N

N

An ocarina extension for AADL formal semantics
generation

Hana Mkaouar, Bechir Zalila, Jérome Hugues, Mohamed Jmaiel

» To cite this version:

Hana Mkaouar, Bechir Zalila, Jérome Hugues, Mohamed Jmaiel. An ocarina extension for AADL
formal semantics generation. ACM Symposium on Applied Computing (SAC’18), Apr 2018, Pau,
France. pp.1402-1409, 10.1145/3167132.3167282 . hal-01852034

HAL Id: hal-01852034
https://hal.science/hal-01852034
Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01852034
https://hal.archives-ouvertes.fr

OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO 1is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is anauthor's version published in: https://oatao.univ-toulouse.fr/20727

Official URL: http://doi.org/10.1145/3167132.3167282

To cite this version :

Mkaouar, Hana and Zalila, Bechir and Hugues, Jéréme and Jmaiel, Mohamed An ocarina extension for AADL formal
semantics generation. (2018) In: ACM Symposium on Applied Computing (SAC'18), 9 April 2018 - 13 April 2018 (Pau,
France).

Any correspondence concerning this service should be sent to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

An Ocarina Extension for AADL Formal Semantics Generation

Hana Mkaouar

ReDCAD Laboratory, University of Sfax, National School

of Engineers of Sfax
Sfax, Tunisia
hana.mkaouar@redcad.org

Jéréme Hugues
Université de Toulouse, Institut Supérieur de
IAéronautique et de I'Espace
Toulouse CEDEX 4, France
jerome.hugues@isae.fr

ABSTRACT

The formal verification has become a recommended practice in
safety-critical software engineering. The hand-written of the for-
mal specification requires a formal expertise and may become com-
plex especially with large systems. In such context, the automatic
generation of the formal specification seems helpful and reward-
ing, particularly for reused and generic mapping such as hardware
representations and real-time features. In this paper, we aim to
formally verify real-time systems designed by AADL language. We
propose an extension AADLZLNT of the Ocarina tool suite allowing
the automatic generation of an LNT specification to draw a gateway
for the CADP formal analysis toolbox. This work is illustrated with
the Pacemaker case study.

KEYWORDS

Real-time systems, model transformation, formal verification, AADL.

ACM Reference Format:

Hana Mkaouar, Bechir Zalila, Jérome Hugues, and Mohamed Jmaiel. 2018.
An Ocarina Extension for AADL Formal Semantics Generation. In Proceed-
ings of ACM SAC Conference, Pau,France, April 9-13, 2018 (SAC’18), 9 pages.
https://doi.org/xx.xxx/Xxx_x

1 INTRODUCTION

The verification of real-time systems is a challenging topic, espe-
cially when they are used in safety-critical domains where one
failure can result in serious damages. Recently, formal methods
have become one of the advocated techniques in safety-critical
software engineering. To be formally verified, the system should
be firstly specified with a specific formalism and so it can be ex-
plored with analysis tools. However, the hand-written of the formal
specification requires a formal expertise and may become com-
plex and tedious task especially with large systems. Therefore, it

Bechir Zalila

ReDCAD Laboratory, University of Sfax, National School

of Engineers of Sfax
Sfax, Tunisia
bechir.zalila@enis.tn

Mohamed Jmaiel
Research Center for Computer Science, Multimedia and
Digital Data Processing of Sfax
Sfax, Sakiet Ezzit, Tunisia
mohamed.jmaiel@enis.rnu.tn

is helpful to provide an automatic generation of the formal spec-
ification to assist designers in system verification. For the same
purposes, systems designed with architectural languages such as
AADL, MARTE and SysML are transformed into other formalisms
like Petri nets, automata and process algebras, in order to draw
gateways for verification tools.

In this context, we aim at the automation of the formal verifi-
cation of systems modeled with AADL [1] (Architecture Analysis
& Design Language). AADL is an industrial standard! language
for embedded and real-time system modeling. Many projects and
tool-chains are dedicated to AADL processing, that often adopt
model transformation techniques to allow formal analyses. Several
AADL formal semantics are defined using different formalisms such
as Petri nets [21, 23], timed automata [12, 14] and different process
algebras [4, 5, 8, 20, 25]. These approaches are implemented within
platforms such as OSATE and TOPCASED aiming the convenient
reuse of existing tools like UPPAAL, Tina and Polychrony. In our
work, we choose Ocarina [16], a tool suite that gathers analysis of
AADL models and the automatic code generation towards AADL
runtimes PolyORB-HI/Ada or C. We define a model transformation
AADLZLNT implemented within Ocarina to automatically generate
a formal specification from the AADL model using the LNT [7]
language. LNT? is a process algebra based on two standards Lotos
and E-Lotos. This language provides a simplified and user-friendly
syntax with expressive operators for data and behavior, suitable
for the mapping of complex real-time features (tasks, scheduling
algorithm, etc). Moreover, we aim to provide an automatic verifica-
tion based on model-checking of a set of generic properties with
the CADP? [11] (Construction & Analysis of Distributed Processes)
toolbox. CADP is a well experimented tool for formal analysis
which supports LNT as input language and offers diverse formal
techniques like model-checking and simulation.

This paper describes the LNT semantic definition for an AADL
model and how its generation and verification are automated using
Ocarina and CADP. The remainder of this article is organized as
follows: section 2 presents AADL and LNT languages; section 3
gives an overview of the AADL2LNT transformation; we describe
Ocarina extensions in Section 4; section 5 illustrates our work

!AADL is standardized by SAE (Society of Automotive Engineers)
2LNT is developed by the Vasy team from INRIA for safety-critical systems
3CADP official web site: http://cadp.inria.fr

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
http://cadp.inria.fr/

SAC’18, April 9-13, 2018, Pau,France

with the Pacemaker case study; a brief related work is discussed in
Section 6; and finally, a conclusion ends the paper in Section 7.

2 BACKGROUND

Briefly, we describe the considered subset of AADL language and
we present the LNT language (more details can be found in [19]).

2.1 AADL subset

An AADL model describes a system as a hierarchy of compo-
nents with their interfaces and their interconnections. AADL com-
ponents are grouped in three categories: software components
(data, subprogram, subprogram group, thread, thread group
and process); hardware components (processor, bus, virtual
processor, virtual bus, device and memory); and the system
component. AADL is known by its extensibility, the model can
be completed with additional information through properties and
annexes. Properties are attached in AADL elements to complete
their definitions and bind hierarchically the whole system. Annexes
present specific additions, specified with separate syntax, like the
Behavior annex [2] (BA) for behavioral description.

