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ABSTRACT
This paper deals with experimental study and with

understanding via a finite number of degrees @doen model
of the vibrations of an inclined cable linked tacantinuous
beam. This is a simplified version of deck and eabf a
bridge. External excitation is exerted on the be@he cable
attached to the end of the beam is submitted teersceal
sinusoidal solicitation due to the response offithite stiffness
beam. The excitation of the cable though it is mooeplex
looks similar to the excitation used in previousrke A
guided device located at the end of the beam esstme
excitation with a variation of the horizontal commgnt of the
cable tension that introduces a new parametric tatian.
Analysis of preliminary experimental results for imand
secondary resonances permits us to consider simgdkeling
with one degree of freedom systems obtained byeption of
the continuous three-dimensional model of the cabte
adapted Irvine mode. Analytical treatment of thesedels
involving data from the experimental devices shewsorrect
gualitative agreement between preliminary experismemnd
theoretical. Continuation technique are used tdililggt the
influence of physical parameters.

INTRODUCTION

Cables oscillations studies have been extensively

considered in the past decades. Some of them amedeto
the static behavior [1], as other ones deal with dignamic
aspect [2], [3], [4], with a linear approach. Othvesrk were
conducted with the necessary description of thelimear
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terms to understand the behavior of cables vilbmaiioreal
environment.

Meirovitch [5] shows that the in-plane motion ofnat
damped taut cable can be described by a Duffinge typ
equation. Takahashi and Konishi [6] are interestethe free
or forced three-dimensional nonlinear vibrationgnBdettini
et al. [7], [8], [9] consider oscillations of anastic cable
suspended between two horizontal supports undeougr
cases of resonances. These studies are also imipat@rding
applications (dampers [10], aerial cable-cars [1&hdons
control [12], stayed bridges, etq...

Inclusion of nonlinear terms is compulsory to hight
other phenomenon (nonlinear modal interaction [EBijper-
harmonic effects, internal resonances [14], biftioces [15],
and parametric nonlinearities [16]). Nayfeh et[4lf] gives
some interesting references.

Introducing models with a few degrees of freedoor (f
example three [18]) is fruitful and permits to eaipl
experimental results.

Gattulli et al. investigates an analytical, numariand
experimental analysis of a cable stayed bridgd®h &nd [20].
Their modeling approach is based on the separateriggon
of both medias (i.e. cable and beam), linked byndauy and
relevant mechanical conditions.

The results suggested in these multiple referensesall
the possible approaches to describe, explain babbglensing
the phenomenology of the observations. Usuallyerathe
setting in equations in the form of a three-dimenal system
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of nonlinear partial derivative equations of eviot
governing displacements of the cable, the authaws a
discretization by introducing a truncated base ofles of the
linear part (Irvine's modes) selected according tte
solicitation range. Projecting on a truncated haaisegular
nonlinear spring — masse system is obtained ardiestwia

analytical methods or by purely numerical approache

according to the type of awaited oscillations.

Usually, the authors considered only horizontallesb
This methodology nevertheless was used by Khadif2agiin
his PhD thesis on an inclined cable.

The presented piece of research is in the conyirmfit
previous studies [22], [23], [24] in which this ed was also
used. In this works, the vibrations of an inclinegble were
studied from the point of view of two particularsomances:
principal resonance where the sinusoidal extermaltation
frequency is supposed near to the first in-plan@nér natural
frequency, and then when the external excitatiequency is
close to the double of the natural frequency. Thsulis
obtained showed a good agreement between the qdri
and the analytical description obtained for a oegree of
freedom system projected on the suitable Irvineislen The
adopted analytical method was the familiar multiglzales
method.

Nevertheless in this work, the excitation was pasdlby
imposing a displacement directly at the lower ehthe cable,
with a device that maintained the horizontal congrtrof the
cable tension as constant as possible. We condidlea¢ this
model supposed to represent a small-scale modalaatble-
stayed bridge did not truly take into account teelkdof the
bridge by the introduction of a finite stiffness.

This is the reason why we study here a specifieexgent
of an inclined cable connected to a horizontal heaime
excitation of the beam is transmitted to the cabie a
guidance system constituting an added mass. Thsumeaent
of the excitation force permits to decompose theadyic
components of the horizontal reaction and the comapts of
the external excitation transmitted to the cablehe T
measurement of the excitation exerted on the lodishe cable
and the measurement of the response of the cabieitpeo
highlight concerned resonances and to considemalified
model.

The aim of the paper is to understand by measuretien
role of this stiffness, and to use a similar moaelsimple as
possible (ideally a nonlinear one degree of freexlagstem),
the added beam acting simply like “filters” extdraacitation.
The guidance system acts as a filter for the hat@aeaction
to introduce in the simplified model.

The paper is organized as follows: after this idtrction,
the experimental set-up is detailed in the firstt®a. The
second Section presents experimental results aanger
reaction and excitation forces, and specific cadponse. The
simplified model and its reduction are presentedhim third
Section. Numerical investigations are carried outhe last
Section to highlight the influence of physical pasder on the
response amplitude.

