Christophe Negre 
  
Thomas Plantard 
  
Efficient Regular Scalar Multiplication on the Jacobian of Hyperelliptic Curve over Prime Field Based on Divisor Splitting

Keywords: 

We consider in this paper scalar multiplication algorithms over a hyperelliptic curve which are immune against simple power analysis and timing attack. To reach this goal we adapt the regular modular exponentiation based on multiplicative splitting presented in JCEN 2017 to scalar multiplication over a hyperelliptic curve. For hyperelliptic curves of genus g = 2 and 3, we provide an algorithm to split the base divisor as a sum of two divisors with smaller degree. Then we obtain an algorithm with a regular sequence of doubling always followed by an addition with a low degree divisor. We also provide efficient formulas to add such low degree divisors with a divisor of degree g. A complexity analysis and implementation results show that the proposed approach is better than the classical Double-and-add-always approach for scalar multiplication.

Keywords. Hyperelliptic curve, regular scalar multiplication

I. INTRODUCTION

Elliptic curve cryptography (ECC) was independently introduced by Koblitz [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] and Miller [START_REF] Miller | Uses of elliptic curves in cryptography[END_REF] in 1986-87.

It is based on the intractability of the discrete logarithm problem in the group of points of an elliptic curve. The main advantage compared to the similar scheme over a group (F * q , ×) is that no subexponential algorithm is known which computes the discrete logarithm. The key size and the computation time are then reduced. Later Koblitz suggested in [START_REF] Koblitz | Hyperelliptic Cryptosystems[END_REF] its generalization (HECC) to the Jacobian of a hyperelliptic curve of genus g. Again for low genus there is no subexponential algorithm for the resolution of discrete logarithm problem. The advantage of using a hyperelliptic curve H(F q ) instead of an elliptic curve is that the cardinality of the Jacobian Jac(H(F q )) is close to q g . This implies that for a given level of security the base field F q is smaller and the operations like multiplication and addition are faster. But in counter parts the group law is more complicated than for an elliptic curve. Most of the research works done on HECC during the past 20 years was meant to improve the efficiency of the group operations.

July 31, 2018 DRAFT Arithmetic of divisors on an hyperelliptic curve. The first approach to implement the arithmetic on a hyperelliptic curve is due to Cantor [START_REF] Cantor | Computing in the Jacobian of a hyperelliptic curve[END_REF]. An element D of Jac(H(F q )) is a reduced divisor, i.e., it is a formal sum D = r i=1 (P i ) -r(∞) with r ≤ g where P i ∈ H(F q ) and ∞ is the point at infinity. The approach of Cantor uses the Mumford representation of divisors on J(H(F q )): Mumford represents a divisor D with two polynomials (U (X), V (X)) such that the abscissas of the points P i of the divisor are the roots x i of U (X) and the ordinates y i of the points P i are given by V (x i ) = y i . The Cantor algorithm for divisor addition or doubling consists in a composition and a reduction steps, each consisting in a few small degree polynomial operations (multiplication, gcd and division). On genus 2 hyperelliptic curves the approach of Cantor was improved by Harley in [START_REF] Harley | Fast arithmetic on genus 2 curves[END_REF] by expliciting the operations in F q in order to minimize the overall number of field operations (multiplications and inversions) in the formulas. Later Lange pursued this idea in [START_REF] Lange | Efficient arithmetic on hyperelliptic curves[END_REF], [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF] introducing a projective coordinate system in order to avoid field inversions and weighted projective coordinates to further reduce the complexity of the formulas.

The last known improvement is due to Costello and Hisil in [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF] which combines the co-Z approach (introduced by Meloni [START_REF] Meloni | New Point Addition Formulae for ECC Applications[END_REF] over elliptic curves) and a new weighted projective coordinates system in order to further reduce the cost of divisor addition and doubling. We will consider also genus 3 hyperelliptic curves. For this type of curve the best results for affine coordinates are presented in [START_REF] Nyukai | On the resultat computation in the addition Harley algorithms on hyperelliptic curves[END_REF]. In projective coordinates Fan et al. in [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF] adapt the strategy of Lange [START_REF] Lange | Efficient arithmetic on hyperelliptic curves[END_REF], [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF] to genus 3 curves: they provide explicit formulas non-weighted projective coordinate system over Jac(HF p ) and Jac(H(F 2 m )).

For genus 2 hyperelliptic curves, another strategy takes advantage of Kummer surface to perform efficiently addition and doubling on the Jacobian. This approach was first used by Duquesne [START_REF] Duquesne | Montgomery Scalar Multiplication for Genus 2 Curves[END_REF] and later a faster approach was provided by Gaudry in [START_REF] Gaudry | Fast genus 2 arithmetic based on Theta functions[END_REF]. Gaudry proposes a formula for pseudo-addition (addition D + D where D, D and the difference D -D are known) which is really efficient compared to arbitrary formulas in Mumford representation. One drawback of this approach is that we cannot perform usual divisor addition. This reduces the number of protocols which can be implemented with this approach: the Diffie-Hellman key exchange and a specific signature algorithm (cf. [START_REF] Gaudry | Fast genus 2 arithmetic based on Theta functions[END_REF]Sect. 5.3]). Due to this limitation we will not consider this case in the sequel.

Side channel analysis. Implementation of cryptographic protocols can be threaten by side channel analysis. To get secret data, this type of attack monitors and analyses either computation time, power consumption, electromagnetic emanation, ... leaked out by the device performing the cryptographic computation. For example, the basic approach for scalar multiplication K • D of a divisor D is the Double-and-add algorithm consisting in a sequence of divisor doublings followed by an addition when the bit k i of K is equal to one. Simple power analysis [START_REF] Kocher | Differential Power Analysis[END_REF] monitors the power consumption and decompose the trace into a sequence of doubling and addition power traces. The eavesdropper can then deduce the sequence of the bits k i since a bit is equal to 1 when a doubling is followed by an addition otherwise it is equal to 0. The timing attack [START_REF] Kocher | Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems[END_REF] exploits the same weakness of the computation of K •D with the Double-and-add algorithm. Specifically, with a number of computation time samples, the timing attack extracts the key bits through a statistical analysis of these samples. Both SPA and timing attack can be defeated if we render the sequence of additions and doublings not correlated to the key bits. For example we can use the Double-and-add-always approach proposed by Coron in [START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF] which results a regular sequence of doublings always July 31, 2018 DRAFT

A. Background on the Jacobian of hyperelliptic curve

We consider in this paper imaginary hyperelliptic curves of genus g over a prime field F p . They are given by an equation H of the form:

Y 2 = f (X) with deg f (X) = 2g + 1,
and has no singular point on the affine plane. Note that for a point P = (x, y) on the curve, we denote P = (x, -y)

which is also on the curve and we denote ∞ the point at infinity. The set of points on the curve plus the point at infinity is denoted H(F p ). Elements of the Jacobian Jac(H(F p )) are reduced divisors D = r i= (P i ) -r(∞) with July 31, 2018 DRAFT degree r ≤ g and P i = Pj for i = j. A reduced divisor D can be set in the Mumford representation which defines

a pair u(X), v(X) ∈ F p [X] such that u(X) = r i=1 (X -x i ), V (X) 2 -f (X) ≡ 0 mod u(X),
When all the points P i are distinct, the condition on V (X) means that v(x i ) = y i for i = 1, . . . r. A group law is defined on Jac(H(F p )) as follows: for two reduced divisors D = r i= (P i )-r(∞) and D = r i=1 (P i )-r (∞) we first compose them D = r i= P i + r i=1 P i -(r + r )(∞) and we remove the points P i of D such that Pi appears also in D (this is called the semi-reduction of D ). Note that in the specific case where gcd(u(X), u (X)) = 1 no semi-reduction is required, we just have to compute u (X) = u(X)u (X) and v (X) such that

   v (X) mod u(X) = v(X), v (X) mod u (X) = v (X).
In the general case we can have gcd(u(X), u (X)) = 1, in this case Cantor proposes in [START_REF] Cantor | Computing in the Jacobian of a hyperelliptic curve[END_REF] to use Algorithm 1 for the composition and semi reduction of divisors.

Algorithm 1 Cantor algorithm for divisor composition [START_REF] Cantor | Computing in the Jacobian of a hyperelliptic curve[END_REF] Require: D = (u(X), v(X) and D = (u (X), v (X)) two reduced divisors

Ensure: D = D + D semi-reduced d ← gcd(u, u ) = eu + e u d ← gcd(d , v + v ) = cd + c (v + v ) s ← ce, s ← c e , s 3 ← c u ← uu /d 2 v ← suv +s2u v+s3(vv +f ) d mod u
After the composition we can possibly have a divisor D with degree larger than g, i.e., D = r i=0 P i -r(∞) with r > g. To reduce such divisor we subtract well chosen principal divisor (divisor of a rational function on the curve) which reduces the number of points in the divisors, i.e., the degree of u (X). When it is done a sufficient number a of time we get a reduced divisor, i.e., a divisor of degree ≤ g. Cantor proposes in [START_REF] Cantor | Computing in the Jacobian of a hyperelliptic curve[END_REF] Algorithm 2 which performs the reduction of a divisor in Mumford representation. For more details on hyperelliptic curves and Cantor algorithm the author may refer to [START_REF] Wu | An Elementary Introduction to Hyperelliptic Curves[END_REF], [START_REF] Cohen | Handbook of Elliptic and Hyperelliptic Curve Cryptography[END_REF].

Cantor's approach is generic: it works over any field and for curves with any genus. Over genus 2 curves Harvey [START_REF] Harley | Fast arithmetic on genus 2 curves[END_REF] optimizes this approach by expliciting the formula deduced from Cantor algorithm. A number of works followed this strategy: Lange [START_REF] Lange | Efficient arithmetic on hyperelliptic curves[END_REF], [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF], Costello-Lauter [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF] and Costello-Hisil [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF] which further improved the complexity addition and doubling formula over genus 2 hyperelliptic curves. Over genus 3 curves, Fan et al.

in [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF] provides inversion free formulas and review the formulas of Nyukai et al. [START_REF] Nyukai | On the resultat computation in the addition Harley algorithms on hyperelliptic curves[END_REF] for affine coordinates.

July 31, 2018 DRAFT Algorithm 2 Cantor algorithm for reduction [START_REF] Cantor | Computing in the Jacobian of a hyperelliptic curve[END_REF] Require: D = (u (X), v (X)) semi-reduced divisor in Jac(H(F p ))

Ensure: D = (u , v ) reduced satisfying D ∼ D u ← u , v ← v while deg u > g do u ← f -v 2 u v ← -v mod u return (u , v )

B. Scalar multiplication algorithms

Given an integer K and an element D ∈ Jac(H(F p )), we would like to efficiently compute the scalar multiplication K • D. A basic approach to compute this scalar multiplication K • D is the Double-and-add algorithm.

This approach computes K • D with a sequence of doublings and additions in Jac(H(F d p )). This algorithm scans the binary representation of K and for each bit k i it performs a doubling and an addition only when the bit k i is equal to one. Unfortunately the Double-and-add approach is not secure against some side channel analyses. For example the simple power analysis can find the secret scalar K with a single power trace. If a doubling and an addition have different power traces, the power trace of a scalar multiplication can be decomposed as a sequence of doubling and addition power traces. The attacker can then deduce all the bits of the secret K.

