# Ruelle spectrum of linear pseudo-Anosov maps 

Frédéric Faure, Sébastien Gouëzel, Erwan Lanneau

## To cite this version:

Frédéric Faure, Sébastien Gouëzel, Erwan Lanneau. Ruelle spectrum of linear pseudo-Anosov maps. Journal de l'École polytechnique - Mathématiques, 2019, 6, pp.811-877. 10.5802/jep.107. hal01851861

HAL Id: hal-01851861
https://hal.science/hal-01851861
Submitted on 31 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS 

FRÉdÉRIC FAURE, SÉBASTIEN GOUËZEL AND ERWAN LANNEAU


#### Abstract

The Ruelle resonances of a dynamical system are spectral data describing the precise asymptotics of correlations. We classify them completely for a class of chaotic twodimensional maps, the linear pseudo-Anosov maps, in terms of the action of the map on cohomology. As applications, we obtain a full description of the distributions which are invariant under the linear flow in the stable direction of such a linear pseudo-Anosov map, and we solve the cohomological equation for this flow.


## Contents

1. Introduction, statements of results ..... 2
Ruelle resonances ..... 2
Linear pseudo-Anosov maps ..... 3
A quick sketch of the proof ..... 5
Invariant distributions for the vertical flow ..... 6
Solving the cohomological equation for the vertical flow ..... 8
Trace formula ..... 9
Organization of the paper ..... 11
2. Functional spaces on translation surfaces ..... 11
2.1. Anisotropic Banach spaces on translation surfaces ..... 11
2.2. Compact inclusions ..... 17
2.3. Duality ..... 18
2.4. Cohomological interpretation ..... 23
3. The Ruelle spectrum of pseudo-Anosov maps with orientable foliations ..... 29
3.1. Quasi-compactness of the transfer operator ..... 29
3.2. Description of the spectrum ..... 31
4. Vertically invariant distributions ..... 38
5. Solving the cohomological equation ..... 46
6. When orientations are not preserved ..... 54
6.1. Orientable foliations whose orientations are not preserved ..... 54
6.2. Non-orientable foliations ..... 55
References ..... 58
[^0]
## 1. Introduction, statements of Results

Ruelle resonances. Consider a map $T$ on a smooth manifold $X$, preserving a probability measure $\mu$. One feature that encapsulates a lot of information on its probabilistic behavior is the speed of decay of correlations. Consider two smooth functions $f$ and $g$. Then one expects that $\int f \cdot g \circ T^{n} \mathrm{~d} \mu$ converges to $\left(\int f \mathrm{~d} \mu\right) \cdot\left(\int g \mathrm{~d} \mu\right)$ if iterating the dynamics creates more and more independence - if this is the case, $T$ is said to be mixing for the measure $\mu$. Often, one can say more than just the mere convergence to 0 of the correlations $\int f \cdot g \circ$ $T^{n} \mathrm{~d} \mu-\left(\int f \mathrm{~d} \mu\right) \cdot\left(\int g \mathrm{~d} \mu\right)$, and this is important for applications. For instance, the central limit theorem for the Birkhoff sums $S_{n} f=\sum_{k=0}^{n-1} f \circ T^{k}$ of a function $f$ with 0 average often follows from the summability of the correlations between $f$ and $f \circ T^{n}$.

When $T$ is very chaotic, the correlations tend exponentially fast to 0 . It is sometimes possible to obtain the next few terms in their asymptotic expansion, in terms of the Ruelle spectrum (or Ruelle resonances) of the map.
Definition 1.1. Let $T$ be a map on a space $X$, preserving a probability measure $\mu$. Consider a space of bounded functions $\mathcal{C}$ on $X$. Let I be a finite or countable set, let $\Lambda=\left(\lambda_{i}\right)_{i \in I}$ be a set of complex numbers with $\left|\lambda_{i}\right| \in(0,1]$ such that for any $\varepsilon>0$ there are only finitely many $i$ with $\left|\lambda_{i}\right| \geqslant \varepsilon$, and let $\left(N_{i}\right)_{i \in I}$ be nonnegative integers. We say that $T$ has the Ruelle spectrum $\left(\lambda_{i}\right)_{i \in I}$ with Jordan blocks dimension $\left(N_{i}\right)_{i \in I}$ on the space of functions $\mathcal{C}$ if, for any $f, g \in \mathcal{C}$ and for any $\varepsilon>0$, there is an asymptotic expansion

$$
\int f \cdot g \circ T^{n} \mathrm{~d} \mu=\sum_{\left|\lambda_{i}\right| \geqslant \varepsilon} \sum_{j \leqslant N_{i}} \lambda_{i}^{n} n^{j} c_{i, j}(f, g)+o\left(\varepsilon^{n}\right),
$$

where $c_{i, j}(f, g)$ are bilinear functions of $f$ and $g$, that we suppose finite rank but non zero.
In other words, there is an asymptotic expansion for the correlations of functions in $\mathcal{C}$, up to an arbitrarily small exponential error. With this definition, it is clear that the Ruelle spectrum is an intrinsic object, only depending on $T, \mu$ and the space of functions $\mathcal{C}$. In general, one takes for $\mathcal{C}$ the space of $C^{\infty}$ functions on a manifold.

