add22Proj [12] ZW Jac. Proj. 41M + 7S + 22a

Add22Proj coZW [12] ZW Jac. Proj. 25M + 3S + 22a

mDoubleAdd22 [12] ZW Jac. Proj. 57M + 8S + 42a

Proposed Add21Proj CoZW ZW Jac Proj. 18M + D + 5S + 16a

(Algorithm 9)

Convert2 AfftoZW (Degree 2) - 7M + 2S

Convert2 ZWtoAff (Degree 2) - 8M + 2S + I

Convert1 AfftoZW (Degree 1) - 4M + 2S

In the sequel we will need to convert a divisor given in affine coordinate into ZW coordinate with a given

Z and W in order to apply ADD22Proj coZW or ADD21Proj coZW. These conversions are detailed in the

appendix, their complexities are shown in Table II.

• Regular scalar multiplication complexity.

Using the complexities reported in Table II for doubling and addition on Jac(H(Fp)) we can evaluate the

complexity of the regular exponentiation algorithms reviewed in Subsection II-B. We consider a scalar K of

bit length `. We consider the following approaches:

– Double-and-add-always in affine coordinates. This consists of ` Doub2 Aff and Add2 Aff , leading to a

complexity of `(36M + 10S + 2I + 110a).

– Regular multiplication based on divisor splitting in affine coordinates. This consists of ` Doubling2Aff

and Add21Aff plus the cost of a divisor splitting (cf. Table I). The overall complexity is then equal to

`(29M + 7S + 2I + 71a) + (3 log2(p)/2 + 2t+ 25)M + (3 log2(p) + t(t+ 3)/2 + 9)S + I + 71a.

– Double-and-add-always in ZW Jacobian coordinates. In this case Algorithm 3 consists in a sequence

of a doubling and an addition of D with either R0 or R1. We take advantage of Add22Proj coZW by

rewritting the loop iteration of Algorithm 3 as follows:

R1 ← Doubling2Proj(R1)

ND ← Convert2 AfftoZW(D,ZRki
,WRki

) // ND is the same divisor as D but co-ZW with Rki
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Rki ← ADD22 ZW(Rki , ND)

We add the cost of Doubling2Proj, Convert2 AfftoZW and ADD22 ZW to get the cost of a loop iteration.

We add the final conversion of R1 to affine coordinates and we obtain the following complexity:

`(58M + 13S + 2D + 47a) + 8M + I + 2S.

– Signed-double-and-add-always in ZW Jacobian coordinates. Again, we take advantage of the efficiency

of ADD22Proj coZW by rewritting the loop iteration as follows:

NDki ← Convert2 AfftoZW(Dki , ZR,WR) // ZR and WR are the coordinates of R

R2, NR← ADD22 ZW(R,NDki) // NR is the same divisor as R but co-ZW with R2

R← ADD22 ZW(R2, NR)

This requires two ADD22 ZW and one Convert2 AfftoZW per loop iteration. We get the following overall

complexity

`(57M + 8S + 44a) + 8M + I + 2S.

– Regular multiplication based on divisor splitting in ZW Jacobian coordinates. We have to compute at

each loop iteration 2R+Dki where Dki is a degree 1 divisor. We use the following strategy for the loop

iteration in Algorithm 5:

NDki ← Convert1 AfftoZW(Dki , ZR,WR) // ZR and WR are the coordinates as R

R2, NR← ADD21 ZW(R,NDki) // NR is the same divisor as R but co-ZW with R2

R← ADD22 ZW (R2, NR)

Consequently, this requires one ADD21 ZW, one ADD22 ZW and one Convert2 AfftoZW per loop

iteration. The overall complexity includes the cost of the splitting and the final conversion to affine

coordinates and is equal to

`(47M +D + 10S + 38a) + (3 log2(p)/2 + 2t+ 33)M + (3 log2(p) + t(t+ 3)/2 + 11)S + 2I + 71a

In Table III we report the cost of the above approaches, for the proposed approach we assume that the key length

` = 2 log2(p) in order to have a better understanding of the asymptotic complexity. We can notice that for both

cases, affine and ZW Jacobian coordinates, our approach leads to a better complexity than the signed and unsigned

Double-and-add-always approaches. For the affine case the improvement is in the number of multiplications and

squarings, so if the cost of an inversion is important compared to a multiplication probably we will not see a huge

impact of this improvement. For the case of ZW Jacobian coordinates we save roughly 4 M/S over 65 M/S per

loop iteration, this provides an improvement around 6%.

H. Implementation results

We implemented all the scalar multiplication apporaches mentioned in the previous subsection in order to have

practical evaluation of the speed-up provided by the proposed divisor splitting approach. We used the following

strategies in our implementations:
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Table III

COMPLEXITY OF REGULAR SCALAR MULTIPLICATION ON GENUS 2 CURVES

Algorithm Coordinates Cost

Double-and-add-always Affine `(36M + 10S + 2I + 110a)

Proposed regular algorithm Affine `(30.75M + 8.5S + 2I + 71a) + (2t + 25)M + (t(t + 3)/2 + 9)S + I + 71a

Double-and-add-always ZW Jac. `(58M + 13S + 2D + 47a) + 8M + I + 2S

Signed-double-and-add-always ZW Jac. `(57M + 8S + 44a) + 8M + I + 2S

Proposed regular algorithm ZW Jac. `(48.75M + D + 11.5S + 38a) + (2t + 33)M + (t(t + 3)/2 + 11)S + 2I + 71a

• Our code was written in C langage, compiled with gcc and run on the three platform Intel Core i5-3210, Intel

Xeon E5-2650v4 and ARMv7.

• We considered three hyperelliptic curves defined over Fp for p = 294 − 3, p = 2122 − 3 and p = 2300 − 3,

respectively. Their group size corresponds to a security level of 188, 244 and 300.

• For field multiplication, addition and subtraction we used the strategy of Langley [20]. We store a field element

in a number of computer words keeping in each word a number of spared bits to handle carries. Integer addition

and multiplication are done using schoolbook approaches.

• For the inversion we implemented one approach based on the little Fermat theorem [2] and one approach using

Euclidean algorithm [2] (in this later case we used the low level function of gmp [1]). We selected the Euclidean

algorithm in our scalar multiplication code since it appeared to be the fastest among these approaches.

• For the computation of the Jacobi symbol we implemented the two approaches reviewed in Subsection III-B:

the first one is based on an exponentiation in Fp and the second one uses the Euclidean-like algorithm of

Eisenstein [28]. Both were not fully optimized but the approach based on the exponentiation showed the best

performances.

The timing results for the scalar multiplication are shown in Table IV. As we can see for all cases the approach

using projective coordinates are always better that the one using affine coordinates. Moreover, these timings indicate

that in practice the proposed approach is still efficient compared to the best approaches of the literature. In affine

the improvement is around 1% to 4% on Intel processor and 0%-8% on the ARM processor, this is explained by

the dominant time spent in the large number of inversions which is the same for both approaches. The proposed

approach reduces the computation time by 4% to 10% in projective coordinates. This is in the range of what we

expected based on the complexity analysis.

IV. REGULAR SCALAR MULTIPLICATION OVER A GENUS 3 HYPERELLIPTIC CURVE

In this section we extend the strategy presented in the Section III to the case hyperelliptic curves of genus three.