In our work, the AADL model is viewed as a set of concurrent
real-time tasks scheduled by a uniprocessor and asynchronously
interacted. Generally described, we consider the following com-
ponents: data, thread, process, processor and device. These
components are connected through AADL port connections, en-
riched by the Behavior annex, completed with a set of standard
properties and finally grouped in the system component.

The thread component is a schedulable unit that can be executed
concurrently with other threads. It is declared within a process
component (represents its virtual address space) and scheduled by
the processor (bound with Actual Processor_Binding property).
threads can declare ports that are directional (in, out or in out).
They are typed with a data component and they may be declared
data, event or event data ports. The port connections are explicitly
declared between two ports, allowing the transfer of data/event
between two components. In addition, threads can be completed
with the Behavior annex. A Behavior_Specification clause is
included within the thread component to specify its behavior as a
state-transition system guards and actions.

Note that, in our transformation, a set of temporal and queuing
properties should be attributed with these possible values: Sched-
uling_Protocol (RMS, EDF); Dispatch_Protocol (periodic, sporadic,
timed); Period; Compute_Execution_Time; Queue_Processing_Protocol
(FIFO, LIFO); Overflow_Handling_Protocol (drop oldest, drop newest);
and Queue_Size.

2.2 LNT language

An LNT specification represents a system by a set of concurrent
processes communicating through channels. The specification dis-
tinguishes two parts: a data part defines types and functions; and
a control part defines the behavior (process). The control part in-
cludes all data part instructions and adds instructions for behavior
like asynchronous parallelism and communications.

An LNT specification, typically, consists of a set of LNT mod-
ules (in separate source files *.1nt) composed of a set of defini-
tions. These definitions may include types, functions, channels and

H. Mkaouar et al.

processes using different LNT operators such as variable declara-
tion statement var, loops statement 1oop, non-deterministic choice
select, parallel composition statement par and communication.
A particular root process named MAIN should be added to define
an entry point of the whole specification.

The LNT specification represents an executable semantic in
which all parallel processes start execution and terminate at the
same time with the possibility of synchronization. The LNT pro-
cess is an object describing a behavior. To be synchronized with
other processes, the process should declare a set of gates. The com-
munication is ensured through gates typed with channels (gate
profiles). The same gate allows sending and receiving messages
with a rendezvous that blocks the sender until the reception.

3 OVERVIEW OF THE TRANSFORMATION

The AADL2LNT transformation is described with a set of corre-
sponding rules between AADL and LNT in a way to obtain a mod-
ular LNT specification: every AADL component is transformed
and encapsulated into an LNT process. According to component
categories, we define a set of LNT generic skeletons as shown in
Figure 1 given a global view of the transformation: SCHEDULER
process implements the processor scheduling protocol; THREAD
process represents the thread component with its supported fea-
tures, subcomponents and behavior specification; and DEVICE maps
the device component. In addition, the AADL port connection is
mapped with an auxiliary process CONNECTOR using to specify queu-
ing properties and ensure the asynchronism of communications.
Finally, all processes are composed and synchronized through LNT
gates to form the whole system in the Main process.

The AADL2LNT transformation can be represented at three lev-
els, allowing the mapping of different kind of AADL models: the
scheduling mapping ensures the transformation of models with
independent threads (no port connections); the communication
mapping completes the mapping by considering port connections
between threads and devices; finally, the thread component may
be enriched with behavioral descriptions using BA which is trans-
formed at the behavioral mapping level. In the rest of this section,
we briefly explain each mapping level.

3.1 Scheduling mapping

At this level, we consider only thread and processor components
mapped respectively to THREAD and SCHEDULER processes.

3.1.1 Processor mapping. The AADL processor is a hardware
component that ensures the scheduling and execution of threads.
The SCHEDULER process represents the processor component by
implementing its scheduling algorithm. This process plays a cru-
cial role in the LNT specification, it encapsulates all temporal cal-
culations ensuring the activation of threads according to their
dispatch protocol. As shown in Figure 1, SCHEDULER and THREADs
are connected by ACTIVATION gates. This synchronization allows
the SCHEDULER to activate THREADs using a set of activation or-
ders. Thanks to its programming ability, many scheduling algo-
rithms may be implemented within the SCHEDULER process using
the LNT language: preemptive/non-preemptive scheduling and
fixed/unfixed based-priority scheduling. For example, the RM (Rate
Monotonic) scheduler is based on the preemptive fixed-priority

An Ocarina Extension for AADL Formal Semantics Generation

SAC’18, April 9-13, 2018, Pau,France

Figure 1: Overview of the AADL2LNT transformation

scheduling. In this case, the SCHEDULER uses a set of activation or-
ders distinguishing different alternatives of preemptive scheduling:

T_Dispatch_Completion, T_Dispatch_Preemption, T_Preemption

and T_Preemption_Completion.

Generally described, the SCHEDULER process consists mainly of
two parts as shown Figure 2: INITIALIZATION and OPERATIONAL. To
schedule the threads execution, the SCHEDULER requires the set of
threads with their temporal parameters which is included in the
INITIALIZATION PART using an LNT array (THREAD_ARRAY). These
information are extracted, at generation, from the AADL model
(attributed by different temporal properties). The OPERATIONAL
PART is the main part of the SCHEDULER ensuring the execution by
applying the scheduling algorithm. The THREAD_ARRAY is visited to
select the appropriate thread for execution. The selected thread
is handled (allocate its execution time, update its state, prepare its
activation order) to send an activation order with its corresponding
ACTIVATION gate.

