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ABSTRACT: This paper is concerned with the experimental study of the dynamic behaviour of an 
inclined cable linked to a continuous beam modelling a simplified version of deck and cable of a bridge. 
External excitation is exerted on the beam. The cable attached to the end of the beam is submitted to a 
vertical sinusoidal solicitation due to the response of the finite stiffness beam. A guided device located 
at the end of the beam ensures the excitation with a variation of the horizontal component of the cable 
tension that introduces a new parametric excitation. Analysis of preliminary experimental results for 
main and secondary resonances permits us to consider simple modelling with one degree of freedom 
systems obtained by projection of the continuous three-dimensional model of the cable on adapted 
Irvine mode. Analytical treatment of these models involving data from the experimental devices shows a 
correct qualitative agreement between preliminary experiments and theoretical and numerical results. 

1. INTRODUCTION 

Cables oscillations studies have been extensively considered in the past decades. Some of them are 
devoted to the static behaviour [1], as other ones deal with the dynamic aspect [2], [3], [4], with a linear 
approach. Other work were conducted with the necessary description of the nonlinear terms to 
understand the behavior of cables vibration in real environment. 

Meirovitch [5] shows that the in-plane motion of a not damped taut cable can be described by a 
Duffing type equation. Takahashi and Konishi [6] are interested in the free or forced three-dimensional 
nonlinear vibrations. Benedettini et al. [7], [8], [9] consider oscillations of an elastic cable suspended 
between two horizontal supports under various cases of resonances. These studies are also important 
regarding applications (dampers [10], aerial cable-cars [11], tendons control [12], stayed bridges, 
etc…). 

Inclusion of nonlinear terms is compulsory to highlight other phenomenon (nonlinear modal 
interaction [13], super-harmonic effects, internal resonances [14], bifurcations [15], and parametric 
nonlinearities [16]). Nayfeh et al. [17] gives some interesting references. 

Gattulli et al. investigates an analytical, numerical and experimental analysis of a cable stayed 
bridge in [18] and [19]. Their modeling approach is based on the separate description of both medias 
(i.e. cable and beam), linked by boundary and relevant mechanical conditions. 

 
The results suggested in these multiple references use all the possible approaches to describe, 

explain but by condensing the phenomenology of the observations. Usually, after the setting in 
equations in the form of a three-dimensional system of nonlinear partial derivative equations of 
evolution governing displacements of the cable, the authors use a discretization by introducing a 
truncated base of modes of the linear part (Irvine’s modes) selected according to the solicitation range. 
Projecting on a truncated basis, a regular nonlinear spring – masse system is obtained and studied via 
analytical methods or by purely numerical approaches according to the type of awaited oscillations. 
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The presented piece of research is in the continuity of previous studies [20], [21], [22] in which this 
method was also used. In this works, the vibrations of an inclined cable were studied from the point of 
view of two particular resonances: principal resonance where the sinusoidal external excitation 
frequency is supposed near to the first in-plane Irvine natural frequency, and then when the external 
excitation frequency is close to the double of the natural frequency. The results obtained showed a good 
agreement between the experiment and the analytical description obtained for a one degree of freedom 
system projected on the suitable Irvine’s mode. The adopted analytical method was the familiar 
multiple scales method. 

Nevertheless in this work, the excitation was produced by imposing a displacement directly at the 
lower end of the cable, with a device that maintained the horizontal component of the cable tension as 
constant as possible. We considered that this model supposed to represent a small-scale model of a 
cable-stayed bridge did not truly take into account the deck of the bridge by the introduction of a finite 
stiffness. 

This is the reason why we study here a specific experiment of an inclined cable connected to a 
horizontal beam. The excitation of the beam is transmitted to the cable via a guidance system 
constituting an added mass. The measurement of the excitation force permits to decompose the dynamic 
components of the horizontal reaction and the components of the external excitation transmitted to the 
cable. The measurement of the excitation exerted on the basis of the cable and the measurement of the 
response of the cable permits to highlight concerned resonances and to consider a simplified model.  