In the literature there are several Double-and-add variants which are secure against SPA attack. The first one is the Double-and-add-always approach [START_REF] Coron | Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems[END_REF], where a dummy addition is performed when the bit is equal to 0. This approach is depicted in Algorithm 3. A second approach [START_REF] Joye | Exponent Recoding and Regular Exponentiation Algorithms[END_REF] uses a representation of K in base 2 with digits in {1, -1}. This representation is obtained by replacing the sequence of zeros in a binary representation 1000 . . . 001 by the equivalent expression 11 11 . . . 111 where 1 = -1. The scalar multiplication is computed with a sequence of doublings followed by either and addition or a subtraction. We will see later that on Jac(H(F p )) this approach is advantageous compared to the classical Square-and-multiply-always approach when some specific formula (co-ZW) are used for divisor operation.

Algorithm 3 Double-and-add-always

Require:

D ∈ Jac(H(F p )) and K = (k -1 , . . . , k 0 ) 2 1: R 0 ← O, R 1 ← O 2: for i from -1 downto 0 do 3: R 1 ← 2 • R 1 4: R ki ← R ki + D 5: return R 1
Remark 1. The Montgomery-ladder [START_REF] Montgomery | Speeding the Pollard and elliptic curve methods of factorization[END_REF] is also a popular approach to counteract SPA attack since it is done 

= (k -1 , . . . , k 0 ) 2 with k i ∈ {-1, 1} 1: R ← O, D 1 ← D, D -1 ← -D 2: for i from -1 downto 0 do 3: R ← 2 • R 4:
R ← R + D ki 5: return R through a regular sequence of doubling always followed by an addition. As we will see later, we will use projective coordinates on hyperelliptic curves. These coordinates renders the Montgomery-ladder less efficient since it involves full projective additions while the Double-and-add-always (resp. Signed-double-and-add-always) algorithm is computed with mixed additions (resp. Co-Z additions) which are more efficient.

Scalar multiplication with divisor splitting. This approach is adapted from [START_REF] Negre | Efficient regular modular exponentiation using multiplicative half-size splitting[END_REF] it performs the exponentiation using a multiplicative half-size splitting of the base element. Over the Jacobian of an hyperelliptic curve we get regular scalar multiplication using an additive splitting of the base divisor. This method is depicted in Algorithm 5.

This approach becomes more efficient than the above mentioned method of the literature (Double-and-add-always and Montgomery-ladder methods) if the additions with D 0 and D 1 are less expensive than a regular addition. The following lemma establishes the validity of Algorithm 5, i.e., that it correctly computes R = K • D.

Lemma 1. Let K = (k -1 , . . . , k 0 ) 2 with k i ∈ {0, 1} be an -bit integer and let D be an element Jac(H(F p )). If we set K i = (k -1 , . . . , k i ) 2 , then the value of R after the i-th loop iteration satisfies:

R = K i • D -D 0 .
Proof. We prove the assertion of the lemma by a decreasing induction on i: we assume it is true for i and we prove it for i -1. By induction hypothesis, R i the value of R after the execution of loop i in Algorithm 5 satisfies

July 31, 2018 DRAFT

R i = K i • D -D 0 . • If k i-1 = 1 the execution of loop i-1 gives: R i-1 = 2•R i +D 1 = (2K i )•D +(-2D 0 )+D 1 = K i-1 •D -D 0 . • If k i-1 = 0, the execution of loop i-1 gives: R i-1 = 2•R i +D 0 = (2K i )•D+(-2D 0 )+D 0 = K i-1 •D-D 0 .
The goal of this paper is to render Algorithm 5 efficient on a hyperelliptic curve for the two practical cases genus 2 and 3 over a prime field F p .

III. REGULAR SCALAR MULTIPLICATION ON A GENUS 2 HYPERELLIPTIC CURVE

In the remaining of this section we focus on genus 2 hyperelliptic curves. Our goal is to have an efficient version of the regular algorithm with split base element (Algorithm 5). In the context of hyperelliptic curves of genus 2

this means that we have to split a divisor of degree 2 as a sum of two divisors of degree 1.

In the sequel we first explain how to perform the splitting of a degre 2 divisor for a genus 2 hyperelliptic curve H(F p ). We also provide formulas to add degree 1 divisor with a degree 2 divisor in affine and weighted projective coordinates to get an efficient version of Algorithm 5.

A. Splitting of divisors in H(F p )

Given a degree 2 divisor D = (u(X), v(X)) on Jac(H(F p )) of order N , we want to find two degree 1 divisors

D 0 and D 1 such that D = D 1 -D 0 .
We can get this decomposition if we can factorize u(X) = (X -x 0 )(X -x 1 ) since then if we set

v 1 = v(X) mod (X -x 1 ), v 0 = -v(X) mod (X -x 0 ), we obtain D = D 1 -D 0 with D 1 = (X -x 1 , v 1 ) and D 0 = (X -x 0 , v 0 ). Consequently, to split D the main problem is to factorize a degree 2 polynomial u(X) = X 2 + u 1 X + u 0 in F p [X].
To factorize such polynomial we compute the discriminant ∆ = u 2 1 -4u 0 of u(X). Then if ∆ is a square in F p , we compute its square root δ = √ ∆ and deduce the two roots of u(X)

x 0 = -u 1 + δ 2 and x 1 = -u 1 -δ 2 .
If ∆ is not a square then we cannot factorize u(X) and we cannot split the divisor in Jac(H(F p )). In this case we compute D = 2 • D and at the same time we divide the scalar by two K = K/2 mod N (this is possible if gcd(2, N ) = 1). We get a new couple D , K such that

K • D = K • D .
Then we can apply the same process to the new divisor D . This approach is depicted in Algorithm 6.

July 31, 2018 DRAFT Algorithm 6 Divisor splitting for a genus 2 hyperelliptic curve Require: A degree 2 divisor D = (u(X), v(X)) of odd order N and a scalar K ∈ [0, N [.

Ensure: two degree one divisors D 0 , D 1 and K such that D = 2 t • D and D = D 1 -D 0 and K = K × 2 -t mod N for some t ≥ 0.

1: D ← D 2: K ← K 3: ∆ = u 2 1 -4u 0 4: s ← JacobiSymbol(∆ ) 5: while s = -1 do 6: D ← DoublingAf f (D ) 7: K ← K × 2 -1 mod N 8: ∆ = u 2 1 -4u 0 9:
s ← JacobiSymbol(∆ )

10: δ ← SquareRoot(∆ ) 11: x 0 ← -u 1 +δ 2 , x 1 ← -u 1 -δ 2 12: D 0 ← (X -x 0 , v 1 × x 0 -v 0 ) 13: D 1 ← (X -x 1 , -v 1 × x 1 + v 0 )
The cost of Algorithm 6 depends on the number of time we stay in the loop while. Indeed, in a loop iteration we have to compute a Jacobi symbol and perform a divisor doubling which are costly operations. The average number of loop iteration is given in the following lemma.

Lemma 2. The average number of times we execute the while loop iteration in Algorithm 6 is equal to 1.

Proof. The probability that u(X) factorizes is equal to the probability that ∆ is a square in F p . And since there are (p -1)/2 + 1 squares and (p -1)/2 non-squares we have

α = P[u(X) factorizes ] = (p -1)/2 + 1 p = 1 2 + 1 2p .
and consequently the probability that u(X) does not factorize is

1 -α = 1 2 -1 2p
. Now the probability that we have to execute i times exactly the main loop in Algorithm 6 until we get a splitting is equal to (1 -α) i α. Then, if N is the random variable corresponding number of time we compute stay in the loop while, we have the following expected value

E[N] = ∞ i=1 i × P[N = i] = ∞ i=1 i(1 -α) i α.
For p sufficiently large we assume that α ∼ = 1/2 and 1 -α ∼ = 1/2. Then replacing x by 1/2 in the following identity of formal series:

∞ i=1 ix i+1 = x 2 (1 -x) 2 July 31, 2018 DRAFT leads to E[N] = 1.
In Algorithm 6 there are two things we need to explicit to get an fully functional algorithm: the first one is the computation of the Jacobi symbol of ∆ which is equal to 1 if ∆ is a square and -1 otherwise, the second one is the computation of the square root of ∆ . We discuss these issues in the following subsections.

B. Computation of the Jacobi Symbol

There are two strategies to compute the Jacobi symbol a p of an element a ∈ F p : the first one is done with an exponentiation in F p and the second one with an algorithm similar to the Euclidean algorithm.

• Exponentiation approach. This approach computes the Jacobi symbol using the following expression of the Jacobi symbol: a p = a (p-1)/2 mod p.

It can be computed with, in average, log 2 (p) squarings and log 2 (p) 2 multiplications in F p (i.e., more precisely log 2 ((p -1)/2) squarings and HW ((p -1)/2) multiplications, where HW means Hamming weight) using the square-and-multiply algorithm.

• Euclidean-like approach. This method is due do Eisenstein and can be found in [START_REF] Weintraub | The Jacobi Symbol and a Method of Eisenstein For Calculating It[END_REF]. First, we split ∆ = 2 t ∆ where ∆ is odd then we have

∆ p = 2 p t ∆ p .
For the term 2 p t , the value 2 p can be precomputed and this leads to 2 

b = (-1) a-1 2 b-1 2 b a = (-1) a-1 2 b-1 2 b mod odd a a .
The odd modular reduction mod odd consists to choose the odd value of (b mod a) in {-(a-1), . . . , 0, . . . , a-1}. The new expression involves two smaller integers. We can then compute ∆ p by repeating the above process. This leads to a sequence of Euclidean division with odd remainders starting from a 1 = p and a 2 = ∆ as follows:

a 1 = q 1 a 2 + ε 3 a 3 with ε 3 = ±1 and 0 ≤ a 3 < a 2 and a 3 odd, a 2 = q 2 a 3 + ε 4 a 4 with ε 4 = ±1 and 0 ≤ a 4 < a 3 and a 4 odd, . . . = . . . a n-2 = q n-1 a n-1 + ε n a n with ε 3 = ±1 and a n = 1.
The fact that a n = 1 comes from gcd(∆ , p) = 1 since p is prime and that the above sequence of Euclidean division is a specific execution of the Euclidean algorithm. At the end we have:

∆ p = 2 p t (-1) a 1 -1 2 a 2 -1 2 n-1 i=2 (-1) ε i a i -1 2 
ε i a i+1 -1 2 
.

July 31, 2018 DRAFT

C. Computation of the square root

For the computation of the square root of an element a ∈ F p we use the method of Shanks-Tonelli [START_REF] Shanks | Five Number-theoretic Algorithms[END_REF]. We assume that p -1 = q × 2 t with t not too large. Let g be a generator of F p then γ = g q generates the subgroup of order 2 t of F p . Let a = a q , then the approach of Shanks-Tonelli is based on the following expression of the square root of a:

√ a = a (q+1)/2 × ( √ a ) -1 .
The above expression is correct since we have

(a (q+1)/2 × ( √ a ) -1 ) 2 = a q × a × a -1 = a
We can compute a = a q and a (q+1)/2 using a single exponentiation: we first compute a (q-1)/2 and then we get a = (a (q-1)/2 ) 2 × a and a (q+1)/2 = a (q-1)/2 × a.

