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Abstract. This paper presents an experimental study on the effects of multi-site damage on the 
vibration response of composite beams damaged by low energy impacts around the barely 
visible impact damage limit (BVID). The variation of the modal parameters with different 
levels of impact energy and density of damage is studied. Vibration tests have been carried out 
with both burst random and classical sine dwell excitations in order to compare that which of 
the methods among Polymax and Half Bandwidth Method is more suitable for damping 
estimation in the presence of damage. Results show that damping ratio is a more sensitive 
parameter for damage detection than the natural frequency. Design of experiments also 
highlighted energy of impact as the factor having a more significant effect on the modal 
parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the 
presence of damage.    

1. Introduction 
The use of fibre-reinforced composite laminates is experiencing an increased growth, namely in the 
aeronautical, naval and automotive industries, because of their excellent mechanical properties in 
conjunction with their low weight, and their ability to be tailored for specific applications. 
Nevertheless, composite materials are very different from metals with respect to their particular failure 
modes, which may be in the form of matrix cracking, fibre breakage, interlaminar delamination, etc. 
[1,2]. Delamination, which is a debonding or separation between individual plies of the laminate, 
frequently occurs in composite laminates. Delamination may arise during manufacturing (e.g., 
incomplete wetting, air entrapment) or during service (e.g., low velocity impact, bird strikes). In a low 
energy impact (but high enough to produce damage), only a very small indentation will be seen on the 
impact surface. This level of damage is often referred to as barely visible impact damage (BVID). 
Generally, fibre-reinforced composite laminates are very sensitive to medium and low energy impacts. 
However, the presence of delaminations may significantly reduce the stiffness and strength of the 
structures and may affect some design parameters such as the vibration characteristics of the structure 
(e.g., natural frequency and damping ratios). It is therefore important to understand the performance of 
delaminated composites in a dynamic environment [3,4]. Comprehensive reviews on vibration-based 
damage detection methods have been presented by Zou et al. [5] on the model-dependent delamination 
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identification methods for composite structures, and by Doebling et al. [6] and Sohn et al. [7] on 
general vibration-based damage detection methods.  
 The delamination-induced decrease of natural frequencies is one of the most commonly 
practiced approaches in damage detection. A large variety of works can be found in the scientific 
literature related to the study of structural damage by changes in natural frequencies [8-12]. However, 
in structures made of composite materials there seems to be a tendency to use damping as a damage 
indicator tool, as it tends to be more sensitive to damage than the stiffness variations, mainly when 
delamination is concerned. Therefore damping has been proposed in scientific literature as a more 
sensitive and attractive damage indicator as compared to natural frequencies [13-16]. Although 
research works related to damping are fewer in number than those on natural frequency because it is a 
parameter that is relatively difficult to estimate.  

This paper focuses on the correlation of modal parameters and impact damage in composite 
beams from an experimental point of view based on low energy impacts around the barely visible 
impact damage limit (BVID). As damping is a phenomenon that is relatively difficult to estimate, so 
the composite beam specimens have been tested with both burst random (BR) and sine dwell (SD) 
testing in order to compare the modal damping ratios. Design of experiments is carried out later in 
order to highlight the factor having the most significant effect on the modal parameters. 

2. Material and Specimen 
Resin-containing carbon-fibre/epoxy prepregs of T300/914 is used to fabricate the test specimens.  
The material is supplied by Hexcel composites, the physical properties are set out in (table 1). The 
specimens are processed in a press. The curing cycle of the laminates is 2 h at 180°C with a warming-
up cycle of 0.5 h at 135°C. The laminates are cut into beams using a diamond wheel cutter, following 
the ASTM D3039/D3470 standards.   

                 Table 1 Physical properties of carbon/epoxy prepreg T300/914 

Properties Symbol Value 
Young’s modulus in fibre direction E1 144000 MPa 
Young’s modulus in transverse direction E2 10000 MPa 
Shear Modulus G12 4200 MPa 
Poisson ratio υ12, υ 23, υ 31 0.25, 0.3, 0.017 
Volume density ρ 1550 kg/m3 

 

The composite beam specimens tested in this article have a thickness of 3.12 mm having 24 
plies. Their geometric configuration and lay-up is listed in (table 2). The lay-up is chosen as such, in 
which the delamination is said to have more profound effects on the dynamic characteristics [16].    