As an example, assume that $T$ is a $C^{\infty}$ uniformly expanding map on a manifold and $\mu$ is its unique invariant probability measure in the Lebesgue measure class. Then the correlations of $C^{r}$ functions admit an asymptotic expansion up to an exponential term $\varepsilon_{r}^{n}$, where $\varepsilon_{r}$ tends to 0 when $r$ tends to infinity. Hence, Definition 1.1 is not satisfied for $\mathcal{C}=C^{r}$, but it is satisfied for $\mathcal{C}=C^{\infty}(M)$. The same holds for Anosov maps, when $\mu$ is a Gibbs measure.

The first question one may ask is if it makes sense to talk about the Ruelle spectrum, i.e., if Definition 1.1 holds for some $\Lambda=\left(\lambda_{i}\right)_{i \in I}$. Virtually all proofs of such an abstract existence result follow from spectral considerations, exhibiting the $\lambda_{i}$ as the spectrum of an operator associated to $T$, acting on a Banach space or a scale of Banach spaces. General spectral theorems taking advantage of compactness or quasi-compactness properties of this operator then imply that there is some set $\Lambda$ for which Definition 1.1 holds (and moreover all elements of $\Lambda$ have finite multiplicity), but without giving any information whatsoever on $\Lambda$ in addition to the fact that it is discrete and at most countable - in particular, it is not guaranteed that $\Lambda$ is not reduced to the eigenvalue 1 , which is always a Ruelle resonance as one can see by taking $f=g=1$. Indeed, if $T$ is the doubling map $x \mapsto 2 x \bmod 1$ on the
circle and $\mathcal{C}=C^{\infty}\left(\mathbb{S}^{1}\right)$, then there is no other resonance. In the same way, there is no other resonance for linear Anosov map of the torus (these facts are easy to check by computing the correlations using Fourier series). That Definition 1.1 holds is notably known for uniformly expanding and uniformly hyperbolic smooth maps, see [Rue90, BT07, GL08].

Once the answer to this first question is positive, there is a whole range of questions one may ask about $\Lambda$ : is it reduced to $\{1\}$ ? is it infinite? are there asymptotics for $\operatorname{Card}(\Lambda \cap\{|z| \geqslant \varepsilon\})$ (possibly counted with multiplicities) when $\varepsilon$ tends to 0 ? is it possible to describe explicitly $\Lambda$ ? The answers to these questions depend on the map under consideration. Let us only mention the results of Naud [Nau12] (for generic analytic expanding maps, there is nontrivial Ruelle spectrum, with density at 0 bounded below explicitly), Adam [Ada17] (the spectrum is generically non-empty for hyperbolic maps), BandtlowJenkinson [BJ08] (upper bound for the density of Ruelle resonances at 0 in analytic expanding maps, extending previous results of Fried), Bandtlow-Just-Slipantschuk [BJS13, BJS17] (construction of expanding or hyperbolic maps for which the Ruelle spectrum is completely explicit), Dyatlov-Faure-Guillarmou [DFG15] (classification of the Ruelle resonances for the geodesic flow on compact hyperbolic manifolds in any dimension).

Our goal in this article is to investigate these questions for a class of maps of geometric origin, namely linear pseudo-Anosov maps. They are analogues of linear Anosov maps of the two-dimensional torus, but on higher genus surfaces. The difference with the torus case is that the expanding and contracting foliations have singularities. Apart from these singularities, the local picture is exactly the same as for linear Anosov maps of the torus (in particular, it is the same everywhere in the manifold). We will obtain a complete description of the Ruelle spectrum of linear pseudo-Anosov map. Then, using the philosophy of Giulietti-Liverani [GL14] that Ruelle resonances contain information on the translation flow along the stable manifold on the map, we will discuss consequences of these results on the vertical translation flow in translation surfaces supporting a pseudo-Anosov map. We will in particular obtain complete results on the set of distributions which are invariant under the vertical flow, and on smooth solutions to the cohomological equation, recovering in this case results due to Forni on generic translation surfaces [For97, For02, For07].

Linear pseudo-Anosov maps. There are several equivalent definitions of pseudo-Anosov maps (especially in terms of foliations carrying a transverse measure). We will use the following one in which the foliations have already been straightened (i.e., we use coordinates where the foliations are horizontal and vertical), in terms of half-translation surfaces (see e.g. [Zor06] for a nice survey on half-translation surfaces).

Definition 1.2. Let $M$ be a compact connected surface and let $\Sigma$ be a finite subset of $M$. A half-translation structure on $(M, \Sigma)$ is an atlas on $M-\Sigma$ for which the coordinate changes have the form $x \mapsto x+v$ or $x \mapsto-x+v$. Moreover, we require that around each point of $\Sigma$ the half translation surface is isomorphic to a finite ramified cover of $\mathbb{R}^{2} / \pm \mathrm{Id}$ around 0 .

A half-translation surface carries a canonical complex structure: it is just the canonical complex structure in the charts away from $\Sigma$, which extends to the singularities. In particular, it also has a $C^{\infty}$ structure, and it is orientable.