To compute √ a -1
we first compute the discrete logarithm e of a in base γ the generator of the subgroup of order 2 t of F p . To do this Shanks and Tonelli suggest to use the Pollig-Hellman approach to compute e = log γ (a ).

This requires (t -1)(t -2)/2 squarings and t multiplications in F p . This method is shown in Algorithm 7. When

we obtain e = log γ (a ) with this algorithm, we can get √ a -1

by computing (γ -1 ) e/2 assuming that γ -1 is precomputed and e i seven.

Algorithm 7 Computation of log γ

Require: b a 2 t -th root of unity and γ a primitive 2 t -th root of unity.

Ensure: e = log γ (b)

Precomputation: T [i] = γ -2 i for i = 1, . . . , t -1. for i = t -1 to 0 by -1 do c ← b 2 i if c = 1 then e ← e + 2 t-1-i b ← b × T [t -1 -i] return e
Complexity of Algorithm 7. The overall computation of a square root first requires an exponentiation a (q-1)/2 which costs in average log from e and γ -1 which has a complexity of tS +tM , and a final product a (q-1)/2 × √ a -1

. The overall complexity is as follows:

( log 2 (p) 2 + 2t + 1)M + (log 2 (p) + t(t + 3)/2)S.
July 31, 2018 DRAFT

D. Complexity of divisor splitting

Let us now evaluate the complexity of a divisor splitting. We assume that a Jacobi symbol is computed with the exponentiation method which requires in average log 2 (p) 2 M + log 2 (p)S. Since we execute in average one loop while iteration, we get the contribution of each step of Algorithm 6 and the total cost of the divisor splitting as shown in Table I. Not that we assume that a multiplication by small constant has the same cost as an addition in 

F p .
+ 2t + 1)M + (log 2 (p) + t(t + 3)/2)S (Step 11) Roots x 0 , x 1 5a 
(Step 12) +(Step 13) D 0 , D 1 2M + 4a Total cost ( 3 log 2 (p) 2 + 2t + 3)M + (3 log 2 (p) + 2 + t(t + 3)/2)S +1DoublingAff + 14a
E. Addition formula in affine coordinates of a degree 2 with a degree 1 divisor

In the considered approach for scalar multiplication (Algorithm 5) we need to perform at each loop an addition of a divisor of degree 2 with a degree 1 divisor. To render this approach efficient on the Jacobian of a genus 2 hyperelliptic curve H(F p ) we need efficient formula for this kind of divisor addition.

In [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF] Costello and Lauter provide formulas for the addition and doubling of degree 2 divisors. Let us adapt their approach to provide, in affine coordinates, a formula for the addition of a degree 2 divisor with a degree 1 divisor.

In [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF] Costello and Lauter consider the divisor composition and reduction as algebraic operations on the divisor coordinates instead of arithmetic of polynomials as it is done in Algorithm 1 and 2. We apply their method for the case of an addition of a degree 2 divisor D = (u(X), v(X)) and degree 1 divisor D = (u (X), v (X)). For the composition of the two divisors we assume that we do not have to perform a semi-reduction which means that gcd(u, u ) = 1. In the composition of the two divisors we compute l(X) =

3 i=0 l i X i satisfying l(X) -v(X) ≡ 0 mod u(X), l(X) -v (X) ≡ 0 mod u (X).
In the above identities, if we explicit the expressions of u(X), v(X), u (X), v (X) and l(X), and then reduce the July 31, 2018 DRAFT resulting expression modulo u(X) and u (X), we get the following identities

(l 1 -l 2 u 1 -v 1 )X + (l 0 -l 2 u 0 -v 0 ) = 0, l 2 u 2 0 -u 0 l 1 + l 0 -v 0 = 0. These two polynomial identities can be set in a 3 × 3 linear system      1 0 -u 0 0 1 -u 1 1 -u 0 u 2 0           l 0 l 1 l 2      =      v 0 v 1 v 0     
Subtracting the first row to the last one in the above system provides the following 2 × 2 linear system:

  1 -u 1 -u 0 u 2 0 + u 0     l 1 l 2   =   v 1 v 0 -v 0  
We solve this system using Cramer's method and this leads to the following expression for l 2 , l 1 and l 0 :

l 2 = u 0 v 1 + v 0 -v 0 u 2 0 + u 0 -u 1 u 0 and    l 1 = v 1 + u 1 l 2 l 0 = v 0 + u 0 l 2 (1) 
The next step is the reduction of the divisor (u(X) × u (X), l(X)). To reduce it we first compute u (X) =

l(X) 2 -f (X)
u(X)u (X) : the coefficients of u (X) are as follows

u 1 = -l 2 2 -(u 1 + u 0 ) u 0 = -(u 0 + u 1 u 0 + u 1 (u 1 + u 0 ) -2l 1 l 2 + f 3 (2)
Finally we compute the coefficient v 0 and v 1 from v (X) = -l(X) mod u (X) using a direct approach. The resulting formula is given in Algorithm 8. Its complexity is equal to:

10M + S + I + 18a. Algorithm 8 Add21Aff(u 1 , u 0 , v 1 , v 0 , u 0 , v 0 ) l 2 ← (v 0 -v 0 + u 0 × v 1 )/((u 0 -u 1 ) × u 0 + u 0 ) //3M + I + 4a l 1 ← v 1 + u 1 × l 2 //M + a l 0 ← v 0 + u 0 × l 2 //M + a u 1 ← -l 2 2 -(u 1 + u 0 ) //S + 3a u 0 ← -(u 0 + u 1 × u 0 + u 1 × (u 1 + u 0 )) -2l 1 × l 2 + f 3 //3M + 7a v 1 ← (l 2 × u 1 -l 1 ) //M + a v 0 ← (l 2 × u 0 -l 0 ) //M + a return u 1 , u 0 , v 1 , v 0 // Total = 10M + S + I + 18a
July 31, 2018 DRAFT F. Inversion free formula for addition of a degree 2 with a degree 1 divisor Tanja Lange introduced in [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF] an inversion free formula by using a projective form of the Mumford representation.

In this coordinate system a degree two divisor D is given by five field elements

(U 1 , U 0 , V 1 , V 0 , Z) such that D = (X 2 + (U 1 /Z)X + U 0 /Z, (V 1 /Z)X + V 0 /Z).
Tanja Lange took advantage of this system of coordinates by replacing a costly field inversion in the doubling and addition formulas, with a number of multiplications and additions in F p , leading to a more efficient formula. The formulas of Lange for addition and doubling was later slightly improved by Costello and Lauter in [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF].

Recently, Costello and Hisil in [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF] considered a new set of projective coordinates, the following ZW Jacobian coordinates:

(U 1 , U 0 , V 1 , V 0 , Z, W ) such that D = (X 2 + (U 1 /Z 2 )X + U 0 /Z 4 , (V 1 /(Z 3 W ))X + V 0 /(Z 5 W )).
Using these projective coordinates they could modify the formula of Costello-Lauter [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF] and reduce the number of field operations. Moreover their addition formula take as input two divisors D 1 and D 2 with the same value for Z and W . This kind of formula is called co-ZW formula (co-Z formula was originally introduced in [START_REF] Meloni | New Point Addition Formulae for ECC Applications[END_REF] for Jacobian coordinates over elliptic curve).

The doubling and addition formulas of Costello and Hisil are the most efficient inversion free formula of degree two divisors in Jac(H(F p )). In order to use their formulas in our regular scalar multiplication (Algorithm 5) we need an addition formula in the ZW Jacobian coordinate system of a degree 2 with a degree 1 divisor as inputs.

Specifically we use the following coordinate system for a degree 1 divisor

(U 0 , V 0 , Z, W ) such that D = (X + U0 Z 2 , V0 Z 5 W )
We then modify the affine formula of Algorithm 8 in order to obtain a co-ZW formula for addition of a degree 2 divisor with a degree 1 divisor. Injecting the ZW Jacobian coordinates of D = (U 0 , U 1 , V 0 , V 1 , Z, W ) and D = (U 0 , V 0 , Z, W ) in Algorithm 8, and arranging the resulting formula we could get the following expressions for the computation of the coordinates

(U 0 , U 1 , V 0 , V 1 , Z , W ) of D = D + D : A = (V 0 -V 0 + U 0 V 1 ), B = (U 0 -U 1 )U 0 + U 0 , L 1 = (BV 1 (BW ) 2 + U 1 A(BW ) 2 ), Z = BZW, W = 1, U 1 = A 2 -(U 1 + U 0 )BW, U 0 = -U 0 (BW ) 4 -((U 1 (BW ) 2 )U 0 (BW ) 2 ) + (BW ) 4 f 3 Z 4 -U 1 (U 1 (BW ) 2 + U 0 (BW ) 2 ), -2L 1 (BW ) 2 A, V 1 = (AU 1 -L 1 ), V 0 = (A(U 0 -U 0 (BW ) 2 ) -V 0 B 4 W 5 ). (3) 
July 31, 2018 DRAFT

For completeness we provide a quick proof of the validity that the above expressions (3) lead to the correct ZW Jacobian coordinates of D = D + D in the appendix. We provide in Algorithm 9 a method to compute the above expressions (3) step by step. We also provide the complexity of each step and the overall complexity for Add21Proj coZW.

Algorithm 9 Add21Proj coZW(U 1 , U 0 , V 1 , V 0 , Z, W, U 0 , V 0 ) A ← (V 0 -V0 + U 0 × V1) // 1M +2a B ← (U 0 -U1) × U 0 + U0 // 1M +2a BW ← B × W // 1M BW 2 ← (BW ) 2 // 1S N U1 ← BW 2 × U1 // 1M N U 0 ← BW 2 × U 0 // 1M temp ← N U1 + N U 0 // 1a U 1 ← -A 2 -temp // S+2a BW 4 ← BW 2 2 // S N U 0 ← BW 4 × U0 // 1M N V 1 ← B × V1 × BW 2 // 2M L1BW 2 ← (N V 1 + N U 1 × A) // 1M+a U 0 ← -N U0 -(N U1 × N U 0 ) + BW 4 × f3 × Z 4 -U 1 × temp -2(L1BW 2) × A // 4M+2S+D+5a V 1 ← A × U 1 -L1BW 2 // 1M+a N V0 ← V0 × B × BW 4 // 2M V 0 ← A × (U 0 -N U0) -N V0 // 1M+2a Z ← BW × Z // 1M return U 1 , U 0 , V 1 , V 0 , Z , 1, N U1, N U0, N V1, N V0 // Total = 18M+D+5S+16a
The formula Add21Proj coZW outputs in addition to

D = D + D the four coordinates N U 1 , N U 0 , N V 1 , N V 0 .
These coordinates are the ones of D such that D and D are co-ZW . In other words

(N U 1 /Z 2 , N U 0 /Z 4 , N V 1 /Z 3 , N V 0 /Z 5 ) = (U 1 /Z 2 , U 0 /Z 4 , V 1 /(Z 3 W ), V /(Z 5 W )).
This can be useful when we have to re-add D to D since then we can use the co-ZW addition formula of [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF].

G. Complexity results and comparison

In this subsection we analyze and compare the complexities of divisor operations and the regular scalar multiplication algorithms on Jac(H(F p )).