Over Fp such curves are given by an equation of the following form

Y 2 = X7 + f5X
5 + f4X

4 + f3X
3 + f2X

2 + f1X + f0.
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Table IV

TIMINGS OF REGULAR SCALAR MULTIPLICATION ON GENUS 2 HYPERELLIPTIC CURVES

Method Coord. Security level Timing (103 clocks-cycles)

Intel Core

i5-3210M

Intel Xeon

E5-2650v4
ARMv7

Double-and-add-always Affine 192 2523 931 3002

Proposed Affine 192 2493 922 3009

Signed-double-and-add-always ZW Jac. 192 586 187 1240

Proposed ZW Jac. 192 537 180 1207

Double-and-add-always Affine 244 3965 1455 5656

Proposed Affine 244 3927 1450 5358

Signed-double-and-add-always ZW Jac. 244 760 257 2671

Proposed ZW Jac. 244 706 232 2467

Double-and-add-always Affine 300 7289 2570 9212

Proposed Affine 300 6972 2499 8406

Signed-double-and-add-always ZW Jac. 300 1779 543 4517

Proposed ZW Jac. 300 1655 528 4174

In order to render Algorithm 5 efficient over genus 3 hyperelliptic curves we need a method to split the base divisor

and an addition formula adapted to this splitting. It is possible to split the base divisor D as D = D1 −D0 where

D1 is a degree 2 divisor and D0 is a degree 1 divisor. But in this case Algorithm 5 would not be regular since an

addition with a degree 2 divisor is more costly than an addition with a degree one divisor. Our first goal is to split

a divisor of degree 3 as a difference of two degree 2 divisors in order to keep Algorithm 5 fully regular. Afterwards

we will provide Add32 formulas for the addition of a degree 3 divisor with a degree 2 divisor.

A. Divisor splitting over a genus 3 hyperelliptic curve

We are going to split a divisor D of degree 3 as a difference of two degree 2 divisors. Beforehand, recall that

a degree 3 divisor is D = (P0) + (P1) + (P2)− 3(∞) and let D = (u(X), v(X)) be its Mumford representation.

The roots xi of u(X) are the abscissa of Pi and the polynomial v(X) is such that v(xi) = yi is the ordinate of Pi

for i = 0, 1, 2. The splitting of a divisor D into two degree 2 divisors is done as follows:

1) We first compute D′ = D +D0 where D0 is a fixed degree 1 divisor.

2) Let D′ = (u′(X), v′(X)), we try to find a root α ∈ Fp of u′(X) if such root does not exist we double D and

go to 1).

3) We compute u1(X) = u′(X)/(X − α) and v1 = v(X) mod u1(X) and we set D1 = (u1, v1).

4) We consider β = v′(α) and the divisor D′′ = (X − α, β). We have the splitting

D′ = D1 +D′′ (4)
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as a sum of a degree 2 and a degree 1 divisor.

5) We compute D2 = D0 −D′′ and we output (D1, D2).

We can check that D1, D2 is the required splitting of D as a difference of two degree 2 divisors. Indeed we have

D = D′ −D0 (from 1))

= D1 +D′′ −D0 (with (4))

= D1 −D2 (from 5)).

Consequently to get the splitting of D we have to compute a root of a degree 3 polynomial. We use the classical

formula due to Cardan to compute the root of a degree 3 polynomial. Let u′(X) = X3 + u′2X
2 + u′1X + u′0 be a

degree 3 polynomial, then Cardan’s formula computes a root α of u′(X) as follows:

r = (u′1 −
u′22
3 ),

s = (u′0 −
u′32
27 ),

∆ = 4r3 + 27s2,

Ω = − s2 −
1
2

√
∆
27 ,

α = −u′2 + 3
√

Ω + −r
3

3√
Ω
.

In the above formula we notice that the most costly operations are the square root computation
√

∆
27 and the cube

root computation 3
√

Ω. In the previous section we have already seen how to compute a square root in Fp. For a

cube root we consider the following cases:

• If gcd(p− 1, 3) = 1 then in this case for each element a ∈ Fp there always exists a unique cube root in Fp.

If we set q = 3−1 mod (p− 1) then the cube root of a is b = aq mod p.

• If p − 1 = 3q with gcd(q, 3) = 1 then we have first to decide if a is cube in Fp, this is the case if

aq = a(p−1)/3 = 1. If this is the case we can compute the cube root of a as follows

– If q ≡ 1 mod 3. Then b = a−
q−1
3 satisfies b3 = a−q × a = a.

– If q ≡ 2 mod 3. Then b = a
q+1
3 satisfies b3 = aq × a = a.

• For other cases, i.e., p such that gcd(p−1
3 , 3) 6= 1, we can adapt the method of Shanks-Tonelli (Subsection III-C)

to the case of cube-root computation. This extension is straightforward so we do not give the details here.

The conclusion of the above discussion is that a cube-root can be computed through an exponentiation ae in Fp
were e is of bit-length ∼= log2(p).

The splitting of a degree 3 divisor into two degree 2 divisors using the proposed strategy it is shown in

Algorithm 10.

B. Complexity of a divisor splitting

In order to evaluate the complexity of a divisor splitting (Algorithm 10), we need to know the average number

of time we execute the loop iteration of the algorithm. This will give us the average number of time we have to

determine if ∆/27 is a square and if Ω is a cube and compute their respective square and cube root. The number of
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Algorithm 10 Divisor splitting on genus 3 curve
Require: A degree 3 divisor D = (u(X), v(X)) of a Jacobian of a genus 3 hyperelliptic curve of odd order N , a

scalar K and a fixed degree 1 divisor D0 = (X − x0, y0)

Ensure: K ′ and D̃ = D1 −D2 with D1 and D2 of degree 2 and K ′ · D̃ = K ·D.

1: D̃ ← D,K ′ ← K, τ ← −1

2: D′ = (u′(X), v′(X))← Add(D̃,D0)

3: r ← u′1 −
u′22
3 , s← (u′0 −

u′32
27 ),∆′ ← 4r3

27 + s2

4: σ ← JacobiSymbol(∆′)

5: if σ = 1 then

6: Ω← − s2 −
1
2

√
∆′, τ ← IsCube(Ω)

7: while τ 6= 1 do

8: K ′ = K ′ × 2−1 mod N

9: D̃ ← Doubling(D̃)

10: D′ = (u′(X), v′(X))← Add(D̃,D0)

11: r ← u′1 −
u′22
3 , s← (u′0 −

u′32
27 ),∆′ ← 4r3

27 + s2

12: σ ← JacobiSymbol(∆′)

13: if σ = 1 then

14: Ω← − s2 −
1
2

√
∆′, τ ← IsCube(Ω)

15: α← −u′2 + 3
√

Ω + −r
3

3√
Ω

16: D1 ← (u′(X)/(X − α), v′(X) mod (u′(X)/(X − α)))

17: D2 ← Add(D0, (X − α,−v′(α)))

18: return K ′, D̃,D1, D2

time we stay in the while loop is related to the probability that ∆ is a square and Ω is a cube. These probabilities

are established in the following lemma.

Lemma 3. Let ∆ and Ω be two elements in Fp with p an odd large prime.

• The probability that ∆ is a square is 1
2 + 1

p
∼= 1

2

• If 3 6 |(p− 1) the probability that Ω is a cube is 1.

• If 3 | (p− 1) the probability that Ω is a cube is 1
3 + 2

3p
∼= 1

3 .

