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Quantum molecular dynamics simulations with MCTDH or ML-MCTDH perform best if the potential
energy surface (PES) has a sum-of-products (SOP) or multi-layer operator (MLOp) structure. Here we
investigate four different POTFIT-based methods for representing a general PES as such a structure,
among them the novel random-sampling multi-layer Potfit (RS-MLPF). We study how the format and
accuracy of the PES representation influences the runtime of a benchmark (ML-)MCTDH calculation,
namely the computation of the ground state of the H3O2

� ion. Our results show that compared to the
SOP format, the MLOp format leads to a much more favorable scaling of the (ML-)MCTDH runtime with
the PES accuracy. At reasonably high PES accuracy, ML-MCTDH calculations thus become up to 20 times
faster, and taken to the extreme, the RS-MLPF method yields extremely accurate PES representations
(global root-mean-square error of �0.1 cm�1) which still lead to only moderate computational demands
for ML-MCTDH.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The computational treatment of high-dimensional quantum
systems unavoidably necessitates the use of approximations, given
the currently available hardware facilities. These approximations
include the discretization of the Hilbert space (using grid-based
or basis-set methods), the representation of the wavefunction,
and the time-stepping method (for dynamical problems). In the
case of quantum molecular dynamics (QMD), which is usually car-
ried out in the framework of the Born-Oppenheimer or (in the case
of several electronic states) group Born-Oppenheimer approxima-
tions [1], further approximations are introduced by the creation
of one or more potential energy surfaces (PES) on which the nuclei
move, which involves the level of electronic structure theory, the
electronic basis set, and how the computed electronic energies
are fitted to a global function. Moreover, to make use of such a
PES in the QMD calculations, further approximating transforma-
tions of the PES may be needed. Alternatively, promising on-the-
fly QMD methods are available as well [2,3], though the computa-
tional effort in the electronic structure calculations still limits their
general applicability. In all these approximation steps, the balance
between accuracy and computational resource usage must be con-
sidered, and it is worth noting that different approximation meth-
ods exhibit different scalings between approximation accuracy and
resource usage. Since researchers are usually faced with limited
computational budgets, ideally the approximation methods should
be chosen such that resource usage is minimized for a given
desired accuracy.

Concerning the representation of the wavefunction, major
breakthroughs in obtaining accurate results with limited resources
were achieved by Meyer and coworkers in developing the multi-
configuration time-dependent Hartree method (MCTDH) [4–7].
MCTDH has proven to be a powerful computational method for
high-dimensional quantum systems, both for investigating the sys-
tem dynamics [8–14] as well as for determining spectroscopic fea-
tures [15,16,11,17–22], where it should be noted that the list of
cited works is far from complete. With its multi-layer extension
ML-MCTDH [23–25], accurate full-dimensional quantum calcula-
tions for systems with up to hundreds of degrees of freedom
(DOFs) are possible [23,26–30,25,31–33]. From the approximation
perspective, (ML-)MCTDH is particularly attractive as it allows to
systematically increase the accuracy by increasing the size of the
wavefunction representation, at the expense of using more compu-
tational resources. In this respect ML-MCTDH fares better than
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MCTDH, as resource usage depends only polynomially instead of
exponentially on the wavefunction size [24,34].

A crucial point for the efficient application of (ML-)MCTDH is
that the PES needs to be represented in a suitable format which
facilitates the efficient evaluation of the various high-dimensional
integrals that are encountered in the course of the (ML-)MCTDH
algorithm. This requirement can be overcome by using the CDVR
method [35,36] which however requires a very large amount of
PES evaluations, and considerable development effort may be
needed to overcome the resulting bottleneck by massively speed-
ing up the PES routine [37]. In general it is much more economical
to represent the PES as a sum of products of one- or low-dimen-
sional potential functions, an approach that has been traditionally
used with MCTDH, as it transforms each high-dimensional integral
into a sum of products of one- or low-dimensional integrals, which
are easily evaluated. This sum-of-products (SOP) format is a suit-
able choice for ML-MCTDH as well [24]. More recently, one of
the authors has shown that for ML-MCTDH there exists an alterna-
tive representation of the PES as a hierarchical sum of products, i.e.
as a multi-layer operator (MLOp), which allows for a much more
compact representation of the PES and hence for a much more effi-
cient evaluation of the ML-MCTDH equations of motion [34].

For most model systems, the PES can be naturally expressed in
SOP format. However, general PES are usually given as a high-
dimensional analytic function fitted to a large number of electronic
structure calculations, and for such PES it is necessary to transform
them into SOP or MLOp format. In general, it is not possible to per-
form this transformation exactly, but only approximately; and
more accurate representations of the PES unavoidably lead to a lar-
ger number of terms in the representation, which negatively
impacts the performance of (ML-)MCTDH (e.g. for the SOP format,
the computational effort for MCTDH is directly proportional to the
number of summands in the expansion). Given a desired accuracy
of the PES representation, one should then strive to find a PES rep-
resentation which minimizes the effort for (ML-)MCTDH.

There are a number of options for performing this transforma-
tion, most of them targeting the SOP format. One such approach
makes use of neural networks with exponential activation func-
tions [38–42] but so far this method has only been demonstrated
for fitting functions up to 6D (i.e. up to four atoms). Another
approach is the n-mode representation (n-MR) [43], also known
as cut high-dimensional model representation (cut-HDMR) [44],
which expands the PES as a sum of one- and few-body terms,
and the latter can be transformed into SOP format relatively easily.
This method can scale to rather large systems, and it has been used
in MCTDH calculations e.g. on the Zundel cation [45,16,11,17,46] as
well as on malonaldehyde [18], and it has also been used together
with the neural networks approach [47]. However, the drawback of
the n-MR approach is that the number of terms grows exponen-
tially with the expansion order, so that for larger systems one must
choose (usually using statistical methods) the most relevant terms
in the n-MR expansion. This makes the method non-variational, i.e.
adding more terms to the expansion does not necessarily increase
its accuracy, so that it is difficult to obtain a PES fit with a pre-
scribed accuracy. Furthermore, it has been shown that this non-
variational behaviour may lead to artificial structure in the PES
[48]. In contrast, the Potfit method [49] offers good control over
the accuracy of the SOP fit, as it is variational. Given the values
of the PES on a product grid, Potfit determines optimal one-dimen-
sional potential functions for each DOF, and expresses the PES as a
linear combination of products of these potential functions (tech-
nically, a truncated Tucker decomposition [50]), which results in
a SOP expansion close to optimal. However, the requirement of
knowing the PES on a full product grid limits the applicability of
Potfit to systems with 6–8 DOFs. This limitation can be overcome
by approximating the integrations over the full grid by multi-grid
or Monte Carlo methods, giving rise to the multi-grid Potfit (MGPF)
[51] and the Monte Carlo Potfit (MCPF) [52] methods, respectively.
MGPF is expected to be able to treat PES up to 12D, while MCPF has
already been applied to a 15D PES, though with considerable com-
putational effort. On the other hand, for transforming a PES into
MLOp format there currently exists to our knowledge only one
method, multi-layer Potfit (MLPF) [34], which is based on the hier-
archical singular value decomposition [53]. As initially conceived,
MLPF like Potfit requires knowing the PES on a full product grid,
limiting its applicability. To overcome this problem, the present
article introduces a novel method for transforming a PES into
MLOp form, which avoids having to evaluate the PES on the full
product grid by using ideas originally introduced in MCPF [52].
The resulting method is termed ‘‘random sampling multi-layer
Potfit” (RS-MLPF), and by design we expect it to scale to systems
as large as those treatable by MCPF and likely beyond.

In the present work, we aim to investigate how the accuracy of
the PES fit into SOP/MLOp format influences the runtime of (ML-)
MCTDH calculations carried out with this fit. For this purpose we
have chosen the H3O

�
2 ion as a benchmark system, for which we

compute the ground state and its zero-point energy using relax-
ation methods. This 9-dimensional (9D) system is slightly too large
to be treated with the original Potfit method, but PES fits suitable
for (ML-)MCTDH can be obtained with the aforementioned
improved Potfit variants. In particular, we use four such variants
in our calculations: (i) MGPF, (ii) MGPF postprocessed by MLPF,
(iii) MLPF directly, and (iv) the newly developed RS-MLPF. For each
variant, we produce a series of PES fits at different accuracy levels,
and measure the resulting runtime for the (ML-)MCTDH relaxation.
The accuracy of each fit is assessed by sampling the fitting error
with Monte Carlo as well as classical molecular dynamics methods.
Our results reveal that the choice of Potfit variant can have a strong
influence on the computational resource usage of (ML-)MCTDH,
especially when a highly accurate PES fit is required.

The article is structured as follows: Section 2 reviews the meth-
ods used in this study. In particular, Section 2.3 gives details on the
novel RS-MLPF method. Section 3 describes some properties of the
H3O

�
2 ion and the PES used. Our calculations and their results are

given in Section 4. Section 5 concludes. Appendix A details our
error estimation procedure for the PES fits. As a help to the reader,
Table 1 lists the acronyms used frequently in this article.
2. Methodological background

2.1. MCTDH, ML-MCTDH, and form of the Hamiltonian

The multi-configuration time-dependent Hartree (MCTDH)
method [4–7] and its multi-layer variant (ML-MCTDH) [23–25]
have been widely discussed in detail elsewhere. Here we only
review a few key concepts of these methods, as far as they are rel-
evant for the present investigation.

MCTDH derives its efficiency from a compact representation of
the wavefunction, which reads

Wðq1; . . . ; qf ; tÞ ¼
Xn1
j1¼1

� � �
Xnf
jf¼1

Aj1 ���jf ðtÞuð1Þ
j1
ðq1; tÞ � � �uðf Þ

jf
ðqf ; tÞ ð1Þ

where f denotes the number of degrees of freedom (DOFs) of the
system, q1 through qf are the system coordinates, t is the time, n1

through nf are expansion orders, and A is a vector of coefficients
(the so-called ‘‘A-vector”). The ‘‘single-particle functions” (SPFs)

uðjÞ
jj

for the j-th DOF ð1 6 j 6 f Þ form a time-dependent orthonor-

mal set. Hence Eq. (1) constitutes an expansion of W in a time-
dependent product basis, formed by products of the SPFs. In turn,
the SPFs are expressed in a time-independent ‘‘primitive” basis:



Table 1
List of acronyms used frequently in this article.