• Addition and doubling complexity comparison. In Table II we review the complexity of the formulas of the literature for the divisor operations on Jac(H(F p )). We also provide the complexity of the proposed formulas for Add21. For doubling and addition in ZW Jacobian coordinates the best formulas are due to Costello and Hisil [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF]. Their formula Add22 CoZW requires that the two inputs have the same Z and W coordinates. For the affine coordinates the best approaches for Add22 and Doubling2 are from [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF]. If we consider Add21 in affine coordinates the best approach before this work was in [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF]. We can see that the proposed formula of Algorithm 8

improves the approach of [START_REF] Lange | Formulae for Arithmetic on Genus 2 Hyperelliptic Curves[END_REF] by 6 additions. In projective coordinates we could not find any formula in the literature to add a degree 2 with a degree 1 divisor. If we compare our formula Add21Proj ZW (Algorithm 9)

July 31, 2018 DRAFT with the full addition of divisor Add22Proj coZW: we notice that the number of multiplications/squarings is reduced by 5 and the number of additions by 6. 

(Algorithm 9) Convert2 AfftoZW (Degree 2) - 7M + 2S Convert2 ZWtoAff (Degree 2) - 8M + 2S + I Convert1 AfftoZW (Degree 1) - 4M + 2S
In the sequel we will need to convert a divisor given in affine coordinate into ZW coordinate with a given Z and W in order to apply ADD22Proj coZW or ADD21Proj coZW. These conversions are detailed in the appendix, their complexities are shown in Table II.

• Regular scalar multiplication complexity.

Using the complexities reported in Table II for doubling and addition on Jac(H(F p )) we can evaluate the complexity of the regular exponentiation algorithms reviewed in Subsection II-B. We consider a scalar K of bit length . We consider the following approaches:

-Double-and-add-always in affine coordinates. This consists of Doub2 Aff and Add2 Aff , leading to a complexity of (36M + 10S + 2I + 110a).

-Regular multiplication based on divisor splitting in affine coordinates. This consists of Doubling2Aff and Add21Aff plus the cost of a divisor splitting (cf. Table I). The overall complexity is then equal to

(29M + 7S + 2I + 71a) + (3 log 2 (p)/2 + 2t + 25)M + (3 log 2 (p) + t(t + 3)/2 + 9)S + I + 71a.
-Double-and-add-always in ZW Jacobian coordinates. In this case Algorithm 3 consists in a sequence of a doubling and an addition of D with either R 0 or R 1 . We take advantage of Add22Proj coZW by rewritting the loop iteration of Algorithm 3 as follows: • Our code was written in C langage, compiled with gcc and run on the three platform Intel Core i5-3210, Intel Xeon E5-2650v4 and ARMv7.

R 1 ← Doubling2Proj(R 1 ) N D ← Convert2 AfftoZW(D, Z R k i , W R k i ) // N D
• We considered three hyperelliptic curves defined over F p for p = 2 94 -3, p = 2 122 -3 and p = 2 300 -3, respectively. Their group size corresponds to a security level of 188, 244 and 300.

• For field multiplication, addition and subtraction we used the strategy of Langley [START_REF] Langley | C25519 code[END_REF]. We store a field element in a number of computer words keeping in each word a number of spared bits to handle carries. Integer addition and multiplication are done using schoolbook approaches.

• For the inversion we implemented one approach based on the little Fermat theorem [START_REF] Brown | Software Implementation of the NIST Elliptic Curves Over Prime Fields[END_REF] and one approach using

Euclidean algorithm [START_REF] Brown | Software Implementation of the NIST Elliptic Curves Over Prime Fields[END_REF] (in this later case we used the low level function of gmp [START_REF]The GNU Multiple Precision Arithmetic Library (GMP[END_REF]). We selected the Euclidean algorithm in our scalar multiplication code since it appeared to be the fastest among these approaches.

• For the computation of the Jacobi symbol we implemented the two approaches reviewed in Subsection III-B:

the first one is based on an exponentiation in F p and the second one uses the Euclidean-like algorithm of Eisenstein [START_REF] Weintraub | The Jacobi Symbol and a Method of Eisenstein For Calculating It[END_REF]. Both were not fully optimized but the approach based on the exponentiation showed the best performances.

The timing results for the scalar multiplication are shown in Table IV. As we can see for all cases the approach using projective coordinates are always better that the one using affine coordinates. Moreover, these timings indicate that in practice the proposed approach is still efficient compared to the best approaches of the literature. In affine the improvement is around 1% to 4% on Intel processor and 0%-8% on the ARM processor, this is explained by the dominant time spent in the large number of inversions which is the same for both approaches. The proposed approach reduces the computation time by 4% to 10% in projective coordinates. This is in the range of what we expected based on the complexity analysis.

IV. REGULAR SCALAR MULTIPLICATION OVER A GENUS 3 HYPERELLIPTIC CURVE

In this section we extend the strategy presented in the Section III to the case hyperelliptic curves of genus three.

Over F p such curves are given by an equation of the following form

Y 2 = X 7 + f 5 X 5 + f 4 X 4 + f 3 X 3 + f 2 X 2 + f 1 X + f 0 .
July 31, 2018 DRAFT In order to render Algorithm 5 efficient over genus 3 hyperelliptic curves we need a method to split the base divisor and an addition formula adapted to this splitting. It is possible to split the base divisor D as D = D 1 -D 0 where D 1 is a degree 2 divisor and D 0 is a degree 1 divisor. But in this case Algorithm 5 would not be regular since an addition with a degree 2 divisor is more costly than an addition with a degree one divisor. Our first goal is to split a divisor of degree 3 as a difference of two degree 2 divisors in order to keep Algorithm 5 fully regular. Afterwards we will provide Add32 formulas for the addition of a degree 3 divisor with a degree 2 divisor.

A. Divisor splitting over a genus 3 hyperelliptic curve

We are going to split a divisor D of degree 3 as a difference of two degree 2 divisors. Beforehand, recall that a degree 3 divisor is D = (P 0 ) + (P 1 ) + (P 2 ) -3(∞) and let D = (u(X), v(X)) be its Mumford representation.

The roots x i of u(X) are the abscissa of P i and the polynomial v(X) is such that v(x i ) = y i is the ordinate of P i for i = 0, 1, 2. The splitting of a divisor D into two degree 2 divisors is done as follows:

1) We first compute D = D + D 0 where D 0 is a fixed degree 1 divisor.

2) Let D = (u (X), v (X)), we try to find a root α ∈ F p of u (X) if such root does not exist we double D and go to 1).

3) We compute u 1 (X) = u (X)/(X -α) and v 1 = v(X) mod u 1 (X) and we set D 1 = (u 1 , v 1 ).

4)

We consider β = v (α) and the divisor D = (X -α, β). We have the splitting

D = D 1 + D (4) 
as a sum of a degree 2 and a degree 1 divisor.

5)

We compute D 2 = D 0 -D and we output (D 1 , D 2 ).

We can check that D 1 , D 2 is the required splitting of D as a difference of two degree 2 divisors. Indeed we have

D = D -D 0 (from 1)) = D 1 + D -D 0 (with (4)) = D 1 -D 2 (from 5)).
Consequently to get the splitting of D we have to compute a root of a degree 3 polynomial. We use the classical formula due to Cardan to compute the root of a degree 3 polynomial. Let u (X) = X 3 + u 2 X 2 + u 1 X + u 0 be a degree 3 polynomial, then Cardan's formula computes a root α of u (X) as follows:

                     r = (u 1 - u 2 2 3 ), s = (u 0 - u 3 2 27 ), ∆ = 4r 3 + 27s 2 , Ω = -s 2 -1 2 ∆ 27 , α = -u 2 + 3 √ Ω + -r 3 3 √ Ω .
In the above formula we notice that the most costly operations are the square root computation ∆ 27 and the cube root 3 √ Ω. In the previous section we have already seen how to compute a square root in F p . For a cube root we consider the following cases:

• If gcd(p -1, 3) = 1 then in this case for each element a ∈ F p there always exists a unique cube root in F p .

If we set q = 3 -1 mod (p -1) then the cube root of a is b = a q mod p.

• If p -1 = 3q with gcd(q, 3) = 1 then we have first to decide if a is cube in F p , this is the case if a q = a (p-1)/3 = 1. If this is the case we can compute the cube root of a as follows

-If q ≡ 1 mod 3. Then b = a -q-1 3 satisfies b 3 = a -q × a = a.
-If q ≡ 2 mod 3. Then b = a q+1 3 satisfies b 3 = a q × a = a.

• For other cases, i.e., p such that gcd( p-1 3 , 3) = 1, we can adapt the method of Shanks-Tonelli (Subsection III-C) to the case of cube-root computation. This extension is straightforward so we do not give the details here.

The conclusion of the above discussion is that a cube-root can be computed through an exponentiation a e in F p were e is of bit-length ∼ = log 2 (p).

The splitting of a degree 3 divisor into two degree 2 divisors using the proposed strategy it is shown in Algorithm 10.

B. Complexity of a divisor splitting

In order to evaluate the complexity of a divisor splitting (Algorithm 10), we need to know the average number of time we execute the loop iteration of the algorithm. This will give us the average number of time we have to determine if ∆/27 is a square and if Ω is a cube and compute their respective square and cube root. The number of July 31, 2018 DRAFT Algorithm 10 Divisor splitting on genus 3 curve Require: A degree 3 divisor D = (u(X), v(X)) of a Jacobian of a genus 3 hyperelliptic curve of odd order N , a scalar K and a fixed degree 1 divisor D 0 = (X -x 0 , y 0 )

Ensure: K and D = D 1 -D 2 with D 1 and D 2 of degree 2 and K • D = K • D.

1: D ← D, K ← K, τ ← -1 2: D = (u (X), v (X)) ← Add( D, D 0 ) 3: r ← u 1 - u 2 2 3 , s ← (u 0 - u 3 2 27 ), ∆ ← 4r 3 27 + s 2 4: σ ← JacobiSymbol(∆ ) 5: if σ = 1 then 6: Ω ← -s 2 -1 2 √ ∆ , τ ← IsCube(Ω)
7: while τ = 1 do 8:

K = K × 2 -1 mod N 9:
D ← Doubling( D)

10: D = (u (X), v (X)) ← Add( D, D 0 ) 11: r ← u 1 - u 2 2 3 , s ← (u 0 - u 3 2 27 ), ∆ ← 4r 3 27 + s 2 12:
σ ← JacobiSymbol(∆ )

13: if σ = 1 then Ω ← -s 2 -1 2 √ ∆ , τ ← IsCube(Ω) 15: α ← -u 2 + 3 √ Ω + -r 3 3 √ Ω 16: D 1 ← (u (X)/(X -α), v (X) mod (u (X)/(X -α))) 17: D 2 ← Add(D 0 , (X -α, -v (α))) 18: return K , D, D 1 , D 2
time we stay in the while loop is related to the probability that ∆ is a square and Ω is a cube. These probabilities are established in the following lemma.

Lemma 3. Let ∆ and Ω be two elements in F p with p an odd large prime.