In a half-translation structure, the horizontal and vertical lines in the charts define two foliations of $M-\Sigma$, called the horizontal and vertical foliations. Of particular importance
to us will be the case where the coordinate changes are of the form $x \mapsto x+v$. In this case, we say that $M$ is a translation surface. Singularities are then finite ramified cover of $\mathbb{R}^{2}$ around 0 . Moreover, the horizontal and vertical foliations carry a canonical orientation.

Definition 1.3. Consider a half-translation structure on $(M, \Sigma)$. A homeomorphism $T$ : $M \rightarrow M$ is a linear pseudo-Anosov map for this structure if $T(\Sigma)=\Sigma$ and there exists $\lambda>1$ such that, for any $x \in M-\Sigma$, one has in half-translation charts around $x$ and $T x$ the equality $T y=\left(\begin{array}{cc} \pm \lambda & 0 \\ 0 & \pm \lambda^{-1}\end{array}\right) y$, where the choice of signs depends on the choice of coordinate charts. We say that $\lambda$ is the expansion factor of $T$.

In other words, $T$ sends horizontal segments to horizontal segments and vertical segments to vertical segments, expanding by $\lambda$ in the horizontal direction and contracting by $\lambda$ in the vertical direction. In particular, Lebesgue measure is invariant under $T$.

When $M$ is a translation surface, there are two global signs $\varepsilon_{h}$ and $\varepsilon_{v}$ saying if $T$ preserves or reverses the orientation of the horizontal and vertical foliations. The simplest case is when $\varepsilon_{h}=\varepsilon_{v}=1$. In this case, $T$ preserves the orientation of both foliations, and can be written in local charts as $\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$.

While we obtain a complete description of the Ruelle spectrum in all situations (orientable foliations or not, $\varepsilon_{v}$ and $\varepsilon_{h}$ equal to 1 or -1 ), it is easier to explain in the simplest case of translation surfaces with $\varepsilon_{v}=\varepsilon_{h}=1$. We will refer to this case as linear pseudo-Anosov maps preserving orientations. We will focus on this case in this introduction and most of the paper, and refer to Section 6 for the general situation (that we will deduce from the case of linear pseudo-Anosov maps preserving orientations).

In the definition of Ruelle resonances, there is a subtlety related to the choice of the space of functions $\mathcal{C}$ for which we want asymptotic expansions of the correlations. While it is clear that we want $C^{\infty}$ functions away from the singularities, the requirements at the singularities are less obvious. Denote by $C_{c}^{\infty}(M-\Sigma)$ the space of $C^{\infty}$ functions that vanish on a neighborhood of the singularities. This is the space we will use for definiteness.

Let $T$ be a linear pseudo-Anosov map, preserving orientations, on a genus $g$ translation surface $M$. Let $\lambda$ be its expansion factor. As the local picture for $T$ is the same everywhere, it should not be surprising that the only data influencing the Ruelle spectrum are of global nature, related to the action of $T$ on the first cohomology group $H^{1}(M)$ (a vector space of dimension $2 g$ ). By Thurston [Thu88], $\lambda$ and $\lambda^{-1}$ are two simple eigenvalues of $T^{*}: H^{1}(M) \rightarrow$ $H^{1}(M)$ (the corresponding eigenvectors are the cohomology classes of the horizontal and the vertical foliations). The orthogonal subspace to these two cohomology classes has dimension $2 g-2$, it is invariant under $T^{*}$, and the spectrum $\Xi=\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$ of $T^{*}$ on this subspace is made of eigenvalues satisfying $\lambda^{-1}<\left|\mu_{i}\right|<\lambda$ for all $i$.

Here is our main theorem when $T$ preserves orientations.
Theorem 1.4. Let $T$ be a linear pseudo-Anosov map preserving orientations on a genus $g$ compact surface $M$, with expansion factor $\lambda$ and singularity set $\Sigma$. Then $T$ has a Ruelle spectrum on $\mathcal{C}=C_{c}^{\infty}(M-\Sigma)$ given as follows. First, there is a simple eigenvalue at 1 . Denote by $\Xi=\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$ the spectrum of $T^{*}$ on the orthogonal subspace to the classes of the horizontal and vertical foliations in $H^{1}(M)$. Then, for any $i$ and for any integer $n \geqslant 1$, there is a Ruelle resonance at $\lambda^{-n} \mu_{i}$ of multiplicity $n$.

Note that a complex number $z$ may sometimes be written in different ways as $\lambda^{-n} \mu_{i}$ (for instance if the spectrum of $T^{*}$ is not simple, i.e., if there is $i \neq j$ with $\mu_{i}=\mu_{j}$ - but it can also happen that there is $i \neq j$ with $\mu_{i}=\lambda^{-1} \mu_{j}$, which will lead to more superpositions). In this case, to get the multiplicity of $z$, one should add all the multiplicities from the theorem corresponding to the different possible decompositions.

Let us note that some nonzero functions can be orthogonal to all Ruelle resonances. For instance, if $T$ lifts a linear Anosov map of the torus to a higher genus surface covering the torus, then the correlations of any two smooth functions lifted from the torus tend to 0 faster than any exponential, as this is the case in the torus.