The aim of the paper is to understand by measurement the role of this stiffness, and to use a similar 
model as simple as possible (ideally a nonlinear one degree of freedoms system), the added beam acting 
simply like “filters” external excitation. The guidance system acts as a filter for the horizontal reaction 
to introduce in the simplified model. 

 
The paper is organized as follows: after this introduction, the experimental set-up is detailed in the 

first Section. The second Section presents experimental results concerning reaction and excitation 
forces, and specific cable response. The simplified model and its reduction are presented in the third 
Section. The comparison between the experimental and theoretical results, and the capacity of the 
model to reproduce the observed phenomenon are proposed in the last Section. 

2. EXPERIMENTAL INVESTIGATION 

2.1. Description of the experimental set-up 

The global experimental set-up, see Figure 1, is composed of a composite flexible blade which 
represents the deck, and an inclined cable (a steel wire surrounded by copper wire, in order to increase 
the weight per unit length, but not the flexural rigidity modulus). Both elements are linked to a mass, 
forced to move vertically, and which represents the anchor point and the equivalent mass of a section of 
the deck. Therefore, the cable has a given initial static tension due to the mass. A 100N electrodynamics 
shaker applies a force close to blade clumping. The measurement device is composed as follows. The 
excitation force from the shaker to the structure is measured thanks to a piezo-electric sensor. The 
transmitted force from the end of the beam to the mass is also measured thanks to a piezo-electric 
sensor. The vertical displacement of the mass is measured by a laser displacement sensor. The 
instantaneous cable tension is measured via an S-shape force sensor, which also captures the static 
tension. Finally a high resolution laser sensor captures without contact the in-plane motion of the cable.  

 



 

Push-rods 

Shaker 
100 N 

θ 

Laser 
 displacement sensor 

Laser 
Micrometer 

Piezo-electric force 
sensors 

Flexible beam 

Strain gage Force 
sensor 

 

Figure 1: Experimental set-up sketch. 
  
 

  

Figure 2: Experimental set-up: global view and detail of the excitation system. 
 

2.2 Set-up mechanical characteristics and observations 

 
In this experimental device, the cable length is 1.90m, the inclination angle is 21.7°, and the sag is 

about 10mm. The static tension is adjustable and set in this application to 62N in the cable.  
The presence of the beam at the lower end of the cable has an important influence on the natural 

frequencies of the system. Therefore, if the cable is clamped-clamped, the out of plane natural 
frequency is equal to 4.87 Hz and the in-plane natural frequency is equal to 6.06 Hz. But, in this case, 
where the lower end of the cable is linked to a mass and a beam, the out of plane natural frequency is 
6.1 Hz, and the in plane natural frequency is 5.8Hz. 
 

 

2.3. Experimental results 

The experimental results present the response amplitude of the cable as a function of the excitation 
frequency for the first two instability zones. 

 

2.3.1. Primary resonance (Ω ≈ ω1) 

The primary resonance presents a nonlinear behavior even for low excitation amplitude, see 
Figure 3. 
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Figure 1: Experimental response amplitude vs. excitation frequency for the in-plane motion of the cable for two 
levels of excitation force, for the primary resonance ( 1ωΩ ≈ ), for both sweep directions (* : up; + : down) 

Parameters are dimensionless. 
 

2.3.2.Sub harmonic resonance (Ω ≈ 2ω1) 

In the primary parametric instability zone, the response of the cable exhibit large amplitudes, see 
Figure 4. This instability naturally appears for large excitation amplitudes. A softening behavior is 
highlighted. 
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Figure 2: Experimental response amplitude vs. excitation frequency for the in-plane motion of the cable for two 
levels of excitation force, for the sub-harmonic resonance ( 12ωΩ ≈ ). Parameters are dimensionless. 

 

 



3. MECHANICAL MODEL 

Let consider a cable, of length L, clamped at both ends and inclined of an angle θ with respect to the 
horizontal axis, see Figure 3. The motion at the lower end Z(t) is imposed and given by: 

( ) ( )01cosZ t Z t= Ω  
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Figure 3: Inclined cable model. 
 

Classical method consists in considering a nonlinear elastic model of the cable represented by three 
partial derivative equations system describing the three-dimensional motion of the cable. The different 
steps are given in [20] or [21]. 