• The probability that ∆ is a square is

1 2 + 1 p ∼ = 1 2 • If 3 |(p -1) the probability that Ω is a cube is 1. • If 3 | (p -1) the probability that Ω is a cube is 1 3 + 2 3p ∼ = 1 3 .
Using these probabilities we can estimate the number of time we stay in the while loop in Algorithm 10. Let N be the random variable equal to the number of time we execute the loop iteration in Algorithm 10. For the sake of simplicity we only consider the case 3|(p -1). We first evaluate probability that the computation of a root of July 31, 2018 DRAFT u(X) fails. This probability is as follows:

P(u(X) has not a root)) = P({ ∆ 27 is not a square } ∪ { ∆ 27 is a square and Ω is not a cube }) = 1 2 + 1 2 × 2 3 = 5 6
We then obtain the probability that we get a root of u (X) after N = i iterations, we fail i times to find a root and then we succeed.

P(N = i) = 5 6 i × 1 6 .
Then the expected number of iterations is

E[N] = ∞ i=1 i × 5 6 i × 1 6 = 5 36 × 1 (1- 5 
6 ) 2 = 5 Now we can derive the complexity of Algorithm 10. We assume that a Jacobi-symbol and a square-root can be computed through a single exponentiation. This is also the case for IsCube and cube root computation. We also assume that the cost of an exponentiation in F p is log 2 (p)S + log 2 (p) 2 M in average. Based on this facts, the complexity of Algorithm 10 is evaluated step by step in the Table V. 

C. Addition formula of degre 3 and degree 2 divisors

In the proposed regular scalar multiplication (Algorithm 5) on the Jacobian of a genus 3 hyperelliptic curve we have to perform a sequence of doublings of degree 3 divisors followed by an addition with degree 2 divisor. For the doubling formula in affine and projective coordinates we use the formula provided in [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF]. For the addition of a degree 3 divisor with a degree 2 divisor (Add32), we provide a new formula using the approach of Costello and Lauter [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF].

Let D = (u(X), v(X)) be a degree 3 divisor and D = (u (X), v (X)) be a degree 2 divisor. We assume that gcd(u(X), u (X)) = 1 which means that if a point P ∈ H(F p ) is in D then neither P , neither P are in D .

The method of Costello and Lauter first computes the composition of D and D (cf. Algorithm 1). Indeed the Mumford representation of the unreduced divisor D + D is given by the product u(X)u (X) for the abscissas and, for the ordinates, l(X) which satisfies l(X) ≡ v(X) mod u(X) and l(X) ≡ v (X) mod u (X). To get an explicit expression of the coefficients of l(X) we express the reduction l(X) mod u(X) in terms of the coefficients of l(X) and u(X):

l(X) mod u(X) ≡ (l 2 + (u 2 2 -u 1 )l 4 -u 2 l 3 )x 2 + (l 1 + (u 1 u 2 -u 0 )l 4 -u 1 l 3 )x 1 + l 0 -u 0 l 3 + u 0 u 2 l 4 )
Similarly the reduction of l(X) modulo u = X2 + u 1 X + u 0 gives the following

l(X) mod u (X) = (l 1 -u 1 l 2 + (2u 1 u 0 -u 1 3 )l 4 + (u 1 2 -u 0 )l 3 ))x 1 + (l 0 -u 0 l 2 + (u 0 2 -u 0 u 1 2 )l 4 + u 0 u 1 l 3 ).
With the above two identities and using v(X) = l(X) mod u(X) and v (X) = (X) mod u (X) we obtain the following linear system for l 0 , . . . ,

l 4            1 0 0 -u 0 +u 0 u 2 0 1 0 -u 1 (u 1 u 2 -u 0 ) 0 0 1 -u 2 (u 2 2 -u 1 ) 1 0 -u 0 u 0 u 1 (u 0 2 -u 0 u 1 2 ) 0 1 -u 1 (u 1 2 -u 0 ) (2u 1 u 0 -u 1 3 )            •            l 0 l 1 l 2 l 3 l 4            =            v 0 v 1 v 2 v 0 v 1            (5) 
Now, we arrange the above system by subtracting the first two rows to the last two rows, this leads to a 3 × 3 linear system for l 2 , l 3 and l 4 . We then add the first row of this 3 × 3 system multiplied by u 0 and u 1 to the two last rows. We obtain the following 2 × 2 linear system:

  u 0 u 1 + u 0 -u 2 u 0 (u 0 2 -u 0 u 1 2 -u 0 u 2 + (u 2 2 -u 1 )u 0 ) (u 1 2 -u 0 + u 1 -u 2 u 1 ) (2u 1 u 0 -u 1 3 -u 1 u 2 + u 0 + (u 2 2 -u 1 )u 1 )   •   l 3 l 4   =   v 0 -v 0 + u 0 v 2 v 1 -v 1 + u 1 v 2   (6) 
We set

a = u 0 u 1 + u 0 -u 2 u 0 , b = (u 0 2 -u 0 u 1 2 -u 0 u 2 + (u 2 2 -u 1 )u 0 ), c = (u 1 2 -u 0 + u 1 -u 2 u 1 ), d = (2u 1 u 0 -u 1 3 -u 1 u 2 + u 0 + (u 2 2 -u 1 )u 1 ), ∆ = ad -bc.
We apply Kramer's formula to get the solution for l 3 and l 4 of ( 6), the expressions for l 0 , l 1 and l 2 follows from (5):

   l 3 = 1 ∆ (d × (v 0 -v 0 + u 0 v 2 ) -b × (v 1 -v 1 + u 1 v 1 )) , l 4 = 1 ∆ (-c × (v 0 -v 0 + u 0 v 2 ) + a × (v 1 -v 1 + u 1 v 2 )) , and 
         l 0 = u 0 l 3 + u 0 u 2 l 4 + v 0 , l 1 = u 1 l 3 + (u 0 -u 1 u 2 )l 4 + v 1 , l 2 = u 2 l 3 + (u 1 -u 2 2 )l 4 + v 2 .
We now proceed to the reduction of the unreduced divisor D = D+D = (u(X)u (X), l(X)). We apply one iteration of the Cantor reduction algorithm (Algorithm 2): we have to compute u (X) = (l(X) 2 -f (X))/(u(X)u (X)).

We use the following identity

(X 2 +u 1 X +u 0 )(X 3 +u 2 X 2 +u 1 x+u 0 )(X 3 +u 2 X 2 +u 1 X +u 0 ) = ( 4 X 4 + 3 X 3 + 2 X 2 + 1 X + 0 ) 2 -f (X)
For the proposed approach the cost is equal to the cost of a splitting (cf. Table V) plus the cost of loop iterations each consisting in one Doubing33Aff and one Add32Aff (resp. one Doubling33Proj and one Add32Proj) in affine (resp. projective) coordinates. In projective coordinates a final conversion to affine coordinates is required. The resulting complexity in affine coordinates is as follows

(103M + D + 5S + 165a + 2I) + ( 9 log 2 (p) 2 + 135)M + (9 log 2 (p) + 42)S + 256a + 7I
and in projective coordinates we have the following:

(179M + 2D + 13S + 156a) + ( 9 log 2 (p) 2 + 141)M + (9 log 2 (p) + 42)S + 256a + 8I.
In Table IV-D we report these complexities under the assumption that the key length = 3 log 2 (p). We notice that the improvement in this case is a bit better than for genus 2: we save 20M/S per loop iteration when using affine coordinates and around 50M/S per loop iteration in projective coordinates. Implementation results. We implemented in C the Double-and-add-always and the proposed approaches for the security level of 192, 244 and 300 in affine and projective coordinates. We chose three hyperelliptic curves defined over the field F p with p = 2 73 -19 and p = 2 94 -19 and p = 2 113 -5, respectively. The implementations strategies are essentially the same as the one used for genus 2 hyperelliptic curves. Indeed, the form of the primes p are essentially the same, so we implemented arithmetic modulo p using the same method. We adapted the divisor splitting to the specificity to the splitting of divisor over genus 3 curves, but the underlying operations (multiplications, additions and exponentiations) are essentially the same. At the end we obtain the timings reported in Table VI. We can notice that most of the time the proposed approach with divisor splitting is better that its Double-and-add-always counterpart. Indeed in affine coordinates we have an improvement which is in the range 5%-15% in affine coordinates, most of the time it is around 7-8%. Generally, projective coordinates is the best choice, and in this case we have an im provements in the range of 17-18%.

Operation Coordinate Syst. Cost Add33Aff Affine 64M + 3S + 109a + 1I Add32Aff Affine 39M + D + 2S + 56a + I Add31Aff Affine 17M + 4S + 33a + I Doubling3Aff Affine 61M + 7S + 96a + 1I MixedAdd33Proj Projectif 116M + D + 6S + 102a MixedAdd32Proj Projectif 63M + D + 7S + 54a Doubling3Proj Projectif 120M + 6D + 13S + 114a
July 31, 2018 DRAFT We can also notice that if we compare the timings in Table VI with the ones of Table VI it appears that, for the same level of security, a scalar multiplication over a genus 3 curve is generally not competitive compared to a scalar multiplication over a genus 2 curve. This is mostly due to the complexity of divisor operation on genus 3 curves. Until now not much optimization where done on genus 3 curves on doubling and addition of divisor, while more works were done on genus 2 curves.

V. CONCLUSION

In this paper we considered scalar multiplication over genus 2 and genus 3 hyperelliptic curves immune to simple power analysis and timing attacks. We extended the approach of [START_REF] Negre | Efficient regular modular exponentiation using multiplicative half-size splitting[END_REF] to scalar multiplication over hyperelliptic curves. This approach requires to split the base divisor into a difference of two divisors of smaller degree: two divisors of degree 1 on genus 2 and two divisors of degree 2 on genus 3. We also provided improved formula to add a divisor of degree 2 (resp. degree 3) with a divisor of degree 1 (resp. degree 2) on the Jacobian of a genus 2 (resp. genus3) hyperelliptic curves. This approach reduces the cost of the loop iteration of the scalar multiplication compared to the Double-and-add-always, but this requires a divisor splitting. The complexity evaluation and timing results showed that the proposed approach is interesting in most cases. The reduction in the timings are around 5% to 8% on genus 2 curves and around 15% over genus 3 curves.

and the total cost is 7M + 2S

• Degree 1 case (Convert1 AfftoZW). Given D = (X + u 0 , v 0 ) and Z, W we have to compute

U 0 = u 0 × (Z 2 ) with 1S + 1M V 0 = v 0 × (Z 2 ) 2 × Z × W with 1S + 3M
which requires 2S + 4M to get D = (U 0 , V 0 , Z, W ).

Formulas for genus 3 hyperelliptic curves

We provide in the remaining of the appendix the formulas over the Jacobian of a genus 3 hyperelliptic curve. We first present the formula Add32Aff for the addition of a degree 3 divisor with a degree 2 divisor in affine coordinates which is based on the discussion in Subsection IV-C. We also present the formula AddAff31 for the addition of a degree 3 divisor with a degree 1 divisor: this formula is used in the splitting of the divisor (Algorithm 10) and was obtained with the method of Costello and Lauter [START_REF] Costello | Group Law Computations on Jacobians of Hyperelliptic Curves[END_REF]. We present the formulas for Add33Proj and Doubling3Proj:

these formulas are corrected versions of the formulas provided in [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF] which contain several errors. For completeness sake we recall the Add33Aff and Doubling3Aff which are from [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF]. 