MCTDH Multi-Configuration Time-Dependent Hartree
ML-MCTDH Multi-Layer MCTDH
PES Potential Energy Surface
MGPF Multi-Grid Potfit
MCPF Monte-Carlo Potfit
MLPF Multi-Layer Potfit
FG-MLPF Full-Grid Multi-Layer Potfit
RS-MLPF Random-Sampling Multi-Layer Potfit
SOP Sum of Products
MLOp Multi-Layer Operator
SPP single-particle potential a.k.a. ‘‘natural potential”
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uðjÞ
j ðqj; tÞ ¼

XNj

a¼1

AðjÞ
j;a ðtÞvðjÞ

a ðqjÞ ð2Þ

The primitive basis functions vðjÞ
a are usually chosen to be the

basis functions of a discrete variable representation (DVR) or of
other grid-based representations (e.g. FFT), so that Nj denotes
the number of grid points for the j-th DOF. Note that a direct rep-
resentation of W as an expansion in products of primitive basis
functions (i.e. the ‘‘standard method”) would requireQ f

j¼1Nj � N f coefficients, while the MCTDH representation only

requires
Q f

j¼1nj � nf coefficients for the A-vector plusP f
j¼1njNj � fnN coefficients for the SPFs, cf. Eq. (2). If n � N, this

constitutes a strong reduction of the storage requirements for the
wavefunction. This condition can usually be maintained during
the time-evolution of W, at least for some time, because the equa-

tions of motion for MCTDH (i.e. how the coefficients A and AðjÞ

evolve over time) are derived from the Dirac-Frenkel variational
principle [54,55], so that the set of SPFs is variationally optimal
for approximating the full W at each instant.

However, the number of coefficients still scales as nf , i.e. expo-
nentially with the number of DOFs. A further reduction can be
achieved via ‘‘mode combination”, in which several DOFs are com-
bined into one large multi-dimensional mode. Hence the SPFs are
not one- but multi-dimensional:

WðQ1; . . . ;Qd; tÞ ¼
Xn1
j1¼1

� � �
Xnd
jd¼1

Aj1 ���jd ðtÞuð1Þ
j1
ðQ1; tÞ � � �uðdÞ

jd
ðQd; tÞ ð3Þ

uðjÞ
j ðQj; tÞ ¼ uðjÞ

j ðqaj ; . . . ; qbj ; tÞ

¼
XNaj

a1¼1

� � �
XNbj

ap¼1

AðjÞ
j;a1 ���ap ðtÞv

ðajÞ
a1 ðqaj Þ � � �vðbjÞ

ap ðqbj Þ ð4Þ

where Qj ¼ ðqaj ; . . . ; qbj Þ denotes the multi-dimensional coordinate
for mode j. If the set of f DOFs is combined into d modes of p DOFs
each (i.e. f ¼ pd), and if each mode employs n SPFs, then the number
of coefficients needed to represent W is nd þ dnNp. This achieves
another strong reduction in the total number of coefficients.

Taken to the extreme, i.e. combining the DOFs into only few
(say, d ¼ 2) very large modes, the A-vector becomes very small
ð� ndÞ but the SPFs require a large number of coefficients

ð� dnNf=dÞ. At this stage it makes sense to introduce another
expansion layer, by decomposing the mode Qj into a set of pj
sub-modes, Qj ¼ ðQj;1; . . . ;Qj;pj Þ, where each sub-mode Qj;k is
again a set of DOFs. The mode-j SPFs are then expanded in prod-
ucts of sub-mode SPFs, similar to Eq. (1):

uðjÞ
j ðQj; tÞ ¼uðjÞ

j ðQj;1; . . . ;Qj;pj ; tÞ

¼
Xnj;1
k1¼1

� � �
Xnj;pj
kpj¼1

AðjÞ
j;k1 ���kpj ðtÞ

Ypj
k¼1

uðj;kÞ
kk

ðQj;k; tÞ ð5Þ
In a two-layer scheme, the sub-mode SPFs uðj;kÞ are again
expressed in products of primitive basis functions. But one may
as well introduce further layers of SPFs, which leads to a hierarchi-
cal expansion of W and gives rise to the multi-layer MCTDH
method (ML-MCTDH). The total number of coefficients required
to represent W in ML-MCTDH can be shown, under moderate
assumptions, to scale only polynomially instead of exponentially
with the number of DOFs (see [24,34] for derivation and discus-
sion). As for the standard MCTDH method, the equations of motion
for ML-MCTDH can be derived using the Dirac-Frenkel variational
principle.

In the present work, we are interested in computing the ground
state of the H3O

�
2 molecule. A simple way to achieve this is by

relaxation, i.e. by propagating some initial state W0 in negative
imaginary time t ¼ �is, for s ! 1 [56]. This has the effect of expo-
nentially damping all excited state components present in W0 rel-
ative to the ground state component, so that the propagated W
converges to the ground state WGS eventually. However, conver-
gence can be slow if there are low-lying excited states. An alterna-
tive is the ‘‘improved relaxation” method [57,58] where, in turn,
the SPFs are relaxed and the A-vector is obtained by diagonaliza-
tion. This procedure is iterated until convergence is reached. Not
only does the improved relaxation method converge faster to the
ground state than regular relaxation, but a block version of the
algorithm is additionally able to compute excited states simultane-
ously. Unfortunately, the Heidelberg MCTDH package [59] cur-
rently supports (block) improved relaxation calculations only for
MCTDH wavefunctions but not for ML-MCTDH wavefunctions,
although it would certainly be possible to do so [60]. In the present
work, we therefore resorted to regular relaxation for our ML-
MCTDH calculations.

A requirement for an efficient operation of (ML-)MCTDH is that
the Hamiltonianmust be expressed in a formwhich allows the effi-
cient evaluation of high-dimensional matrix elements and related
quantities, which are encountered during the evaluation of the

equations of motion. For example, the expectation value hWjĤjWi
formally constitutes an f-dimensional integral, but it can be evalu-

ated efficiently if Ĥ has a representation as a sum of products (SOP)
of one-dimensional operators (here assuming for simplicity that
mode combination is not used), i.e.

Ĥ ¼
Xs
r¼1

cr
Yf
j¼1

ĥðjÞ
r ð6Þ

where the operators ĥðjÞ
r operate on the DOF qj only. Then the

expectation value is evaluated as (cf. Eq. (1))

hWjĤjWi ¼
X
r

cr
X
j1 ���jf

A�
j1 ���jf

X
k1 ���kf

Ak1 ���kf
Yf
j¼1

huðjÞ
jj
jĥðjÞ

r juðjÞ
kj
i ð7Þ

which boils down to a series of one-dimensional integrals, a
sequential series of tensor-matrix products, and a final contraction
over j1 � � � jf , all of which can be performed relatively efficiently
unless the A-vector is too large. These steps need to be carried out
for each term r in the SOP expansion, Eq. (6). Hence the computa-
tional effort for evaluating Eq. (7), as well as for similar terms
appearing in the MCTDH equations of motion, scales linearly with
s, i.e. with the length of the SOP expansion.

The kinetic energy operator (KEO) often naturally has SOP form,
at least if a suitable coordinate system is chosen, like polyspherical
coordinates [61]. On the other hand, for non-model systems the
potential energy operator usually doesn’t come in SOP form, but
is given by a multi-dimensional potential energy surface (PES)
which is obtained as a fit to a large set of electronic structure cal-
culations on a set of judiciously chosen geometries. Such a PES
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must be transformed to SOP form before it can be used with
MCTDH, as will be discussed in Section 2.2.

For ML-MCTDH, the SOP form can also be evaluated efficiently
[24,25]. However, as ML-MCTDH can handle much larger systems
(i.e. with more DOFs) than MCTDH, the length of the SOP expan-
sion can become a problematic issue. In Ref. [34], an alternative
representation of the Hamiltonian as a ‘‘multi-layer operator”
(MLOp) was developed, which possesses the same compact hierar-
chical structure as the ML-MCTDH wavefunction. It was demon-
strated that this structure can lead to a much more efficient
evaluation of the terms in the ML-MCTDH equations of motion,
already for systems as small as f ¼ 4, and with potentially vast
computational savings for large systems. As for the SOP form, a
way to transform general PES into MLOp form is needed, which
will likewise be discussed in Section 2.2.

2.2. Variational grid-based PES fitting methods

One popular method for transforming a PES Vðq1; . . . ; qf Þ into
SOP form is the Potfit algorithm [49]. This grid-based method starts

by evaluating the PES on a product grid of points ðqðjÞ
aj ;j ¼ 1 . . . f Þ,

which yields an f-dimensional tensor

Va1 ���af ¼ Vðqð1Þ
a1 ; . . . ; q

ðf Þ
af
Þ; 1 6 aj 6 Nj ð8Þ

Similar to the MCTDH ansatz Eq. (1), this tensor is then approx-
imated by expanding it in a basis of ‘‘single-particle potentials”
(SPPs)

Va1 ���af � ~Va1 ���af ¼
Xm1

j1¼1

� � �
Xmf

jf¼1

Cj1 ���jf v
ð1Þ
a1j1

� � �v ðf Þ
af jf

ð9Þ

where the v ðjÞ
ajjj

are the components of the SPPs for DOF j, C is an f-

dimensional coefficient tensor (the ‘‘core tensor”), and the mj are
expansion orders. Eq. (9) is also known as a (truncated) Tucker
decomposition [50].

To obtain the SPPs, Potfit builds a ‘‘potential density matrix”
qðjÞ 2 RNj�Nj for each DOF j by contracting the tensor V with itself
over all DOFs except the j-th one, i.e.

qðjÞ
ab ¼

XN1

a1¼1

� � �
XNj�1

aj�1¼1

XNjþ1

ajþ1¼1

XNf

af¼1

Va1 ���aj�1aajþ1 ���af Va1 ���aj�1bajþ1 ���af ð10Þ

These density matrices are then diagonalized to obtain eigen-

values kðjÞj (the ‘‘natural weights”) and eigenvectors v ðjÞ
j (the ‘‘nat-

ural potentials”), 1 6 j 6 Nj. Only the dominant mj natural
potentials (i.e. those corresponding to the largest natural weights)
are kept as the SPPs. Finally, the core tensor C is found by project-
ing the tensor V onto products of the SPPs. A mathematically equiv-
alent algorithm is known as the higher-order singular value
decomposition (HOSVD) [62].

Except for f ¼ 2, Potfit does not yield the optimal SPPs and core
tensor. However, the error D ¼ kV � ~Vk introduced by Potfit can be
bounded by the sum of the neglected natural weights [51],

1
f � 1

Xf

j¼1

X
j>mj

kðjÞj 6 D2
opt 6 D2 6

Xf

j¼1

X
j>mj

kðjÞj ð11Þ

where Dopt is the best possible approximation of V in the form Eq.
(9) with fixed expansion orders mj. This shows that the Potfit
approximation is at most a factor of

ffiffiffiffiffiffiffiffiffiffiffi
f � 1

p
worse than the best

possible approximation of the same form and size. It also shows
that in order to significantly increase the accuracy of the approxi-
mation, it will be necessary to increase the expansion orders mj,
as this is the only way to reduce the lower bound in Eq. (11).
The number of SOP terms generated by the Potfit expansion
according to Eq. (9) is the number of entries in the core tensor,
� mf . This can be reduced by a factor of m by contracting the core
tensor with the SPPs of one DOF (the ‘‘contracted mode”), e.g. the
first one:

Dð1Þ
a1j2 ���jf ¼

Xm1

j1¼1

Cj1 ���jf v
ð1Þ
a1 j1

ð12Þ
~Va1 ���af ¼
Xm2

j2¼1

� � �
Xmf

jf¼1

Dð1Þ
a1 j2 ���jf v

ð2Þ
a2 j2

� � � v ðf Þ
af jf

ð13Þ

In doing so, one may as well choose m1 ¼ N1 in order to reduce
the Potfit error. The resulting expansion, Eq. (13), thus generates
� mf�1 SOP terms.

