
HAL Id: hal-01851987
https://hal.science/hal-01851987

Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating AADL and FMI to Extend Virtual
Integration Capability

Jérôme Hugues, Jean-Marie Gauthier, Raphaël Faudou

To cite this version:
Jérôme Hugues, Jean-Marie Gauthier, Raphaël Faudou. Integrating AADL and FMI to Extend Virtual
Integration Capability. 9th European Congress Embedded Real Time Software and Systems (ERTSS),
Jan 2018, Toulouse, France. pp.1-10. �hal-01851987�

https://hal.science/hal-01851987
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/20730

 https://www.erts2018.org/authors_detail_inverted_Gauthier%20Jean-Marie.html

Gauthier, Jean-Marie and Hugues, Jérôme and Faudou, Raphaël Integrating AADL and FMI to Extend Virtual

Integration Capability. (2018) In: 9th European Congress Embedded Real Time Software and Systems (ERTSS), 31

January 2018 - 2 February 2018 (Toulouse, France



Integrating	AADL	and	FMI	to	Extend	Virtual	Integration	Capability	

Jérôme	Hugues1,	Jean-Marie	Gauthier2,	Raphaël	Faudou2		

(1	ISAE-Supaero,	2	Samares-Engineering)	

	

Keywords	 	FMI,	AADL,	Cyber-Physical	Systems,	Co-Simulation,	Virtual	components	

	

Abstract		 Virtual	Integration	Capability	is	paramount	to	perform	early	validation	of	Cyber	Physical	
Systems.	The	objective	is	to	guide	the	systems	engineer	so	as	to	ensure	that	the	system	
under	design	meets	multiple	 criteria	 through	high-fidelity	 simulation.	 In	 this	paper,	we	
present	 an	 integration	 scheme	 that	 leverages	 the	 FMI	 (Functional	 Mock-Up	 interface)	
standard	and	the	AADL	architecture	description	language.	Their	combination	allows	for	
validation	 of	 systems	 combining	 embedded	 platform	 captured	 by	 the	 AADL,	 and	 FMI	
components	 that	 represent	 physical	 elements,	 either	 mechanical	 parts,	 or	 the	
environment.	We	present	one		approach,	and	demonstrator	case	studies.	

	

1. Introduction		

Virtual	integration	capability	`is	paramount	to	perform	early	validation	of	Cyber	Physical	Systems.	The	
objective	 is	 to	guide	 the	systems	engineer	 so	as	 to	ensure	 that	 the	system	under	design	meets	multiple	
criteria	through	high-fidelity	simulation.	The	general	approach	is	to	leverage	models	as	primary	artefacts	
to	capture	all	facets	of	a	system,	and	tool	supports	to	analyze	and	simulate	the	system.	

Early	study	[23]	demonstrated	the	importance	of	Architecture	Description	Language	to	capture	many	
facets	 of	 a	 system,	 for	 the	 embedded	 perspective,	 supporting	multiple	 kind	 of	 analysis	 such	 as	 timing	
performance,	or	safety	analysis.	Other	standards	like	FMI	[1]	did	the	same	for	the	mechanical	and	control	
sphere,	 supporting	 co-simulation	 of	 high-level	 mechanical	 models	 (e.g.	 built	 on	 Modelica)	 or	 control	
command	models	built	around	Simulink	or	SCADE.		FMI	has	been	defined	with	primary	objective	to	support	
system-level	simulations,	with	a	strong	emphasis	on	early	validation	of	systems	made	of	separated	models.	

A	 remaining	 challenge	 is	 to	 combine	 both	 spheres.	 As	 a	 matter	 of	 fact,	 architecture	 description	
languages	 capture	 the	 organizational	 structure	 of	 the	 system	 to	 be	 designed,	 and	 the	 exchange	 of	
information,	physics	is	abstracted	through	devices	(sensors	and	captors)	that	interact	with	the	environment	
and	mechanical	parts.	These	models	capture	their	behavior	as	a	set	of	model	elements	that	ultimately	lead	
to	 equations.	 FMI	 allows	 one	 to	 build	 reusable	 components	 from	 these	models,	 but	 do	 not	 address	 the	
construction	of	simulation	itself.	This	rupture	in	abstraction	makes	it	difficult	to	build	integrated	simulation,	
and	motivates	our	contribution.	

Considering	an	architectural	description	model	of	an	embedded	system	as	a	primary	artifact,	we	want	
to	streamline	the	construction	of	a	virtual	integration	testbench	that	would	integrate	external	models	as	
environment	 stimulus,	 hence	 allowing	 through	 tests	 of	 the	 embedded	 (or	 cyber)	part.	Our	 contribution	
builds	on	the	AADL	architecture	description	language,	and	the	FMI	standard.		Our	main	contribution	in	this	
paper	concerns	a	model-based	approach	to	integrate	FMI	blocks	and	AADL	so	as	to	leverage	existing	code	
generation	strategy	and	build	either	model-in-the-loop	or	hardware-in-the-loop	simulations.		

The	paper	is	organized	as	follows:	in	section	2,	we	review	the	main	technological	elements	used:	AADL	
and	FMI.	In	section	3,	we	report	on	existing	FMI-based	integration	workflows.	In	section	4	we	propose	an	
AADL-based	workflow	that	leads	to	the	generation	of	simulations.	Section	5	is	a	case	study	that	illustrates	
the	approach.	Section	6	proposes	future	work	directions.	