         Table 2 Geometry and lay-up of the composite test specimens 

Length  480 mm 
Width 50 mm 
Thickness  3.12 mm 
Number of layers (plies) 24 
Thickness of each ply 0.125 mm 
Lay-up [(0/90/45/-45)3]s 

 

The vibration tests are carried out with two steel masses (50 x 30 x 10 mm) attached at the 
ends [17]. The aim of putting these masses at the ends is to enhance the difference in the modal 
parameters between the undamaged and the damaged test specimens [18].  

 



 

 

 

 

 

 

3. Experimental Procedure  
Two types of experiments are carried out in this work. Vibrations tests for measuring the modal 
parameters of the composite beams and impact tests in order to induce damage in the specimens. The 
experimental procedure for these two types of tests is discussed separately.  

3.1. High Quality Vibration Tests 
The experimental equipment used to obtain the modal parameters discussed in this paper is shown in 
figure 1. The experimental set-up is based on Oberst method [19]. The Oberst method states that a 
free-free beam excited at its centre has the same dynamical behaviour as that of a half length cantilever 
beam. The test specimen is placed at its centre on a B&K force sensor 8200 which is then assembled 
on a shaker supplied by Prodera having a maximum force of 100N. The fixation system and the end 
masses are glued to the test specimens with a HBM X60 rapid adhesive. High quality frequency 
response functions are measured with the help of a Laser Vibrometer OFV-505 provided by Polytec 
[20]. The shaker, force sensor and the laser vibrometer are manipulated with the help of a data 
acquisition system supplied by LMS Test Lab. The centre of the test specimens is excited at Point 17 
as shown in figure 2 and a high frequency resolution of (∆f = 0.25Hz) for precise modal parameter 
estimation is used for both types of excitations i.e., burst random and sine dwell.   

Burst random excitation is used which is a broadband type excitation signal [0-1600 Hz]. The 
signal is averaged 10 times for each measurement point. Hanning windows are used for both the 
output and the input signals. Response is measured at 33 points that are symmetrically spaced in three 
rows along the length of the beam (figure 2). The modal parameters are extracted by a frequency 
domain estimation method (Polymax) based on an automatic extraction using stability diagram. 

Whereas, sine dwell excitation is the discrete version of a sine sweep. The frequency is not 
varied continuously but is incremented by discrete amounts at discrete time points. The modal 
parameters are extracted by the Half Bandwidth Method (HBM),  

 

 

 

 

Figure 1. Experimental set-up for 
vibration testing 

 Figure 2. Composite beam specimen with location of 
damage, excitation and measurement points 

3.2. Impact Tests  
The impact test system used to damage the composite beams is drop weight system. The impactor tip 
has a hemispherical head with a diameter of 12.7 mm. The size of the impact window is 80 x 40 mm2 
which allows all the impact points to have the same boundary conditions and all the four ends are 
clamped. A force sensor (type 9051A) provided by Kistler is placed between the impactor tip and the 
free falling mass of 2 kg. The impact velocity is measured with the help of an optic sensor. The 
combined weight of the impact head, freefalling mass, force sensor and the accelerometer is 2.03 kg. 
In the calculation of impact height, a factor of 1.1 is used to compensate for the losses due to friction 
between the guidance tube and the drop assembly. Further details on the impact test methodology of 
this drop tower can be found in the reference [22].  

The five composite specimens tested in this article are impacted around the barely visible impact 
damage limit (BVID). BVID corresponds to the formation of an indentation on the surface of the 
structure which can be detected by detailed visual inspection and can lead to high damage. In the 



 

 

 

 

 

 

aeronautical domain, BVID corresponds to an indentation of 0.3 mm after relaxation, aging etc 
(according to Airbus certifications). In this study, it is decided to take 0.6 mm of penetration depth as 
detectability criterion just after the impact [22]. Therefore, impact energy of 10 J giving an initial 
indentation depth of 0.55 mm, shall be considered as the BVID limit. Two of the five specimens are 
impacted with an impact energy (6 and 8 J) below the BVID limit in order to study the damage that is 
not visible by naked eye, and two (12 and 14 J) above BVID. The impact parameters for the five 
composite beam specimens studied in this article are listed in (table 3).  

Table 3 Impact test parameters  

Beam No 
 

Energy of Impact (J) Height (mm) Velocity of impact (m/s) 
measured 

1 6 331.8 2.49 
2 8 442.3 2.83 
3 10 (BVID) 552.9 3.24 
4 12 663.5 3.52 
5 14 774.1 3.84 

 
 The composite beam specimens have three states. First one is the undamaged state (0), the 
second is the damage state due to four impacts (4) and the third is the damage state due to eight 
impacts (8). These impact points are shown in figure 2. Vibration tests are done on the five composite 
beams after each of these three states.   