A major disadvantage of Potfit is that it needs to build the PES

tensor V on the full product grid, which has � N f entries. In prac-
tice this limits the applicability of Potfit to systems with 6–8 DOFs,
otherwise the computation of all the entries of V and of the poten-
tial density matrices becomes too expensive. Recently, two meth-
ods have been proposed for overcoming this limitation of Potfit,
i.e. they avoid running over the full product grid. Reviewing Eq.
(10), we note that the potential density matrices for DOF j are
computed by integrating over the complementary grid, i.e. the pro-
duct grid of all DOFs except the j-th. Instead of performing this
ðf � 1Þ-dimensional integration exactly, one can perform it approx-
imately. In Monte-Carlo Potfit (MCPF) [52], the integration over the
complementary grid is replaced by a Monte-Carlo integration, i.e.
by sampling the grid points for integration either uniformly from
the full grid or via the Metropolis–Hastings algorithm [63,64].
Additional steps are then required for computing the core tensor,
to correct for the error introduced by approximating the integra-
tion over the complementary grid. In multigrid Potfit (MGPF) [51],
in addition to the original full ‘‘fine” product grid, a ‘‘coarse” pro-
duct grid is introduced, which consists of a subset of the fine grid
points. In between these two limiting cases one then defines a ser-
ies of partial grids where one mode lies on the fine grid and the rest
lie on the coarse grid. The SPPs on the fine grid are obtained
through an interpolation process in which SPPs from a coarse-grid
Potfit are transferred onto the fine grid by multiplication with a
product of approximated density matrices computed on the partial
grids. For details of both MGPF and MCPF the reader is referred to
the original publications [51,52].

Another problem of Potfit is that the resulting number of SOP
terms (� mf�1, cf. Eq. (13)) grows exponentially with the number
f of DOFs. This problem is not overcome by MGPF or MCPF, as they
‘‘only” provide more efficient methods to compute a representa-
tion in SOP form, but cannot overcome the fundamental limitation
given by the Potfit error estimate, Eq. (11). Especially if a high accu-
racy of the PES representation is needed, it is necessary to increase
the expansion orders mj, so that the number of terms in the Potfit
expansion quickly becomes prohibitive due to its exponential scal-
ing. In the context of ML-MCTDH, this fundamental problem can be
overcome by abandoning the SOP form and switching to the hier-
archical MLOp form for representing the PES. Again, this poses the
problem of how to transform a general PES into MLOp form, and
the multi-layer Potfit (MLPF) method [34] has been developed for
this purpose, based on the hierarchical singular value decomposi-
tion [53]. In Ref. [34], MLPF was applied to a relatively small sys-
tem (diatom-diatom scattering) and the PESs which had to be
transformed were 5-dimensional. Despite the small dimensional-
ity, MLPF achieved a strong reduction of the computational
resources required for the ML-MCTDH propagations (both in CPU
and RAM), compared to using Potfit at the same accuracy.
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As originally conceived, MLPF suffers from the same problem as
Potfit, in that it requires running over the full product grid in order
to transform the PES into MLOp form, which again limits applica-
bility to 6–8 DOFs. In the present article, we will explore two
options for overcoming this limitation. The first option makes
use of the fact that the first step of MLPF is identical to Potfit,
except that contraction is not used. Hence one may use MGPF or
MCPF to compute an initial Potfit, undo the contraction1 to obtain
SPPs for the contracted mode as well as the core tensor C (cf. Eq. (9)),
and then perform the remaining steps of MLPF. These steps are com-
putationally cheap compared to the initial Potfit, as they don’t need
to operate on the full-grid PES but only on the C tensor which is
much smaller. MLPF reshapes the C tensor by combining low-dimen-
sional modes into higher-dimensional modes and performs another
HOSVD step in order to reduce its data, and repeats this process until
only a few (usually 2 or 3) large-dimensional modes are left. In con-
trast to performing MLPF on the full-grid PES, this way of using MLPF
as a postprocessing option to MGPF/MCPF fully avoids the full-grid
problem, and is rather fast and simple to perform. However, the
accuracy of this approach can be limited, because in a high-accuracy
setting the initial Potfit produced by MGPF/MCPF might become very
large due to its inherent scaling behavior.

The second option is to integrate the approximation ideas from
MGPF or MCPF directly into MLPF. The goal is to avoid the explicit
computation of the core tensor, which easily becomes the bottle-
neck if high accuracy (i.e. large expansion orders mj) are required.
As a first step in this direction, in Section 2.3 we will present a vari-
ant of MLPF which avoids running over the full product grid by
using uniform random sampling as in MCPF, while also avoiding
to compute the core tensor as an intermediate step. As we will
show, this new variant of MLPF is able to produce rather accurate
PES fits in MLOp form with modest computational resources, how-
ever its implementation currently only has prototype status so that
it may not be readily applicable for systems with a different num-
ber of modes or a different multi-layer structure than investigated
here. To make the distinction between the new variant and the
original MLPF method more clear, we will henceforth refer to the
original method as ‘‘full-grid MLPF” (FG-MLPF).

2.3. Random Sampling Multi-Layer Potfit (RS-MLPF)

In order to avoid an overly technical exposition, here we present
the RS-MLPF algorithm for a balanced binary multi-layer tree with
eight uncombined primitive modes, i.e. a three-layer tree. The gen-
eralization to arbitrary tree structures is relatively straight-for-
ward, but would require an overabundance of additional
notation. In the following, j ¼ 1 . . .8 numbers the DOFs, Nj

denotes the number of grid points for the j-th DOF, and
aj ¼ 1 . . .Nj indexes these grid points.

In the first step, RS-MLPF proceeds like Monte Carlo Potfit [52].
The potential density matrix for the 1st DOF is defined as

qð1Þ
a1a01

¼
X
a2 ���a8

Va1a2 ���a8Va01a2 ���a8 ð14Þ

where V denotes the eight-dimensional PES tensor defined on the
full grid. This 7D integration is then replaced by a Monte Carlo inte-
gration, using R sampling points fðar

2 � � �ar
8Þjr ¼ 1 . . .Rg:

qð1Þ
a1a01

¼
X
r

Va1ar2 ���ar8Va01a
r
2 ���ar8 ð15Þ

To avoid a rank-deficient qð1Þ, one should choose R > N1. In
practice, we choose R ¼ qN1, where q is the oversampling parame-
ter. A larger q will result in using more sampling points, and thus
1 The potential density matrix for the contracted mode can be computed
(approximately) by self-contracting the D-tensor, cf. Eq. (12), to form qð1Þ

ab .
in a more accurate estimation of the potential density matrices.
Despite the Monte Carlo approximation, qð1Þ is symmetric and pos-
itive semi-definite. Diagonalizing qð1Þ yields natural weights and
natural potentials, of which only the dominant m1 ones are kept.
Mathematically equivalent, we reshape the sampled V tensor into
a matrix V ð1Þ with entries V ð1Þ

a1r ¼ Va1ar2 ���ar8 , and perform a singular
value decomposition (SVD) on this matrix. Its left singular vectors
then yield the natural potentials, and the squares of the singular
values yield the natural weights. Numerically this approach is
more stable, hence it is the choice used in practice. Using the same
procedure for the other DOFs, we obtain all natural potentials for
the lowest (third, in our example) layer:

uðjÞ
aj ij ; j ¼ 1 . . .8; aj ¼ 1 . . .Nj; ij ¼ 1 . . .mj ð16Þ

The core tensor for these natural potentials is

Ci1 ���i8 ¼
X
a1 ���a8

uð1Þ
a1 i1

� � �uð8Þ
a8 i8

Va1 ���a8 ð17Þ

but we can actually avoid computing it, because in MLPF C is only
needed to compute the density matrices for the next higher layer.
Introducing the mode-combined indices

b1 ¼ ði1i2Þ b2 ¼ ði3i4Þ b3 ¼ ði5i6Þ b4 ¼ ði7i8Þ; ð18Þ

the density matrix for mode 1 in the second layer (which comprises
DOFs 1 and 2) reads

�qð1Þ
b1b

0
1
¼
X

b2b3b4

Cb1b2b3b4Cb01b2b3b4
ð19Þ

We can now formally insert the expression for C, Eq. (17), and
for the purpose of this computation we can furthermore choose full
expansion orders m3 ¼ N3; . . . ;m8 ¼ N8 which makes the natural
potential bases for DOFs 3 through 8 complete. Using this com-
pleteness property, we find that �qð1Þ can be computed via

�qð1Þ
b1b

0
1
¼
X
a3 ���a8

Dð1Þ
b1a3 ���a8D

ð1Þ
b01a3 ���a8

ð20Þ

Dð1Þ
b1a3 ���a8 ¼

X
a1a2

uð1Þ
a1 i1

uð2Þ
a2 i2

Va1 ���a8 ð21Þ

Here, �qð1Þ is computed via a 6D integration, which we again replace
by a Monte Carlo integration, using a new set of �R sampling points
fAr :¼ ðar

3 � � �ar
8Þjr ¼ 1 . . . �Rg:

�qð1Þ
b1b

0
1
¼
X
r

Dð1Þ
b1ar3 ���ar8

Dð1Þ
b01a

r
3 ���ar8

: ð22Þ

Again, to avoid rank deficiency one should choose �R > m1m2

and in practice we use �R ¼ qm1m2. From expression (22) it

becomes clear that Dð1Þ
bA doesn’t need to be known on the full pro-

duct grid, but only on the sampling points fArg. It now remains

to evaluate Dð1Þ
bA for these points. In principle, this could be achieved

by directly evaluating Eq. (21), but this may become too costly for
large modes. Alternatively, we note that the PES approximation is
now given by