Figure 2: SCHEDULER graphical skeleton

ACTIVATION_1 ACTIVATION_i ACTIVATION_N

INITIALIZATION PART |
1 2 ... i1 i i+1 .
OPERATIONAL PART

Ol9

Selected to
[@ = 9]

3.1.2 Thread mapping. The THREAD process represents the thread
component, it is designed to be scheduled with others THREADs
by the SCHEDULER. This process covers an important part of the
AADL thread semantics of thread states, dispatching, scheduling
and execution described in the AADL standard. The THREAD skele-
ton is included in Listing 1. It declares the ACTIVATION gate to be
synchronized with the SCHEDULER. Its behavior is an infinite loop
whose body is a non-deterministic choice select in order to gather
different possible values (the considered activation orders) of the
ACTIVATION communication.

system M Main L@ «
=]
... processX ‘ -« THREAD_A 177, «F1 THREAD_B 2
] 5
2 formectlonl-‘ b -“ S Scheduling ;0* g
Q .
s "); threadB | mapping - 2
N S S | 4 DATA_ spliD_conNecTioN? | =
A - T" CONNECTOR e
< \ connection2 Communication
> \ i - @
3 \ o]
I \ \ CONNECTOR A
2 \ S
X \\ deiiceD Behavioral N RECEIVE_(CONNECTIONZ u
A SEND_CONNECTION3
T i SCHEDULER 2
2 N ACTIVATION_2 3
z processor THREAD_C DEVICE_D 5
z E]

Listing 1: THREAD LNT skeleton
[ACTIVATION: LNT_Channel_Dispatch] is

process THREAD_=«
loop select
ACTIVATION (T_Dispatch_Completion)
ACTIVATION (T_Dispatch_Preemption)
ACTIVATION (T_Preemption)
[1
ACTIVATION (T_Preemption_Completion)

end select end loop
end process

The THREAD process is dispatched according to the correspond-
ing Dispatch_Protocol property. We support periodic, sporadic and
timed dispatch models as follows:

e periodic threads are periodically dispatched, at every period
(the specified Period property value).

e sporadic threads have no fixed first activation, they are
activated in response to asynchronous events (invocation-
events). The Period property value is considered as the mini-
mal delay between two successive activations.

e timed threads are periodically dispatched and may be also
activated by invocation-events. The Period property value
represents a time-out value ensuring that a dispatch occurs
after a period if no events have arrived.

The THREAD processes are generically implemented for all dispatch
protocols, while the SCHEDULER maintains that: periodic threads
are activated with regular-orders; sporadic threads receive irregular-
orders according to invocation-events reception; and timed threads
are periodically activated as long as there is no invocation-events.
While scheduling, the THREAD may be in one of states defined
by the standard thread scheduling and execution states automaton
added in Figure 3. We consider the READY state (the thread is
able to be executed) and the RUNNING state (the thread is actually
executing) and we except awaiting states (shared resources, subpro-
gram calls and background threads) which are not supported in our
transformation. A READY thread can be selected by the SCHEDULER,
thus, it moves to the RUNNING state. In addition, while running, the
thread can be preempted and so it returns to the READY state or it
can complete its execution and becomes in the AWAITING DISPATCH
which is a suspended state for threads when completing the execu-
tion. A thread in AWAITING DISPATCH state may become READY by
a temporal event (dispatch for a new period) or an invocation-event.

SAC’18, April 9-13, 2018, Pau,France

The ACTIVATION communication defines the THREAD states: the cur-
rent state is defined according to the received SCHEDULER order.
Initially, THREAD is supposed in the READY state. It is suspended
until the reception of a new activation order and then it moves to
RUNNING state. At this level, four alternatives can be presented:

e T_Dispatch_Complete: THREAD starts and completes the ex-
ecution of the current period and enters in the AWAITING
DISPATCH state;

e T_Dispatch_Preemption: THREAD starts the execution in
the current period but with a preemption, thus, it returns to
the READY state;

e T_Preemption: THREAD progresses in execution without at-
taining the completion time, so it returns to the READY state;

e T_Preemption_Complete: THREAD finishes the execution of
the current period and enters in the AWAITING DISPATCH
state.

After the execution, THREAD sends an T_Complete to the SCHEDULER
meaning that THREAD has accomplished the activation order and it
is no more in the RUNNING state.

Figure 3: AADL thread scheduling and execution states [1]
dispatch l

4 |

Executing

h let
., complete
_ f Awaiting
dispatch

Awaiting
resume
Awaiting
_ return J

error
——

3.2 Communication mapping

This mapping concerns port connections between threads and
devices. They are declared at process and systemlevels and typed
with data components. AADL provides a rich semantics of AADL
ports and their connections in all aspects (topologies, directions,
timing, etc) that can not be totally considered in a single work.
Thus, we consider these restrictions: only 1-1 connections; no in
out ports; event data and event port are similarly handled at this
level; inputs are frozen at the start time of execution; and outputs
are transferred at the completion time.

In this mapping, we aim to draw thread connections without the
consideration of data contents. We simply maps data/event into an
enumeration type (AADLDATA label) exchanged between different
THREAD through the corresponding channel as included in Listing 2.

Listing 2: data type and channel

type LNT_Type_Data is AADLDATA, EMPTY end type
channel LNT_Channel Port is (LNT_Type_Data) end channel

In addition, the device components are supported since they
can be connected with threads. devices are not mapped at the
scheduling mapping level since they are not scheduled, also their
internal behavior is not considered. So the device component is

H. Mkaouar et al.

simply transformed into a DEVICE process as shown in Figure 1.
Mainly, DEVICE declares a set of gates equivalent to the device
ports and gathers corresponding communications in its behavior.

3.2.1 Port mapping. The THREAD declaration is completed with
the gate declarations corresponding to the thread port declarations
as shown in Listing 3. Since we deal with LNT gates, which are
bidirectional, in and out ports are similarly represented. Then, the
corresponding communication is also added after the ACTIVATION
communication.

Listing 3: THREAD LNT skeleton

process THREAD_» [ACTIVATION : LNT_Channel_Dispatch ,
PORT_» : LNT_Channel_Port] is
loop select ... [] ...
ACTIVATION (T_Dispatch_Completion);
PORT_» (AADLDATA)
m ...
end select end loop
end process

3.2.2 Connection mapping. Connections between LNT processes
are drawn through gate synchronizations: communications are ef-
fected with rendezvous points which block sender until the re-
ception. In this case, the asynchronous aspect of thread connec-
tions cannot be presented directly with LNT gate synchronizations.
Hence, we add an auxiliary process (CONNECTOR) synchronized be-
tween sender and receiver threads.

The CONNECTOR represents the AADL semantic port connection
which includes all port connection declarations (at process and
system levels) that follow the component containment hierarchy
in the instantiated system from a source thread to a destination
thread. Thus, all port connection declarations are abstracted in the
CONNECTOR synchronizations: connections @, @ and ® of Figure 1
are similarly transformed into CONNECTOR instances.