Algorithm 5 2 Ensure: r = k • P 1 :

 521 Regular scalar multiplication with additive splitting of the base divisor Require: D ∈ Jac(H(F p )) and K = (k -1 , . . . , k 0 ) Split. D = D 1 -D 0 for D 0 , D 1 ∈ Jac(H(F p )).

2: R ← -D 0 3 :R ← 2 • R + D ki 5 :

 325 for i from -1 downto 0 do 4: R ← R + D 0 6: return r

p t = 2 p t mod 2 .

 22 We need now to compute a b where a and b are two odd integers (here a = ∆ and b = p). In this case the reciprocity law provides that a

2 (p) 2 M

 22 + log 2 (p)S. It also requires one execution of Algorithm 7 which has a cost of tM + t(t+1) 2 S. The final operations are the computation √ a -1

  5M + D + 8S + 165a + 2I) + 135M + 42S + 256a + 7I Double-and-add-always Projectif (236M + 7D + 19S) + 216a) + I + 6M Proposed Algorithm 5 Projectif (180.5M + 2D + 16S + 156a) + 141M + 42S + 256a + 8I

Algorithm 11

 11 Add32Aff(u0,u1,u2,v0,v1,v2,z,uu0,uu1,vv0,vv1) //-------coeff matrix a,b,c,d -------------------------Cost = 7M+14a tp0:=(uu1-u2) * uu0; a:=u0+tp0; tp1:=(u2-uu1) * (u2+uu1); tp2:=(tp1-u1); tp3:=u0 * u2; b:=-tp3+(tp2+uu0) * uu0; c:=-uu0+u1+(uu1-u2) * uu1; tp4:=u1 * u2; d:=-tp4+u0+(tp2+2 * uu0) * uu1; //-------Delta, inverse of Delta and l4 -----------Cost = 10M+6a+I Delta := a * d-c * b; coeff1:=(vv0 -v0 + uu0 * v2); coeff2:=(vv1 -v1 + uu1 * v2); ll4:=( -c * coeff1 + a * coeff2); tp5:=ll4 * Delta; Itp5:=1/tp5; IDelta:=ll4 * Itp5; Ill4:=Delta * Itp5; Il4:=Delta * Ill4; //----l3ol4=l3/l4, l1ol4=l1/l4 and l2ol4=l2/l4 ---------Cost = 8M+7a l3ol4:= ( d * coeff1 -b * coeff2) * Ill4; l4:=IDelta * ll4; l1ol4:= u1 * l3ol4 + (u0-tp4) + v1 * Il4; l2ol4:=u2 * (l3ol4-u2)+u1+v2 * Il4; //-----UUU ----------------------------------------------Cost = 7M+D+2S+20a tp6:= (uu0 + u1 + uu1 * u2); tp7:=uu0 * u2+uu1 * u1; tp8:=(Il4)ˆ2; uuu2 := 2 * (l3ol4)-tp8 -uu1-u2; uuu1:=2 * l2ol4+(l3ol4)ˆ2 -tp6 -uuu2 * (uu1+u2); uuu0:=2 * l1ol4 + 2 * (l3ol4) * (l2ol4)-f5 * tp8 -((tp7+u0)+tp6 * uuu2+(uu1+u2) * uuu1); //----VVV ----------------------------------------------Cost = 7M+9a vvv0 := ((uuu0-u0) * l3ol4 + tp3 -uuu0 * uuu2) * l4-v0; vvv1 := (-l1ol4+uuu0+uuu1 * (-uuu2+ l3ol4)) * l4; vvv2 := (-l2ol4+uuu1+uuu2 * (-uuu2 + l3ol4)) * l4; return uuu0,uuu1,uuu2,vvv0,vvv1,vvv0; //---Overall cost = 39M+2S+D+I+56a Algorithm 12 Add32Proj(u0,u1,u2,v0,v1,v2,z,uu0,uu1,vv0,vv1) //-------coefficients a,b,c,d and determinant ------Cost = 14M+2S +13a tp0:=uu1 * z; tp1:=(tp0-u2) * uu0; a:=u0+tp1; tp1:=u2ˆ2; tp2:=uu0 * z; tp3:=u0 * u2; tp4:=tp0ˆ2;b:=-tp3+(-u1+tp2) * tp2+uu0 * (tp1-tp4); c :=(uu1 * (tp0-u2)-tp2 +u1); tp5:=u1 * z; tp6:=u0 * z; tp7:=u1 * u2; d:=(2 * tp0 * tp2-tp7+tp6+(tp1-tp4-tp5) * uu1); Delta := (a * d-c * b); //-------L3 and L4 -----------------------------------Cost = 9M+6a coeff1:=(vv0 * z-v0+uu0 * v2); coeff2:=(vv1 * z -v1 +uu1 * v2); L3 := (d * coeff1-b * coeff2); LL4 := (-c * coeff1+a * coeff2); L4 := LL4 * z ; //--------L0,L1 and L2 --------------------------------Cost = 10M+8a zD:=z * Delta; L0 := (tp6 * L3 -tp3 * L4 + v0 * zD) ; L1:=(tp5 * L3+(tp6-tp7) * L4+v1 * zD); L2 := (u2 * z * L3 +(tp5-tp1) * L4 +v2 * zD); //--------UUU -----------------------------------------Cost = 20M+D+4S+20a tp8:=LL4ˆ2; tp9:=L4 * L3; tp10:=Deltaˆ2; tp11:=tp8 * z; Tuuu2 := (((2 * tp9-tp10)+(-tp0-u2) * tp11)); uuu2:=Tuuu2 * z; tp12:=LL4 * L2; tp13:=L3ˆ2 * z; tp14:=uu1 * u2; tp15:= tp11 * z ; Tuuu1 :=2 * tp12+tp13 -(tp2+u1+tp14) * tp15 -Tuuu2 * (tp0+u2); uuu1:=Tuuu1 * z; z2:=zˆ2; tp19:=tp11 * z2;tp16:=L4 * L1; tp17:=L3 * L2; tp18:=tp10 * z2 * f5; Tuuu0:=((2 * (tp16+tp17)-tp18); Tuuu0:=Tuuu0-(((uu0 * u2+uu1 * u1+u0) * tp19+(tp2+u1+tp14) * uuu2)+(tp0+u2) * Tuuu1)); //------VVV and ZZZ ----------------------------------Cost =10M+5a tp20:=(tp9 -Tuuu2); Tvvv0 := (-L0 * tp15 * L4 +Tuuu0 * tp20); Tvvv1 := ((-tp16+Tuuu0) * tp15 + uuu1 * tp20); Tvvv2 := ((-tp12+Tuuu1) * tp11 + Tuuu2 * tp20); L4D:=L4 * Delta; tp21:=z2 * L4D; ZZZ:=(tp15 * tp21);return Tuuu0,uuu1,Tuuu2,Tvvv0,Tvvv1,Tvvv2,ZZZ;//----Total cost =63+6S+1D+54aAlgorithm 13 Add31Aff(u10,u11,u12,v10,v11,v12,u20,v20) //-------------------------------------------------Cost = 5M+S+6a+I w0:=u20ˆ2; w1:=w0 * (u20-u12); w2:=u11 * u20; r:=-(w1+w2-u10); i:=rˆ(-1); z0:=u20 * v12; s0:=i * (v20-u20 * (z0-v11)-v10);//------u32 ---------------------------------------Cost = S+2a t0:=s0ˆ2; t1:=u20+u12; u32:=t0+t1; //------u31 ---------------------------------------Cost =4M+7a t2:=u12 * u20; t3:=t2+u11; t4:=s0 * u12; t5:=2 * s0 * (t4+v12)-f5;u31:=(t5+t3-t1 * u32); //------u30 ---------------------------------------Cost = 5M+2S+10a t6:=w2+u10; t7:=s0 * u11; t8:=u12 * v12; t9:=t4ˆ2+2 * s0 * (t7+t8+v11)+v12ˆ2-f4; u30:=t9+t6-t3 * u32-t1 * u31; //------v32,v31,v30 -------------------------------Cost = 3M+8a v32:=-(s0 * (u32+u12)+v12); v31:=-(s0 * (u31+u11)+v11); v30:=-(s0 * (u30+u10)+v10); return u30,31,u32,v30,v31,v32 --------------------Cost = 17M+4S+33a+I Algorithm 14 MixedAdd33Proj(U10,U11,U12,V10,V11,V12,Z1,U20,U21,U22,V20,V21,V22) [9] //------------Precomputations --------------------------Cost = 6M UU22:=Z1 * U22; UU21:=Z1 * U21; UU20:=Z1 * U20; VV22:=Z1 * V22; VV21:=Z1 * V21; VV20:=Z1 * V20; //-------------Resultant of U1 and U2 -------------------Cost = 15M+13a t0:=U10-UU20; t1:=U11-UU21; t2:=U12-UU22; t3:=t1-U22 * t2; t4:=t0-U21 * t2; t5:=t4-U22 * t3; t6:=U20 * t2+U21 * t3; t7 :=-(t4 * t5+t3 * t6); t8:=t2 * t6+t1 * t5; t9:=t2 * t4-t1 * t3; r :=t0 * t7-U20 * (t3 * t9+t2 * t8); //-------------Pseudo inverse S'=rS=(V2-V1)I mod U2------Cost = 10M+26a i2:=t9; i1 := t8; i0 := t7; t1 :=V10-VV20; t2 :=V11-VV21; t3:=V12-VV22; t4:=t2 * i1; t5:=t1 * i0; t6:=t3 * i2; t7:=U22 * t6; t8:=t4+t6+t7 -(t2+t3) * (i1+i2); t9:=U20+U22 ; t10:=(t9 + U21) * (t8 -t6); t9:=(t9 -U21) * (t8 + t6); ss0:=-(U20 * t8+t5); ss1:=(t4+t5-t7) -(t1+t2) * (i0+i1) + (t9-t10)/2; ss2:=(t6-t4-ss0) -(t1+t3) * (i0+i2) -(t9+t10)/2; //-------------Precomputations---------------------------Cost = 9M+4S w0 := ss0 * Z1; w1:=ss1 * Z1; w2:=ss2 * Z1; w3:=ss2ˆ2; w4:=w2ˆ2; R:=r * Z1; RR:=rˆ2; A:=w3 * Z1; B:=R * w2; D:=B * R; E:=Bˆ2; F:=w2 * Z1; G:=E * F; //-------------Computation of Z--------------------------Cost = 11M+15a z0:=ss0 * U10 ; z1:=(ss0+ss1) * (U10+U11)-ss1 * U11-ss0 * U10; z2:=(ss0+ss2) * (U10+U12)-ss2 * U12-ss0 * U10+ss1 * U11; z3:=w0+(ss1+ss2) * (U12+U11)-ss1 * U11-ss2 * U12; z4:=w1+ss2 * U12; //-------------Computation of Ut-------------------------Cost = 25M+27a ut3:=z4+w1-U22 * w2; t1:=ss1 * z4-(ss2 * ut3) * U22; ut2:=ss2 * (z3+w0-U21 * w2)+t1; t2:=(U22+U21) * (ss2 * ut3+ut2); t3:=(ss0 * z3-U21 * ut2); t4:=z2+r * V12; t5:=z1+r * V11; ut1:=ss2 * (t4+r * V12)+(ss0+ss1) * (z3+z4)-r * R-(t1+t2+t3+A * U20); ut0 :=ss2 * (t5+r * V11)+ss1 * (t4+r * V12)+t3+RR * U12-(ss2 * ut3) * U20-U22 * ut1; //-------------Computation of Vt-------------------------Cost = 12M+8a t1 :=ut3-z4; vt0:=t1 * ut0+A * (z0+V10 * r); vt1:=t1 * ut1+w2 * (ss2 * t5-ut0); vt2 := t1 * ut2+w2 * (ss2 * t4-ut1); vt3:=t1 * ut3+w2 * z3-ut2 * Z1; //-------------Computation of Z3 and U3------------------Cost = 22M+D+2S+10a t1:=2 * vt3; u32:=-(D * ut3+vt3ˆ2); u31:=D * ( w4 * f5-ut2 * Z1)-(u32 * ut3+t1 * (vt2 * Z1)); u30:=E * (w4 * f4-ut1 * Z1)-((vt2 * Z1)ˆ2+u32 * (ut2 * Z1)+u31 * ut3+t1 * F * vt1); u32:=u32 * w4; u31:=u31 * w2 ; Z3:=G * w4 * r; U32:=u32 * B; U31:=u31 * B; U30:=u30 * B; //-------------Computation of V3-------------------------Cost = 6M+3a V32:=G * vt2-u32 * vt3; V31:=G * vt1-u31 * vt3; V30:=G * vt0-u30 * vt3; return(U30,U31,U32,V30,V31,V32,Z3) //-------------Total cost = 116M+6S+D+102a July 31, 2018 DRAFT Algorithm 15 Doub33Proj(U10,U11,U12,V10,V11,V12,Z1) [9] //-----Precomputations -------------------------------Cost = 6M+S Z:=Z1ˆ2; UU12:=Z1 * U12; UU11:=Z1 * U11; UU10:=Z1 * U10; VV12:=Z1 * V12; VV11:=Z1 * V11; VV10:=Z1 * V10; //---Resultant r and pseudo inverse i2,i1,i0---------Cost = 17M+10a t1:=VV11-U12 * V12; t2:=VV10-U11 * V12; t3:=Z1 * t2-U12 * t1; t4:=UU10 * V12+U11 * t1; t5:=t2 * t3+t1 * t4; t6:=-(V11 * t3+V12 * t4); t7:=V11 * t1-V12 * t2; r:=Z * (VV10 * t5-UU10 * (t1 * t7+V12 * t6)); i2:=t7;i1:=t6;i0:=t5; //-----Computation of Z ------------------------------Cost = 7M+4D+3S+19a t1:=U12ˆ2;t2:=f4 * Z-(2 * UU10+V12ˆ2);t3:=f5 * Z+t1-2 * UU11; z2:=Z * (t3+2 * t1); z1:=UU12 * (2 * UU11-t3)+Z * t2; z0:=f3 * Zˆ2+t1 * (t3-UU11)+UU12 * (2 * UU10-t2)+UU11 * (UU11-f5 * Z)-2 * VV12 * VV11; //-----Computation of SS and A,B,C,D,E,F-------------Cost = 19M+2S+28a t1:=i1 * z1; t2:=i0 * z0; t3:=i2 * z2; t4:=U12 * t3; t5:=(i1+Z1 * i2) * (z1+z2)-(t1+Z1 * t3+t4); t6:=U10 * t5; t7:=U10+U12; t8:=t7+U11; t9:=t7-U11; t7:=t8 * (Z1 * t3+t5); t11:=t9 * (t5-Z1 * t3); ss2:=Z1 * (t1-Z1 * t3)+t6+(i0+Z * i2) * (z0+z2)-(t2+(t7+t11)/2); ss1:=Z1 * (t4-t1)+(i0+Z1 * i1) * (z0+z1)+(t11-t7)/2-t2; ss0:=t2-t6; A:=ss2ˆ2;B:=2 * r * ss2;D:=2 * r * B;E:=Bˆ2;F:=A * D; //-----Computation of G ------------------------------Cost = 9M+15a g0:=ss0 * U10; g1:=(ss0+ss1) * (U10+U11)-ss1 * U11-ss0 * U10; g2:=(ss0+ss2) * (U10+U12)-ss2 * U12-ss0 * U10+ss1 * U11; g3:=ss0 * Z1+(ss1+ss2) * (U12+U11)-ss1 * U11-ss2 * U12; g4:=ss1 * Z1+ss2 * U12; //-----Computation of Ut and Vt ----------------------Cost = 29M+2S+27a ut3:=2 * ss1; ut2:=ss1ˆ2+2 * ss0 * ss2; ut1:=2 * (ss1 * ss0 * Z1+2 * r * (ss2 * V12-r * Z1)); ut0:=ss0ˆ2 * Z+4 * r * (U12 * (2 * r * Z1-ss2 * V12)+ss1 * VV12+ss2 * VV11); t1:=ut3 * Z1-g4; vt0:=t1 * ut0+Z * A * (g0+2 * r * V10);vt1:=t1 * ut1+Z1 * A * (g1+2 * r * V11)-ss2 * ut0; vt2:=t1 * ut2+A * (g2+2 * r * V12)-ss2 * ut1; vt3:=t1 * ut3-ut2 * Z1+ss2 * g3; //-----Computation of Z2 and U2 ----------------------Cost = 24M+2D+4S+12a t0:=Z1ˆ2; t1:=2 * vt3; u22:=-(D * ut3 * t0+vt3ˆ2); u21:=D * (f5 * A-ut2) * t0-(u22 * ut3+t1 * vt2); u20:=E * (f4 * A * Z1-ut1) * t0-((vt2ˆ2+u22 * ut2+u21 * ut3) * Z1+ss2 * t1 * vt1); u21:=u21 * ss2; u22:=u22 * A; t2:=2 * r * ss2ˆ2; t3:=Z1 * t2; t4:=Z1 * t3;t5:=t3ˆ2; Z2:=t5 * t4; U22:=u22 * t4; U21:=u21 * t4; U20:=u20 * t3; t6:=ss2 * vt3; //-----Computation of V2 -----------------------------Cost = 9M+1S+3a V22:=(t5 * vt2-u22 * t6) * Z1; V21:=t5 * vt1-u21 * Z1 * t6; V20:=Z1 * t2ˆ2 * vt0-u20 * t6; return(U30,U31,U32,V30,V31,V32,Z3) //----------------Cost = 120M+6D+13S+114a July 31, 2018 DRAFT Algorithm 16 Add33Aff(u10,u11,u12,v10,v11,v12,u20,u21,u22,v20,v21,v22) // Etape 1 ---resultant --------------------------------Cost = 15M+12a t0:=u10-u20; t1:=u11-u21; t2:=u12-u22; t3:=t1-u22 * t2; t4:=t0-u21 * t2; t5:=t4-u22 * t3; t6:=u20 * t2+u21 * t3; t7:=-(t4 * t5+t3 * t6); t8:=t2 * t6+t1 * t5; t9:=t2 * t4-t1 * t3; r:=t0 * t7-u20 * (t3 * t9+t2 * t8); // Etape 3 ---pseudo inverse I i2:=t9; i1:=t8; i0:=t7; // Etape 4 ---S'-----------------------------------------Cost = 10M+30a t1:=v10-v20; t2:=v11-v21; t3:=v12-v22; t4:=t2 * i1; t5:=t1 * i0; t6:=t3 * i2; t7:=u22 * t6 ; t8:=t4+t6+t7-(t2+t3) * (i1+i2); t9:=u20+u22; t10:=(t9+u21) * (t8-t6); t9:=(t9-u21) * (t8+t6); ss0:=-(u20 * t8+t5); ss1:=t4+t5+(t9-t10)/2-(t7+(t1+t2) * (i0+i1)); ss2:=t6-(ss0+t4+(t1+t3) * (i0+i2)+(t9+t10)/2); // Etape 6 -----------------------------------------------Cost = 6M+S+1I t1:=(r * ss2)ˆ(-1); t2:=r * t1; w:=t1 * ss2ˆ2; wi:=r * t2;s0:=t2 * ss0; s1:=t2 * ss1; // Etape 7 ---Z ----------------------------------------Cost = 4M+15a t1:=u10+u12; t2:=(s0+s1) * (t1+u11); t3:=(s0-s1) * (t1-u11); t4:=u12 * s1; z0:=u10 * s0; z1:=(t2-t3)/2-t4; z2:=(t2+t3)/2-z0+u10; z3:=u11+s0+t4;z4:=u12+s1; // Etape 8 ---Ut ---------------------------------------Cost = 13M+27a ut3:=z4+s1-u22; t1:=s1 * z4-u22 * ut3; ut2:=z3+s0+t1-u21; t2:=(u22+u21) * (ut3+ut2); t3:=s0 * z3-u21 * ut2; ut1:=z2+(s0+s1) * (z4+z3)+wi * (2 * v12-wi)-(t1+t2+t3+u20); ut0:=z1+t3+s1 * z2+wi * (2 * (v11+s1 * v12)+wi * u12)-(u22 * ut1+u20 * ut3); // Etape 9 ---Vt --------------------------------------Cost = 8M+11a t1:=ut3-z4; vt0:=w * (t1 * ut0+z0)+v10; vt1:=w * (t1 * ut1+z1-ut0)+v11; vt2:=w * (t1 * ut2+z2-ut1)+v12; vt3:=w * (t1 * ut3+z3-ut2); // Etape 10 ---U3 --------------------------------------Cost = 5M+2S+11a t1:=2 * vt3; u32:=-(ut3+vt3ˆ2); u31:=f5-(ut2+u32 * ut3+t1 * vt2); u30:=f4-(ut1+vt2ˆ2+u32 * ut2+u31 * ut3+t1 * vt1); // Etape 11 -calcul de V3--------------------------------Cost = 3M+3a v32:=vt2-u32 * vt3; v31:=vt1-u31 * vt3; v30:=vt0-u30 * vt3; return(u32,u31,u30,v32,v31,v30);//---------------Total cost =I+ 64M+3S+109a July 31, 2018 DRAFT Algorithm 17 Doubling33Aff(U10,U11,U12,V10,V11,V12,Z1) //----------Step 1, Resultant ----------------------------Cost = 15M+10a t1 :=v11-u12 * v12; t2:=v10-u11 * v12; t3:=t2-u12 * t1; t4:=u10 * v12+u11 * t1; t5:=t2 * t3+t1 * t4; t6:=-(v11 * t3+v12 * t4); t7:=v11 * t1-v12 * t2; r:=v10 * t5-u10 * (t1 * t7+v12 * t6); //----------Step 3 --Pseudo inverse --------------------i2:=t7; i1:=t6; i0:=t5; //----------Step 4 --S':=z02Xˆ2+z1X+z0:=(F-V1ˆ2)/U1------Cost = 5M+2S+16a t1:=2 * u10; t2:=2 * u11; t3:=u12ˆ2; t4:=f4-(t1+v12ˆ2); t5:=f5+t3-t2; t10:=2 * v12; z2:=t5+2 * t3; z1:=u12 * (t2-t5)+t4; z0:=f3+t3 * (t5-u11)+u12 * (t1-t4)+u11 * (u11-f5)-t10 * v11; //----------Step 5 --S'=s'2Xˆ2+s'1X+s'0=2rS=ZI mod U1----Cost = 10M+22a t1:=i1 * z1; t2:=i0 * z0; t3:=i2 * z2; t4:=u12 * t3; t5:=(i1+i2) * (z1+z2)-(t1+t3+t4); t6:=u10 * t5; t7:=u10+u12; t8:=t7+u11; t9:=t7-u11; t7:=t8 * (t3+t5); t11:=t9 * (t5-t3); ss0:=t2-t6; ss1:=t4+(i0+i1) * (z0+z1)+(t11-t7)/2-(t1+t2); ss2:=t1+t6+(i0+i2) * (z0+z2)-(t2+t3+(t7+t11)/2); //----------Step 7 -------S := S'/2r --------------------Cost = 6M+S+1a+I t1:=2 * r; t2:=(t1 * ss2)ˆ(-1); t3:=t1 * t2; w:=t2 * ss2ˆ2; wi:=t1 * t3; s0:=t3 * ss0; s1:=t3 * ss1; //---------Step 8 -------computation of G = SU1 --------Cost = 4M+12a t1:=t8 * (s0+s1); t2:=t9 * (s0-s1); t3:=u12 * s1; g0:=u10 * s0; g1:=(t1-t2)/2-t3; g2:=(t1+t2)/2-g0+u10; g3:=u11+s0+t3; g4:=u12+s1; //----------Step 9-----Ut = ((G+wiV1)ˆ2-wiˆ2F)/U1ˆ2------Cost = 5M+2S+10a ut3:=2 * s1; ut2:=s1ˆ2+2 * s0; ut1:=ut3 * s0+wi * (t10-wi); ut0:=s0ˆ2+2 * wi * ((s1-u12) * v12+v11+wi * u12); //----------Step 10 ---computation of (wG+V1) mod Ut-----Cost = 8M+11a t1:=ut3-g4; vt0:=w * (t1 * ut0+g0)+v10; vt1:=w * (t1 * ut1+g1-ut0)+v11; vt2:=w * (t1 * ut2+g2-ut1)+v12; vt3:=w * (t1 * ut3+g3-ut2); //----------Step 11 ---Computation of U2 ----------------Cost = 5M+2S+11a t1:=2 * vt3; u22:=-(ut3+vt3ˆ2); u21:=f5-(ut2+u22 * ut3+t1 * vt2); u20:=f4-(ut1+vt2ˆ2+u22 * ut2+u21 * ut3+t1 * vt1); //----------Step 12 ---calcul de V2 --------------------Cost = 3M+a v22:=vt2-u22 * vt3; v21:=vt1-u21 * vt3; v20:=vt0-u20 * vt3; return(u22,u21,u20,v22,v21,v20);//-----------Total Cost = I+61M+7S+96a July 31, 2018 DRAFT