2. Standards	in	use	
a. AADL,	Architecture	Analysis	and	Design	Language	

The	 “Architecture	 Analysis	 and	 Design	 Language”	 (AADL)	 (Feiler	 &	 Gluch,	 2012)	 is	 both	 a	 textual	 and	
graphical	 language	for	model-based	engineering	of	embedded	real-time	systems.	AADL	is	used	to	design	
and	analyze	software	and	hardware	architectures	of	embedded	real-time	systems.		

The	AADL	purpose	is	to	model	hardware	components	(memory,	bus,	processor,	device,	virtual	processor,	
virtual	bus)	and	their	associated	embedded	software	(data,	thread,	thread	group,	subprogram,	process).	It	
focuses	on	the	definition	of	clear	block	interfaces,	and	separates	the	implementations	from	these	interfaces.	
From	the	separate	description	of	these	blocks,	one	can	build	an	assembly	of	blocks	that	represent	the	full	
system.	 The	 AADL	 defines	 the	 notion	 of	 properties.	 They	model	 non-functional	 properties	 that	 can	 be	
attached	 to	 model	 elements	 (components,	 connections,	 features,	 instances,	 etc.).	 Properties	 are	 typed	
attributes	that	specify	constraints	or	characteristics	that	apply	to	the	elements	of	the	architecture	such	as	
clock	 frequency	of	 a	 processor,	 execution	 time	of	 a	 thread,	 bandwidth	 of	 a	 bus.	As	 defined,	AADL	 is	 an	
Architecture	 Description	 Language.	 Without	 loss	 of	 generality,	 similar	 notation	 such	 as	 EAST-ADL	 or	
UML/MARTE	would	provide	the	same	power	of	expression.	

AADL	has	a	rich	ecosystem	to	model,	analyze	and	generate	code	from	models,	such	as	Ocarina	(Hugues,	
Zalila,	Pautet,	&	Kordon,	2008).	The	later	aspect	is	interesting	to	ease	the	transition	of	AADL	models’	tasks,	
and	communication	semantics	to	an	implementation	on	top	of	a	regular	Real-Time	Operating	Systems.	We	
detail	this	part	in	the	next	section.	

Let	us	note	that	in	such	models,	the	time	interval	is	given	by	the	CPU	clock	rate	(or	simulated	by	a	scheduler):	
AADL	models	are	discrete	by	nature	and	fit	in	the	cyber	part	of	cyber-physical	systems.	

b. FMI,	the	Functional	Mock-Up	Interface	

FMI	 [1],	 the	 Functional	 Mock-Up	 Interface,	 is	 a	 standard	 for	 the	 simulation	 of	 systems,	 combining	
heterogeneous	models.	The	 initial	 revision	of	FMI	mostly	 focused	on	models	 relevant	 for	multi-physical	
aspects	of	automotive	systems.	Since	then,	it	has	been	widely	adopted	in	several	settings,	especially	for	the	
modelling	and	simulation	of	Cyber-Physical	Systems,	e.g.	as	part	of	the	Ptolemy	project	at	UC	Berkeley	[2].	
FMI	is	already	supported	by	an	increasing	number	of	tools	used	in	several	domains,	e.g.	Modelica1	tools,	
Simulink2	 or	 SCADE	 Suite3.	 Through	 this	 standard,	 system	 designers	 may	 mix	 and	 co-simulate	
heterogeneous	models	built	by	experts	to	better	understand	how	a	system	may	be	integrated.	

FMI,	defines	an	interface	to	be	implemented	as	a	component	called	FMU	(Functional	Mock-up	Unit).	The	
FMI	functions	are	used	(called)	by	a	simulation	environment	to	create	one	or	more	instances	of	the	FMU	
and	to	simulate	them,	typically	together	with	other	models.	An	FMU	may	either	embeds	its	own	solver	(FMI	
for	Co-Simulation)	or	requires	the	simulation	environment	to	perform	numerical	integration	(FMI	for	Model	
Exchange).	For	both	approaches,	each	model	is	exported	in	a	zip	file,	called	FMU,	which	contains	a	binary	
file	 of	 the	 model	 and	 an	 XML	 file	 (named	modeldescription.xml)	 which	 describes	 the	 model	 contents,	
properties,	and	interfaces	(its	associated	model	variables).		

In	this	paper,	we	only	focus	on	FMI	2.0	for	Co-Simulation,	as	we	are	interested	in	combining	self-contained	
simulable	blocks	and	their	integration	in	a	system	level	simulation.	

c. FMI	for	Co-Simulation	

The	FMI	Standard	for	Co-simulation	is	intended	to	provide	an	interface	standard	for	coupling	two	or	
more	simulation	tools	in	a	co-simulation	environment.	Co-simulation	is	a	technique	used	for	the	simulation	
of	coupled	models.		