A quick sketch of the proof. Before we discuss further results, we should explain briefly the strategy to prove Theorem 1.4. First, we want to show that Ruelle resonances make sense as in Definition 1.1. This part is classical. We introduce a scale of Banach spaces of distributions, denoted by $\mathcal{B}^{-k_{h}, k_{v}}$, which behaves well under the composition operator $\mathcal{T}: f \mapsto f \circ T$. The elements of $\mathcal{B}^{-k_{h}, k_{v}}$ are objects that can be integrated along horizontal segments against $C^{k_{h}}$-functions, and moreover have $k_{v}$ vertical derivatives: this is an anisotropic Banach space, taking advantage of the contraction of $T$ in the vertical direction and of its expansion in the horizontal direction, as is customary in the study of hyperbolic dynamics. On the technical level, the definition of $\mathcal{B}^{-k_{h}, k_{v}}$ is less involved than in many articles on hyperbolic dynamics (see for instance [GL08, BT07]), as we may take advantage of the fact that the stable and unstable directions are smooth - in this respect, it is closer to [Bal05, AG13]. The only additional difficulty compared to the literature is the singularities, but it turns out that they do not play any role in this part. Hence, we can prove that the essential spectral radius of $\mathcal{T}$ on $\mathcal{B}^{-k_{h}, k_{v}}$ is at $\operatorname{most} \lambda^{-\min \left(k_{h}, k_{v}\right)}$. The existence of Ruelle resonances in the sense of Definition 1.1 readily follows. One important point we want to stress here is that, since we are interested in Ruelle resonances for functions in $C_{c}^{\infty}(M-\Sigma)$, we take for $\mathcal{B}^{-k_{h}, k_{v}}$ the closure of $C_{c}^{\infty}(M-\Sigma)$ for an anisotropic norm as described above. In particular, smooth functions are dense in $\mathcal{B}^{-k_{h}, k_{v}}$.

The second step in the proof is to show that the elements described in Theorem 1.4 belong to the set of Ruelle resonances or, equivalently, to the spectrum of $\mathcal{T}$ on $\mathcal{B}^{-k_{h}, k_{v}}$ when $k_{h}$ and $k_{v}$ are large enough. It is rather easy to show that 1 and $\lambda^{-1} \mu_{i}$ belong to the spectrum, by considering a smooth 1 -form $\omega=\omega_{x} \mathrm{~d} x+\omega_{y} \mathrm{~d} y$ whose cohomology class is an eigenfunction for the iteration of $T^{*}$, and looking at the asymptotics of $\mathcal{T}^{n} \omega_{x}$ to obtain an element $f \in \mathcal{B}^{-k_{h}, k_{v}}$ with $\mathcal{T} f=\lambda^{-1} \mu_{i} f$. Then, one deduces that $\lambda^{-n} \mu_{i}$ also belongs to the spectrum, as $L_{h}^{n-1} f$ is an eigenfunction for this eigenvalue, where $L_{h}$ denotes the derivative in the horizontal direction.

The most interesting part of the proof is to show that there is no other eigenvalue, and that the multiplicities are as stated in the theorem. For this, start from an eigenfunction $f \in \mathcal{B}^{-k_{h}, k_{v}}$ for an eigenvalue $\rho$. Denote by $L_{v}$ the derivative in the vertical direction. Then $L_{v}^{n} f$ is an eigenfunction for the eigenvalue $\lambda^{n} \rho$. Since all eigenvalues have modulus at most 1 , we deduce that $L_{v}^{n} f=0$ for large enough $n$. Consider the last index $n$ where $L_{v}^{n} f \neq 0$, and write $g=L_{v}^{n} f$. It is an eigenfunction, and $L_{v} g=0$. If we can prove that the corresponding eigenvalue has the form $\lambda^{-k} \mu_{i}$ for some $k$ and $i$, then we get $\rho=\lambda^{-(n+k)} \mu_{i}$, as desired. To summarize, it is enough to understand eigenfunctions that, additionally, satisfy $L_{v} g=0$. For this, we introduce a cohomological interpretation of elements of $\mathcal{B}^{-k_{h}, k_{v}} \cap \mathrm{ker} L_{v}$.

Heuristically, elements of $\mathcal{B}^{-k_{h}, k_{v}}$ can be integrated along horizontal segments by definition, so what really matters is not the distribution $g$, but the 1 -current $g \mathrm{~d} x$. (In the language of Forni [For02], elements $g$ of $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ are the vertically invariant distributions, see his Definition 6.4, while $g \mathrm{~d} x$ is the corresponding basic current on $M$.) Formally, its differential is

$$
\mathrm{d}(g \mathrm{~d} x)=\left(\partial_{x} g \mathrm{~d} x+\partial_{y} g \mathrm{~d} y\right) \wedge \mathrm{d} x=-L_{v} g \mathrm{~d} x \wedge \mathrm{~d} y
$$