4. Result and Discussion  

4.1. Frequency and Damping change 
Frequency and damping changes are studied with the help of the first four bending modes as they have 
the largest amplitudes for the type of test configuration presented in this article. As discussed 
previously, delamination induced damage in composites leads to an increase in damping and a 
decrease in natural frequency. This effect is more significant in the high frequency range [10]. This 
fact is verified by our experimental results which show that the difference in natural frequencies 
between the damaged (4 and 8) and the undamaged state (0) for the first mode is very small. But this 
difference in frequencies increases for the higher modes. For the 2nd and 3rd bending modes, the 
variation of natural frequency as a function of the undamaged (0) and the two damage states (4 and 8) 
is presented in figure 3.   
 

 
(a) 

 
(b) 

Figure 3. Variation of damped natural frequencies with damage states for (a) 2nd bending mode 
and (b) 3rd bending mode: 0 is the undamaged state, 4 is the damaged state at four impact points 
and 8 is the damaged state at eight impact points  



 

 

 

 

 

 

 Figure 3 (a) and (b) show that the decrease in natural frequencies with the increase in 
damage is more significant in case of the higher impact energies. The experimental results also prove 
that the change in natural frequency between the three states (0,4,8) increases with the increase in 
impact energy (e.g., increase in damage) for all the five composite beams. Similar results are obtained 
for the 4th bending mode. The damping ratios estimated by Polymax from burst random testing for the 
five composite beams are shown in figure 4.  

  

  

Figure 4. Variation of damping ratios (%) estimated by Polymax for the five composite beams for (a) 
1st bending mode (b) 2nd bending mode (c) 3rd bending mode and (d) 4th bending mode, where ‘0’ is 
the undamaged state, ‘4’ is the damaged state at four points and ‘8’ is the damaged state at eight points 

 Figures 3 and 4 show a slight discrepancy between the modal parameters at the undamaged 
state. This anomaly outlines the inherent possibility of false negatives which can arise due to boundary 
conditions and it gives no indication of damage when it is present, as discussed in the reference [23]. It 
can be seen from the results in figure 4 that the damping ratio increases with increase in damage in the 
five beams except for Mode 2 (figure 4b). Furthermore, the change in damping ratios between the 
three states (0,4,8) for Beams (1-4) is very small for the 2nd and 3rd bending modes (figure 4b and 4c). 
However unlike natural frequencies, the increase in damping ratio between the damaged and the 
undamaged states is not always consistent with the impact energy level, due to the complex nature of 
damping and the difficulties in its estimation. But in case of Mode 4 (figure 4d), damping ratio 
exhibits quasi linear dependence on the energy of impact. Furthermore, the modal parameter results 
underline the fact that the damping change ratios are more prominent than the frequency change ratios. 
In case of Beam 5 impacted at 14 J, the average change in natural frequency (between the damaged 
and the undamaged cases) for the first four bending modes is 8% whereas in case of damping ratios 
this average change is as high as 78%.  So it is reasonable to assume that damping may be used instead 
of natural frequency as a damage indicator tool for structural health monitoring purposes [14-16].  

 For certain measurement points, damage in the composite beams distorts the shape of the 
resonance peaks and sometimes there is an appearance of twin peaks instead of one in the frequency 



 

 

 

 

 

 

response functions (FRF) as shown in figure 5. As the Half Bandwidth Method is dependent heavily 
on the shape of the resonance peaks, so the phenomenon of distorted peak shapes and appearance of 
twin peaks in case of damage, leads to faulty damping ratios. Due to this reason, the damping ratios 
estimated by the Half Bandwidth Method in case of sine dwell testing show a significant difference as 
compared to those estimated by Polymax method. The limitations of the Half Bandwidth Method are 
explained in reference [21].  
 

 

Figure 5. Comparison of the shapes of the FRF at point 2 for Beam 5 for (0) is the undamaged state, 
(4) is the damaged state at four impact points and (8) is the damaged state at eight impact points 

4.2. Design of Experiments (DOE) 
Design of experiments (DOE) is a powerful analysis tool for highlighting the influence of key 
parameters that affect an experimental process and the output of that process [24]. This study is carried 
out on the modal parameters (natural frequency and damping ratio) of the five composite beam 
specimens tested by burst random excitation, with an aim to identify the factors which have the most 
significant effect on the experimentally obtained modal parameters.  