																																																													
1	https://www.modelica.org/	[last	visited	30/05/2017]	
2	https://fr.mathworks.com/products/simulink.html	[last	visited	31/05/2017]	
3	http://www.esterel-technologies.com/products/scade-suite/	[last	visited	31/05/2017]	



A	coupled	model,	is	a	model	that	describes	a	system	as	a	network	of	(logically	or	physically)	coupled	(or	
connected)	components		[5,	6].	In	the	coupled	model	formalism,	the	connections	between	subsystems	are	
represented	with	connectors,	or	mathematical	equalities.		Formally,	a	coupled	model	may	be	represented	
as	a	graph	structure.	For	non-causal	and	continuous	models,	the	graph	is	undirected.	For	causal	models,	the	
graph	 is	 directed.	 A	 coupled	model	 is	 valid	 if	 connected	 ports	 are	 compatible	 regarding	 their	 type	 and	
causalities	[7].	The	data	exchange	between	subsystems	is	done	at	discrete	communication	points	(called	
tci).	In	the	interval	between	two	communication	points,	the	subsystems	are	solved	independently	by	their	
respective	 solvers.	 Master	 algorithms	 control	 exchanges	 of	 data	 between	 the	 subsystems	 and	 the	
synchronization	between	slaves.	

The	Figure	1	depicts	an	FMU	represented	by	a	block,	with	internal	state	variables	x(t),	connected	to	other	
subsystems	of	the	coupled	problem	by	inputs	u(t)	and	outputs	y(t)	[8].		

	

Figure	1	:	Data	flow	between	the	environment	and	an	FMU	for	CS	[1]	

There	are	two	possibilities	for	providing	slave	subsystems	for	co-simulation:	

• subsystems	with	their	specific	solver,	they	can	be	simulated	in	stand-alone	mode	(see		
• 	
• 	

	

• Figure	2),		
• subsystems	with	the	simulation	tools	in	which	they	have	been	developed	(see	Figure	2).	

	

	

	

	

	

	

Figure	2:	FMU	(CS)	integration	in	stand-alone,	and	with	tool	coupling	[1]	

The	FMI	2.0	specification	defines	the	life	cycle	(different	noticeable	states)	of	an	FMU	as	below.	A	master	
algorithm	serves	several	purposes:	to	instantiate,	to	initialize,	to	execute	and	to	synchronize	FMUs	[9].	An	
instantiated	FMUs	is	called	a	slave.	Master	algorithms	synchronize	FMUs	by	controlling	the	data	that	are	
exchanged	 between	 FMUs	 at	 specific	 synchronization	 points	 called	 communication	 steps.	 The	
communication	step	sizes	are	defined	as	hci	=	tci+1	–	tci,	where	tci	are	communication	points.		

For	co-simulation	two	basic	groups	of	functions	should	be	realized:		



1. functions	for	the	data	exchange	between	subsystems,	
2. functions	for	algorithmic	issues	to	synchronize	the	simulation	of	all	subsystems	and	to	proceed	in	

communication	steps	tci	→	tci+1	from	initial	time	tc0	=	tstart	to	end	time	tcN	=	tstop.	
	

	
Figure	3:	State-machine	of	FMI	Co-Simulation	[1]	

	
d. Combining	ADL	and	FMI	–	benefits	and	challenges		

An	ADL	model	captures	the	organizational	structure	of	the	system,	along	with	executable	blocks	that	
represents	its	inner	structure.	Its	is	fully	configured	so	as	to	faithfully	represent	its	behavior	in	terms	
of	timing	and	communication.	Several	studies	explored	the	capability	to	perform	model	checking	or	
analysis	of	such	model.	Yet,	a	usual	limit	is	the	difficulty	to	capture	a	model	of	the	environment	that	
would	act	as	a	stimulus	for	the	verification	part.		

FMI	has	been	design	to	support	system	simulation.	We	claim	it	can	also	be	used	also	for	verification	of	
real-time	embedded	systems,	by	combining	a	mock	of	the	environment	as	a	FMU	and	the	system	under	test.	In	
this	paper,	we	illustrate	our	approach	to	address	this	part	using	AADL.	

Combining	AADL	and	FMI	would	equip	system	architects	with	a	tool	to	prepare	in	advance	integration	phases	
through	a	virtual	test	bench.	Indeed,	this	would	make	easier	the	early	validation	of	AADL	models:	the	stimulus	
provided	by	FMUs	(that	represent	the	physical	environment)	could	be	considered	as	test	cases	for	AADL	models.	
Using	FMU	would	also	give	access	to	models	with	high-level	of	fidelity,	with	connections	to	other	engineering	
models	beyond	a	naïve	model	of	a	plant.	

However,	this	combination	of	discrete-time	execution	semantics	for	the	cyber	part	(AADL)		with	systems	
dynamics	 (FMI,	multi-physics	 simulation)	 is	not	 an	easy	 task.	 Such	hybrid	models	 raise	 issues	 regarding	 time	
management	 in	 co-simulation,	 typical	 issues	 concern	 the	 time	 step	 used	 to	 synchronize	 elements,	 or	



intermediate	extrapolations	performed	by	each	model	when	no	inputs	are	exchanged.	[24]	provides	a	through	
review	of	these	topics	in	the	general	case.		

In	the	following,	we	review	existing	work	prior	to	propose	an	integrated	workflow	in	section	4.		