Hence, elements of $\mathcal{B}^{-k_{h}, k_{v}} \cap$ ker $L_{v}$ give rise to closed currents, and have an associated cohomology class in $H^{1}(M)$ by de Rham Theorem (in fact, we do not use de Rham theorem directly, but a custom version suited for our needs that deals more carefully with the singularities). From the equality $\mathcal{T} g=\rho_{g} g$ one deduces that this class is an eigenfunction for $T^{*}$ acting on $H^{1}(M)$, for the eigenvalue $\lambda \rho_{g}$. If the class is nonzero, we get that $\lambda \rho_{g}$ is one of the $\mu_{i}$, and $\rho_{g}=\lambda^{-1} \mu_{i}$ as desired. If the class is zero, this means that $g \mathrm{~d} x$ is itself the differential of a 0 -current $\tilde{g}$. It turns out that $\tilde{g}$ belongs to our scale of Banach spaces, and is an eigenfunction for the eigenvalue $\lambda \rho_{g}$. One can then argue in this way by induction to show that all eigenvalues are of the form claimed in Theorem 1.4. There are additional difficulties related to the eigenvalue $\lambda^{-1}$ of $T^{*}: H^{1}(M) \rightarrow H^{1}(M)$ : it does not show up in the statement of Theorem 1.4, but this does not follow from the sketch we have just given. Moreover, getting the precise multiplicities requires further arguments, based on duality arguments and beyond this introduction.

Here is the precise description we get in the end, illustrated on Figure 1, assuming to simplify that $\mu_{i}$ is simple for $T^{*}: H^{1}(M) \rightarrow H^{1}(M)$ and that $\lambda^{-1} \mu_{i}$ is not an eigenvalue of $T^{*}$. Then the eigenvalue $\lambda^{-1} \mu_{i}$ for $\mathcal{T}$ is simple, and realized by a distribution $f_{i}$ which is annihilated by $L_{v}$ (i.e., it is invariant under vertical translation) and such that the cohomology class of $f_{i} \mathrm{~d} x$ is the eigenfunction in $H^{1}(M)$ under $T^{*}$, for the eigenvalue $\mu_{i}$. Denoting by $E_{\alpha}$ the generalized eigenspace associated to the eigenvalue $\alpha$, then $L_{v}$ is onto from $E_{\lambda^{-n-1} \mu_{i}}$ to $E_{\lambda^{-n} \mu_{i}}$, and its kernel is one-dimensional, equal to $L_{h}^{n} E_{\lambda^{-1} \mu_{i}}$. Therefore, there is a flag decomposition

$$
\begin{equation*}
\{0\} \subset L_{h}^{n} E_{\lambda^{-1} \mu_{i}} \subset L_{h}^{n-1} E_{\lambda^{-2} \mu_{i}} \subset \cdots \subset L_{h}^{2} E_{\lambda^{-n+1} \mu_{i}} \subset L_{h} E_{\lambda^{-n} \mu_{i}} \subset E_{\lambda^{-n-1} \mu_{i}} \tag{1.1}
\end{equation*}
$$

in which the $k$-th term $L_{h}^{n+1-k} E_{\lambda^{-k} \mu_{i}}$ has dimension $k$, and is equal to $E_{\lambda^{-n-1} \mu_{i}} \cap \operatorname{ker} L_{v}^{k}$. This decomposition shows that the elements of $E_{\lambda^{-n-1} \mu_{i}}$ behave like polynomials of degree $n$ when one moves along the vertical direction. Moreover, the decomposition (1.1) is invariant under the transfer operator $\mathcal{T}$, which is thus in upper triangular form with $\lambda^{-n-1} \mu_{i}$ on the diagonal. We do not know if there are genuine Jordan blocks, or a choice of basis for which $\mathcal{T}$ is diagonal. In particular, we do not identify in Theorem 1.4 the Jordan blocks dimension of the Ruelle resonances, in the sense of Definition 1.1. The decomposition (1.1) can also be interpreted in terms of the operator $N=L_{h} L_{v}$, which is nilpotent of order $n+1$ on the $n+1$-dimension space $E_{\lambda^{-n-1} \mu_{i}}$ : the $k$-th term is the kernel of $N^{k}$, and also the image of $N^{n+1-k}$.

Invariant distributions for the vertical flow. The above description is a first step into the direction of classifying all distributions on $M-\Sigma$ which are invariant under the vertical flow. We will call such distributions vertically invariant, or $L_{v}$-annihilated, or sometimes $L_{v}$-invariant. It turns out that there is another family of such $L_{v}$-annihilated distributions, which do not show up in the Ruelle resonances and correspond to relative homology. They