~Va1 ���a8 ¼
X
i1 i2

Dð1Þ
i1 i2a3 ���a8u

ð1Þ
i1a1

uð2Þ
i2a2

ð23Þ

and that the optimal approximation is achieved by minimizing

kV � ~Vk2 w.r.t. Dð1Þ
bA . This leads to the equation

X
a1a2

Xð1Þ
a1a2 ;b

Va1a2A ¼
X
b0

X
a1a2

Xð1Þ
a1a2 ;b

Xð1Þ
a1a2 ;b

0

 !
Dð1Þ

b0A ð24Þ

where Xð1Þ
a1a2 ;b

¼ uð1Þ
a1 i1

uð2Þ
a2 i2

ð25Þ
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If the summation over a1a2 is carried out fully, then the term in
parentheses yields dbb0 (due to orthonormality of the natural poten-
tials) and one arrives back at Eq. (21). Instead we can replace this
sum (both on the LHS and on the RHS) by a Monte Carlo integra-
tion. Using the new set of �S sampling points fðas

1as
2Þjs ¼ 1 . . . �Sg, this

results in

Dð1Þ
bA ¼

X
b0
ðXð1ÞÞ�1

bb0
X
s

Xð1Þ
as1a

s
2 ;b
Vas

1
as
2
A ð26Þ

where Xð1Þ
bb0 ¼

X
s

Xð1Þ
as1a

s
2 ;b
Xð1Þ
as1a

s
2 ;b

0 ð27Þ

Here we must choose �S > m1m2, otherwise the matrix Xð1Þ won’t be

invertible. Again, our choice in practice is �S ¼ qm1m2. Once Dð1Þ
bA is

computed, the density matrix �qð1Þ is easily computed via Eq. (22)
and diagonalized (or mathematically equivalent, an SVD of the

matrix Dð1Þ
bA is performed, similar to the previous layer). Doing so

for all four modes of layer 2 yields their natural potentials, and
again, only the dominant ones are kept:

�uðjÞ
bj jj

; j ¼ 1 . . .4; bj ¼ 1 . . .m2; jj ¼ 1 . . . �mj ð28Þ
Thus we have achieved the computation of the natural poten-

tials for layer 2, while avoiding to compute the intermediate core
tensor C.

If we stopped the expansion at layer 2, we would need to use
the core tensor

�Cj1 ���j4 ¼
X
b1 ���b4

�uð1Þ
b1j1

� � � �uð4Þ
b4 j4

Cb1 ���b4 ð29Þ

Considering that we don’t actually know C, we again aim to
avoid this computation. To this end we formally insert the defini-
tion of C, Eq. (17), into Eq. (29):

�Cj1 ���j4 ¼
X
i1 ���i8

�uð1Þ
i1 i2j1

� � � �uð4Þ
i7 i8j4

X
a1 ���a8

uð1Þ
a1 i1

uð2Þ
a2 i2

� � �uð7Þ
a7 i7

uð8Þ
a8 i8

Va1 ���a8

¼
X
a1 ���a8

X
i1 i2

uð1Þ
a1 i1

uð2Þ
a2 i2

�uð1Þ
i1 i2j1

" #
� � � � �

X
i7 i8

uð7Þ
a7 i7

uð8Þ
a8 i8

�uð4Þ
i7 i8j4

" #
Va1 ���a8

¼
X
a1 ���a8

~uð1Þ
a1a2 j1

� � � ~uð4Þ
a7a8 j4

Va1 ���a8 ð30Þ

where we have introduced the abbreviations

~uð1Þ
a1a2 j1

¼
X
i1 i2

uð1Þ
a1 i1

uð2Þ
a2 i2

�uð1Þ
i1 i2 j1

ð31Þ

etc. At this level, the approximation for the PES tensor V reads

~Va1 ���a8 ¼
X
j1 ���j4

�Cj1 ���j4 ~u
ð1Þ
a1a2 j1

� � � ~uð4Þ
a7a8 j4

ð32Þ

and as for the previous layer, the optimal �C is obtained from mini-

mizing kV � ~Vk2 w.r.t. �CJ , where we have introduced the multi-
index J ¼ ðj1 � � � j4Þ. This eventually leads to the equation

�CJ ¼
X
J0
ð~Xð�1ÞÞJJ0

X
A

~XAJ0VA ð33Þ

where ~XJJ0 ¼
X
A

~XAJ
~XAJ0 ð34Þ

and ~XAJ ¼ ~uð1Þ
a1a2j1

� � � ~uð4Þ
a7a8j4

ð35Þ

and A ¼ ða1 � � �a8Þ is a full-grid multi-index. As before, the summa-
tions over A are replaced by Monte Carlo integrations, but to avoid

dealing with a very large ~X matrix, we choose a set of sampling
points separately for the first four and the last four DOFS, i.e. we

use the point set fArs ¼ ðar
1 � � �ar

4as
5 � � �as

8Þ j r ¼ 1 . . . ��R; s ¼ 1 . . . ��Sg.
This results in a separable structure of the matrices ~X and ~X which
greatly reduces the computational effort for the linear algebra parts
of Eqs. (33)–(35) but requires more PES evaluations. To ensure

invertibility of ~X, we must choose ��R > �m1 �m2 and ��S > �m3 �m4. Starting
with the already known natural potentials for layers 3 and 2, we can
evaluate Eqs. (31), (35), (34), and (33) in sequence to obtain �C.

Finally, we introduce a next layer of mode-combined indices

c1 ¼ ðj1j2Þ c2 ¼ ðj3j4Þ ð36Þ

and rewrite the tensor �Cj1 j2 j3 j4 as a matrix �Cc1c2 , on which we perform
a singular value decomposition:

�Cc1c2 ¼
X
k1k2

��Ck1k2
��uð1Þ
c1k1

��uð2Þ
c2k2

ð37Þ

where the top-level (L1) core tensor ��C is diagonal. The left ð��uð1ÞÞ and
right ð��uð2ÞÞ singular vectors serve as the natural potentials for the
two L1 modes, and we only keep the ��m dominant ones. This com-
pletes the RS-MLPF algorithm, as we have now obtained the natural
potentials for all modes of all layers as well as the top-level core
tensor.

For the purposes of this study, we have created a prototype
implementation of the RS-MLPF algorithm in the high-level pro-
gramming language Julia [65]. Our implementation is currently
restricted to a balanced binary tree with two or three layers (i.e.
4 or 8 primitive modes). Moreover, all Monte Carlo integrations
are simply done by uniform random sampling over all grid points.
Like for the FG-MLPF algorithm described in [34], the algorithm
automatically determines all the expansion orders
m1 � � �m8; �m1 � � � �m4, and ��m by taking a user-prescribed threshold
for the global RMS error and distributing it evenly over all modes
in the multi-layer tree. However, the errors introduced by the var-
ious Monte Carlo integrations are not taken into account in this
error control scheme, so that the actual fit error is larger than for
FG-MLPF. This additional random sampling error (‘‘RS error”) can
be reduced by increasing the oversampling parameter q. We point
out that our RS-MLPF implementation is not yet optimized nor par-
allelized, but as we will show in Section 4, it already enables us to
obtain highly accurate PES fits with rather modest computational
resources.

3. The H3O
�
2 ion

The H3O
�
2 ion is an interesting prototype for understanding the

anomalous high mobility of the hydroxide ion in water [66–70].
Electronic structure calculations reveal that at its energetic mini-
mum, H3O

�
2 possess a slightly asymmetric structure, where the

bridging hydrogen is closer to one oxygen than to the other [68].
However, quantum dynamical calculations show that the bridging
hydrogen is well shared between the two OHmoieties, as there is a
very low barrier ð� 70 cm�1Þ for the proton transfer [71].

Our (ML-)MCTDH calculations make use of the PES3C potential
energy surface [68,71], which was constructed as a least-squares fit
to �23,000 energy points calculated at the CCSD(T) level with an
aug-cc-pVTZ basis set. This PES is a more global variant of its pre-
decessor PES2 [68], as it includes a number of dissociative
conformations. The fit sports a relatively low root-mean-square
(RMS) error of 18.0 and 103 cm�1 for energies up to 6,000 and
30,000 cm�1, respectively. An important feature of the PES3C
surface is its permutational invariance, i.e. the PES value is invari-
ant under interchange of like atoms (H with H, or O with O).

Even in its ground state, the H3O
�
2 ion is affected by large-ampli-

tude motions and strong anharmonicity, as the PES features two
shallow double-well potentials: one along the proton-transfer
coordinate (with a barrier of 74 cm�1 according to PES3C), and
another along the torsional coordinate around the O-O axis



Fig. 1. Valence coordinates for H3O
�
2 .

Table 2
Definition of the primitive grid. The DVR column indicates the type of the discrete
variable representation used for each DOF: harmonic oscillator (HO), sine (sin), or
exponential (exp) DVR. N is the number of grid points for each DOF. Instead of the
angles hi we use the variables ui ¼ cos hi . All distance coordinates ðr1 ; r2;R; x; yÞ are
measured in bohr, and / in radians. u1, u2, and zred ¼ z=ðR� 2d0Þ (see text) are
dimensionless.

DOF DVR N Range

r1 HO 13 ½1:4;2:4�
r2 HO 13 ½1:4;2:4�
R HO 11 ½4:15;5:5�
x HO 10 ½�0:8;0:8�
y HO 10 ½�0:8;0:8�
zred HO 20 ½�0:5;0:5�
u1 sin 12 ½�0:8;0:35�
u2 sin 12 ½�0:35;0:8�
/ exp 21 ½0;2pÞ
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(barriers of 374 cm�1 and 147 cm�1 at 0	 and 180	, respectively).
These features lead to strong correlations between the DOFs, which
justify the need for full-dimensional quantum calculations to
investigate this system.

The PES3C surface has been previously used to compute the
ground state (zero-point) energy of H3O

�
2 as well as vibrationally

excited states. McCoy et al. [71] report results from vibrational
configuration-interaction (VCI) and diffusion Monte-Carlo (DMC)
calculations, yielding ground state (GS) energies of 6625 cm�1

(VCI) and 6605
 5 cm�1 (DMC), respectively. However, these
reported values were obtained with the PES2 surface, though fur-
ther calculations with the PES3C surface differed by less than
5 cm�1 [71] for the DMC results. Additional results for the PES3C
surface were obtained by Yu [70] who used a two-layer Lanczos
algorithm with mixed grid/non-direct product basis set and
reported a GS energy of 6623:5 cm�1. More recently, in a series
of papers [51,21,22] Peláez et al. investigated ground and excited
states of H3O

�
2 with the MCTDH method, where improved relax-

ation was used to obtain the states and MGPF was used to trans-
form the PES3C surface into SOP form. For the most accurate PES
fit, the reported GS energy was 6602 cm�1.