	

3. Related	Work	

FMI	was	first	designed	to	co-simulate	physical	and	hybrid	systems	(continuous	and	discrete)	specified	
using	DAEs	(Differential	and	Algebraic	Equations)	and	discrete	events.	In	this	paper,	we	focus	on	the	use	of	
FMI	in	the	context	of	critical	embedded	software	design	with	AADL.	We	plan	also	on	leveraging	existing	
code	generation	from	AADL	that	targets	Real-Time	Operating	Systems	(RTOS).	

In	 the	 following,	 we	 present	 related	 work	 that	 a)	 integrate	 FMI	 with	 modelling	 language,	 b)	 that	
combine	FMI	with	RTOS	code,	and	c)	that	use	FMI	for	hybrid	systems	co-simulation.	

a. Integrating	FMI	with	high-level	modelling	language	

The	integration	of	FMI	with	modelling	language	such	as	UML	or	SysML	is	an	addressed	challenge.	In	[10],	
the	 authors	 proposed	 a	 co-simulation	 environment	 that	 combines	 the	 execution	 of	 UML	models	 (with	
fUML4)	 and	FMI	within	 the	Moka	Papyrus	plugin.	 This	work	 the	 co-simulation	of	 hybrid	 systems,	 e.g.	 a	
controller	modelled	as	an	activity	diagram	(discrete),	and	its	environment	as	physical	and	continuous	FMUs.	
Feldman	et	al.	[11]	proposed	to	export	Rhapsody	SysML	blocks	into	FMUs,	with	a	limitation	on	flow	ports	
and	attributes	(the	behavior	of	SysML	block,	e.g.	state-machines	or	activities,	is	not	supported	for	now).	

Combining	 EAST-ADL	 and	 FMI	 has	 also	 been	 investigated	 during	 the	MAENAD	project	 [12].	 	 The	work	
resulted	 in	 FMI	 1.0	 import	 capability	 within	 EAST-ADL	model	 using	model	 transformation	 technology.	
However,	this	work	focused	on	the	semantic	mapping	between	EAST-ADL	and	FMI,	than	on	co-simulation	
issues	and	execution.	Let	us	note	current	FMI	technology	lacks	means	to	build	simulation	assemblies.	The	
standard	System	Structure	and	Parameterization	(SSP)	[13]	will	complement	FMI	on	this	particular	topic.		

As	our	work	concentrates	at	a	lower	level	of	CPS	design,	i.e.	embedded	software	modelling	and	simulation	
using	AADL,	we	propose	to	complete	these	related	works	at	the	lower	left-side	of	the	V-cycle	with	RTOS	
validation	capabilities	using	FMI.		

b. Combining	FMI	with	RTOS	code	

In	[14],	the	authors	propose	to	adapt	embedded	software	to	comply	with	FMI	for	co-simulation.	More	
precisely,	the	authors	propose	to	advance	the	clock	of	the	RTOS,	by	overwriting	the	idle	thread	and	waiting	
for	 a	 signal	 to	 start	 execution.	 Pohlmann	 et	 al.	 [15],	 proposed	 to	 generate	 FMUs	 from	 UML	 software	
specification,	where	the	clock	is	specified	in	a	DSL	named	MechatronicUML.	This	clock	is	used	to	measure	
execution	time	and	to	specify	Real-Time	properties	within	timed	state-machines.		

On	the	contrary,	we	aim	at	validating	a	system	from	its	ADL	model.	Hence,	we	propose	to	simulate	the	
behavior	of	the	embedded	processor,	which	executes	the	target	code.	Hence,	one	can	perform	co-simulation	
of	CPS,	closest	to	the	actual	implementation	without	the	need	of	specific	hardware	(between	Software-In	
the	Loop	and	Hardware	in	the	Loop),	or	on	the	final	target.		This	is	left	as	a	late-binding	descision.	

	
c. FMI	for	hybrid	co-simulation	

Co-simulating	 discrete	 (software)	 and	 continuous	 models	 (physical),	 raises	 several	 issues	 that	 we	
encountered	during	our	study	and	experiments.	Indeed,	mixing	continuous	and	discrete	behavior	in	a	co-
simulation	framework	is	not	well	handled	by	FMI.	The	representation	of	time	and	its	management	are	the	
key	issues	of	FMI	based	co-simulation	approaches.	In	Cremona	et	al.	[16],	the	authors	identified	extensions	

																																																													
4	http://www.omg.org/spec/FUML/1.2.1/	[last	visited	02/06/2017]	



to	FMI	for	supporting	hybrid	co-simulation:	use	integer	time	instead	of	floating	point	time	representation,	
automatic	choice	of	time	resolution,	use	of	“super-dense”	time,	and	the	use	of	absent	signal.	The	proposed	
solution	 of	 [16]	 satisfies	 all	 the	 requirements	 for	 hybrid	 co-simulation	 stated	 in	 [17].	 Unfortunately,	 it	
imposes	strong	constraints	on	the	usability:	these	extensions	are	not	backward-compatible	with	existing	
FMI	2.0	FMUs..		

Finally,	using	the	dependency	graph	as	an	asset	to	get	more	precise	hybrid	co-simulation	results	is	an	
issue	investigated	in	several	works,	especially	in	[18],	whose	authors	propose	to	generate	master	algorithm	
based	on	 the	dependency	graph	 (with	and	without	 loop)	and	on	 the	step-size	of	each	FMU	(multi-clock	
management).	We	are	also	 interested	 in	 the	recent	results	of	DACCOSIM	[4],	which	propose	to	generate	
master	algorithms	for	parallel	and	distributed	co-simulation	using	hierarchical	FMUs.		
	