At THREAD level, communications are also controlled through
SCHEDULER orders that fix input and output times:

e T_Dispatch_x: THREAD receives inputs at the start time;
e T_x_Complete: THREAD sends outputs the completion time.

The port type and the thread Dispatch_Protocol property allow
the definition of three CONNECTOR types as shown in Listing 4. In
the case of data port connections and periodic threads, a simple
DATA_CONNECTOR is used without buffers. It keeps the data until
the next reception, each time a new data is received, the last one is
overwritten. When exchanging events, we use EVENT_CONNECTORs
including a list of inputs with a definite size (Queue_Size parame-
ter). Event buffers implement the set of queuing properties such as
Queue_Processing_Protocol and Dequeue_Protocol.

Listing 4: Diffrent LNT CONNECTORs

process DATA CONNECTOR
[INPUT: LNT_Channel_Port, OUTPUT: LNT_Channel_Port]
process PERIODIC_EVENT _CONNECTOR [INPUT: LNT_Channel Port,
OUTPUT: LNT_Channel_Port] (Queue_Size : Nat)
process EVENT CONNECTOR [INPUT: LNT_Channel Port,
OUTPUT: LNT_Channel_ Port, NOTIFICATION : LNT_Channel_ Event]
(Queue_Size : Nat)

Since we support sporadic and timed threads, the SCHEDULER
needs to be notified for every new incoming invocation-event:
sporadic threads are ignored by the SCHEDULER until the reception
of an invocation-event; also timed threads may be activated by
invocation-events. So we add NOTIFICATION gates to synchronize

An Ocarina Extension for AADL Formal Semantics Generation

EVENT_CONNECTORs with the SCHEDULER as shown in Figure 1. Thus,
when receiving a new event, the EVENT_CONNECTOR notifies the
SCHEDULER, to consider the concerned THREAD in scheduling.

3.3 Behavioral mapping

At this level, the AADL model is completed with behavioral de-
scriptions using the Behavior annex. In our work, the BA is mainly
supported to complete the thread component with behavior han-
dling inputs and outputs in order to enrich the communication
mechanism. The Listing 5 includes the Behavior_Specification
which consists of: a variables section that allows the declaration
of local variables used in descriptions within the scope of the
Behavior_Specification clause; a states section allowing the dec-
laration of the states of the behavior automaton that may be de-
clared as initial, final or complete state; and a transitions sec-
tion for the description of the behavior by linking states through
guarded transitions (S;-[condition]->S; {actions}).

A behavior automaton starts from an initial state and ter-
minates in a final state. A complete state, as defined in the BA
standard [2], acts as a suspend/resume state out of which threads
are dispatched. The transitions specify behavior as a change of
the current state from a source state S; to a destination state Sj. A
condition (dispatch or execution) determines whether a transition
is taken and then the corresponding actions are performed. The
dispatch condition (on dispatch) means that the thread controls
its state when it is dispatched periodically or when satisfying the
dispatch_trigger_condition which is a boolean expression de-
scribing a logical combination of triggering events (the arrival of
events on ports). The execution condition signifies that the transi-
tion is guarded by a logical expressions based on input values. Pe-
riodic threads are always considered to be unconditionally handled
by dispatch conditions without the dispatch_trigger_condition.
In the case of sporadic or timed threads, invocation-events can be
used in the expression of dispatch_trigger_condition, which
refines the AADL dispatch model by defining different behaviors
for each input when several event ports are declared.

Listing 5: Behavior_Specification

annex Behavior_specification {««
variables

i+ Ty, ... Vim + Tm;

states

So : initial state; S;, Sj : complete state;
Sy : state; Sp @ final state;

transitions
So —[on dispatch dispatch_trigger_condition] —> S;;
Si —[execution_condition]-> S; {
—— actions
}s
wx}s

3.3.1 Data mapping. In previous levels, data components were
generically mapped into an enumeration type: the consideration
of the data contents was useless since they are not handled in the
component behavior. Now, inputs and outputs can be used in the
BA description and port contents may be exploited in calculations.
Thus, the data abstraction should be overridden and the data type
should be considered while transformation. Currently, we deal with
basic data types: each type from the AADL standard Base_Types
package is mapped into a suitable LNT type. In addition, port types
are now differently considered: we define for each data, event or

SAC’18, April 9-13, 2018, Pau,France

event data port a separate LNT channel (Listing 6). The Bool type
is used to map event (the true value marks a new incoming event).

Listing 6: data new type and channels

channel LNT_Channel Data_Port is (LNT_Type Data) end channel
channel LNT_Channel_Event_Port is (Bool) end channel
channel LNT_Channel_Event_Data_Port is

(LNT_Type_Data, Bool) end channel

3.3.2 Behavioral annex mapping. Due to the lack of space, we
describe briefly this mapping level which needs to be well detailed
in a further publications. The general idea consists of completing
the THREAD with BA transitions mapping in order to embed the
behavior automaton within its state automata: in the RUNNING state,
the THREAD may move in one of complete states of the behavior
automaton.

As shown in the example of Listing 7, the set of local variables
(V1, .., Vi) are added in the THREAD process using the var statement,
they are declared with the same name and the suitable type. All
states are added using an enumeration type.

The current state of the behavior automata is explicitly mapped
within the THREAD process using a variable STATE. The transitions
are specified using the LNT conditional statement (if ((STATE==S;)
and (conditions)) then end if), in which, we assign the
STATE variable with the new state (STATE:=S;;) and we include the
corresponding actions. For illustration, we give the THREAD_T in
Listing 7 whose behavior corresponds to the transition SO-[A <
5]-> S1 {V1 :=A+1;}.

Listing 7: THREAD LNT skeleton

process Thread_T [ACTIVATION: LNT_Channel_Dispatch,
PORT_A: LNT_Channel _Port] is —— port declaration
var
A : LNT_Type_Data, — port variable
V1 : LNT_Type_Data, . — behavior variable
STATE : LNT_Type STATES —— current state
in
STATE := S0;
A := LNT_Type_Data (0); V1 := LNT_Type_Data (0);
loop select
ACTIVATION (T_Dispatch_Completion);
PORT_A (?A); —— port communication
if (STATE == S0) and (A < 5) then
STATE := S1; V1 := A + 1
end if;

The on dispatch conditions are assumed implicitly since we
include the BA mapping after the ACTIVATION communication and
so every new dispatch the THREAD controls its state. The execu-
tion conditions or the dispatch_trigger_condition of dispatch
conditions are easily added on the LNT if condition of the cor-
responding transition using logical disjunction and conjunction
LNT operators. Since we use LNT Bool type to specify events, the
dispatch_trigger_condition is satisfied when its logical expres-
sion becomes true (new incoming event).