Using these probabilities we can estimate the number of time we stay in the while loop in Algorithm 10. Let N

be the random variable equal to the number of time we execute the loop iteration in Algorithm 10. For the sake

of simplicity we only consider the case 3|(p − 1). We first evaluate probability that the computation of a root of
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u(X) fails. This probability is as follows:

P(u(X) has not a root)) = P({∆
27 is not a square } ∪ {∆

27 is a square and Ω is not a cube })

= 1
2 + 1

2 ×
2
3 = 5

6

We then obtain the probability that we get a root of u′(X) after N = i iterations, we fail i times to find a root and

then we succeed.

P(N = i) =
5

6

i

× 1

6
.

Then the expected number of iterations is

E[N] =
∑∞
i=1 i×

5
6

i × 1
6 = 5

36 ×
1

(1− 5
6 )2

= 5

Now we can derive the complexity of Algorithm 10. We assume that a Jacobi-symbol and a square-root can be

computed through a single exponentiation. This is also the case for IsCube and cube root computation. We also

assume that the cost of an exponentiation in Fp is log2(p)S + log2(p)
2 M in average. Based on this facts, the

complexity of Algorithm 10 is evaluated step by step in the Table V.

Table V

COMPLEXITY ANALYSIS OF DIVISOR SPLITTING ON GENUS 3 HYPERELLIPTIC CURVE

Step Cost

(Step 2) +5× (Step 10) 6Add31Aff

(Step 3) +5× (Step 11) 24M + 18S + 30a

(Step 4) +5× (Step 12) 3 log2(p)M + 6 log2(p)S

1
2
× ((Step 6) + 5 × (Step 14)) 3 log2(p)

2
M + 3 log2(p)S + 9a

5× (Step 8) 5a

5× (Step 9) 5 DoublingAff

(Step 15) M + 3a + I

(Step 16) 3M + 5a

(Step 17) Add11+M + 2a

Total cost
6Add31 + Add11 + (

9 log2(p)
2

+ 29)M

+(9 log2(p) + 18)S + 54a

C. Addition formula of degre 3 and degree 2 divisors

In the proposed regular scalar multiplication (Algorithm 5) on the Jacobian of a genus 3 hyperelliptic curve we

have to perform a sequence of doublings of degree 3 divisors followed by an addition with degree 2 divisor. For

the doubling formula in affine and projective coordinates we use the formula provided in [9]. For the addition of

a degree 3 divisor with a degree 2 divisor (Add32), we provide a new formula using the approach of Costello and

Lauter [7].
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Let D = (u(X), v(X)) be a degree 3 divisor and D′ = (u′(X), v′(X)) be a degree 2 divisor. We assume that

gcd(u(X), u′(X)) = 1 which means that if a point P ∈ H(Fp) is in D then neither P , neither P̄ are in D′.

The method of Costello and Lauter first computes the composition of D and D′ (cf. Algorithm 1). Indeed the

Mumford representation of the unreduced divisor D + D′ is given by the product u(X)u′(X) for the abscissas

and, for the ordinates, l(X) which satisfies l(X) ≡ v(X) mod u(X) and l(X) ≡ v′(X) mod u′(X). To get an

explicit expression of the coefficients of l(X) we express the reduction l(X) mod u(X) in terms of the coefficients

of l(X) and u(X):

l(X) mod u(X) ≡ (l2 + (u2
2 − u1)l4 − u2l3)x2 + (l1 + (u1u2 − u0)l4 − u1l3)x1 + l0 − u0l3 + u0u2l4)

Similarly the reduction of l(X) modulo u′ = X2 + u′1X + u′0 gives the following

l(X) mod u′(X) = (l1 − u′1l2 + (2u′1u
′
0 − u′1

3
)l4 + (u′1

2 − u′0)l3))x1 + (l0 − u′0l2 + (u′0
2 − u′0u′1

2
)l4 + u′0u

′
1l3).

With the above two identities and using v(X) = l(X) mod u(X) and v′(X) = `(X) mod u′(X) we obtain the

following linear system for l0, . . . , l4

1 0 0 −u0 +u0u2

0 1 0 −u1 (u1u2 − u0)

0 0 1 −u2 (u2
2 − u1)

1 0 −u′0 u′0u
′
1 (u′0

2 − u′0u′1
2
)

0 1 −u′1 (u′1
2 − u′0) (2u′1u

′
0 − u′1

3
)


·



l0

l1

l2

l3

l4


=



v0

v1

v2

v′0

v′1


(5)

Now, we arrange the above system by subtracting the first two rows to the last two rows, this leads to a 3 × 3

linear system for l2, l3 and l4. We then add the first row of this 3× 3 system multiplied by u′0 and u′1 to the two

last rows. We obtain the following 2× 2 linear system: u′0u
′
1 + u0 − u2u

′
0 (u′0

2 − u′0u′1
2 − u0u2 + (u2

2 − u1)u′0)

(u′1
2 − u′0 + u1 − u2u

′
1) (2u′1u

′
0 − u′1

3 − u1u2 + u0 + (u2
2 − u1)u′1)

 ·
 l3

l4

 =

 v′0 − v0 + u′0v2

v′1 − v1 + u′1v2

 (6)

We set
a = u′0u

′
1 + u0 − u2u

′
0, b = (u′0

2 − u′0u′1
2 − u0u2 + (u2

2 − u1)u′0),

c = (u′1
2 − u′0 + u1 − u2u

′
1), d = (2u′1u

′
0 − u′1

3 − u1u2 + u0 + (u2
2 − u1)u′1),

∆ = ad− bc.

We apply Kramer’s formula to get the solution for l3 and l4 of (6), the expressions for l0, l1 and l2 follows from (5): l3 = 1
∆ (d× (v′0 − v0 + u′0v2)− b× (v′1 − v1 + u′1v1)) ,

l4 = 1
∆ (−c× (v′0 − v0 + u′0v2) + a× (v′1 − v1 + u′1v2)) ,

and


l0 = u0l3 + u0u2l4 + v0,

l1 = u1l3 + (u0 − u1u2)l4 + v1,

l2 = u2l3 + (u1 − u2
2)l4 + v2.

We now proceed to the reduction of the unreduced divisor D′′ = D+D′ = (u(X)u′(X), l(X)). We apply one itera-

tion of the Cantor reduction algorithm (Algorithm 2): we have to compute u′′(X) = (l(X)2−f(X))/(u(X)u′(X)).

We use the following identity

(X2+u′1X+u′0)(X3+u2X
2+u1x+u0)(X3+u′′2X

2+u′′1X+u′′0) =
(`4X

4 + `3X
3 + `2X

2 + `1X + `0)2 − f(X)

`24
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where f(X) = X7 + f5X
5 + f4X

4 + f3X
3 + f2X

2 + f1X + f0. If we consider, in this equation, the four terms

with the largest degree we get the following three coefficients of u′′(X)

u′′2 = (2`4`3 − 1)/`24 − u′1 − u2,

u′′1 = (2`4`2 + `23)/`24 − (u′0 + u′1u2 + u1)− u′′2(u′1 + u2),

u′′0 = 2`3`2+2`4`1−f5
`24

− ((u′0u2 + u′1u1 + u0) + (u′0 + u1 + u′1u2)u′′2 + (u′1 + u2)u′′1).