4. Integrating	FMUs	as	AADL	blocks		

In	this	Section,	we	present	the	integration	workflow	of	FMU	components	within	AADL	models.		

We	 view	 the	 integration	 of	 FMU	 as	 an	 integration	 process.	 Starting	 from	 an	 AADL	model,	 one	 aims	 at	
integrating	FMU	as	an	executable	block,	similar	to	the	inclusion	of	other	functional	models	in	AADL,	such	as	
C,	Ada,	Scade,	Simulink	that	are	already	supported	by	our	AADL	toolchain	Ocarina.	Each	block	is	actually	
integrated	as	a	subprogram	block,	that	is	triggered	by	its	enclosing	component	such	as	a	thread	or	a	device.	

Ocarina5	[19]	is	a	model	processor	for	the	AADL.	It	supports	code	generation	targeting	a	wide	variety	of	
RTOS	(RTEMS,	RT-POSIX,	FreeRTOS,	ARINC653).	It	maps	AADL	constructs	onto	the	PolyORB-HI	runtime	
that	abstract	RTOS	constructs.	It	preserves	the	initial	semantics	of	the	AADL	model.	

a. Integration	of	FMU	in	AADL	workflow	

First,	let	us	say	that	one	receives	an	FMU	that	models	and	simulates	the	mechanical	part	(physical)	
of	a	larger	system.	This	FMU	should	be	integrated	with	a	controller	(cyber	part),	designed	with	AADL.	The	
goal	is	to	verify	that	the	controller	behaves	as	expected.	The	integration	workflow	is	presented	Figure	45.	
The	first	step	consists	in	an	automated	translation	of	the	FMU	as	AADL	model	using	an	algorithm,	which	1)	
unzips	the	FMU	file,	2)	parses	the	modeldescription.xml	file	to	create	AADL	elements	respecting	the	mapping	
of	Table	1,	and	3)	creates	the	FMI	wrapper	as	set	of	AADL	constructs	:subprogram	that	capture	the	execution	
entrypoint	 of	 the	 simulator)	 and	 and	 corresponding	 C	 implementation,	 thread	 and	 device	 abstractions.	
Then,	one	could	connect	the	FMU	with	the	larger	AADL	model	to	build	a	coupled	model.		

	

Figure	4:	Integrating	an	FMU	as	an	AADL	component	–	Workflow	

b. Integration	of	FMU	execution	semantics	

																																																													
5	http://openaadl.org		



FMU-based	 simulations	 rely	on	 the	 concept	of	 a	Master	Algorithm	 that	orchestrates	 the	overall	
simulation	 at	 each	 time	 step.	 Then,	 the	 FMUs	 perform	 a	 calculation	 step,	 and	 the	 resulting	 values	 are	
propagated	to	the	scheduler,	which	launches	tasks	depending	on	the	overall	simulation	time.	The	Master	
Algorithm	 can	 be	 built	 based	 on	 the	 dependency	 graph	 of	 the	 coupled	model.	 However,	 in	 the	 case	 of	
algebraic	loop	detection,	the	calculation	of	the	dependency	graph	is	aborted	and	a	generic	Master	Algorithm	
is	provided.	In	parallel,	the	target	RTOS	code	is	generated	from	the	AADL	model,	using	Ocarina.	Finally,	the	
whole	code	is	compiled	and	linked	to	be	executed.		

Table	1:	Mapping	Between	FMI	and	AADL	

Concepts	 FMI	 AADL		
Component	 FMU	 Subprogram/Device	
Input/Output	port	 Causality	In/Out	 In	port	/	Out	port	
Discrete	port	/	Continuous	port	 Variability	Discrete/Continuous	 Event	port	/	Data	port	
Types	 Real,	Integer,	Boolean	 Base_Types::Float,	

Base_Types::Integer,	
Base_Types::Boolean	

	

As	stated	by	Table	1,	FMU	blocks	are	mapped	to	AADL	device,	 that	 is	an	abstraction	of	a	device	
interacting	with	 the	physical	world	 captured	by	 the	 FMU	model.	Hence,	 FMU	 interactions	 are	 explicitly	
discretized	by	the	activation	of	the	device	by	other	part	of	the	model,	e.g.	reading	from	a	sensor	will	trigger	
the	corresponding	FMU	at	 the	corresponding	sampling	time.	Hence,	one	can	 integrate	either	continuous	
time	or	discrete	time	in	the	simulation.	

In	our	approach,	FMUs	are	embedded	inside	an	AADL	model	that	already	have	an	execution	semantics,	
and	a	scheduler.	As	a	result,	the	Master	Algorithm	is	implicitly	defined	by	the	combination	of	the	scheduling	
parameters	 of	 all	 blocks:	 signals	 are	 captured	 in	 AADL	 event	 port	 communications;	 data	 propagation	
asAADL	data	port	communications;	scheduling	is	controlled	by	the	scheduler	of	the	system,	e.g.	priority-
driven	 scheduler.	 Thus,	 the	 cyber	 part	 of	 the	 system	 interacts	 with	 the	 environment	 through	 polling	
(periodic	read),	interrupts	(reception	of	events	from	the	environment)	or	actuation.	These	are	captured	by	
corresponding	port	directions	in	the	AADL	model.		