 
In our case, and following the experimental observations, the specific boundary condition inverses 

the classical distribution of in-plane and out of plane natural frequencies. This parameter is essential in 
the behavior of the response. 

 
Regarding the in-plane vertical observed vibrations, and considering principal nonlinear terms, the 

retained problem is related to V(s,t), the vertical cable displacement, where t is time and s the 
curvilinear abscissa identical to the spatial coordinate x. The continuous problem is projected using the 
following expression for V: 

( ) ( ) ( ) ( ), . . cosV x t f x y t x Z t θ= +  

where y is the unknown modal coordinate, θ the angle of the inclined cable with respect to the 
horizontal axis, ( ) ( )cos zZ t Z t φ= Ω +  the imposed displacement at the lower end, and f(x) the Irvine 
function for the first mode defined by: 
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Static and dynamic deformed shapes of the cable are presented on Figure 4. 
 



 
Figure 4: Static (dashed) and dynamic (line) deformed shapes of the cable. 

 
Among the parameters governing the obtained equation of motion for the one degree of freedom 

system, appears the horizontal tension H. This tension is composed of a static part H0 and a dynamic 
part rH0, and is written as follow: 

( )( ) ( )0 1 cos cosrH H r t φ θ= − Ω +  

Due to the external excitation Z(t), and the moving point B, the damping can be taken under the general 
form: 

( )( )1 1 c1 c cos tξ = ξ + Ω +φ  

Where , ,Z r cφ φ φ represent the phase delay between excitation and displacement, tension and damping respectively. 

Finally, the one degree of freedom system which condensed y oscillation is given by: 
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Therefore, this model includes a tension fluctuation H, part of the parametric excitation, and an 

imposed vertical displacement Z at the lower end of the cable, responsible for the forcing term in the 
equation of motion, and also for parametric excitation. 

 
The method of multiple scales in time is used to the first order. 
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The contribution of nonlinear terms and damping terms are maintained to the same order. So we 
introduce: 
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This leads to the two differential equations: 
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3.1. Primary resonance  

 
The solution of the first differential equation is: 

( ) [ ]1 0i T
0 1y A T e c.c.ω= +  

Introducing the classical detuning rule: 1Ω ≈ ω +εσ , and eliminating the secular terms in the second differential 

equation lead to a single complex equation. By using 0ib0a
A e

2
=  (with a0 and b0 real), and putting 

0 1b TΘ = − σ , we obtain the two equilibrium equations governing amplitude a0 and phase Θ. They are: 
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The predicted response amplitude is plotted on Figure 5 for a given set of parameters. The two 

possible responses merge close to the natural frequency, and move afterwards. 
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Figure 5: Predicted dimensionless response amplitude vs. excitation frequency, for the primary resonance (Ω ≈ ω1). 

 
3.2. Sub harmonic resonance  

In this case, the detuning rule is: 12Ω ≈ ω +εσ  and we use 0 1

1
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2
Θ = − σ . This leads to the equilibrium 

equations which are: 
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The predicted response amplitude is plotted on Figure 6 for a given set of parameters. Three 
possible responses exist, where the intermediate solution is unstable. 
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Figure 6: Predicted dimensionless response amplitude vs. excitation frequency, for the sub-harmonic resonance 
( 12ωΩ ≈ ). 

4. CONCLUSION 

This paper was devoted to the experimental and theoretical investigation on the nonlinear behavior 
of cable stayed bridges. The experimental approach highlighted specific non-linear phenomenon and 
couplings between the cable and the beam. The softening behavior is due to the presence of the beam 
stiffness. 

The theoretical model is originally based on the classical inclined cables in-plane equation of 
motion. In the developed model, the cable is both subjected to an imposed boundary displacement and 
tension fluctuation, which leads to a forced, parametric and nonlinear equation of motion. Both 
approaches depict the same conclusion: the cable-beam coupling leads to a softening behavior of the 
system. The perspectives are oriented toward the inclusion of the pile stiffness in the model, and also 
toward the passive control of the phenomenon. 
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