Figure 1. For a given eigenvalue $\mu_{i}$ of $T^{*}\left(\mu_{i} \in\left(\lambda^{-1}, \lambda\right)\right)$, each black point of the lattice $\left(k_{x}, k_{y}\right)_{k_{x} \geqslant 1, k_{y} \geqslant 0}$ represents an independent Ruelle distribution $u_{\left(k_{x}, k_{y}\right)}$. In particular $f_{i}=u_{(1,0)}$. The eigenvalues of the transfer operator $\mathcal{T}$ are $\lambda^{-n} \mu_{i}$ with $n \geqslant 1$ and the associated eigenspace is $E_{\lambda^{-n} \mu_{i}}=\operatorname{Span}\left\{u_{k_{x}, k_{y}}, k_{x}+k_{y}=n\right\}$ with dimension $n$ and represented by a diagonal red line. The operator $L_{h} \equiv \partial_{x}$ maps $u_{\left(k_{x}, k_{y}\right)}$ to $u_{\left(k_{x}+1, k_{y}\right)}$ and $L_{v} \equiv \partial_{y}$ maps $u_{\left(k_{x}, k_{y}\right)}$ to $u_{\left(k_{x}, k_{y}-1\right)}$. In particular the space $\operatorname{ker} L_{v}$ is represented by the first horizontal blue line $k_{y}=0$.
belong to an extended space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ defined like $\mathcal{B}^{-k_{h}, k_{v}}$ above, except that we do not restrict to the closure of the set of smooth functions. (In the language of Forni [For02], elements $g$ of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} \cap$ ker $L_{v}$ are the vertically quasi-invariant distributions, see his Definition 6.4, while $g \mathrm{~d} x$ is the corresponding basic current on $M-\Sigma$ ). An example of an element of $\mathcal{B}_{e x t}^{-k_{h}, k_{v}} \backslash \mathcal{B}^{-k_{h}, k_{v}}$ is as follows: consider a vertical segment $\Gamma_{\sigma}$ ending at a singularity $\sigma$, a function $\rho$ on this segment which is equal to 1 on a neighborhood of the singularity and to 0 on a neighborhood of the other endpoint of the segment, and define a distribution $\xi_{\sigma}^{(0)}$ by $\left\langle\xi_{\sigma}^{(0)}, f\right\rangle=\int_{\Gamma_{\sigma}} \rho(y) f(y) \mathrm{d} y$. In other words, the corresponding distribution on a horizontal segment $I$ is equal to $\rho\left(x_{I}\right) \delta_{x_{I}}$ if $I$ intersects $\Gamma_{\sigma}$ at a point $x_{I}$, and 0 otherwise. It turns out that these are essentially the only elements of $\mathcal{B}_{e x t}^{-k_{h}, k_{v}} \backslash \mathcal{B}^{-k_{h}, k_{v}}$ : the latter has (almost) finite codimension in the former (see Proposition 4.4 for a precise statement). Note that if one chooses another vertical segment $\Gamma_{\sigma}^{\prime}$ ending on the same singularity, then the difference of the two distributions associated to $\Gamma_{\sigma}$ and $\Gamma_{\sigma}^{\prime}$ belongs to $\mathcal{B}^{-k_{h}, k_{v}}$ when $k_{h} \geqslant 1$. The same happens if one replaces $\rho$ by another function $\rho^{\prime}$. Hence, modulo $\mathcal{B}^{-k_{h}, k_{v}}$, the distribution $\xi_{\sigma}^{(0)}$ is canonically defined and depends only on $\sigma$.

Proposition 1.5. Let $k_{h}, k_{v} \geqslant 3$. For $\sigma \in \Sigma$, there exists a distribution $\xi_{\sigma} \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ such that $\xi_{\sigma}-\xi_{\sigma}^{(0)} \in \mathcal{B}^{-k_{h}, k_{v}}$ and $L_{v} \xi_{\sigma}$ is the constant distribution equal to $1 / \operatorname{Leb}(M)$. Therefore, the distributions $\xi_{\sigma}-\xi_{\sigma^{\prime}}$ span a subspace of dimension Card $\Sigma-1$ of $L_{v^{-}}$-annihilated distributions.

The full description of $L_{v}$-annihilated distributions is given in the next theorem. It states that all such distributions come from the distributions associated to Ruelle resonances described in Theorem 1.4, and additional spurious distributions coming from the singularities as in Proposition 1.5.

To give a precise statement, we have to deal carefully with the exceptional situation when there is an eigenvalue $\mu^{\prime}$ of $T^{*}$ such that $\mu=\lambda^{-1} \mu^{\prime}$ is also an eigenvalue of $T^{*}$ : then $L_{h} E_{\lambda^{-1} \mu^{\prime}}$ is contained in $E_{\lambda^{-1} \mu}$, and there are some formal difficulties.

For each eigenvalue $\mu \in \Xi=\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$, there is a map $f \mapsto[f]$ from $E_{\lambda^{-1} \mu} \cap \operatorname{ker} L_{v}$ to $H^{1}(M)$, whose image is the generalized eigenspace associated to the eigenvalue $\mu$ of $T^{*}$. It is an isomorphism except in the exceptional situation above where it is onto, with a kernel equal to $L_{h} E_{\lambda^{-1} \mu^{\prime}}$. Denote by $E_{\lambda^{-1} \mu}^{H}$ a subspace of $E_{\lambda^{-1} \mu} \cap \operatorname{ker} L_{v}$ which is sent isomorphically to the generalized eigenspace of $T^{*}$ for the eigenvalue $\mu$, i.e., $E_{\lambda^{-1} \mu}^{H}=E_{\lambda^{-1} \mu}$, except in the exceptional case above where $E_{\lambda^{-1} \mu}^{H}$ is a vector complement to $L_{h} E_{\lambda^{-1} \mu^{\prime}}$ in $E_{\lambda^{-1} \mu} \cap \operatorname{ker} L_{v}$.
Theorem 1.6. Let $T$ be a linear pseudo-Anosov map preserving orientations on a genus $g$ compact surface $M$, with expansion factor $\lambda$ and singularity set $\Sigma$. Let $L_{v}$ denote the differentiation in the vertical direction. Then the space of distributions in the kernel of $L_{v}$ is exactly given by the direct sum of the constant functions, of the spaces $L_{h}^{n} E_{\lambda^{-1} \mu_{i}}^{H}$ for $n \geqslant 0$ and $i=1, \ldots, 2 g-2$, of the multiples of the distributions $\xi_{\sigma}-\xi_{\sigma^{\prime}}$ for $\sigma, \sigma^{\prime} \in \Sigma$, and of the multiples of $L_{h}^{n} \xi_{\sigma}$ for $n \geqslant 1$ and $\sigma \in \Sigma$, where $\xi_{\sigma}$ is defined in Proposition 1.5.