The actions associated with transitions consist of control struc-
tures (action sequences, conditionals, finite loops, etc). In our work,
basic actions are considered, that may be an assignment action or a
communication action. These actions are transformed in the LNT
language using the suitable LNT statement such as assignments
and gate communications.

SAC’18, April 9-13, 2018, Pau,France

4 IMPLEMENTATION

Ocarina* [16] is an open source compiler developed since 2004 and
recently deployed on GitHub under the OpenAADL project. The
Ocarina compiler is designed with a modular architecture. Analyses
and generations are handled using ASTs (Abstract Syntax Tree)
which are the internal representation of models (AADL, annexes
and other languages). Based on the grammar rules, the model is
decomposed into a set nodes hierarchically connected to create the
corresponding syntax tree. These ASTs are manipulated in three
distinguished parts as follows.

o The Central library part consists of a set of routines (node
builder and finder) allowing the AST construction and ma-
nipulation of the AADL models and other languages.

o The Frontend part ensures lexical, syntactic and semantic
analyses of the AADL model. At this level an AADL AST
is created, analyzed and then instantiated (decorated with
information). Indeed, if the AADL model includes annexes,
they are similarly handled with separate ASTs.

o The Backend part provides different automatic generations.
The frontend ASTs are expanded and used for model/code
generation. Each generation has its specific modules that
implement transformation rules to produce code source files
of the target language.

In our work, we extend the compiler with a set of modules in its
different parts to support the behavior annex and the AADLZLNT
transformation. Briefly, the Central library is enriched with the re-
quired routines for both BA and LNT ASTs based respectively on
BA [2] and LNT [7] grammars. A set of analysis modules is added
in the Frontend to handle Behavior_specification clauses. For
each clause, a BA AST is created and hierarchically constructed at
the syntax analysis phase. Then, it is attached to the correspond-
ing AADL component. Thus, the AADL AST is completed with
BA ASTs to obtain a final AADL-BA AST. Finally, the AADL2LNT
transformation is implemented in the Backend to produce LNT files.
In the following, we detail the LNT generation and the obtained
tool-chain for AADL model analysis.

4.1 LNT code generation

The AADL2LNT is applied on an instantiable AADL system, means
that the model is successfully analyzed lexically, syntactically, se-
mantically and can be completely bound (all components are bounded
such as, all threads are bound to the processor). In addition, a
set of standard properties should be attributed (scheduling and
queuing properties indicated in section 2.1), otherwise, an error or
warning message is displayed. Thus, the AADL AST is created and
instantiated to become ready for the LNT generation. Note that de-
pending on AADL model kind, the appropriate transformation level
is applied. The non-supported elements (e.g. bus, shared access)
are automatically ignored. And when using Behavior annex, the
transformation is applied on the complete AADL-BA AST.

4.1.1 Model transformation. Following Ocarina Backend archi-
tecture, the AADL2LNT rules are applied on the AADL AST to
simultaneously build the LNT AST. Then, the LNT AST is scanned
by the LNT code printer in order to produce code source files

4https://github.com/OpenAADL/ocarina

H. Mkaouar et al.

(*.1nt). To obtain a modular specification, we generate a set of
LNT modules which corresponds to the construction of a set of
LNT LTSs. Two main modules, * Types and *_Main, are always
generated for all LNT specifications. Then, according to mapping
level, a set of LNT modules is added as follows:

e * Threads module consists of a set of THREAD and DEVICE
declarations, whose generation depends mainly on port dec-
larations in thread or device components.

e * Processor module contains the SCHEDULER process with
a set of LNT function definitions required for scheduling
and execution. The SCHEDULER generation needs the extrac-
tion and the calculation of a set of thread information to
be included in its INITIALIZATION PART: the THREAD_ARRAY
generation requires the number of thread instances and the
set of values of each thread properties.

e Port_Connections and Port_Connections_BA are generic mod-
ules included in the compiler resources. Each module consists
of a set of CONNECTOR declarations that will be instantiated
for each port connection.

All declared processes in different modules should be instantiated
and synchronized to form the whole system in the Main process
which requires the generation of two modules:

e *_Types module consists of a set of LNT types and channels
required for different synchronizations: THREAD/CONNECTOR,
CONNECTOR/SCHEDULER and THREAD/SCHEDULER.

e *_Main module contains the Main process whose generation
can be resumed in three steps:

(1) preparation of the list of thread instances;

(2) synchronization of CONNECTOR processes: for each port
connection, we create one CONNECTOR instance which is
synchronized between THREADs equivalent to the source
in port and the destination out port threads;

(3) global composition: all THREADs are synchronized with the
SCHEDULER on ACTIVATION gates, all CONNECTORs are syn-
chronized with the SCHEDULER on NOTIFICATION gates.

To provide a traceable transformation, a set of naming rules
is applied while generation. At the THREAD level, all AADL port
identifiers are conserved and prefixed by "PORT_". Also, all port
content variable, BA variable and state identifiers are conserved
while the behavioral mapping. At the Main level, the generation
conserves AADL component identifiers as follows: the thread iden-
tifier is prefixed by "THREAD_"; the device identifier is prefixed by
"DEVICE_"; for each AADL connection, two identifiers are prepared
(the connection name is prefixed by "SEND_" and "RECEIVE_") to
present two gates for the THREAD/CONNECTOR synchronization.

4.1.2 SVL script. In addition to LNT modules, a second input is
necessary for analysis with CADP toolbox. A script file (demo. sv1)
containing a set of operations with SVL (Script Verification Lan-
guage) [10] is constructed to orchestrate the verification. This file
is generated directly for each AADL system (without an SVL AST)
containing two parts: compilation of the LNT specification and a
set of generic properties for verification by model-checking (dead-
lock, schedulability, data loss, buffer overflow). The model-checking
technique consists of checking if a model satisfies a given property

https://github.com/OpenAADL/ocarina

An Ocarina Extension for AADL Formal Semantics Generation

specified with temporal logic. In our work, properties are speci-
fied by the SVL property statement, that embeds the temporal
logic verification statement, and checked with the CADP Evaluator
model-checkers [17, 18].