In this work we use the same valence coordinate system as in
the previous works of Peláez et al. [21,22]. (cf. Fig. 1). This coordi-
nate system is defined by two vectors r1 and r2 for the two O-H
moieties, a vector R connecting the O atoms, and a vector
r3 ¼ ðx; y; zÞ connecting the center of the O-O vector R to the bridg-
ing H atom. Ignoring the overall rotation, this yields nine coordi-
nates for describing the system: the O-H bond lengths r1 and r2,
the O-O distance R, the position of the bridging H ðx; y; zÞ, the azi-
muthal angles h1 and h2 between the O-H vectors and the O-O axis
(though note that the calculations actually use ui ¼ cos hi, cf.
Table 2), and the torsional angle /. As suggested by Vendrell
et al. [17], we replace the coordinate z by a dimensionless variable
zred ¼ z=ðR� 2d0Þ which can take values in the range ½�0:5;0:5�. d0

is a parameter which signifies the minimum allowed distance of
the bridging H to one of the O atoms. Here we use d0 ¼ 1:6a0. In
this way, highly energetic conformations in which the bridging H
lies too close to one of the O atoms are avoided.

As noted by Yu [70] and Peláez et al. [51], the PES3C energy sur-
face exhibits ‘‘holes”, i.e. unphysical regions where the potential
energy lies below the (physically sound) global potential mini-
mum. As such regions pose problems both for the PES fitting
(where they introduce artificial correlations between the DOFs)
and for the quantum calculations (where they may act as a trap
for the wavefunction), it is advisable to repair or avoid those
regions. While Yu [70] replaced all negative energies with a large
positive value2 so that the wavefunction avoids the unphysical
regions, Peláez et al. [51,21] carefully reduced the coordinate ranges
so that no regions of negative energy can be encountered. However,
unphysically distorted PES regions could not be excluded to be pre-
sent in the grid, which might lead to unphysical correlation between
the DOFs. Here we follow Peláez’ approach, and reuse the coordinate
ranges as well as other parameters defining the primitive grid from
the previous works [21,22]. These parameters are listed in Table 2.
4. Results

Using four different variants of Potfit, we have computed the
ground state (GS) of the H3O

�
2 ion, for which the PES3C potential

energy surface described in Section 3 was used. Our investigation
focuses on how the accuracy of the PES fit influences the runtime
of the GS computation.
2 We note that this procedure might shift the GS energy upwards.
4.1. Computational setup

To discretize the system, we employed the same primitive basis
as in Ref. [21], and the basis parameters are listed in Table 2. We
also reuse the kinetic energy operator from [21] which was derived
as an analytic expression using the TANA software package [72].
However, we used a different mode combination setup than in
[21] because here we perform most computations with ML-
MCTDH instead of MCTDH, and we found that the original mode
combination scheme led to suboptimal performance of ML-
MCTDH, and that a different scheme yielded an improved balance
of the ML-MCTDH tree. The primitive combined modes we used for
our MCTDH calculations are: ðr1;u1Þ; ðR; zredÞ; ðx; y;/Þ, and ðr2;u2Þ.
For our ML-MCTDH calculations, the first two and the last two of
these primitive modes were then combined for the upper layer.
The resulting ML-MCTDH tree is depicted in Fig. 2.

In addition to this setup with four modes, we have performed a
set of ML-MCTDH computations with eight modes, where all prim-
itive modes contain only one DOF except for the combined mode
ðx; yÞ. The resulting ML-MCTDH tree is shown in Fig. 3. We note
that, at the desired level of accuracy for the wavefunction, MCTDH
computations with eight modes would be much too costly. There-
fore all 8-mode computations were carried out with ML-MCTDH.

To obtain the system’s ground state, we used the improved
relaxation method with MCTDH as well as regular relaxation (i.e.
propagation in negative imaginary time) with ML-MCTDH. All
computations started with the same initial wavefunction, which
was defined as a Hartree product of Gaussians around the
energy-optimized geometry. In order to quickly obtain a state rel-
atively close to the ground state, we first performed a set of short
relaxation runs, using gradually increasing number of SPFs and
increasing integrator accuracy. The state obtained in this initial



Fig. 2. ML-MCTDH wavefunction tree used for our 4-mode computations. The
edges are labeled with the number of basis functions for each mode, i.e. the number
of DVR grid points for the primitive modes (bottom), and the number of SPFs for
layer 2 (L2) and layer 1 (L1) modes.

Fig. 3. ML-MCTDH wavefunction tree used for our 8-mode computations. The
edges are labeled as in Fig. 2, and a third layer of SPFs (L3) has been added.
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phase was then subjected to a long relaxation run (nominal prop-
agation time 1000 fs), using high integrator accuracy and the num-
ber of SPFs as indicated in Figs. 2 and 3. We note that with these
settings, the lowest natural populations for all modes never
exceeded 10�7, which shows that our wavefunction representation
is highly accurate. Finally, to check that the GS energy is converged,
the number of SPFs for all modes was slightly increased, and a fur-
ther short relaxation run was performed. In all our computations,
the energy dropped at most by 0:01 cm�1, which indicates that
convergence had been achieved. All relaxation runtimes reported
below refer to the long main relaxation run over 1000 fs, as this
was the part which dominated the runtime of the ground state
computation.

For MCTDH, we used the same number of SPFs as for L2 of the
ML-MCTDH tree, i.e. 14/18/32/14, resulting in an A-vector of
112,896 elements. As discussed in Section 2.1, the improved relax-
ation method only uses propagation for the SPFs but diagonaliza-
tion to obtain the A-vector. Nevertheless, we found that the
convergence behaviour towards the GS differs very little between
improved relaxation runs and regular relaxation runs, as demon-
strated by the relaxation profiles shown in Fig. 4. Note that both
methods indeed need about 1000 fs to converge to the GS. This
allows us to make a fair comparison between the runtimes for
these two relaxation calculations, despite their algorithmic
differences.
4.2. PES fits

We have produced a series of fits of the PES3C surface, using
four different variants of Potfit:
1. MGPF. We used multi-grid Potfit (MGPF) in its top-down vari-
ant, in which a very large coarse grid is chosen, essentially uti-
lizing every second fine grid point. This produced a fit of very
high accuracy with 49, 338, and 49 SPPs for the modes
ðr1;u1Þ; ðx; y;/Þ, and ðr2;u2Þ, respectively. As in [21], the mode
ðR; zredÞ was contracted. This fit itself would be too large to per-
form MCTDH calculations, but it can be used as a starting point
for creating more reasonably sized fits by truncating the num-
ber of SPPs for each mode, based on a threshold for their natural
weights. We thus produced three fits at different levels of accu-
racy, which we refer to by their relative quality: low (using
14/22/14 SPPs), medium (18/38/18), and high (23/56/23). The
resulting fits in SOP form are suitable for both MCTDH and
ML-MCTDH calculations.

2. MGPF + MLPF. Each of the three MGPF fits was then post-pro-
cessed by MLPF, namely the first step of FG-MLPF can be
replaced by reading in the SOP fit produced by MGPF, comput-
ing the SPPs for the contracted mode, and then the remaining
steps of FG-MLPF are completed. The FG-MLPF implementation
can automatically determine the expansion orders for all
modes, based on a user-specified target accuracy, which is spec-
ified as the global RMS error of the fit. This feature makes use of
the error estimate from the neglected eigenvalues of the poten-
tial density matrix, i.e. a multi-layer analogon of Eq. (11) (see
[34] for details). When postprocessing an existing SOP fit, this
target accuracy refers to the additional approximation intro-
duced by MLPF. We used two options for this post-processing
accuracy, 10 cm�1 and 2 cm�1.

3. FG-MLPF. Unfortunately we were not able to perform FG-MLPF
with the original grid (cf. Table 2), which contains 11:2 � 109

points. Storing the PES on this grid with double-precision float-
ing point numbers requires 84 GiB of memory, and the FG-MLPF
implementation needs additional storage of similar size. To
make the FG-MLPF fits feasible, we reduced the number of grid
points for the / DOF from 21 to 15. This reduces the storage
requirements for the PES to 60 GiB, making the computation
possible on a single machine with 128 GiB of RAM. Again, we
can choose the desired global RMS error of the FG-MLPF fit,
for which we selected the three target accuracies 10 cm�1,
2 cm�1, and 0:1 cm�1. The latter option serves as a reference
point, as it reproduces the full-grid PES almost exactly.

4. RS-MLPF. As described in Section 2.3, in addition to the target
accuracy, we need to specify the oversampling parameter q
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for the algorithm. While the target accuracy controls the expan-
sion orders as in FG-MLPF, the random sampling incurs an addi-
tional approximation error. This error can be reduced by
increasing q, which in turn increases the runtime for the RS-
MLPF algorithm. However, the size of the resulting fit depends
strongly only on the target accuracy but not on q, and it is this
size which is essential for the performance of the subsequent
ML-MCTDH calculations. Here we explored the effects of setting
q to either 2, 3, 4, or 6.

To judge the actual quality of these fits, we estimated their
root-mean-square (RMS) error with respect to the original
potential with a variety of sampling methods (details are given
in Appendix A): uniform random sampling, Markov chain Monte
Carlo, and classical molecular dynamics, where the latter two
methods take an energy (or temperature) parameter for defining
the Boltzmann distribution to sample over. We found that they
yield very similar results at comparable temperature settings. Here
we list the RMS errors obtained by molecular dynamics sampling
at T ¼ 600 K (i.e. kBT ¼ 417 cm�1), by Monte Carlo sampling at
kBT ¼ 10;000 cm�1, and by uniform random sampling (i.e. formally
at T ¼ 1), for all the fits that we produced. See Tables 3 and 4 for
the 4-mode and the 8-mode fits, respectively. Each sample con-
sisted of one million points; for uniform random sampling (which
covers the largest region to sample over) we also performed tests
with ten million sampling points, but the resulting RMS errors only
differ by at most 3%, hence we conclude our sample size to be
sufficient.

We observe the following noteworthy results about the fit
quality:

� When comparing the original MGPF fits to those postprocessed
by MLPF, we find that setting the additional fit accuracy to
Table 3
Details of our 4-mode fits. The ‘‘target” column lists the accuracy parameter used for the M
SPPs for layers 2 and 1 are listed in the L2 and L1 columns, respectively (cf. Fig. 2). The kBT c
text. tfit lists the time that it took to produce the fit.