We then compute the coefficients of v′′(X) based on v′′(X) = −l(X) mod u′′(X) and this gives:

v′′0 = −l0 + u′′0 l3 − u′′0u′′2 l4,

v′′1 = −l1 + (u′′0 − u′1u′′2)l4 + u′′1 l3,

v′′2 = −l2 + (u′′1 − u′′22 )l4 + u′′2 l3.

At the end we obtain the reduced Mumford representation (u′′(X), v′′(X)) of D′′ = D + D′. We give a step by

step formula for this computation in Algorithm 11 of the appendix.

Inversion free formula. If the inversion is too costly compared to a multiplication in the underlying field, it might

be interesting to have an inversion free formula for Add32. In the literature Fan and Gong provides in [9] a set of

formulas (for doubling, addition and mixed addition) for the following projective coordinates

(U0, U1, U2, V0, V1, V2, Z) ∼ (U0/Z,U1/Z,U2/Z, V0/Z, V1/Z, V2/Z). (7)

There is no formula in the literature with weighted coordinates like in [12], and it seems to be difficult to derive

such formulas in this case. This is due to the fact that the divisor reduction involves two loop iteration of Cantor

reduction. The resulting expression are really complicated with a lot of multiplications and additions.

Consequently we focus on Fan and Gong projective coordinates [9]. We derive a projective formula for Add32

from the affine formula as follows: we substitute the variable u0, u1, u2, v0, v1v2 and u′0, u
′
1, v
′
0, v
′
1 with (U0/Z,U1/Z,U2/Z, V0/Z, V1/Z, V2/Z)

and (U0/Z,U1/ZV0/Z, V1/Z), respectively. Afterwards we arrange the resulting expression in order to minimize

the number of field operations. This process is mostly technical so we skip it and provide directly the resulting

formula in Algorithm 12 of the appendix.

D. Complexity and implementation results

Complexity comparison. In this subsection we first evaluate the complexity of the proposed approach and compare

it to the Double-and-add-always approach. In Table IV-D we provide the complexity of the addition and doubling

formulas on Jac(H(Fp)) in affine and projective coordinates. We can notice that the proposed formula for Add32 has

26 multiplications/squarings (resp. 27) less than ADD33 formula in affine coordinates (resp. projective coordinates).

The complexity of the Double-and-add-always in affine coordinates is equal to ` times the cost of Add33Aff and

Doubling33Aff which gives `(2I+135M). The complexity of the Double-and-add-always in projective coordinates

is equal to ` times the cost of ADD33Proj and Double33Proj plus a final conversion from projective to affine

coordinates which results in a total of `(196M + 20S) + I + 6M operations.
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For the proposed approach the cost is equal to the cost of a splitting (cf. Table V) plus the cost of ` loop iterations

each consisting in one Doubing33Aff and one Add32Aff (resp. one Doubling33Proj and one Add32Proj) in affine

(resp. projective) coordinates. In projective coordinates a final conversion to affine coordinates is required. The

resulting complexity in affine coordinates is as follows

`(103M +D + 5S + 165a+ 2I) + (
9 log2(p)

2
+ 135)M + (9 log2(p) + 42)S + 256a+ 7I

and in projective coordinates we have the following:

(179M + 2D + 13S + 156a)`+ (
9 log2(p)

2
+ 141)M + (9 log2(p) + 42)S + 256a+ 8I.

In Table IV-D we report these complexities under the assumption that the key length ` = 3 log2(p). We notice that

the improvement in this case is a bit better than for genus 2: we save 20M/S per loop iteration when using affine

coordinates and around 50M/S per loop iteration in projective coordinates.

Operation Coordinate Syst. Cost

Add33Aff Affine 64M + 3S + 109a + 1I

Add32Aff Affine 39M + D + 2S + 56a + I

Add31Aff Affine 17M + 4S + 33a + I

Doubling3Aff Affine 61M + 7S + 96a + 1I

MixedAdd33Proj Projectif 116M + D + 6S + 102a

MixedAdd32Proj Projectif 63M + D + 7S + 54a

Doubling3Proj Projectif 120M + 6D + 13S + 114a

Double-and-add-always Affine `(125M + 10S + 205a + 2I)

Proposed Algorithm 5 Affine `(104.5M + D + 8S + 165a + 2I) + 135M + 42S + 256a + 7I

Double-and-add-always Projectif `(236M + 7D + 19S) + 216a) + I + 6M

Proposed Algorithm 5 Projectif `(180.5M + 2D + 16S + 156a) + 141M + 42S + 256a + 8I

Implementation results. We implemented in C the Double-and-add-always and the proposed approaches for the

security level of 192, 244 and 300 in affine and projective coordinates. We chose three hyperelliptic curves defined

over the field Fp with p = 273 − 19 and p = 294 − 19 and p = 2113 − 5, respectively. The implementations

strategies are essentially the same as the one used for genus 2 hyperelliptic curves. Indeed, the form of the primes

p are essentially the same, so we implemented arithmetic modulo p using the same method. We adapted the

divisor splitting to the specificity to the splitting of divisor over genus 3 curves, but the underlying operations

(multiplications, additions and exponentiations) are essentially the same. At the end we obtain the timings reported

in Table VI. We can notice that most of the time the proposed approach with divisor splitting is better that its

Double-and-add-always counterpart. Indeed in affine coordinates we have an improvement which is in the range

5%-15% in affine coordinates, most of the time it is around 7-8%. Generally, projective coordinates is the best

choice, and in this case we have an im provements in the range of 17-18%.
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Table VI

TIMINGS OF SCALAR MULTIPLICATION OVER GENUS 3 HYPERELLIPTIC CURVES

Method Coord. Security level Timing (103 clocks-cycles)

Intel Core

i5-3210M

Intel Xeon

E5-2650v4
ARM

Double-and-add-always Aff. 192 4233 1440 5366

Proposed Aff. 192 3868 1298 4756

Double-and-add-always Proj. 192 3574 1091 5691

Proposed Proj. 192 2935 906 4630

Double-and-add-always Aff. 244 5610 1957 8443

Proposed Aff. 244 5319 1856 7813

Double-and-add-always Proj. 244 4000 1244 8494

Proposed Proj. 244 3369 1081 7055

Double-and-add-always Aff. 300 7602 2661 14458

Proposed Aff. 300 7080 2468 12219

Double-and-add-always Proj. 300 5069 1638 17540

Proposed Proj. 300 4181 1331 14371

We can also notice that if we compare the timings in Table VI with the ones of Table VI it appears that, for

the same level of security, a scalar multiplication over a genus 3 curve is generally not competitive compared to a

scalar multiplication over a genus 2 curve. This is mostly due to the complexity of divisor operation on genus 3

curves. Until now not much optimization where done on genus 3 curves on doubling and addition of divisor, while

more works were done on genus 2 curves.