4.2 Tool-chain

The AADLZLNT transformation allows the definition of a tool-
chain, depicted in Figure 4, using Ocarina for architectural modeling
and CADP for formal verification.

Figure 4: Ocarina-CADP tool-chain

OCARINA

AADL+BA Frontend Central librar

AADL generic routines

P —
LNT Backend I

e
AADL+BA
> /SIS |
model v v

Analysis LNT Modules SVL Script
Results

Model-Checking Simulation —

[
| |

The provided tool-chain ensures a transparent model transfor-
mation and verification. The transformation is proceeded using
Ocarina command line, then, the generated SVL script is simply
invoked to begin model analysis. Initially, the LNT specification is
transformed into an LTS (Labeled transition system), to be exploited
by verification tools. Then, the system is automatically checked
by a set of generic properties, and it can be simulated with CADP
simulators like OCIS [9].

The analysis results help designers in model correction and im-
provement (validation of temporal parameters, deadlock detection,
schedulability test, detection of connection failures, etc). This veri-
fication may be iteratively applied after each model modification
until the generation of the final application. Moreover, the obtained
specification can be considered as a good base of a manual verifica-
tion. Designers, with formal expertise, may complete different LNT
modules and verify new properties for a specific case study.

5 CASE STUDY

The current Ocarina version covers almost the BA frontend analysis
and the generation of the scheduling and communication map-
ping, while for the behavioral mapping, further work needs to be
completed to include the BA mapping within the THREAD skeleton.
In this section, we report experiments performed on the Pacemaker
case study. The Pacemaker is a medical device inserted in the body

Code generation
Ada, C

SAC’18, April 9-13, 2018, Pau,France

of a patient, to regulate his/her heart beating with electrical im-
pulses. It is used in the case of heart rhythm problems (inability to
maintain a normal heart rate). Depending on the heart problem, the
Pacemaker provides different modes that perform different kinds
of therapeutic behavior. In this paper, we consider the VVI mode
which is the heart ventricle-chamber pacing mode.

5.1 Ocarina: modeling and generation

AADL modeling. The Pacemaker AADL model ® [15] is depicted
in Figure 5. Structurally speaking, the AADL system consists of two
main parts: the pulse generator (PacemakerSW process) which em-
beds the software implementing the therapeutic behavior to moni-
tor leads (Lead device) for ventricle-chamber. The pulse generator
is connected with leads through event ports to sense the heart beat-
ing (sense in port) and send an order for pacing (pace out port). The
VVI therapeutic mode is accomplished using three threads inter-
connected and enriched with BA specifications: a sporadic thread
to present the VVImode (thread VVIMode); and two timed threads
(VRPTimeout/LRLTimeout) representing timers. These threads are
collaborated to maintain the rate of pacing as follows: when the
heart has no beat during an LRL period, VVIMode causes a pace
(an event on pace port); if the sense (events on sense port) comes
too soon after a beat (during the VRL period), it will be ignored;
and when the heart is beating regularly, VVIMode detects a normal
beating rhythm (an event on normal port). This behavior is mainly
described within the VVIMode thread Behavior_Specification
included in Listing 8.

Figure 5: AADL model of the Pacemaker case study

Pacemaker

PacemakerSw

entricle_sense
Lead
entricle_pace <

Jenx_sense

cnx_pace

9

PacemakerHW

Listing 8: The VVIMode behavior specification

annex Behavior_Specification {««
states
sl : initial complete final state;
transitions
sl1—[on dispatch vrp_timeout]—> s1 {vrp := 0 };
sl1—[on dispatch sense]-> sl {
if (vrp=0) normal!; p_or_n_vrp!; p_or_n_Irl!; vrp := 1 end if};
sl —[on dispatch Irl_timeout]—> s1 {
pace!; p_or_n_vrp!; p_or_n_lIrl!; vrp := 1 };

LNT generation. The Pacemaker LNT specification with its SVL
script are generated by the AADLZ2LNT extension. In Listing 9,
we include an extract from the obtained process THREAD_VVIMode
equivalent to the VVIMode thread. The process gathers mainly
the set of the equivalent declarations (gates and variables), the set
of the required initializations and the BA code inserted after the
ACTIVATION communication.

5This model is inspired from the pacemaker model published by Ellidiss technologies.

http://www.ellidiss.fr/public/wiki/attachment/wiki/AADL/Pacemaker.aadl#L207

SAC’18, April 9-13, 2018, Pau,France

Listing 9: An extract of the THREAD_VVIMode

process THREAD_VVIMode [ACTIVATION: LNT_Channel Dispatch,
PORT_SENSE:LNT_Channel_Event, .. , PORT_PACE:LNT_Channel_Event] is
var
STATE : LNT_Type STATES,
VRP : Nat,
in
STATE := S1; VRP_TIMEOUT := false;
loop
ACTIVATION (T_Dispatch_Completion);
PORT_SENSE (?SENSE);
PORT_LRL_TIMEOUT (?LRL_TIMEOUT);
PORT_VRP_TIMEOUT (? VRP_TIMEOUT);
if (STATE == S1) and (VRP_TIMEOUT) then
STATE := S1; VRP := 0
elsif (STATE == S1) and (LRL_TIMEOUT) then
STATE := S1; PORT_PACE (true);
PORT_P_OR_N_VRP (true); PORT_P_OR_N_LRL (true);
VRP := 1
. end if;

The Table 1 resumes the Pacemaker transformation metrics. The
obtained specification counts 765 lines, whose 75% is automatically
generated by the current Ocarina version. This generation covers
an important part of AADL2LNT transformation and eliminates the
complexity of its rules. Particularly, the Main mapping seems tricky
since we should compose a lot of process instances through an
important number of gates: the Pacemaker Main process counts 12
instances synchronized on 23 different gates. The obtained specifica-
tion complexity depends directly of threads/connections type and
number: from models with independent threads, we obtain sim-
ple LNT models without CONNECTOR instances. While with highly
connected models, especially for sporadic or timed threads, the
process number increases significantly. Despite this fact, the ob-
tained specifications still comprehensible and the correspondence
between the AADL/BA syntax and the LNT code can be easily
identified thanks to the applied naming rules (section 4.1.1).