In particular, the space of $L_{v}$-annihilated distributions of order $\geqslant-N$ is finite-dimensional for any $N$, and its dimension grows like $(2 g-2+\operatorname{Card} \Sigma) N$ when $N \rightarrow \infty$. This is an analogue of [For02, Theorem 7.7(i)] in our context (see Remark 4.8 for a further cohomological description). If one restricts to $L_{v}$-annihilated distributions coming from $\mathcal{B}^{-k_{h}, k_{v}}$, one should remove the distributions $\xi_{\sigma}-\xi_{\sigma^{\prime}}$ and $L_{h}^{n} \xi_{\sigma}$. Their dimension grows like $(2 g-2) N$, corresponding to [For02, Theorem 7.7(ii)].

Bufetov has also studied vertically invariant distributions of the vertical foliation of a linear pseudo-Anosov map in [Buf14a]. In this article, the author is only interested in distributions of small order, which can be integrated against characteristic functions of intervals. He obtains a full description of such distributions, by more combinatorial means, and gets further properties such as their local Hölder behavior. These distributions correspond exactly to the elements of $\bigcup_{|\alpha|>\lambda^{-1}} E_{\alpha}$.
Solving the cohomological equation for the vertical flow. One of the main motivations to study $L_{v}$-annihilated distributions is that they are related to the cohomological equation for the vertical flow. Indeed, if one wants to write a function $f$ as $L_{v} F$ for some function $F$ with some smoothness, then one should have for any distribution $\omega$ in the kernel of $L_{v}$ the equality

$$
\begin{equation*}
\langle\omega, f\rangle=\left\langle\omega, L_{v} F\right\rangle=-\left\langle L_{v} \omega, F\right\rangle=0 \tag{1.2}
\end{equation*}
$$

at least if $F$ is more smooth than the order of $\omega$ and if $L_{v}$ is antiselfadjoint on the relevant distributions (note that, in general, $F$ will not be supported away from the singularities, so the fact the $\langle\omega, F\rangle$ or $\left\langle L_{v} \omega, F\right\rangle$ are well defined is not obvious, and neither is the formal equality $\left\langle\omega, L_{v} F\right\rangle=-\left\langle L_{v} \omega, F\right\rangle$ ). Such necessary conditions to have a coboundary are also often sufficient. In this direction, we obtain the following statement. The philosophy that results on the coboundary equation should follow from results on Ruelle resonances comes from Giulietti-Liverani [GL14]. Note that the converse is also true: in a resent work, Forni [For18] studied Ruelle resonances and obstructions to the existence of solution to the cohomological equation. In particular his work independently reproves some of the results of our paper (with very different methods). The cohomological equation was first solved for a large class of interval exchange maps (including the ones corresponding to pseudo-Anosov maps) in [MMY05]. The proof we give of the next theorem also owes a lot to the techniques of [GL14] (although the local affine structure makes many arguments simpler compared to their article, but the presence of singularities creates new difficulties, as usual).

Theorem 1.7. In the setting of Theorem 1.6, consider a $C^{\infty}$ function $f$ with compact support in $M-\Sigma$. Assume that $\langle\omega, f\rangle=0$ for all $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-k-1}} E_{\alpha} \cap \operatorname{ker} L_{v}$. Then there exists a function $F$ on $M$ which is $C^{k}$ whose $k$ derivatives are bounded and continuous on $M$, such that $f=L_{v} F$ on $M-\Sigma$.

The fact that $f$ is $C^{\infty}$ and compactly supported in $M-\Sigma$ is for the simplicity of the statement. Indeed, the theorem also holds if $f$ is continuous on $M-\Sigma$ and $C^{k+2}$ along horizontal lines, with $L_{h}^{j} f$ uniformly bounded for any $j \leqslant k+2$, see the more precise Theorem 5.9 below (in this case, the primitive $F$ is $C^{k}$ along horizontal lines). Even more, $C^{k+1+\varepsilon}$ along horizontal lines would suffice, for any $\varepsilon>0$. So, the loss of derivatives in the above theorem is really $1+\varepsilon$ (which is optimal). Moreover, the $k$-th derivative of the solution of the coboundary equation is automatically Hölder continuous. This corresponds in our context respectively to the results of [For07] and [MY16].