As	 a	 consequence,	 the	 co-simulation	 time	 is	 linked	 to	 scheduler	 time..	We	 used	 signals	 to	 start	 the	
scheduler	until	 the	communication	 time	step	 is	reached.	The	 implementation	of	 the	master	algorithm	is	
automatically	 generated	 using	 the	 Ocarina	 AADL	 code	 generator	 by	 translating	 AADL	 tasks	 and	
communication	ports	 to	 the	 corresponding	C	 artefacts.	 Thanks	 to	 the	 versatility	 of	 the	 code	 generation	
process,	we	can	either	really	on	true	(wall	clock)	time,	or	simulated	time	using	a	simulator	of	a	RTOS.	Hence,	
this	approach	allows	seamless	integration	of	FMU	as	functional	models.	

5. Case	Study	and	Experiment	Results	

In	this	section,	we	list	two	case	studies	built	on	the	previous	integration	workflow6.	

a. Moonlander	

A	Moon	Lander	model	[20]	was	used	to	investigate	co-simulation’s	time	and	scheduler’s	time	issues.	
We	built	a	Modelica	model	of	the	physical	model	and	exported	it	into	an	FMU	2.0	for	Co-Simulation.	The	
controller	implements	a	basic	strategy	to	control	the	descent	of	the	vehicle,	and	triggers	the	thrusters.	A	
first	version	has	been	implemented	in	Modelica	to	check	the	correctness	of	the	controller.,	and	simulated	in	
the	OpenModelica	framework.	

Then,	 the	FMU	of	 the	physical	model	was	 imported	as	an	AADL	component	 following	the	semantics	
mapping	of	the	Table	1,	and	connected	to	a	reimplementation	of	the	controller	in	C.	This	controller	and	the	
																																																													
6	Other	case	studies	are	available	through	http://www.openaadl.org		



plant,	as	seen	as	an	AADL	device	that	samples	the	environment,	have	been	connected	in	an	AADL	model	
(see	 Figure	 6).	 This	 model	 indicates	 the	 data	 types	 exchanges	 and	 the	 scheduling	 parameters	 of	 the	
controller.	 From	 the	 system	 designer	 perspective,	 the	 AADL	 model	 captures	 the	 configuration	 of	 the	
controller,	and	a	device	that	interacts	with	the	environment	as	a	regular	device	driver.	Here,	FMI	plays	its	
role	of	“mock-up”,	instead	of	connecting	this	model	to	the	implementation	of	a	driver,	we	connect	it	to	the	
model	that	simulated	the	environment	it	interacts	with.		

	To	simulate	the	overall	system,	we	generated	the	C	code	of	the	AADL	controller	with	Ocarina,	along	
with	 code	 archetype	 for	 the	 various	 tasks	 and	 communication	 channels.	We	 linked	 it	 to	 the	 FMU	as	 an	
external	library.	We	rely	on	the	FMUSDK2	from	Modelon	(adapted	by	University	of	California	–	Berkeley7)	
to	build	a	generic	entry	point	to	load	FMUs	and	to	compute	simulation	steps	triggered	by	the	host	process.	
For	this	experiment,	we	relied	on	the	GNU/Linux	OS,	combined	with	RT-POSIX	API	call	to	implement	a	real-
time	behavior	for	the	controller.	

Through	analysis	of	the	execution	logs,	we	could	assess	the	simulation	has	the	same	behavior	for	both	
the	FMI-coupled	model	and	the	Modelica	model.	

	

Figure	5	AADL	model	of	the	lunar	lander	

b. ROSACE	case	study	

The	ROSACE	case	study	(Pagetti,	Saussié,	Gratia,	Noulard,	&	Siron,	2014)	was	used	to	investigate	co-
simulation	 graph	 issues,	 but	 also	 scalability.	 ROSACE	 has	 multiple	 implementations	 in	 C/POSIX,	
C/ARINC653,	Simulink	Giotto	or	Ptolemy.	It	is	a	reference	benchmark	for	CPS	simulation.	

The	environment	of	the	controller	is	composed	of	three	FMUs:	an	engine,	an	elevator,	and	the	aircraft	
dynamics.	These	FMUs	are	connected	to	exchange	physical	quantities,	and	to	the	controller	that	is	modeled	
in	 AADL.	 This	 controller	 is	made	 of	 11	 periodic	 tasks	 interconnected.	 This	model	 has	 a	 higher	 level	 of	
complexity	compared	to	the	MoonLander	case	study,	with	more	FMUs	and	tasks.		

To	build	these	FMUs,	we	modelled	the	environment	using	the	Modelica	language	and	we	generated	the	
FMUs	with	JModelica.	The	controller	has	been	implemented	in	Simulink,	and	later	translated	in	C.	Erreur	!	
Nous	n’avons	pas	trouvé	la	source	du	renvoi.7	shows	the	resulting	AADL	model	that	integrates	the	FMUs	
with	the	AADL	controller.	Then,	based	on	(Van	Acker,	Denil,	Vangheluwe,	&	De	Meulenaere,	2015;	Galtier,	
et	 al.,	 2017)	 we	 have	 investigated	 the	 	 construction	 of	 the	 overall	 dependency	 graph	 to	 generate	
automatically	 the	 Master	 Algorithm.	 This	 algorithm	 has	 been	 translated	 as	 a	 set	 of	 AADL	 scheduling	
configuration	parameters.	The	models	are	simple	enough	to	be	full	discretized,	thus	a	causal	graph	can	be	
deduced	to	capture	the	whole	simulation	behavior.	