The two factors chosen for the design of experiments are the energy of impact (IE) and the 
density of damage (DD). For the energy of impact there are five levels (6, 8, 10, 12, 14J) and for the 
density of damage there are two levels (damage at 4 impact points and damage at 8 impact point). By 
keeping in view the levels of the two factors, a 5 x 2 full factorial design is chosen. The linear 
regression model associated with a 5 x 2 full factorial design, based on the two variables discussed 
above is expressed as follows:  

 oY a a .(IE) a .(DD) a .(IE).(DD) E= + + + +
1 2 3

 (1) 

In equation (1), coefficients represent model constants (ai) that are the contribution of 
independent variables on the response. E is the random error term representing the effects of 
uncontrolled variables, i.e., not included in the model. The model constants (ai) are determined by 
multi-linear regression analysis and are assumed to be normally distributed. The error is assumed to be 
random and normally distributed. These constants (ai) are obtained with 90% confidence level. The 
significance of each variable on a given response (modal parameters in our case) is investigated using t 
test values based on Student’s distribution. The t ratio is the ratio of the parameter estimate (constants) 
to its standard deviation. A t ratio greater than 2 in absolute value is a common rule of thumb for 
judging significance of the variable. The derived constants (ai) and t ratios for the natural frequencies 
and the damping ratios are presented in (tables 4 and 5). The t ratios greater than 2 are marked in bold 
in (tables 4 and 5). Negative values of the model constants and t ratios indicate that the response 



 

 

 

 

 

 

decreases with the increase in the value of the parameter. In our case, this is most of the times true for 
the natural frequencies (table 4) as they decrease with the increase in damage in the specimens.  

Table 4 Coefficients and t ratios for the natural frequencies (Hz)  

 Mode 1 Mode 2 Mode 3 Mode 4 
Term Constants 

(ai) 

t ratio Constants 
(ai) 

t ratio Constants 
(ai) 

t ratio Constants 
(ai) 

t ratio 

IE 0.122 0.66 -7.66 -5.06 -38.91 -6.29 -53.69 -10.33 
DD -0.532 -4.09 -2.36 -2.57 -4.52 -1.03 -30.73 -7.93 
IE x DD -0.278 -1.51 -2.48 -1.64 -2.17 -0.35 -24.03 -4.39 
 
Table 5 Coefficients and t ratios for damping ratios (%) estimated by Polymax (burst random testing) 

 Mode 1 Mode 2 Mode 3 Mode 4 
Term Constants 

(ai) 

t ratio Constants 
(ai) 

t ratio Constants 
(ai) 

t ratio Constants 
(ai) 

t ratio 

IE 0.014 0.20 0.063 4.36 0.186 2.83 0.126 9.80 
DD 0.151 3.00 0.026 2.20 0.043 0.92 0.066 7.64 
IE x DD 0.007 0.10 0.008 1.26 0.016 1.03 0.046 1.74 

 By comparing the t ratios for the energy of impact (IE) and the density of damage (DD) in 
(tables 4 and 5), it can be seen that the energy of impact has a more significant effect on the modal 
parameters than the density of damage for the 2nd, 3rd and 4th bending modes. However, the density of 
damage is a more significant factor for the first bending mode. The second order interaction term (IE x 
DD) is in the majority of the cases insignificant as well.  
 From the design of experiments, it can be concluded that the energy of impact (IE) is the most 
significant factor on the natural frequencies and damping ratios (estimated by Polymax method with 
burst random excitation) for the 2nd, 3rd and 4th bending modes.  

5. Conclusion 
Vibration tests have been carried out on pristine and damaged composite beam specimens using burst 
random and sine dwell excitations. The composite beam specimens are impacted with the help of a 
drop weight system by keeping in view the barely visible impact damage limit (BVID). Results show 
that with the accumulation of damage in the specimens, there is a decrease in natural frequency 
accompanied by an increase in damping ratio. Results show that damping ratio is a more sensitive 
parameter for damage detection than the natural frequency. Energy of impact is highlighted as the 
factor having the most significant effect on the modal parameters by carrying out design of 
experiments on the experimental data. Furthermore, the Half Bandwidth Method is found unsuitable 
for damping estimation in the presence of damage.     
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