V. CONCLUSION

In this paper we considered scalar multiplication over genus 2 and genus 3 hyperelliptic curves immune to simple

power analysis and timing attacks. We extended the approach of [24] to scalar multiplication over hyperelliptic

curves. This approach requires to split the base divisor into a difference of two divisors of smaller degree: two

divisors of degree 1 on genus 2 and two divisors of degree 2 on genus 3. We also provided improved formula to

add a divisor of degree 2 (resp. degree 3) with a divisor of degree 1 (resp. degree 2) on the Jacobian of a genus 2

(resp. genus3) hyperelliptic curves. This approach reduces the cost of the loop iteration of the scalar multiplication

compared to the Double-and-add-always, but this requires a divisor splitting. The complexity evaluation and timing

results showed that the proposed approach is interesting in most cases. The reduction in the timings are around 5%

to 8% on genus 2 curves and around 15% over genus 3 curves.
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APPENDIX

Validity of proposed expression for Add21Proj

We prove that the formula in (3) leads to (U ′′1 , U
′′
0 , , V

′′
1 , V

′′
1 , Z

′′,W ′′) such that

(U ′′1 /Z
′′2, U ′′0 /Z

′′4, V ′′1 /(Z
′′3W ′′), V ′′1 /(Z

′′5W ′′)) = (u′′1 , u
′′
0 , u
′′
1 , u
′′
0)
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where (u′′1 , u
′′
0 , u
′′
1 , u
′′
0) are the coefficients computed by Algorithm 8.

• Expression of l2, l1 in terms of A,B and L1. First, we can check that, up to a factor of ZW , the fraction A/B

is equal to l2 of (1)

A/B = (V ′0 − V0 + U ′0 · V1) / ((U ′0 − U1) · U ′0 + U0)

=
(
V ′0−V0+U ′0·V1

Z5W

)
/
(

(U ′0−U1)·U ′0+U0

Z5W

)
=

(
V ′0
Z5W −

V0

Z5W +
U ′0
Z2 · V1

Z3W

)
/
(

((
U ′0
Z2 − U1

Z2 ) · U
′
0

Z2 + U0

Z4 ) 1
ZW

)
= ((u′0v1 + v′0 − v0)ZW ) /

(
u′20 + u0 − u1u

′
0

)
= l2ZW

Then we show that L1 is equal to l1 up to the factor (BZW )3

L1/(BZW )3 = (BV1(BW )2 +AU1(BW )2)/(BZW )3

= V1/(WZ2) + (U1/Z
2)(A/BZW ) = v1 + u1l2 = l1;

• Expression u′′1 and u′′0 in terms of A,B,L1 and U ′′1 . We set Z ′′ = BZW and U ′′1 = A2 − (U1 + U ′0)BW .

then we can check that U ′′1 /Z
′′2 is equal to the term u′′1 in (2):

U ′′1 /Z
′′2 = U ′′1 /(BZW )2 = A2/(BZW )2 − (U1/Z

2 + U ′0/Z
2),

= −l22 − (u1 + u′0).

Now we consider

U ′′0 = −U0(BW )4−((U1(BW )2)×U ′0(BW )2)+(BW )4×f3Z
4−U ′′1 (U1(BW )2+U ′0(BW )2)−2L1(BW )2A.

We can check that U ′′0 /Z
′′4 is equal to the affine expression u′′0 in (2):

U ′′0 /(BZW )4 = −U0/Z
4 − (U1/Z

2)× (U ′0/Z
2) + f3 − (U ′′1 /(BZW )2)(U1/Z

2 + U ′0/Z
2)

−2(L1/(BZW )3)(A/(BZW ))

= −u0 − (u1u
′
0) + f3 − u′′1(u1 + u′0)− 2l1l2

• Expression of v′′1 and v′′0 in terms of V ′′0 and V ′′1 . We consider V ′′0 and V ′′1 of (3). We can check that V ′′1 /Z
′′3

and V ′′0 /Z
′′5 are equal to the terms v′′1 and v′′0 computed in Algorithm 8:

V ′′1 /(Z
′′)3 = (AU ′′1 − L1)/(BZW )3 = l2u

′′
1 − l1 = v′′1

V ′′0 /(Z
′′)5 = (A(U ′′0 − U0(BW )2)− V0B

4W 5)/(BWZ)5 = l2(u′′0 − u0)− v0 = v′′0

And this ends the proof.

Conversion formula : ZW Jacobian coordinates ↔ affine coordinates.

• Degree 2 case (Convert2 AfftoZW). Given D = (X2 +u1X+u0, v1X+ v1) and Z,W we get the expression

of D = (U1, U0, V1, V0, Z,W ) as follows

U1 = u1 × Z2 with 1S + 1M

U0 = u0 × (Z2)2 with 1S + 1M

V1 = v1 × (Z2 × (Z ×W )) with 3M

V0 = v0 × Z2 × (Z3W ) with 2M
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and the total cost is 7M + 2S

• Degree 1 case (Convert1 AfftoZW). Given D = (X + u0, v0) and Z,W we have to compute

U0 = u0 × (Z2) with 1S + 1M

V0 = v0 × (Z2)2 × Z ×W with 1S + 3M

which requires 2S + 4M to get D = (U0, V0, Z,W ).

Formulas for genus 3 hyperelliptic curves

We provide in the remaining of the appendix the formulas over the Jacobian of a genus 3 hyperelliptic curve. We

first present the formula Add32Aff for the addition of a degree 3 divisor with a degree 2 divisor in affine coordinates

which is based on the discussion in Subsection IV-C. We also present the formula AddAff31 for the addition of a

degree 3 divisor with a degree 1 divisor: this formula is used in the splitting of the divisor (Algorithm 10) and was

obtained with the method of Costello and Lauter [7]. We present the formulas for Add33Proj and Doubling3Proj:

these formulas are corrected versions of the formulas provided in [9] which contain several errors. For completeness

sake we recall the Add33Aff and Doubling3Aff which are from [9].
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Algorithm 11 Add32Aff(u0,u1,u2,v0,v1,v2,z,uu0,uu1,vv0,vv1)
//------- coeff matrix a,b,c,d ------------------------- Cost = 7M+14a

tp0:=(uu1-u2)*uu0; a:=u0+tp0; tp1:=(u2-uu1)*(u2+uu1); tp2:=(tp1-u1);

tp3:=u0*u2; b:=-tp3+(tp2+uu0)*uu0; c:=-uu0+u1+(uu1-u2)*uu1; tp4:=u1*u2;

d:=-tp4+u0+(tp2+2*uu0)*uu1;

//------- Delta, inverse of Delta and l4 ----------- Cost = 10M+6a+I

Delta := a*d-c*b; coeff1:=(vv0 - v0 + uu0 * v2); coeff2:=(vv1 - v1 + uu1*v2);

ll4:=( -c * coeff1 + a*coeff2); tp5:=ll4*Delta; Itp5:=1/tp5;

IDelta:=ll4*Itp5; Ill4:=Delta*Itp5; Il4:=Delta*Ill4;

//---- l3ol4=l3/l4, l1ol4=l1/l4 and l2ol4=l2/l4 --------- Cost = 8M+7a

l3ol4:= ( d * coeff1 - b * coeff2)*Ill4; l4:=IDelta*ll4;

l1ol4:= u1 * l3ol4 + (u0-tp4) + v1*Il4; l2ol4:=u2*(l3ol4-u2)+u1+v2*Il4;

//-----UUU ---------------------------------------------- Cost = 7M+D+2S+20a

tp6:= (uu0 + u1 + uu1*u2); tp7:=uu0*u2+uu1*u1; tp8:=(Il4)ˆ2;

uuu2 := 2*(l3ol4)-tp8 -uu1-u2; uuu1:=2*l2ol4+(l3ol4)ˆ2 - tp6 - uuu2*(uu1+u2);

uuu0:=2*l1ol4 + 2*(l3ol4)*(l2ol4)-f5*tp8 -((tp7+u0)+tp6*uuu2+(uu1+u2)*uuu1);