Method Target ½cm�1� q SPP

L2

MGPF 14,c,22,14
MGPF 18,c,38,18
MGPF 23,c,56,23

MGPF + MLPF 10.0 14,18,22,14
MGPF + MLPF 2.0 14,32,22,14
MGPF + MLPF 10.0 18,19,38,18
MGPF + MLPF 2.0 18,39,38,18
MGPF + MLPF 10.0 23,20,56,23
MGPF + MLPF 2.0 23,43,56,23

FG-MLPF 40.0 13,12,24,13
FG-MLPF 10.0 18,17,38,18
FG-MLPF 2.0 23,22,58,24
FG-MLPF 0.1 34,33,109,35

RS-MLPF 40.0 2 12,12,24,13
RS-MLPF 40.0 3 13,12,24,13
RS-MLPF 40.0 4 13,12,24,13
RS-MLPF 40.0 6 13,12,24,13
RS-MLPF 10.0 2 17,17,38,18
RS-MLPF 10.0 3 17,17,38,18
RS-MLPF 10.0 4 17,17,38,18
RS-MLPF 10.0 6 18,17,38,18
RS-MLPF 2.0 2 23,21,57,23
RS-MLPF 2.0 3 22,22,57,23
RS-MLPF 2.0 4 23,22,57,24
RS-MLPF 2.0 6 23,22,57,24
RS-MLPF 0.1 6 34,33,107,34

a Time for fit only. Calculation of the full PES took 5183s on 16 CPU cores, but had to
2 cm�1 leads to no significant change in the fit errors, even for
the high-quality MGPF fit. Practically, these postprocessed fits
have the same quality level as the original MGPF fits. Even when
using a less accurate setting of 10 cm�1 for the additional fit
error, the quality of the fit is barely affected, viz. the estimated
fit error is at most 1:1 cm�1 higher than for the original MGPF fit.

� For FG-MLPF, the estimated global RMS error ðT ¼ 1Þ strictly
observes the user-supplied accuracy parameter. This is by
design, as the algorithm automatically determines the expan-
sion order for each mode such that the user-supplied RMS
threshold is not exceeded. Although this error control scheme
operates using the global RMS error, we note that the error esti-
mates at lower temperatures consistently lie well below this
global error measure, viz. the fit errors for kBT ¼ 417 cm�1 and
10;000 cm�1 lie around 30% and 60% of the global error,
respectively.

� For the 4-mode RS-MLPF fits (Table 3), the global RMS error
generally exceeds the prescribed accuracy parameter. This is
expected, as the current error control scheme only takes into
account the error caused by truncating the number of SPPs
based on their natural weights, but the additional error caused
by computing the optimal SPPs only approximately is not con-
trolled for. We note that this additional error (the ‘‘RS error”)
can be lowered significantly by increasing the oversampling
parameter q. We find that at q ¼ 6, the actual global RMS error
lies reasonably close to the prescribed accuracy parameter
(within a factor of two). Moreover, for the lower temperature
settings the fit errors behave significantly better than the global
error, as they appear to be much less affected by the RS error.
Especially for the setting kBT ¼ 417 cm�1, the fit error is barely
worse than for FG-MLPF at the same target accuracy, even at
q ¼ 2. For kBT ¼ 10;000 cm�1, the fit error can be brought close
to the FG-MLPF result by choosing q ¼ 3 or q ¼ 4.
LPF error control. For RS-MLPF, q signifies the oversampling parameter. The number of
olumns list the estimated fit error at different temperature settings as described in the

kBT ½cm�1� tfit [s]

L1 417 10;000 1
8:8 20:0 60:2
3:7 7:9 55:0
1:7 3:9 54:2

55,55 9:3 20:3 60:6
92,92 8:8 19:8 60:2
60,60 4:3 9:0 55:0
110,110 3:7 7:9 55:0
62,62 2:5 5:6 54:3
121,121 1:7 4:0 54:3

31,31 12:0 23:7 39:3 9573a

53,53 2:8 5:7 9:7 9924a

84,84 0:7 1:2 2:0 10364a

165,165 0:03 0:06 0:10 11446a

36,36 14:8 43:1 101:8 83
33,33 13:4 30:0 57:7 120
32,32 13:0 26:9 55:4 153
32,32 13:0 25:6 46:7 229
58,58 3:3 11:8 34:4 95
55,55 3:1 7:9 19:5 151
55,55 2:9 7:0 16:1 201
53,53 2:7 6:3 13:1 319
94,94 0:7 3:0 11:3 115
89,89 0:7 2:3 6:5 198
86,86 0:7 1:5 3:7 277
87,87 0:7 1:3 3:3 477
173,173 0:03 0:07 0:19 1594

be performed only once for all FG-MLPF fits.



Table 4
Details of our 8-mode fits. Columns are as in Table 3, with an additional column L3 for the number of SPPs for layer 3 (cf. Fig. 3). For RS-MLPF, fmin lists the minimum number of
PES evaluations per mode. f is the actual total number of PES evaluations needed to produce the fit. Numbers in parentheses signify absolute uncertainties (one standard
deviation) obtained from performing the same fit 100 times with different random seeds.

Method Target ½cm�1� q fmin SPP kBT ½cm�1� f=106 tfit [s]

L3 L2 L1 417 10;000 1
FG-MLPF 10:0 6,6,5,7,25,13,6,6 18,17,39,18 55,55 2.8 5.6 9.8 8030.9 8889
FG-MLPF 2:0 6,7,5,8,33,15,6,7 24,22,60,24 86,86 0.7 1.2 2.0 8030.9 9044
FG-MLPF 0:1 7,8,7,10,52,15,7,8 35,34,112,36 168,168 0.03 0.06 0.10 8030.9 9526

RS-MLPF 40.0 2 0 4,5,4,5,16,8,4,5 13,11,24,12 41,41 33.6(6.4) 114.4(20) 340.4(117) 0.3 2
RS-MLPF 40.0 2 105 4,5,4,6,17,10,4,5 14,13,24,14 42,42 18.2(1.8) 58.6(5.6) 186.2(37) 1.5 11

RS-MLPF 40.0 3 0 4,5,4,6,16,8,4,5 12,12,24,12 38,38 23.0(2.7) 60.9(6.8) 151.9(22) 0.6 5
RS-MLPF 40.0 3 105 4,5,4,6,17,10,4,5 13,13,25,13 39,39 17.1(3.4) 38.4(5.7) 93.6(11) 1.9 16

RS-MLPF 40.0 6 0 4,5,4,6,17,8,4,5 12,12,24,13 35,35 18.4(1.6) 38.8(3.3) 83.3(9.4) 2.4 20
RS-MLPF 40.0 6 105 4,5,4,6,17,10,4,5 13,12,25,13 37,37 15.5(1.2) 28.3(1.5) 57.0(1.9) 4.0 36

RS-MLPF 10:0 2 0 5,5,5,7,23,9,5,5 17,18,38,17 64,64 8.5 35.6 108.2 1.0 10
RS-MLPF 10:0 2 105 6,6,5,7,23,13,6,6 19,18,39,20 64,64 4.4 19.1 70.8 2.5 23

RS-MLPF 10:0 3 0 5,6,5,7,22,9,5,6 17,16,37,17 58,58 6.2(0.9) 21.1(3.7) 60.9(14) 2.0 18
RS-MLPF 10:0 3 105 6,6,5,7,24,13,6,6 18,17,38,18 59,59 3.6(0.2) 10.6(0.8) 31.3(4.7) 3.9 36

RS-MLPF 10:0 4 0 6,6,4,7,23,10,6,6 17,16,37,18 58,58 4.7 14.1 38.0 3.8 35
RS-MLPF 10:0 4 105 6,6,5,7,23,13,6,6 18,17,37,18 57,57 3.4 8.2 18.6 5.8 52

RS-MLPF 10:0 6 0 6,6,5,7,23,11,5,6 17,17,38,18 59,59 4.1 10.6 27.0 9.6 87
RS-MLPF 10:0 6 105 6,6,5,7,23,13,6,6 18,17,37,18 55,55 3.3(0.3) 7.5(0.4) 16.5(0.9) 11.7 105

RS-MLPF 10:0 6 106 6,6,5,7,24,13,6,6 18,17,39,18 56,56 2.7 6.6 13.2 22.2 196

RS-MLPF 2:0 2 0 6,6,5,7,29,11,6,7 22,22,57,23 100,100 2.6 15.4 64.2 3.0 29
RS-MLPF 2:0 2 105 6,7,5,8,33,15,6,7 25,24,61,25 106,106 2.0 13.2 52.5 5.7 61

RS-MLPF 2:0 3 0 6,7,5,8,31,11,6,7 22,22,58,23 94,94 1.5 8.8 40.9 6.9 63
RS-MLPF 2:0 3 105 6,7,5,8,32,17,6,7 24,23,59,24 92,92 0.9 3.7 17.1 10.8 99

RS-MLPF 2:0 4 0 6,7,5,8,31,13,6,7 23,22,58,23 91,91 1.1 5.2 13.4 13.5 129
RS-MLPF 2:0 4 105 6,7,5,8,33,17,6,7 24,23,59,24 91,91 0.8 2.5 6.7 18.6 169

RS-MLPF 2:0 6 0 6,7,5,7,30,13,6,7 23,21,58,23 93,93 0.9 3.3 7.4 28.9 282
RS-MLPF 2:0 6 105 6,7,5,8,32,16,6,7 23,22,59,24 91,91 0.8(.05) 1.9(.15) 5.0(0.9) 36.3 328

RS-MLPF 2:0 6 106 6,7,5,8,34,17,6,7 24,23,58,24 91,91 0.7 1.6 3.5 50.7 455

RS-MLPF 0:1 6 106 7,8,7,10,51,21,7,8 35,34,110,35 174,174 0.03 0.09 0.24 217.2 2011

RS-MLPF 0:1 10 106 7,8,7,10,52,21,7,8 34,33,111,35 178,178 0.03 0.07 0.23 566.1 5114
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� For the 8-mode RS-MLPF fits (Table 4), we found that the fit
errors were much worse than for the 4-mode RS-MLPF fits at
the same settings for target accuracy and q. Moreover, these fits
finish much faster than the corresponding 4-mode fits – up to
40 times faster at low accuracy, but this advantage diminishes
for higher accuracy. Both phenomena can be explained by the
fact that for the 8-mode fits, most of the primitive modes are
very small as they only contain a single DOF, so that even with
a large q the number of PES evaluations for computing their
potential density matrices is small (as low as a few hundred).
This leads to a rather large RS error, which we here aim to
reduce by introducing an additional parameter fmin which signi-
fies the minimum number of PES evaluations to be used when
computing the potential density matrix for each mode (techni-
cally, this is done by locally adjusting q upwards). This signifi-
cantly increases the fit accuracy, often by a factor of two even
for fmin ¼ 105. For q ¼ 6 and fmin ¼ 106 we generally reach the
same level of accuracy as the 4-mode fits. The additional com-
putation time for the fit is relatively modest, viz. several sec-
onds (for fmin ¼ 105) to a few minutes (for fmin ¼ 106).

� In order to judge the reliability of the RS-MLPF method, we have
repeated some of the 8-mode fits 100 times with different ran-
dom seeds. The resulting average fit errors and their uncertain-
ties (measured as the standard deviation) are recorded in
Table 4. We note that with fmin ¼ 0, the relative uncertainties
are rather large, often exceeding 20%. By setting fmin P 105,
the relative uncertainties can generally be brought down to less
than 10%, especially for the fit errors at lower temperatures.
This means that setting fmin not only increases the accuracy of
the fit, but also increases the reliability of the fit result, because
it reduces the statistical fluctuations inherent in our random-
ized algorithm.