Table 1: Pacemaker metrics

AADL LNT SVL
lines lines lines
Number of 157 65 v
element process
2 thread 2 THREAD
. 1 process -
Equivalence of \—-50ree TDEVICE
15 event connections 7 EVENT_CONNECTOR
1 processor 1 SCHEDULER
1 system 1 Main

5.2 CADP: formal analysis and evaluation

LTS generation. The obtained LNT specification is ready for
CADP analysis. The demo. sv1 script allows the use of CADP tools
for LTS generation and model-checking of a set of properties. The
LTS represents the state space of the obtained LNT specification,
characterized by a number of states and transitions. In the formal
context, a well known problem is the state space explosion, when
the number of states or transitions explodes. For this reason, the def-
inition of the AADLZLNT transformation was refined several times
(since the first proposition [19]) to obtain the smallest state spaces.
The Pacemaker LTS counts 5473 states and 5473 transitions which
present a small state space compared to the considered AADL model
with sporadic/timed threads, event port connections and BA de-
scriptions. We note that with independent or only-periodic thread

H. Mkaouar et al.

models, we obtain much smaller spaces. In more advanced experi-
ments, we test excessively models with connected sporadic/periodic
threads. We note that AADL models can reach 40 threads with-
out space explosion problem (state spaces are about 900 states for
models without BA descriptions).

Model-checking. After the LTS generation, we can move to model-
check the set of generated properties. For illustration, Listing 10
presents the Connection property that assumes that every con-
nection is well established: for each event sent, there is an in-
evitably reception. As shown in Listing 10, SVL property state-
ments can be parameterized. Parameters are used to present con-
nections and threads, so properties are separately applied on each
thread/port connection. Thus, we obtain understandable results
and the AADL model problems can be rapidly localized. For ex-
ample, the Connection property is checked for each connection
(the model-checker displays a true/false response): the Listing 11
presents the result of the verification of the inter-thread connection
CNX_3 from the Pacemaker AADL model.

Listing 10: An extract of the Pacemaker SVL script

—— LTS generation

"Main.bcg"= divbranching reduction of "PACEMAKER Main.Int";
—— Properties for model-checking

property Connection (ID)

"After a SNED action, a RECEIVE is eventually reachable” is
"Main.bcg" |= with evaluator4

AFTER_1_INEVITABLE_2 (SEND_$ID, RECEIVE_$ID); expected TRUE;
end property;

check Connection (CNX_PACE); check Connection (CNX_3);

Listing 11: Analysis results from Pacemaker case study

property Connection (CNX_3)
| After a SNED action, a RECEIVE is eventually reachable
PASS

More analysis. The Pacemaker model was successfully analyzed
with different generated properties. In addition, advanced analysis
was applied to verify the VVI therapeutic behavior of the pulse gen-
erator. As illustration, the normal rhythm detection can be checked
as follows: the DEVICE_Lead is completed to be synchronized with
the SCHEDULER, and so it can be periodically dispatched to send
events at a normal heart rate on the ventricle_sense port; and
a new SVL property (Listing 12) is added to check if the VVIMode
thread sends events on the normal port without any pacing event.

Listing 12: Normal_Rhythm SVL property

property Normal Rhythm is "Main.bcg" |= with evaluator3
NEVER ("PACEMAKERSW_PACE__LEAD_VENTRICLE PACE !TRUE") and
[true ». "SEND_PACEMAKERSW NORMAL LEAD NORMAL !TRUE"]true;
expected TRUE;
end property;

6 RELATED WORK

The AADL language is supported by several tools, either open-
source (OSATE, Ocarina, TOPCASED) or commercial (STOOD,
AADL Inspector). In our work, we contribute on Ocarina open-
source tool suite that can be used as stand-alone compiler since it
provides different engineering steps (modeling, analysis and code
generation) with the possibility of the use of extra tools like Ched-
dar and Bound-T. In addition, Ocarina can be easily integrated as a
backend for other AADL editors (already used through OSATE and
AADL Inspector tools), which increases the visibility of our work.

An Ocarina Extension for AADL Formal Semantics Generation

AADL Formal approaches are often based on model transfor-
mation into different languages such as Lustre [13], TLA+ [22],
Signal [5], ACSR [24], TASM [25], Fiacre [4], Real-time Maude [20]
and BIP [8]. As examples: many work [5, 26] are around the Poly-
chrony platform and Signal language for synchronous verification
of AADL models where behavior is specified by BA or Simulink.
The transformations are implemented within OSATE and the analy-
ses are performed by Polychrony and SynDEx tools; authors in [25]
transform a synchronous AADL subset (periodic threads, data port
connections, modes and BA) to the TASM language, in order to
verify behavioral properties (deadlock and reachability) with TASM
tool suite and UPPAAL; the transformation of AADL model into the
Fiacre language is addressed in the TOPCASED environment [4].
This work supports periodic/sporadic thread and event/data port
connections, but it is restricted to the non-preemptive scheduling.
The AADL model needs a first transformation into Fiacre which is
considered as a pivot language for other transformations for con-
nection to Tina and CADP tools. This proposition is extended in [6]
aiming the validation of the transformation for an AADL synchro-
nous subset; authors in [20] use the Real time Maude language to
transform an AADL subset with BA to be analyzed with the Real-
Time Maude platform. This work is extended in [3] considering a
defined Synchronous AADL sub-language.

Generally speaking, these transformations aim at the same ob-
jectives: the definition of an AADL executable formal semantics for
model-checking of behavioral and temporal properties. Yet, they
can be distinguished according to the considered AADL subset
(synchronous subsets, non-preemptive scheduling, etc). We note
also that most of these transformations is implemented as OSATE
plugins and a majority requires more than one model transfor-
mation to be connected to the analysis tools. Comparing to these
work, we provide a tool-chain that automatizes both generation
and model-checking. We use a direct input language to CADP with-
out additional transformations. We consider an important AADL
subset that especially includes event-driven threads, asynchronous
connections and preemptive scheduling. The considered subset
covers fundamental real-time features that can be used in more
realistic applications rather than synchronous and non-preemptive
approaches.