Table IV TIMINGS

 IV OF REGULAR SCALAR MULTIPLICATION ON GENUS 2 HYPERELLIPTIC CURVES

	Method	Coord.	Security level	Timing (10 3 clocks-cycles)	
				Intel Core	Intel Xeon	ARMv7
				i5-3210M	E5-2650v4	
	Double-and-add-always	Affine	192	2523	931	3002
	Proposed	Affine	192	2493	922	3009
	Signed-double-and-add-always ZW Jac.	192	586	187	1240
	Proposed	ZW Jac.	192	537	180	1207
	Double-and-add-always	Affine	244	3965	1455	5656
	Proposed	Affine	244	3927	1450	5358
	Signed-double-and-add-always ZW Jac.	244	760	257	2671
	Proposed	ZW Jac.	244	706	232	2467
	Double-and-add-always	Affine	300	7289	2570	9212
	Proposed	Affine	300	6972	2499	8406
	Signed-double-and-add-always ZW Jac.	300	1779	543	4517
	Proposed	ZW Jac.	300	1655	528	4174

Table V COMPLEXITY

 V ANALYSIS OF DIVISOR SPLITTING ON GENUS 3 HYPERELLIPTIC CURVE

	Step		Cost
	(Step 2) +5× (Step 10)		6Add31Aff
	(Step 3) +5× (Step 11)	24M + 18S + 30a
	(Step 4) +5× (Step 12)	3 log 2 (p)M + 6 log 2 (p)S
	1 2 × ((Step 6) + 5 × (Step 14))	3 log 2 (p) 2	M + 3 log 2 (p)S + 9a
	5× (Step 8)		5a
	5× (Step 9)	5 DoublingAff
	(Step 15)		M + 3a + I
	(Step 16)		3M + 5a
	(Step 17)	Add11+M + 2a
	Total cost	6Add31 + Add11 + ( +(9 log 2 (p) + 18)S + 54a 9 log 2 (p) 2 + 29)M

Table VI TIMINGS

 VI OF SCALAR MULTIPLICATION OVER GENUS 3 HYPERELLIPTIC CURVES

	Method	Coord.	Security level	Timing (10 3 clocks-cycles)	
				Intel Core	Intel Xeon	ARM
				i5-3210M	E5-2650v4	
	Double-and-add-always	Aff.	192	4233	1440	5366
	Proposed	Aff.	192	3868	1298	4756
	Double-and-add-always	Proj.	192	3574	1091	5691
	Proposed	Proj.	192	2935	906	4630
	Double-and-add-always	Aff.	244	5610	1957	8443
	Proposed	Aff.	244	5319	1856	7813
	Double-and-add-always	Proj.	244	4000	1244	8494
	Proposed	Proj.	244	3369	1081	7055
	Double-and-add-always	Aff.	300	7602	2661	14458
	Proposed	Aff.	300	7080	2468	12219
	Double-and-add-always	Proj.	300	5069	1638	17540
	Proposed	Proj.	300	4181	1331	14371

July 31, 2018 DRAFT

4July

31, 2018 DRAFT

We add the cost of Doubling2Proj, Convert2 AfftoZW and ADD22 ZW to get the cost of a loop iteration.

We add the final conversion of R 1 to affine coordinates and we obtain the following complexity:

(58M + 13S + 2D + 47a) + 8M + I + 2S.

-Signed-double-and-add-always in ZW Jacobian coordinates. Again, we take advantage of the efficiency of ADD22Proj coZW by rewritting the loop iteration as follows:

This requires two ADD22 ZW and one Convert2 AfftoZW per loop iteration. We get the following overall complexity

-Regular multiplication based on divisor splitting in ZW Jacobian coordinates. We have to compute at each loop iteration 2R + D ki where D ki is a degree 1 divisor. We use the following strategy for the loop iteration in Algorithm 5:

Consequently, this requires one ADD21 ZW, one ADD22 ZW and one Convert2 AfftoZW per loop iteration. The overall complexity includes the cost of the splitting and the final conversion to affine coordinates and is equal to

In Table III we report the cost of the above approaches, for the proposed approach we assume that the key length = 2 log 2 (p) in order to have a better understanding of the asymptotic complexity. We can notice that for both cases, affine and ZW Jacobian coordinates, our approach leads to a better complexity than the signed and unsigned Double-and-add-always approaches. For the affine case the improvement is in the number of multiplications and squarings, so if the cost of an inversion is important compared to a multiplication probably we will not see a huge impact of this improvement. For the case of ZW Jacobian coordinates we save roughly 4 M/S over 65 M/S per loop iteration, this provides an improvement around 6%.

H. Implementation results

We implemented all the scalar multiplication apporaches mentioned in the previous subsection in order to have practical evaluation of the speed-up provided by the proposed divisor splitting approach. We used the following strategies in our implementations:

If we consider, in this equation, the four terms with the largest degree we get the following three coefficients of u (X)

We then compute the coefficients of v (X) based on v (X) = -l(X) mod u (X) and this gives:

At the end we obtain the reduced Mumford representation (u (X), v (X)) of D = D + D . We give a step by step formula for this computation in Algorithm 11 of the appendix.

Inversion free formula. If the inversion is too costly compared to a multiplication in the underlying field, it might be interesting to have an inversion free formula for Add32. In the literature Fan and Gong provides in [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF] a set of formulas (for doubling, addition and mixed addition) for the following projective coordinates

There is no formula in the literature with weighted coordinates like in [START_REF] Hisil | Jacobian Coordinates on Genus 2 Curves[END_REF], and it seems to be difficult to derive such formulas in this case. This is due to the fact that the divisor reduction involves two loop iteration of Cantor reduction. The resulting expression are really complicated with a lot of multiplications and additions.

Consequently we focus on Fan and Gong projective coordinates [START_REF] Fan | Efficient explicit formulae for genus 3 hyperelliptic curve cryptosystems[END_REF]. We derive a projective formula for Add32 from the affine formula as follows: we substitute the variable u 0 , u 1 , u 2 , v 0 , v 1 v 2 and u 0 , u 1 , v 0 , v 1 with

and (U 0 /Z, U 1 /ZV 0 /Z, V 1 /Z), respectively. Afterwards we arrange the resulting expression in order to minimize the number of field operations. This process is mostly technical so we skip it and provide directly the resulting formula in Algorithm 12 of the appendix.

D. Complexity and implementation results

Complexity comparison. In this subsection we first evaluate the complexity of the proposed approach and compare it to the Double-and-add-always approach. In Table IV-D we provide the complexity of the addition and doubling formulas on Jac(H(F p )) in affine and projective coordinates. We can notice that the proposed formula for Add32 has 26 multiplications/squarings (resp. 27) less than ADD33 formula in affine coordinates (resp. projective coordinates).

The complexity of the Double-and-add-always in affine coordinates is equal to times the cost of Add33Aff and Doubling33Aff which gives (2I + 135M ). The complexity of the Double-and-add-always in projective coordinates is equal to times the cost of ADD33Proj and Double33Proj plus a final conversion from projective to affine coordinates which results in a total of (196M + 20S) + I + 6M operations.

July 31, 2018 DRAFT

APPENDIX

Validity of proposed expression for Add21Proj

We prove that the formula in (3) leads to

July 31, 2018 DRAFT where (u 1 , u 0 , u 1 , u 0 ) are the coefficients computed by Algorithm 8.

• Expression of l 2 , l 1 in terms of A, B and L 1 . First, we can check that, up to a factor of ZW , the fraction A/B is equal to l 2 of (1)

Then we show that L 1 is equal to l 1 up to the factor (BZW ) 3

• Expression u 1 and u 0 in terms of A, B, L 1 and U 1 . We set Z = BZW and

then we can check that U 1 /Z 2 is equal to the term u 1 in (2):

We can check that U 0 /Z 4 is equal to the affine expression u 0 in (2):

• Expression of v 1 and v 0 in terms of V 0 and V 1 . We consider V 0 and V 1 of (3). We can check that V 1 /Z 3 and V 0 /Z 5 are equal to the terms v 1 and v 0 computed in Algorithm 8:

And this ends the proof.

Conversion formula : ZW Jacobian coordinates ↔ affine coordinates.

• Degree 2 case (Convert2 AfftoZW). Given D = (X 2 + u 1 X + u 0 , v 1 X + v 1 ) and Z, W we get the expression of D = (U 1 , U 0 , V 1 , V 0 , Z, W ) as follows

July 31, 2018 DRAFT