EXPERIMENTAL INVESTIGATION
Description of the Experimental set-up

The global experimental set-up, see Figure 1, ispused of a
composite flexible blade which represents the derid an
inclined cable (a steel wire surrounded by coppée,win
order to increase the weight per unit length, tmitthe flexural
rigidity modulus). Both elements are linked to asmaforced
to move vertically, and which represents the angiwnt and
the equivalent mass of a section of the deck. Toerethe
cable has a given initial static tension due tortfaess. A 100N
electrodynamics shaker applies a force close todebla
clumping. The measurement device is composed sl
The excitation force from the shaker to the strectis
measured thanks to a piezo-electric sensor. Thesrtristed
force from the end of the beam to the mass is msasured
thanks to a piezo-electric sensor. The verticgbldisement of
the mass is measured by a laser displacement seFiser
instantaneous cable tension is measured via am@siorce
sensor, which also captures the static tensiorallfim high
resolution laser sensor captures without contagtithplane
motion of the cable.

Strain gage Force
sensor

Laser
Micrometer

Laser
displacement sensor

Shaker
100 N

~== Push-rods —==

Piezo-electric force
sensors

L —

Flexible beam

Figure 1: Experimental set-up sketch.
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Figure 2: xperimental set-up: global view and det# of
the excitation system.

Set-up mechanical characteristics and observations

In this experimental device, the cable length 80fn, the
inclination angle is 21.7°, and the sag is abounr0 The
static tension is adjustable and set in this appbta to 62N in
the cable.

The presence of the beam at the lower end of thie tes
an important influence on the natural frequenciésthe
system. Therefore, if the cable is clamped-clampiea out of
plane natural frequency is equal to 4.87 Hz andithglane
natural frequency is equal to 6.06 Hz. But, in dase, where
the lower end of the cable is linked to a massabeam, the
out of plane natural frequency is 6.1 Hz, and theplane
natural frequency is 5.8Hz.

Experimental results

The experimental results present the response tmahli
of the cable as a function of the excitation frauyefor the
first two instability zones.

Primary resonance Q=«)

The primary resonance presents a nonlinear behaver
for low excitation amplitude, see Figure 3.

Figure 3: Experimental response amplitude vs. excition
frequency for the in-plane motion of the cable fotwo
levels of excitation force, for the primary resonane
(Q=a), for both sweep directions (* : up; + : down)

Parameters are dimensionless.

Sub harmonic resonance Q =2¢«)

In the primary parametric instability zone, thep@sse of
the cable exhibit large amplitudes, see Figure 4isT
instability naturally appears for large excitatiamplitudes. A
softening behavior is highlighted.
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Figure 4: Experimental response amplitude vs. excition
frequency for the in-plane motion of the cable fotwo
levels of excitation force, for the sub-harmonic reonance
(Q=2w). Parameters are dimensionless.
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MECHANICAL MODEL
Static and dynamic deformed shapes of the cablprasented
Let consider a cable, of length L, clamped at berds on Figure 6.
and inclined of an anglé with respect to the horizontal axis,
see Figure 5. The motion at the lower it} is imposed and
given by:

Z(t) = Z,,coq(Qt)

Figure 6: Static (dashed) and dynamic (line) deformd
shapes of the cable.

)

Z(Y) Among the parameters governing the obtained equatio
Figure 5: Inclined cable model. motion for the one degree of freedom system, apgpéae
horizontal tension H. This tension is composed sfatic part
Classical method consists in considering a nonfiredastic Ho and a dynamic part,, and is written as follow:
model of the cable represented by three partiaivatére
equations system describing the three-dimensiormiom of H= Ho(l_rcog(gﬁﬁ)) co$)

the cable. The different steps are given in [22[28.

Due to the external excitati{t), and the moving poir, the

In our case, and following the experimental obsgna, the damping can be taken under the general form:

specific boundary condition inverses the classitisfribution
of in-plane and out of plane natural frequenciehisT
parameter is essential in the behavior of the respo & :E(1+Cl cogQ tHPC))

Regarding the in-plane vertical observed vibratioasnd Where ¢,¢.qrepresent the phase delay between excitation

considering principal nonlinear terms, the retaipeoblem is . . . .
. . . and displacement, tension and damping respectively.
related toV(st), the vertical cable displacement, whéeres P ’ ping resp Y

time ands the curvilinear abscissa identical to the spatial
coordinatex. The continuous problem is projected using the
following expression foW:

Finally, the one degree of freedom system whichdeosedy
oscillation is given by:

V(x,t) = f(x).y(t)+xZ(t) co
wherey is the unknown modal coordinatéthe angle of the

inclined cable with respect to the horizontal axis,
Z(t)=ZcoqQt+¢) the imposed displacement at the lower

end, and(x) the Irvine function for the first mode defined: by

g et 4] )
of 3ol 4]
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iz/+2£w(1+ ¢ codQ &cpc))g Primary resonance

a " The solution of the first differential equation is:

, (Bo +Bl(l_rCOS(Q t+(pr))( Zco$Q 1sz)) + Yo =A(T,)e“" +[cd]
B,(1-rcoqQt+q))( ZcofQ Mp))2+[33( t red® +t(p,))3

Introducing the classical detuning rufesw +eo, and
+a,y’ (1-rcoQ t+q)

) eliminating the secular terms in the second difféat
+a.y’ (1-reofQt+q)) equation lead to a single complex equation. By gisin
=y, (1-reodQt+g))*( ZcofQ t9,)) A:%e‘bo (with a, andby real), and puttingd=h,-To,

+; (1-reodQtr))*( Zeog *(P) we obtain the two equilibrium equations governing
amplitudeay and phase. They are:

Therefore, this model includes a tension fluctuatih part of _
_ ne ; . 3lad
the parametric excitation, and an imposed vertical
displacement at the lower end of the cable, responsible for +Sin(®)(_1y10 sz22 fvloZT *0‘ 2@0&
the forcing term in the equation of motion, andoafer 2

parametric excitation. ] 3
*g, 5|r(29) (8 BSOrZ +§Bzozz _BBlozrj =

The method of multiple scales in time is used ofifst order.

Y=Y, Tey; and
T =€t,i=0,1
The contribution of nonlinear terms and dampingnterare 1., 3
maintained to the same order. So we introduce: (‘BZOZ 7830 BSO+°°10 3@20 j3
B =¢€B,,i=122 1
Y, =&,,i =12 _COS(@)( Eyloz Vzorf le - 4(1 2o§oa
o, =€0,,,i=2,3 , ,
& =g, ey COS(ZO) [Sﬁsor +§Bzoz _8ﬁlozrj =

This leads to the two differential equations:

2

N 0 The predicted response amplitude is plotted onrEigu
aT? Yo = for a given set of parameters. The two possiblpaeses
merge close to the natural frequency, and movevedtels.

Byl _ 62y0 0.25 ; ; ; , , : :
o 4, 'R
et i o)
OTO ¢ ﬂr l\'L++ I I | | |
\+ | | | | | |
Ay (1-reofQ T+ )
| l*» | | | | |
a3 (L-reodQ@ o) B
Bayo[L-roodQ T+g)( Zeoka T+0) R S S S
o e
+Ba¥o(L-reodQ T+9)))( Zeok T+o))’ L e
005F—-—-—+—-———4-———"—-——fFl-———F-——t+t—-——+4—-——
oyt reoda o)) N
+V10(1—I‘CO$(Q T+o) )2( ZcobQ T+o, ) 0 bttt +++1+++++++++ 1
2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35

+y20(1—rcos(§2'[;+<pr )2 ZcogQ T+q,) )
Figure 7: Predicted dimensionless response amplitgdvs.
excitation frequency, for the primary resonancg Q =« ).
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Sub harmonic resonance
In this case, the detuning rule &= 2w +ec and we use
1
O:bo _ET:LO'.
The two equilibrium equations are:
8yl
+aosin(29)( Oyl = [330 ‘*BgJ 4[3102 é3 2&2}
+%C(JS(ZG)Z&fqaf 0
and
1 1
ao( Baor = Bmzr 30660 [330_23 Z(Z +*2(*) gj
—aocos(ze)[—a g r—iﬁ F-3p.r+1p OZ——3 JZEJ
4 30 16 30 30 4 1 16[32
+%sin(2@)llmfclao: 0

The predicted response amplitude is plotted onrEi@u
for a given set of parameters. Three possible resgm
exist, where the intermediate solution is unstable.
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| | | | |
Ot
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Figure 8: Predicted dimensionless response amplitedvs.
excitation frequency, for the sub-harmonic resonane

(Q=2a).
NUMERICAL INVESTIGATION

Using continuation technique on the presented mdadisl
possible to explore the influence of several patarsesuch as
cable static tension, inclination angle, excitatidevels,
mechanical and geometric properties. In what fqllove

present the influence of the inclination angle loa predicted
response amplitude close by the primary resonaaitether
parameters being constant. The excitation frequéan this
case, normalized to a constant value, in order #kenthe
comparison easier.
Even if the shapes of the responses remain idénitca

highlights an increase of the response amplitudeftaguency
versus the inclination angle.

Figure 9: Predicted (by continuation technique)
dimensionless response vs excitation frequency fthree
inclination angle: (a) 30°, (b) 40°, (c) 50°.
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CONCLUSION

This paper was devoted to the experimental andrétieal
investigation on the nonlinear behavior of cablayst
bridges. The experimental approach highlighted ifpawon-
linear phenomenon and couplings between the caiiettze
beam. The softening behavior is due to the presefhdbe
beam stiffness.

The theoretical model is originally based on thassical
inclined cables in-plane equation of motion. In teveloped
model, the cable is both subjected to an imposathdbary
displacement and tension fluctuation, which leada forced,
parametric and nonlinear equation of motion.

Both approaches depict the same conclusion: thie-team
coupling leads to a softening behavior of the syste

The perspectives are oriented toward the inclusiotine pile
stiffness in the model, and also toward the passorérol of
the phenomenon.
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