We	could	leverage	the	ROSACE	validation	script	to	ensure	that	our	simulation	was	also	consistent	with	
other	simulations	done	either	in	Simulink,	Ptolemy/HLA	or	Giotto.		

																																																													
7	https://github.com/cxbrooks/fmusdk2	[last	visited	03/06/2017]	



c. Lessons	learnt	

Through	these	two	case	studies,	we	could	generate	virtual	integration	testbench	for	cyber	physical	systems.	
We	demonstrated	the	capability	to	connect	architectural	description	to	model	simulating	the	environment	
using	 the	 FMI	 framework.	 This	 is	 a	 first	 step	 towards	 full	 generation	 of	 simulation	 environment.	 The	
architectural	description	of	the	system	has	been	demonstrated	to	be	enough	to	interact	with	the	FMU-based	
environment	blocks.	This	is	a	consequence	of	using	causal	systems:	one	case	simulate	the	environment	up	
to	the	instant	required	by	the	cyber	part.	

6. Conclusion	and	Further	Work	

In	this	paper,	we	addressed	the	early	validation	of	embedded	systems.	We	proposed	a	general	approach	
to	bind	architectural	description,	amenable	to	code	generation,	to	FMU	blocks.	This	enables	the	construction	
of	virtual	 integration	test	bench.	First,	we	presented	the	various	elements	of	contexts	and	related	work.	
Then,	we	illustrated	how	FMI	blocks	can	bebound	to	AADL	modesl	so		to	serve	as	a	mock	of	the	environment	
as	seen	through	a	device.	Hence,	one	can	test	an	AADL	model	considering	a	representative	model	of	the	
environment,	 leading.	 Leveraging	 high-fidelity	 model	 turned	 into	 FMU,	 one	 can	 test	 more	 precise	
interaction	scenario.	Future	work	activities	will	increase	the	number	of	case	studies,	to	stress	timeliness	
issues,	 e.g.	 multi-clock	 scenarios.	 Another	 aspect	 will	 consider	 integrating	 multiple	 simulators	 like	
Instruction	Set	Simulators	 for	precise	simulation	of	hardware	blocks,	and	 interoperability	with	domain-
specific	simulators	to	simulate	the	occurrence	of	faults	and	defects.	

Bibliography	
	

[1]		 "MODELISAR	Consortium	and	Modelica	Association	Project	"FMI"	-	Functional	Mock-up	Interface	for	
Model-Exchange	and	Co-Simulation,"	2014.	

[2]		 F.	Cremona,	M.	Lohstroh,	S.	Tripakis,	C.	Brooks	and	E.	A.	Lee,	"FIDE:	An	FMI	Integrated	Development	
Environment,"	in	Proceedings	of	the	31st	Annual	ACM	Symposium	on	Applied	Computing	(SAC'16),	Pisa,	
Italy,	2016.		

[3]		 P.	 H.	 Feiler	 and	 D.	 P.	 Gluch,	 Model-Based	 Engineering	 with	 AADL:	 An	 Introduction	 to	 the	 SAE	
Architecture	Analysis	&	Design	Language,	Addison-Wesley	Professional,	2012.		

[4]		 V.	Galtier,	M.	Ianotto,	M.	Caujolle,	R.	Corniglion,	J.-P.	Tavella,	J.	E.	Gomez,	J.	J.	H.	Cabrera,	V.	Reinbold	
and	E.	Kremers,	"Experimenting	with	Matryoshka	Co-Simulation:	Building	Parallel	and	Hierarchical	
FMUs,"	in	Proceedings	of	the	12th	International	Modelica	Conference,	2017.		

[5]		 P.	B.	Zeigler,	Theory	of	Modelling	and	Simulation,	Malabar,	Florida:	Robert	E.	Krieger,	1984.		

[6]		 H.	Vangheluwe,	"The	discrete	event	system	specification	(DEVS)	Formalism.	Course	Notes,	Course:	
Modeling	 and	 Simulation	 (COMP522A),	 McGill	 University,	 Montreal	 Canada.,"	 2001.	 [Online].	
Available:	http://www.cs.mcgill.ca/~hv/classes/MS.01.Fall/DEVS.pdf.	[Accessed	12	12	2016].	

[7]		 H.	Vangheluwe,	 J.	De	Lara	and	P.	 J.	Mosterman,	"An	 introduction	to	multi-paradigm	modelling	and	
simulation,"	 in	Proceedings	of	 the	Artificial	 Intelligence,	 Simulation	and	Planning	 in	High	Autonomy	
Systems.	(AIS'02),	Lisboa,	Potugal,	2002.		

[8]		 D.	 Broman,	 C.	 Brooks,	 L.	 Greenberg,	 E.	 A.	 Lee,	M.	Masin,	 S.	 Tripakis	 and	M.	Wetter,	 "Determinate	
Composition	of	FMUs	for	Co-simulation,"	in	Proceedings	of	the	11th	ACM	International	Conference	on	
Embedded	Software,	Montreal,	Quebec,	Canada,	2013.		