//---- VVV ---------------------------------------------- Cost = 7M+9a

vvv0 := ((uuu0-u0) * l3ol4 + tp3 - uuu0*uuu2)*l4-v0;

vvv1 := (-l1ol4+uuu0+uuu1*(-uuu2+ l3ol4))*l4;

vvv2 := (-l2ol4+uuu1+uuu2*(-uuu2 + l3ol4))*l4;

return uuu0,uuu1,uuu2,vvv0,vvv1,vvv0; //--- Overall cost = 39M+2S+D+I+56a
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Algorithm 12 Add32Proj(u0,u1,u2,v0,v1,v2,z,uu0,uu1,vv0,vv1)
//------- coefficients a,b,c,d and determinant ------ Cost = 14M+2S +13a

tp0:=uu1*z; tp1:=(tp0-u2)*uu0; a:=u0+tp1; tp1:=u2ˆ2; tp2:=uu0*z; tp3:=u0*u2;

tp4:=tp0ˆ2;b:=-tp3+(-u1+tp2)*tp2+uu0*(tp1-tp4); c :=(uu1*(tp0-u2)-tp2 +u1);

tp5:=u1*z; tp6:=u0*z; tp7:=u1*u2; d:=(2*tp0*tp2-tp7+tp6+(tp1-tp4-tp5)*uu1);

Delta := (a*d-c*b);

//------- L3 and L4 ----------------------------------- Cost = 9M+6a

coeff1:=(vv0*z-v0+uu0*v2); coeff2:=(vv1*z - v1 +uu1*v2);

L3 := (d*coeff1-b*coeff2); LL4 := (-c*coeff1+a*coeff2); L4 := LL4*z ;

//-------- L0,L1 and L2 -------------------------------- Cost = 10M+8a

zD:=z*Delta; L0 := (tp6 * L3 -tp3 * L4 + v0*zD) ;

L1:=(tp5*L3+(tp6-tp7)*L4+v1*zD); L2 := (u2*z * L3 +(tp5-tp1) * L4 +v2*zD);

//-------- UUU ----------------------------------------- Cost = 20M+D+4S+20a

tp8:=LL4ˆ2; tp9:=L4*L3; tp10:=Deltaˆ2; tp11:=tp8*z;

Tuuu2 := (((2*tp9-tp10)+(-tp0-u2)*tp11)); uuu2:=Tuuu2*z;

tp12:=LL4*L2; tp13:=L3ˆ2*z; tp14:=uu1*u2; tp15:= tp11*z ;

Tuuu1 :=2*tp12+tp13 - (tp2+u1+tp14)*tp15 -Tuuu2*(tp0+u2); uuu1:=Tuuu1*z;

z2:=zˆ2; tp19:=tp11*z2;tp16:=L4*L1; tp17:=L3*L2; tp18:=tp10*z2*f5;

Tuuu0:=((2*(tp16+tp17)-tp18);

Tuuu0:=Tuuu0-(((uu0*u2+uu1*u1+u0)*tp19+(tp2+u1+tp14)*uuu2)+(tp0+u2)*Tuuu1));

//------ VVV and ZZZ ---------------------------------- Cost =10M+5a

tp20:=(tp9 - Tuuu2); Tvvv0 := (-L0 *tp15*L4 +Tuuu0 * tp20);

Tvvv1 := ((-tp16+Tuuu0)*tp15 + uuu1*tp20);

Tvvv2 := ((-tp12+Tuuu1)*tp11 + Tuuu2*tp20);

L4D:=L4*Delta; tp21:=z2*L4D; ZZZ:=(tp15*tp21);

return Tuuu0,uuu1,Tuuu2,Tvvv0,Tvvv1,Tvvv2,ZZZ;//----Total cost =63+6S+1D+54a
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Algorithm 13 Add31Aff(u10,u11,u12,v10,v11,v12,u20,v20)
//------------------------------------------------- Cost = 5M+S+6a+I

w0:=u20ˆ2; w1:=w0*(u20-u12); w2:=u11*u20;

r:=-(w1+w2-u10); i:=rˆ(-1); z0:=u20*v12;

s0:=i*(v20-u20*(z0-v11)-v10);

//------ u32 --------------------------------------- Cost = S+2a

t0:=s0ˆ2; t1:=u20+u12; u32:=t0+t1;

//------ u31 --------------------------------------- Cost = 4M+7a

t2:=u12*u20; t3:=t2+u11; t4:=s0*u12; t5:=2*s0*(t4+v12)-f5;u31:=(t5+t3-t1*u32);

//------ u30 --------------------------------------- Cost = 5M+2S+10a

t6:=w2+u10; t7:=s0*u11; t8:=u12*v12;

t9:=t4ˆ2+2*s0*(t7+t8+v11)+v12ˆ2-f4; u30:=t9+t6-t3*u32-t1*u31;

//------ v32,v31,v30 ------------------------------- Cost = 3M+8a

v32:=-(s0*(u32+u12)+v12); v31:=-(s0*(u31+u11)+v11); v30:=-(s0*(u30+u10)+v10);

return u30,31,u32,v30,v31,v32 -------------------- Cost = 17M+4S+33a+I
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Algorithm 14 MixedAdd33Proj(U10,U11,U12,V10,V11,V12,Z1,U20,U21,U22,V20,V21,V22) [9]
//------------ Precomputations -------------------------- Cost = 6M

UU22:=Z1*U22; UU21:=Z1*U21; UU20:=Z1*U20; VV22:=Z1*V22; VV21:=Z1*V21;

VV20:=Z1*V20;

//------------- Resultant of U1 and U2 ------------------- Cost = 15M+13a

t0:=U10-UU20; t1:=U11-UU21; t2:=U12-UU22; t3:=t1-U22*t2;

t4:=t0-U21*t2; t5:=t4-U22*t3; t6:=U20*t2+U21*t3; t7 :=-(t4*t5+t3*t6);

t8:=t2*t6+t1*t5; t9:=t2*t4-t1*t3; r :=t0*t7-U20*(t3*t9+t2*t8);

//------------- Pseudo inverse S’=rS=(V2-V1)I mod U2------ Cost = 10M+26a

i2:=t9; i1 := t8; i0 := t7; t1 :=V10-VV20; t2 :=V11-VV21; t3:=V12-VV22;

t4:=t2*i1; t5:=t1*i0; t6:=t3*i2; t7:=U22*t6; t8:=t4+t6+t7 - (t2+t3)*(i1+i2);

t9:=U20+U22 ; t10:=(t9 + U21)*(t8 - t6); t9:=(t9 - U21)*(t8 + t6);

ss0:=-(U20*t8+t5); ss1:=(t4+t5-t7) - (t1+t2)*(i0+i1) + (t9-t10)/2;

ss2:=(t6-t4-ss0) - (t1+t3)*(i0+i2) - (t9+t10)/2;

//------------- Precomputations--------------------------- Cost = 9M+4S

w0 := ss0*Z1; w1:=ss1*Z1; w2:=ss2*Z1; w3:=ss2ˆ2; w4:=w2ˆ2; R:=r*Z1; RR:=rˆ2;

A:=w3*Z1; B:=R*w2; D:=B*R; E:=Bˆ2; F:=w2*Z1; G:=E*F;