� The computational resource requirements for RS-MLPF are rel-
atively low. We stress that the RS-MLPF timings reported in
Tables 3 and 4 were obtained using a single core on an Intel
i5-7200U laptop CPU. Runtimes range from a few seconds to a
few minutes, depending on the desired accuracy, and even the
reference fits (target 0:1 cm�1) could be completed within one
hour. More importantly, the memory required for running the
RS-MLPF algorithm is usually less than 1 GiB – this is a major
improvement over the FG-MLPF algorithm, which required
about 120 GiB of RAM to run.

� The size of the RS-MLPF fits (judged by the required number of
SPPs) is in general very close to the size of the corresponding
FG-MLPF fit, except that for the top layer (L1), slightly more
SPPs seem to be required. This phenomenon diminishes with
increasing q. Hence a larger q is not only beneficial for reducing
the RS error, but also makes the fit a bit more compact, which
has runtime advantages for ML-MCTDH.

4.3. Ground state relaxation

For all the PES fits discussed in the previous section, we have
computed the ground state (i.e. zero-point) energy EGS of the
H3O

�
2 system. While we are interested in how the runtime for

the ground state computation (performed with MCTDH or
ML-MCTDH) depends on the type and the accuracy of the PES fit,
we note that this runtime mostly depends on the size of the PES
fit, i.e. on the number of SPPs used for each mode. Many of our
PES fits, especially the RS-MLPF fits, exhibit very similar size in this



Table 5
Ground state energy EGS and runtimes trlx for the relaxation computations, using our
4-mode PES fits as defined by fit method, target accuracy, and oversampling
parameter q.

Fit Target ½cm�1� q Methoda EGS ½cm�1� trlx ½h�
MGPF low (SPP = 14,c,22,14)
original imprlx 6600.42 1.7
original rlx,ML 6600.42 12.9
+MLPF 10.0 rlx,ML 6600.61 2.8
+MLPF 2.0 rlx,ML 6600.49 3.0

MGPF medium (SPP = 18,c,38,18)
original imprlx 6602.88 3.6
original rlx,ML — 32b

MGPF high (SPP = 23,c,56,23)
original imprlx 6602.95 7.6
original rlx,ML — 68b

+MLPF 10.0 rlx,ML 6602.75 3.7
+MLPF 2.0 rlx,ML 6602.94 4.0

FG-MLPF 40.0 PT,ML 6600.39 —
FG-MLPF 10.0 rlx,ML 6602.80 2.4
FG-MLPF 2.0 rlx,ML 6603.17 3.7
FG-MLPF 0.1 rlx,ML 6603.29 7.0

RS-MLPF 40.0 2 PT,ML 6604.82 —
RS-MLPF 40.0 3 PT,ML 6599.86 —
RS-MLPF 40.0 4 PT,ML 6599.05 —
RS-MLPF 40.0 6 rlx,ML 6597.86 2.0
RS-MLPF 10.0 2 PT,ML 6603.28 —
RS-MLPF 10.0 3 PT,ML 6602.79 —
RS-MLPF 10.0 4 PT,ML 6602.64 —
RS-MLPF 10.0 6 rlx,ML 6602.82 2.8
RS-MLPF 2.0 2 PT,ML 6603.14 —
RS-MLPF 2.0 3 PT,ML 6603.32 —
RS-MLPF 2.0 4 PT,ML 6603.23 —
RS-MLPF 2.0 6 rlx,ML 6603.18 3.7
RS-MLPF 0.1 6 rlx,ML 6603.29 6.7

a Method for obtaining EGS: imprlx = by improved relaxation, rlx = by regular
relaxation, PT = by perturbation theory (see text), ML = using ML-MCTDH.

b Estimated (see text).

Table 6
Ground state energy EGS and runtimes trlx for the relaxation computations, using our
8-mode PES fits as defined by fit method, target accuracy, oversampling parameter q,
and minimum number of PES evaluations per mode fmin. Method is as in Table 5.
Numbers in parentheses are uncertainties (one standard deviation) obtained by
performing the same fit 100 times with different random seeds.

Fit Target ½cm�1� q fmin Method EGS ½cm�1� trlx ½h�
FG-MLPF 10.0 rlx,ML 6602.45 2.3
FG-MLPF 2.0 rlx,ML 6603.10 3.4
FG-MLPF 0.1 rlx,ML 6603.29 7.5

RS-MLPF 40.0 2 0 PT,ML 6600.32(6.16) —
RS-MLPF 40.0 2 105 PT,ML 6600.27(2.76) —

RS-MLPF 40.0 3 0 PT,ML 6601.79(4.38) —
RS-MLPF 40.0 3 105 PT,ML 6598.96(2.95) —

RS-MLPF 40.0 6 0 PT,ML 6599.94(2.85) —
RS-MLPF 40.0 6 105 rlx/PT,ML 6598.78(1.55) 1.4

RS-MLPF 10.0 2 0 PT,ML 6604.46 —
RS-MLPF 10.0 2 105 PT,ML 6603.11 —

RS-MLPF 10.0 3 0 PT,ML 6602.78(1.12) —
RS-MLPF 10.0 3 105 PT,ML 6602.90(0.46) —

RS-MLPF 10.0 4 0 PT,ML 6602.41 —
RS-MLPF 10.0 4 105 PT,ML 6603.02 —

RS-MLPF 10.0 6 0 PT,ML 6603.70 —
RS-MLPF 10.0 6 105 PT,ML 6602.43(0.40) —

RS-MLPF 10.0 6 106 rlx,ML 6602.34 2.3

RS-MLPF 2.0 2 0 PT,ML 6603.02 —
RS-MLPF 2.0 2 105 PT,ML 6603.00 —

RS-MLPF 2.0 3 0 PT,ML 6603.35 —
RS-MLPF 2.0 3 105 PT,ML 6603.27 —

RS-MLPF 2.0 4 0 PT,ML 6602.97 —
RS-MLPF 2.0 4 105 PT,ML 6603.25 —

RS-MLPF 2.0 6 0 PT,ML 6603.21 —
RS-MLPF 2.0 6 105 PT,ML 6603.15(0.06) —

RS-MLPF 2.0 6 106 rlx,ML 6603.13 3.6

RS-MLPF 0.1 6 106 PT,ML 6603.29 —

RS-MLPF 0.1 10 106 rlx,ML 6603.29 8.2

Fig. 5. Runtime for the relaxation calculation vs. accuracy of the PES fit. For MGPF,
runtime is for the MCTDH improved relaxation run. Otherwise, runtime is for the
ML-MCTDH regular relaxation run. The error of the PES fit is estimated by
Metropolis-Hastings sampling over 106 points at an energy of kBT ¼ 10;000 cm�1.
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regard, therefore we didn’t find it necessary to perform a full relax-
ation run for every single one of our PES fits. Faced with limited
computational resources, we instead opted to perform relaxation
runs only for the most accurate RS-MLPF fits, and use the obtained
ground state wavefunction to compute EGS for the other, less accu-
rate fits with a perturbation theory approach. Namely, let V be the
PES fit used for computing the ground state WGS, and let ~V be

another PES fit with its accompanying ground state ~WGS. Then we
can estimate

~EGS ¼ h ~WGSjT̂ þ ~V j ~WGSi � hWGSjT̂ þ ~V jWGSi ð38Þ
where T̂ denotes the kinetic energy operator. We have verified that
this is a very accurate estimate by computing the GS energy for the
same PES fit with all GS wavefunctions of the other fits, and found
that the energies differed at most by 0:02 cm�1. The obtained GS
energies and, where applicable, relaxation runtimes are listed in
Tables 5 and 6 for our 4-mode and 8-mode computations, respec-
tively. All relaxation calculations where performed on a compute
node with two Intel Xeon E5-2670 CPUs, using shared memory par-
allelization with 16 CPU cores.

The runtime results for the relaxation calculations are summa-
rized in Fig. 5. We elected to plot the relaxation runtime against
the Monte Carlo estimated fit error at kBT ¼ 10;000cm�1, as this
is the temperature setting which adequately covers the PES regions
where the GS wavefunction has appreciable population (since
EGS � 6600 cm�1). We note that the runtime for the MCTDH
improved relaxation calculations with the MGPF fits (denoted by
the cross symbols) increases rather rapidly with increasing fit
accuracy (i.e. with decreasing fit error), whereas the runtimes for
ML-MCTDH relaxations with the MLPF fits only increase moder-
ately so; namely, using an MLPF fit that is ten times more accurate
only roughly doubles the relaxation runtime. The reason for this



Fig. 6. Ground state energy (obtained by relaxation) vs. accuracy of the PES fit. Data
from the RS-MLPF fits are shown by the small grey dots and, where available, their
uncertainties are indicated by error bars (one standard deviation). The error of the
PES fit is as in Fig. 5. Note that the GS energy axis uses linear scaling in the range
6603:29
 0:10 cm�1 and logarithmic scaling outside this range.
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very different scaling behaviour between the MGPF and MLPF fits
lies in the different operator format: MGPF produces fits in SOP for-
mat, while the MLPF methods produce fits in MLOp format. As dis-
cussed in Section 2.2, the SOP format necessarily requires a quickly
increasing number of terms for higher accuracy fits. In [34], it was
estimated that the MLOp format should lead to an asymptotically
better scaling behaviour, at least under moderate assumptions
for the expansion orders of the MLPF fit. Our new results fully con-
firm these estimations.

Furthermore, we note that postprocessing the MGPF fit by MLPF
is here detrimental at low accuracy fit settings, roughly doubling
the runtime for the ML-MCTDH relaxation compared to the
MCTDH improved relaxation. This is mostly due to the fact that
improved relaxation is algorithmically superior to regular relax-
ation, and due to additional overhead required by the ML-MCTDH
algorithm compared to MCTDH. However at high accuracy fit set-
tings, postprocessing the MGPF fit by MLPF becomes beneficial,
roughly halving the relaxation runtime. That is, the better scaling
induced by the MLOp format offsets the inferior algorithmic per-
formance of regular relaxation compared to improved relaxation.
This effect is even more pronounced when using the direct MLPF
fits (i.e. FG- or RS-MLPF), which at all accuracy settings lead to bet-
ter runtimes than the MLPF-postprocessed MGPF fits. Even at low
fit accuracy, the direct MLPF fits lead to relaxation runtimes that
can compete with the improved relaxation runtimes for the MGPF
fit. This computational advantage enables us to even perform the
full relaxation run for our reference PES fits (target accuracy
0:1 cm�1) in reasonable time (�8 h). We estimate that an MGPF
fit of similar accuracy would result in a runtime of well over
100 h, even with improved relaxation.