[9]		 J.	Bastian,	C.	Clauß,	S.	Wolf	and	P.	Schneider,	"Master	for	Co-Simulation	Using	FMI,"	in	Proceedings	of	
the	8th	International	Modelica	Conference,	Dresden,	Germany,	2011.		



[10]		S.	Guermazi,	S.	Dhouib,	A.	Cuccuru,	C.	Letavernier	and	S.	Gérard,	"Integration	of	UML	Models	in	FMI-
based	Co-simulation,"	in	Proceedings	of	the	Symposium	on	Theory	of	Modeling	&	Simulation	(TMS-DEVS	
'16),	Pasadena,	California,	2016.		

[11]		Y.	A.	Feldman,	L.	Greenberg	and	E.	Palachi,	"Simulating	Rhapsody	SysML	Blocks	in	Hybrid	Models	with	
FMI,"	in	Proceedings	of	the	10th	International	Modelica	Conference,	Lund,	Sweden,	2014.		

[12]		S.	 Cavdar,	 "Supporting	 Embedded	 Systems	 Development	 -	 Tool	 Support	 for	 EAST-ADL	 import	 of	
Modelica	FMU,"	Chalmers,	Gothenburg,	Sweden,	2011.	

[13]		J.	Köhler,	H.-M.	Heinkel,	P.	Mai,	J.	Krasser,	M.	Deppe	and	M.	Nagasawa,	"Modelica-Association-Project	
“System	Structure	and	Parameterization”--Early	Insights,"	in	The	First	Japanese	Modelica	Conferences,	
Tokyo,	Japan,	2016.		

[14]		P.	Nicolai,	B.	Tom,	M.	Jan	and	V.-L.	Morten,	"FMI	for	Co-Simulation	of	Embedded	Control	Software,"	in	
The	First	Japanese	Modelica	Conferences,	Tokyo,	Japan,	May	23-24,	2016.		

[15]		U.	Pohlmann,	W.	Schäfer,	H.	Reddehase,	J.	Rockemann	and	R.	Wagner,	"Generating	Functional	Mockup	
Units	 from	Software	Specifications,"	 in	Proceedings	of	 the	9th	 International	MODELICA	Conference,	
Munich,	Germany,	2012.		

[16]		F.	Cremona,	M.	Lohstroh,	D.	Broman,	S.	Tripakis	and	E.	A.	Lee,	"Hybrid	Co-Simulation:	It's	About	Time,"	
University	of	California,	Berkeley,	2017.	

[17]		D.	 a.	 G.	 L.	 Broman,	 E.	 A.	 Lee,	 M.	 Masin,	 S.	 Tripakis	 and	 M.	 Wetter,	 "Requirements	 for	 Hybrid	
Cosimulation	 Standards,"	 in	 Proceedings	 of	 the	 18th	 International	 Conference	 on	 Hybrid	 Systems:	
Computation	and	Control,	Seattle,	Washington,	2015.		

[18]		B.	 Van	Acker,	 J.	 Denil,	 H.	 Vangheluwe	 and	P.	De	Meulenaere,	 "Generation	 of	 an	Optimised	Master	
Algorithm	 for	 FMI	 Co-simulation,"	 in	 Proceedings	 of	 the	 Symposium	 on	 Theory	 of	 Modeling	 &	
Simulation:	DEVS	Integrative	M&S	Symposium	(DEVS'15),	Alexandria,	Virginia,	2015.		

[19]		J.	Hugues,	B.	Zalila,	L.	Pautet	and	F.	Kordon,	"From	the	prototype	to	the	final	embedded	system	using	
the	Ocarina	AADL	tool	suite,"	ACM	Transactions	on	Embedded	Computing	Systems	(TECS),	vol.	7,	no.	4,	
2008.		

[20]		P.	Fritzson,	Introduction	to	modeling	and	simulation	of	technical	and	physical	systems	with	Modelica,	
John	Wiley	&	Sons,	2011.		

[21]		C.	 Pagetti,	D.	 Saussié,	R.	Gratia,	 E.	Noulard	 and	P.	 Siron,	 "The	ROSACE	Case	 Study:	 From	Simulink	
Specification	to	Multi/Many-Core	Execution,"	in	IEEE	19th	Real-Time	and	Embedded	Technology	and	
Applications	Symposium	(RTAS),	Berlin,	Germany,	2014.		

[22]		E.	Durling,	E.	Palmkvist	and	M.	Henningsson,	"FMI	and	IP	Protection	of	Models:	A	Survey	of	Use	Cases	
and	Support	in	the	Standard,"	in	Modelica	conference	,	Prague,	2017.		

[23]	P.	H.	Feiler,	J.	Hansson,	D.	de	Niz,	L.	Wrage,	"System	Architecture	Virtual	Integration:	An	Industrial	
Case	Study	"	Technical	Report	CMU/SEI-2009-TR-017	

[24]	M.	Hoepfer,	"	Towards	a	comprehensive	framework	for	co-simulation	of	dynamic	models	
with	an	emphasis	on	time	stepping",	PhD	thesis,	Georgia	Tech,	
http://hdl.handle.net/1853/41219		

	