//------------- Computation of Z-------------------------- Cost = 11M+15a

z0:=ss0*U10 ; z1:=(ss0+ss1)*(U10+U11)-ss1*U11-ss0*U10;

z2:=(ss0+ss2)*(U10+U12)-ss2*U12-ss0*U10+ss1*U11;

z3:=w0+(ss1+ss2)*(U12+U11)-ss1*U11-ss2*U12; z4:=w1+ss2*U12;

//------------- Computation of Ut------------------------- Cost = 25M+27a

ut3:=z4+w1-U22*w2; t1:=ss1*z4-(ss2*ut3)*U22; ut2:=ss2*(z3+w0-U21*w2)+t1;

t2:=(U22+U21)*(ss2*ut3+ut2); t3:=(ss0*z3-U21*ut2); t4:=z2+r*V12; t5:=z1+r*V11;

ut1:=ss2*(t4+r*V12)+(ss0+ss1)*(z3+z4)-r*R-(t1+t2+t3+A*U20);

ut0 :=ss2*(t5+r*V11)+ss1*(t4+r*V12)+t3+RR*U12-(ss2*ut3)*U20-U22*ut1;

//------------- Computation of Vt------------------------- Cost = 12M+8a

t1 :=ut3-z4; vt0:=t1*ut0+A*(z0+V10*r); vt1:=t1*ut1+w2*(ss2*t5-ut0);

vt2 := t1*ut2+w2*(ss2*t4-ut1); vt3:=t1*ut3+w2*z3-ut2*Z1;

//------------- Computation of Z3 and U3------------------ Cost = 22M+D+2S+10a

t1:=2*vt3; u32:=-(D*ut3+vt3ˆ2); u31:=D*( w4*f5-ut2*Z1)-(u32*ut3+t1*(vt2*Z1));

u30:=E*(w4*f4-ut1*Z1)-((vt2*Z1)ˆ2+u32*(ut2*Z1)+u31*ut3+t1*F*vt1);

u32:=u32*w4; u31:=u31*w2 ; Z3:=G*w4*r; U32:=u32*B; U31:=u31*B; U30:=u30*B;

//------------- Computation of V3------------------------- Cost = 6M+3a

V32:=G*vt2-u32*vt3; V31:=G*vt1-u31*vt3; V30:=G*vt0-u30*vt3;

return(U30,U31,U32,V30,V31,V32,Z3) //------------- Total cost = 116M+6S+D+102a
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Algorithm 15 Doub33Proj(U10,U11,U12,V10,V11,V12,Z1) [9]
//----- Precomputations ------------------------------- Cost = 6M+S

Z:=Z1ˆ2; UU12:=Z1*U12; UU11:=Z1*U11; UU10:=Z1*U10; VV12:=Z1*V12; VV11:=Z1*V11;

VV10:=Z1*V10;

//--- Resultant r and pseudo inverse i2,i1,i0--------- Cost = 17M+10a

t1:=VV11-U12*V12; t2:=VV10-U11*V12; t3:=Z1*t2-U12*t1; t4:=UU10*V12+U11*t1;

t5:=t2*t3+t1*t4; t6:=-(V11*t3+V12*t4); t7:=V11*t1-V12*t2;

r:=Z*(VV10*t5-UU10*(t1*t7+V12*t6)); i2:=t7;i1:=t6;i0:=t5;

//----- Computation of Z ------------------------------ Cost = 7M+4D+3S+19a

t1:=U12ˆ2;t2:=f4*Z-(2*UU10+V12ˆ2);t3:=f5*Z+t1-2*UU11; z2:=Z*(t3+2*t1);

z1:=UU12*(2*UU11-t3)+Z*t2;

z0:=f3*Zˆ2+t1*(t3-UU11)+UU12*(2*UU10-t2)+UU11*(UU11-f5*Z)-2*VV12*VV11;

//----- Computation of SS and A,B,C,D,E,F------------- Cost = 19M+2S+28a

t1:=i1*z1; t2:=i0*z0; t3:=i2*z2; t4:=U12*t3;

t5:=(i1+Z1*i2)*(z1+z2)-(t1+Z1*t3+t4); t6:=U10*t5; t7:=U10+U12; t8:=t7+U11;

t9:=t7-U11; t7:=t8*(Z1*t3+t5); t11:=t9*(t5-Z1*t3);

ss2:=Z1*(t1-Z1*t3)+t6+(i0+Z*i2)*(z0+z2)-(t2+(t7+t11)/2);

ss1:=Z1*(t4-t1)+(i0+Z1*i1)*(z0+z1)+(t11-t7)/2-t2; ss0:=t2-t6;

A:=ss2ˆ2;B:=2*r*ss2;D:=2*r*B;E:=Bˆ2;F:=A*D;

//----- Computation of G ------------------------------ Cost = 9M+15a

g0:=ss0*U10; g1:=(ss0+ss1)*(U10+U11)-ss1*U11-ss0*U10;

g2:=(ss0+ss2)*(U10+U12)-ss2*U12-ss0*U10+ss1*U11;

g3:=ss0*Z1+(ss1+ss2)*(U12+U11)-ss1*U11-ss2*U12; g4:=ss1*Z1+ss2*U12;

//----- Computation of Ut and Vt ---------------------- Cost = 29M+2S+27a

ut3:=2*ss1; ut2:=ss1ˆ2+2*ss0*ss2; ut1:=2*(ss1*ss0*Z1+2*r*(ss2*V12-r*Z1));

ut0:=ss0ˆ2*Z+4*r*(U12*(2*r*Z1-ss2*V12)+ss1*VV12+ss2*VV11); t1:=ut3*Z1-g4;

vt0:=t1*ut0+Z*A*(g0+2*r*V10);vt1:=t1*ut1+Z1*A*(g1+2*r*V11)-ss2*ut0;

vt2:=t1*ut2+A*(g2+2*r*V12)-ss2*ut1; vt3:=t1*ut3-ut2*Z1+ss2*g3;

//----- Computation of Z2 and U2 ---------------------- Cost = 24M+2D+4S+12a

t0:=Z1ˆ2; t1:=2*vt3; u22:=-(D*ut3*t0+vt3ˆ2);

u21:=D*(f5*A-ut2)*t0-(u22*ut3+t1*vt2);

u20:=E*(f4*A*Z1-ut1)*t0-((vt2ˆ2+u22*ut2+u21*ut3)*Z1+ss2*t1*vt1);

u21:=u21*ss2; u22:=u22*A; t2:=2*r*ss2ˆ2; t3:=Z1*t2; t4:=Z1*t3;t5:=t3ˆ2;

Z2:=t5*t4; U22:=u22*t4; U21:=u21*t4; U20:=u20*t3; t6:=ss2*vt3;

//----- Computation of V2 ----------------------------- Cost = 9M+1S+3a

V22:=(t5*vt2-u22*t6)*Z1; V21:=t5*vt1-u21*Z1*t6; V20:=Z1*t2ˆ2*vt0-u20*t6;

return(U30,U31,U32,V30,V31,V32,Z3) //---------------- Cost = 120M+6D+13S+114a

July 31, 2018 DRAFT



34

Algorithm 16 Add33Aff(u10,u11,u12,v10,v11,v12,u20,u21,u22,v20,v21,v22)
// Etape 1 --- resultant -------------------------------- Cost = 15M+12a

t0:=u10-u20; t1:=u11-u21; t2:=u12-u22; t3:=t1-u22*t2; t4:=t0-u21*t2;

t5:=t4-u22*t3; t6:=u20*t2+u21*t3; t7:=-(t4*t5+t3*t6); t8:=t2*t6+t1*t5;

t9:=t2*t4-t1*t3; r:=t0*t7-u20*(t3*t9+t2*t8);