We point out that the different scaling behaviour between SOP-
format (MGPF) and MLOp-format (MLPF) fits is indeed due to the
different PES format, and not caused by algorithmic differences
between MCTDH improved relaxation (used with the SOP fits)
and ML-MCTDH regular relaxation (used with the MLOp fits). To
prove this, we have performed additional ML-MCTDH relaxations
with the SOP-format MGPF fits (see Table 5). Unfortunately, due
to the long runtime of these computations, we were unable to per-
form a full 1000 fs relaxation run except for the low accuracy
MGPF, and thus we estimated the full runtime by extrapolating
the runtime from the partial runs. We observe that these ML-
MCTDH relaxation runtimes are consistently about eight times lar-
ger than the corresponding MCTDH improved relaxation runtimes,
regardless of the MGPF accuracy. That is, the SOP-format PES
shows the same unfavorable scaling behaviour, independent of
the relaxation method. These calculations also provide a direct
measure for the computational advantage that one can gain by
replacing a SOP-format PES by an MLOp-format PES with similar
accuracy: namely, the ML-MCTDH computation can be sped up
between�4 and �20 times when postprocessing the MGPF fit with
MLPF (at negligible loss of accuracy), and the gains rapidly increase
with the accuracy of the fit.

Finally, we investigate how the GS energy depends on the accu-
racy of the PES fit. Our results are summarized in Fig. 6, again
employing the Monte Carlo error estimate at kBT ¼ 10;000 cm�1.
Our reference PES fits consistently yield a value of
EGS ¼ 6603:29 cm�1. Fits at lower accuracy deviate from this result;
the lower the fit accuracy, the higher the deviation. We find that a
fit error of DV approximately translates to a GS energy deviation of
DEGS ¼ 0:1DV . Moreover, focusing on the deterministic PES fitting
methods (i.e. MGPF and FG-MLPF), we observe a systematic devia-
tion of the GS energy towards lower values. The GS energies
obtained with RS-MLPF also appear to cluster at energies below
the reference result, though this is partly obscured by the fluctua-
tions induced by the random sampling, which occasionally push
EGS above the reference value. Currently we can not offer a satisfac-
tory explanation for this apparently systematic deviation.

We believe that our reference result of EGS ¼ 6603:29 cm�1 is
fully converged to within 0:1 cm�1 with respect to both the PES
fit accuracy and the wavefunction accuracy. However, this result
holds only for the primitive basis currently used (cf. Table 2). It
is likely that increasing the coordinate ranges or the number of grid
points, or changing the d0 parameter, will change the value of EGS

by more than 0:1 cm�1. Additionally, the PES itself and the elec-
tronic structure calculations which it is based on have errors that
are significantly larger than the errors caused by our more accurate
PES fits. Nevertheless, here we have shown that the additional fit-
ting error that is necessary for transforming the PES into a form
suitable for ML-MCTDH can be virtually eliminated completely,
at least for systems with 9 DOFs.
5. Conclusions and outlook

We have investigated how the runtime for (ML-)MCTDH calcu-
lations depends on the accuracy of the fit for the potential energy
surface (PES), using relaxation to the ground state of the H3O

�
2 sys-

tem as a benchmark. While it is expected that more accurate PES
fits lead to larger runtimes, we find that how strongly the runtime
increases with the fit accuracy depends on the nature of the fitting
method. We consistently find that PES fits in multi-layer operator
(MLOp) format only lead to a modest increase of the relaxation
runtimes, in contrast to PES fits in sum-of-products (SOP) format
which exhibit a rather rapid increase of the relaxation runtime
with the fit accuracy.

As the MLOp format can only be used with ML-MCTDH wave-
functions, we performed the corresponding ground state computa-
tions with the regular relaxation method (i.e. propagation in
negative imaginary time). In contrast, fits in SOP format can be
used with the improved relaxation method available for MCTDH
wavefunctions, which is algorithmically superior to the regular
relaxation method. Despite this algorithmic disadvantage, we find
that the more favorable scaling behaviour of the MLOp fits enables
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us to outperform the MCTDH improved relaxation method even at
medium settings for the fit accuracy. Even with our most accurate
PES fits, which were designed with a targeted global RMS error of
around 0:1 cm�1, the ML-MCTDH relaxation run converged with
modest computational resources (less than ten hours on 16 CPU
cores). Using these fits, we obtained a zero-point energy of
6603:3 cm�1 for the H3O

�
2 ground state. This agrees well with pre-

viously reported results of 6605
 5 cm�1 obtained with the diffu-
sion Monte Carlo method [71].

In order to obtain the PES fits in MLOp format, we have
designed a novel variant of the multi-layer Potfit method [34] in
which integrations over the full product grid are replaced byMonte
Carlo integrations. The resulting method, termed ‘‘random sam-
pling multi-layer Potfit” (RS-MLPF), produces PES fits that are para-
metrized by a target accuracy (for the global root-mean-square
error) and an oversampling parameter q which controls the num-
ber of PES evaluations used for the Monte Carlo integrations. Using
a prototype implementation of RS-MLPF, we have produced a large
number of PES fits to investigate how its accuracy depends on
these parameters, where the actual fit accuracy was assessed via
Monte Carlo as well as molecular dynamics sampling methods.
Compared to the original ‘‘full-grid” MLPF, RS-MLPF requires much
less computational resources (only a single CPU core and less than
1 GiB of RAM), but produces larger fit errors due to additional
errors from the random sampling. Hence an RS-MLPF fit will usu-
ally miss the prescribed target accuracy, though we found that set-
ting a large enough q (e.g. q ¼ 3 or 4) brings the fit error down to
below twice the target accuracy, thus enabling us to produce PES
fits with good a priori estimates for its accuracy. However, we
observed that RS-MLPF occasionally needs some additional tuning
regarding the number of PES evaluations used, and further investi-
gations on other and larger systems will be needed to develop fully
reliable heuristics for choosing the parameters of the method.

For the 9-dimensional system under study here, the RS-MLPF
method allows us to produce PES fits that are virtually exact, i.e.
their fit error is tiny (much below 1 cm�1) compared to the actual
accuracy of the PES. Moreover, these PES fits can be obtained with
modest computational resources, and they are fully usable with
ML-MCTDH, as they don’t cause excessive runtimes for the relax-
ation or propagation. These features make us very optimistic that
the method will be applicable to larger systems with up to about
20 DOFs. While we don’t expect to be able to reproduce the
extreme level of accuracy which we obtained for the 9D system
here, fits with good accuracy (i.e. below � 10 cm�1 in the low-
energy region) seem to be in reach with RS-MLPF, though
additional work regarding its implementation (especially paralleli-
sation) will be required. The combination of RS-MLPF and ML-
MCTDH will thus yield a method for quantum molecular dynamics
on general potential energy surfaces with unprecedented accuracy
and performance.
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Appendix A. Estimating the PES fitting error

The root-mean-square (rms) error of the potential fit ~VðqÞ with
respect to the original potential VðqÞ is given by

DrmsV ¼
Z

dqwðqÞ ~VðqÞ � VðqÞ
� �2� �1=2

ðA:1Þ

where wðqÞ is a weight function, which is non-negative and fulfillsR
dqwðqÞ ¼ 1. Replacing the integral by a summation over all grid

points results in an expression that is too expensive to evaluate,
due to the enormous size of the full product grid. To estimate the
rms error, the integral is instead replaced by a summation over a
sample of grid points, S ¼ fqi j1 6 i 6 Ng, where the samples are
drawn according to the probability distribution wðqÞ.

To assess the global accuracy of the fit, we employ uniform ran-
dom sampling, i.e. all grid points are equally likely to be sampled,
corresponding to wðqÞ ¼ const. Alternatively, to assess the accu-
racy of the fit in a specific energy region, we gather the sample S
from a Boltzmann distribution, i.e. using

wðqÞ ¼ expð�bVðqÞÞ
Z

dq0 expð�bVðq0ÞÞ
�

ðA:2Þ

where b ¼ 1=kBT depends on a temperature parameter T, and kB
denotes the Boltzmann constant.

The Boltzmann sampling can be performed using a Markov
chain Monte Carlo (MCMC) approach with the Metropolis-Hastings
algorithm [63,64]. For the 9D system under study here, this
approach works adequately. However, for larger dimensionality it
is known that this algorithm performs more and more poorly, as
the random walkers which are used to explore the conformation
space take more and more time to cover the relevant region
defined by the probability distribution, hence it becomes difficult
to reach satisfactory accuracy. As an alternative to the MCMC
approach, we here introduce the option of performing the Boltz-
mann sampling by using classical molecular dynamics (MD), which
has become the standard approach for sampling complex systems
with higher dimensionality, such as proteins or membranes [73].

To perform the MD simulations, we employed the standard MD
package NAMD [74] where we overrode the standard calculation of
the atomic forces with a finite difference gradient of the PES3C
potential (since the PES3C routine doesn’t offer analytical gradi-
ents). Starting from the potential minimum as the initial conforma-
tion, we simulated an NVT ensemble using the Langevin
thermostat [75] for one million steps. Note that the PES3C poten-
tial is invariant with respect to permutations of the hydrogen or
the oxygen atoms, and NAMD preserves this invariance as the
MD simulation is carried out in Cartesian coordinates. However,
our PES fit is given in internal coordinates, which do not obey
the permutational invariance. Therefore, when transforming the
conformations generated by NAMD from Cartesian to internal
coordinates, we must make a choice for assigning the three hydro-
gens according to the definition of the internal coordinates (see
Fig. 1). Our choice was done as follows: First, for each oxygen, find
the hydrogen closest to it. This defines the two OH moieties. Then,
the remaining hydrogen is defined as the bridging H. We found
that such an assignment was always possible for all the conforma-
tions generated by the MD simulation. After the transformation to
internal coordinates, each conformation was replaced by the near-
est conformation on the product grid, as our PES fits are strictly
only defined on the grid points. It was necessary to drop a small
number of conformations which came to lie outside the coordinate
ranges given in Table 2.
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As a remark, we note that the thermostat does not fix the sys-
tem temperature always at a given value, but rather keeps the
average temperature around the given value. That is, the instanta-
neous temperature always fluctuates around the desired value.
Due to the small system size (only 5 atoms) this fluctuations can
be large, but the average temperature is well maintained around
the prescribed value. For instance, we performed an MD simulation
with a prescribed T ¼ 300 K which yielded an averaged tempera-
ture of �T ¼ 300:1 K with a standard deviation of DT ¼ 109 K. Sim-
ilar behaviour was found for T ¼ 600 K and T ¼ 1000 K, with
observed temperatures of 598
 219 K and 1008
 366 K, respec-
tively. Nevertheless, when comparing the MD T ¼ 600 K error esti-
mates for our PES fits with the MCMC estimates at a comparable
temperature setting (kBT ¼ 400 cm�1, i.e. T ¼ 576 K), we found
very good agreement throughout. Hence we conclude that the
MD error estimate is a viable alternative to the MCMC approach,
and is likely to work even in rather large dimensionality.
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