7 CONCLUSION AND FUTURE WORK

In this paper, we described the AADL2LNT Ocarina extension for
AADL formal semantic generation in the context of software engi-
neering of real-time systems. This work is based on the transfor-
mation of the AADL model into an LNT specification considering
mainly scheduling execution and task communication which are
indispensable features for a useful real-time analysis. In addition,
we support the Behavior annex for more complete AADL models.
We provide an automatic tool-chain for formal analysis of AADL
models by CADP toolbox, through which the LNT specification is
generated and then checked by a set of generic properties.

The current AADL2LNT version allows an important generation
and we are working continuously on our implementations in Oca-
rina for a total automation. As future work, we aim to extend the
scheduling mapping to support multi-core scheduling.

SAC’18, April 9-13, 2018, Pau,France

REFERENCES

[1] 2009. AS5506A:SAE Architecture Analysis & Design Language (AADL) Ver 2.0.
[2] 2011. AS5506/2:SAE Architecture Analysis & Design Language, Annex Vol 2.
[3] K Bae, P C Olveczky, and] Meseguer. 2014. Definition, semantics, and analysis
of Multirate Synchronous AADL. In International Symposium on Formal Methods.
Springer, 94-109.

B Berthomieu, J P Bodeveix, C Chaudet, S Dal Zilio, M Filali, and F Vernadat.

2009. Formal verification of AADL specifications in the Topcased environment.

In International Conference on Reliable Software Technologies. Springer, 207-221.

[5] L Besnard, A Bouakaz, T Gautier, P Le Guernic, Y Ma,] P Talpin, and H Yu.
2015. Timed behavioural modelling and affine scheduling of embedded software
architectures in the AADL using Polychrony. Science of Computer Programming
106 (2015), 54-77.

[6] J P Bodeveix, M Filali, M Garnacho, R Spadotti, and Z Yang. 2015. Towards a
verified transformation from AADL to the formal component-based language
FIACRE. Science of Computer Programming 106 (2015), 30-53.

[7] D Champelovier, X Clerc, H Garavel, Y Guerte, C McKinty, V Powazny, F Lang, W
Serwe, and G Smeding. 2016. Reference manual of the LNT to LOTOS translator
(version 6.5). Inria/Vasy and Inria/Convecs 143 (2016).

[8] MY Chkouri, A Robert, M Bozga, and J Sifakis. 2009. Translating AADL into
BIP-application to the verification of real-time systems. In Models in Software
Engineering. Springer, 5-19.

[9] H Garavel. 1998. Open/Ceesar: An open software architecture for verification,
simulation, and testing. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 68—84.

[10] H Garavel and F Lang. 2002. SVL: a scripting language for compositional veri-

fication. In Formal Techniques for Networked and Distributed Systems. Springer,

377-392.

H Garavel, F Lang, R Mateescu, and W Serwe. 2013. CADP 2011: a toolbox for

the construction and analysis of distributed processes. International Journal on

Software Tools for Technology Transfer 15, 2 (2013), 89-107.

M E Hamdane, A Chaoui, and M Strecker. 2013. From AADL to Timed Automaton-

A Verification Approach. International Journal of Software Engineering & Its

Applications 7, 4 (2013).

E Jahier, N Halbwachs, P Raymond, X Nicollin, and D Lesens. 2007. Virtual

execution of AADL models via a translation into synchronous programs. In

Proceedings of the 7th ACM & IEEE international conference on Embedded software.

ACM, 134-143.

A Johnsen, K Lundgvist, P Pettersson, and O Jaradat. 2012. Automated Verification

of AADL-Specifications Using UPPAAL. In HASE. 130-138.

[15] B R Larson. 2014. Formal semantics for the pacemaker system specification. ACM
SIGAda Ada Letters 34, 3 (2014), 47-60.

[16] G Lasnier, B Zalila, L Pautet, and J Hugues. 2009. Ocarina: An environment
for AADL models analysis and automatic code generation for high integrity
applications. In Reliable Software Technologies—Ada-Europe. Springer, 237-250.

[17] R Mateescu and M Sighireanu. 2003. Efficient on-the-fly model-checking for
Regular Alternation-free mu-Calculus. Science of Computer Programming 46, 3
(2003), 255-281.

[18] R Mateescu and D Thivolle. 2008. A model checking language for concurrent
value-passing systems. In International Symposium on Formal Methods. Springer,
148-164.

[19] Hana Mkaouar, Bechir Zalila, Jérome Hugues, and Mohamed Jmaiel. 2015. From
AADL Model to LNT Specification. In Reliable Software Technologies—Ada-Europe
2015. Springer, 146-161.

[20] P C Olveczky, A Boronat, and] Meseguer. 2010. Formal semantics and analysis

of behavioral AADL models in Real-Time Maude. In Formal Techniques for

Distributed Systems. Springer, 47-62.

X Renault, F Kordon, and J Hugues. 2009. From AADL architectural models

to Petri Nets: Checking model viability. In IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE, 313

320.

J F Rolland, J P Bodeveix, M Filali, D Chemouil, and D Thomas. 2008. Modes in

asynchronous systems. In Engineering of Complex Computer Systems, ICECCS.

IEEE, 282-287.

[23] A E Rugina, K Kanoun, and M Kaéniche. 2008. The ADAPT Tool: From AADL

Architectural Models to Stochastic Petri Nets through Model Transformation.

CoRR abs/0809.4108 (2008).

O Sokolsky, I Lee, and D Clarke. 2006. Schedulability analysis of AADL models. In

Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.

IEEE, 8-pp.

[25] Z Yang, K Hu, J P Bodeveix, L Pi, D Ma, and J P Talpin. 2011. Two Formal
Semantics of a Subset of the AADL. In Engineering of Complex Computer Systems
(ICECCS). IEEE, 344-349.

[26] H Yu, Y Ma, T Gautier, L Besnard, J P Talpin, P Le Guernic, and Y Sorel. 2013.
Exploring system architectures in AADL via Polychrony and SynDEx. Frontiers
of Computer Science 7, 5 (2013), 627-649.

[4

—_
jan

[12

[13

[14

[21

[22

[24

	Abstract
	1 Introduction
	2 Background
	2.1 AADL subset
	2.2 LNT language

	3 Overview of the transformation
	3.1 Scheduling mapping
	3.2 Communication mapping
	3.3 Behavioral mapping

	4 Implementation
	4.1 LNT code generation
	4.2 Tool-chain

	5 Case study
	5.1 Ocarina: modeling and generation
	5.2 CADP: formal analysis and evaluation

	6 Related work
	7 Conclusion and future work
	References