// Etape 3 --- pseudo inverse I

i2:=t9; i1:=t8; i0:=t7;

// Etape 4 --- S’----------------------------------------- Cost = 10M+30a

t1:=v10-v20; t2:=v11-v21; t3:=v12-v22; t4:=t2*i1; t5:=t1*i0; t6:=t3*i2;

t7:=u22*t6 ; t8:=t4+t6+t7-(t2+t3)*(i1+i2); t9:=u20+u22; t10:=(t9+u21)*(t8-t6);

t9:=(t9-u21)*(t8+t6);

ss0:=-(u20*t8+t5); ss1:=t4+t5+(t9-t10)/2-(t7+(t1+t2)*(i0+i1));

ss2:=t6-(ss0+t4+(t1+t3)*(i0+i2)+(t9+t10)/2);

// Etape 6 ----------------------------------------------- Cost = 6M+S+1I

t1:=(r*ss2)ˆ(-1); t2:=r*t1; w:=t1*ss2ˆ2; wi:=r*t2;s0:=t2*ss0; s1:=t2*ss1;

// Etape 7 --- Z ---------------------------------------- Cost = 4M+15a

t1:=u10+u12; t2:=(s0+s1)*(t1+u11); t3:=(s0-s1)*(t1-u11); t4:=u12*s1;

z0:=u10*s0; z1:=(t2-t3)/2-t4; z2:=(t2+t3)/2-z0+u10;

z3:=u11+s0+t4;z4:=u12+s1;

// Etape 8 --- Ut --------------------------------------- Cost = 13M+27a

ut3:=z4+s1-u22; t1:=s1*z4-u22*ut3; ut2:=z3+s0+t1-u21; t2:=(u22+u21)*(ut3+ut2);

t3:=s0*z3-u21*ut2; ut1:=z2+(s0+s1)*(z4+z3)+wi*(2*v12-wi)-(t1+t2+t3+u20);

ut0:=z1+t3+s1*z2+wi*(2*(v11+s1*v12)+wi*u12)-(u22*ut1+u20*ut3);

// Etape 9 --- Vt -------------------------------------- Cost = 8M+11a

t1:=ut3-z4; vt0:=w*(t1*ut0+z0)+v10; vt1:=w*(t1*ut1+z1-ut0)+v11;

vt2:=w*(t1*ut2+z2-ut1)+v12; vt3:=w*(t1*ut3+z3-ut2);

// Etape 10 --- U3 -------------------------------------- Cost = 5M+2S+11a

t1:=2*vt3; u32:=-(ut3+vt3ˆ2); u31:=f5-(ut2+u32*ut3+t1*vt2);

u30:=f4-(ut1+vt2ˆ2+u32*ut2+u31*ut3+t1*vt1);

// Etape 11 - calcul de V3-------------------------------- Cost = 3M+3a

v32:=vt2-u32*vt3; v31:=vt1-u31*vt3; v30:=vt0-u30*vt3;

return(u32,u31,u30,v32,v31,v30);//--------------- Total cost =I+ 64M+3S+109a
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Algorithm 17 Doubling33Aff(U10,U11,U12,V10,V11,V12,Z1)
//---------- Step 1, Resultant ---------------------------- Cost = 15M+10a

t1 :=v11-u12*v12; t2:=v10-u11*v12; t3:=t2-u12*t1; t4:=u10*v12+u11*t1;

t5:=t2*t3+t1*t4; t6:=-(v11*t3+v12*t4); t7:=v11*t1-v12*t2;

r:=v10*t5-u10*(t1*t7+v12*t6);

//---------- Step 3 -- Pseudo inverse --------------------

i2:=t7; i1:=t6; i0:=t5;

//---------- Step 4 -- S’:=z02Xˆ2+z1X+z0:=(F-V1ˆ2)/U1------ Cost = 5M+2S+16a

t1:=2*u10; t2:=2*u11; t3:=u12ˆ2; t4:=f4-(t1+v12ˆ2);

t5:=f5+t3-t2; t10:=2*v12; z2:=t5+2*t3; z1:=u12*(t2-t5)+t4;

z0:=f3+t3*(t5-u11)+u12*(t1-t4)+u11*(u11-f5)-t10*v11;

//---------- Step 5 -- S’=s’2Xˆ2+s’1X+s’0=2rS=ZI mod U1---- Cost = 10M+22a

t1:=i1*z1; t2:=i0*z0; t3:=i2*z2; t4:=u12*t3; t5:=(i1+i2)*(z1+z2)-(t1+t3+t4);

t6:=u10*t5; t7:=u10+u12; t8:=t7+u11; t9:=t7-u11; t7:=t8*(t3+t5);

t11:=t9*(t5-t3); ss0:=t2-t6; ss1:=t4+(i0+i1)*(z0+z1)+(t11-t7)/2-(t1+t2);

ss2:=t1+t6+(i0+i2)*(z0+z2)-(t2+t3+(t7+t11)/2);

//---------- Step 7 ------- S := S’/2r -------------------- Cost = 6M+S+1a+I

t1:=2*r; t2:=(t1*ss2)ˆ(-1); t3:=t1*t2; w:=t2*ss2ˆ2;

wi:=t1*t3; s0:=t3*ss0; s1:=t3*ss1;

//--------- Step 8 ------- computation of G = SU1 -------- Cost = 4M+12a

t1:=t8*(s0+s1); t2:=t9*(s0-s1); t3:=u12*s1;

g0:=u10*s0; g1:=(t1-t2)/2-t3; g2:=(t1+t2)/2-g0+u10; g3:=u11+s0+t3; g4:=u12+s1;

//---------- Step 9----- Ut = ((G+wiV1)ˆ2-wiˆ2F)/U1ˆ2------ Cost = 5M+2S+10a

ut3:=2*s1; ut2:=s1ˆ2+2*s0; ut1:=ut3*s0+wi*(t10-wi);

ut0:=s0ˆ2+2*wi*((s1-u12)*v12+v11+wi*u12);

//---------- Step 10 --- computation of (wG+V1) mod Ut----- Cost = 8M+11a

t1:=ut3-g4; vt0:=w*(t1*ut0+g0)+v10; vt1:=w*(t1*ut1+g1-ut0)+v11;

vt2:=w*(t1*ut2+g2-ut1)+v12; vt3:=w*(t1*ut3+g3-ut2);

//---------- Step 11 --- Computation of U2 ---------------- Cost = 5M+2S+11a

t1:=2*vt3; u22:=-(ut3+vt3ˆ2); u21:=f5-(ut2+u22*ut3+t1*vt2);

u20:=f4-(ut1+vt2ˆ2+u22*ut2+u21*ut3+t1*vt1);

//---------- Step 12 --- calcul de V2 -------------------- Cost = 3M+a

v22:=vt2-u22*vt3; v21:=vt1-u21*vt3; v20:=vt0-u20*vt3;

return(u22,u21,u20,v22,v21,v20);//----------- Total Cost = I+61M+7S+96a
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