It is not surprising that distributions in $E_{\alpha} \cap$ ker $L_{v}$ show up as conditions to solve the cohomological equation, as explained before the theorem. The main outcome of Theorem 1.7 is that there are finitely many obstructions to be a $C^{k}$ coboundary. The number of such obstructions grows like $(2 g-2) k$ when $k \rightarrow \infty$, by the classification of the Ruelle spectrum given in Theorem 1.4 and the following discussion. This answers the problem raised by Forni at the end of [For97], where a similar theorem is proved for the vertical flow on generic translation surfaces, using different methods based on the Laplacian.

Note that the distributions that appear in Theorem 1.7 only come from the Ruelle spectrum. The other $L_{v}$-annihilated distributions from Theorem 1.6 do not play a role. The reason is that the formal computation in (1.2) does not work for these distributions, as $F$ is not compactly supported away from $\Sigma$. These distributions would appear if one were trying to find a vertical primitive of $f$ which, additionally, vanishes at all singularities.

Trace formula. In finite dimension, the trace of an operator is the sum of its eigenvalues. This does not hold in general in infinite dimension (sometimes for lack of a good notion of trace, or for lack of summability of the eigenvalues), but it sometimes does for well behaved operators. In the dynamical world, this often holds for analytic maps (for which the transfer
operator can be interpreted as a nuclear operator on a suitable space), but it fails most of the time outside of this class, see [Jéz17] and references therein.

In our case, it is easy to investigate this question, as we have a full description of the Ruelle spectrum. One should also define a suitable trace of the composition operator $\mathcal{T}$. On smooth manifolds, one can define the flat trace of a composition operator as the limit of the integral along the diagonal of the Schwartz kernel of a smoothed version of $\mathcal{T}$, when the smoothing parameter tends to 0 . When $T$ is a diffeomorphism with isolated fixed points, this reduces to a sum over the fixed points of $1 /|\operatorname{det}(\operatorname{Id}-D T(x))|$, as follows from an easy computation involving the change of variables $y=x-T x$.

In our case, the determinant is $(1-\lambda)\left(1-\lambda^{-1}\right)$ everywhere, but one should also deal with the singularities, where the smoothing procedure is not clear (one can not convolve with a kernel because of the singularity). We recall the notion of Lefschetz index of an isolated fixed point $x$ of a homeomorphism $T$ in two dimensions (see for instance [HK95, Section 8.4]): it is the number

$$
\operatorname{ind}_{T}(x)=\operatorname{deg}(p \mapsto(p-T p) /\|p-T p\|)
$$

where the degree is computed on a small curve around $x$, identified with $\mathbb{S}^{1}$. If one could make sense of a smoothing at the singularity $\sigma$, then its contribution to the flat trace would be $\operatorname{ind}_{T} \sigma /\left((1-\lambda)\left(1-\lambda^{-1}\right)\right)$, as follows from the same formal computation with the change of variables $y=x-T x$ (the index comes from the number of branches of this map, giving a multiplicity when one computes the integral). Thus, to have a sound definition independent of an unclear smoothing procedure, we define the flat trace of $\mathcal{T}^{n}$ as

$$
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=\sum_{T^{n} x=x} \frac{\operatorname{ind}_{T^{n}} x}{\left(1-\lambda^{n}\right)\left(1-\lambda^{-n}\right)}
$$

If $T^{n}$ is smooth at a fixed point $x$, then its index is -1 and we recover the usual contribution of $x$ to the flat trace. More generally, if $T$ is such that $\operatorname{det}(I-D T)$ has a limit at all fixed points of $T$ (regular or singular) then one defines its flat trace as the sum over all fixed points $x$ of $\operatorname{ind}_{T} x /\left(\lim _{x} \operatorname{det}(I-D T)\right)$.
Theorem 1.8. Let $T$ be a linear pseudo-Anosov map preserving orientations on a compact surface $M$. Then, for all $n$,

$$
\begin{equation*}
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=\sum_{\alpha} d_{\alpha} \alpha^{n} \tag{1.3}
\end{equation*}
$$

where the sum is over all Ruelle resonances $\alpha$ of $T$, and $d_{\alpha}$ denotes the multiplicity of $\alpha$.
Proof. The Lefschetz fixed-point formula (see [HK95, Theorem 8.6.2]) gives

$$
\begin{aligned}
\sum_{T^{n} x=x} \operatorname{ind}_{T^{n}} x & =\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{0}(M)}^{*}\right)-\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{1}(M)}^{*}\right)+\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{2}(M)}^{*}\right) \\
& =1-\left(\lambda^{n}+\lambda^{-n}+\sum_{i=1}^{2 g-2} \mu_{i}^{n}\right)+1
\end{aligned}
$$

where $\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$ denote the eigenvalues of $T^{*}$ on the subspace of $H^{1}(M)$ orthogonal to $[\mathrm{d} x]$ and $[\mathrm{d} y]$, as in the statement of Theorem 1.4. We can also compute the right hand
side of (1.3), using the description of Ruelle resonances: 1 has multiplicity one, and $\lambda^{-k} \mu_{i}$ has multiplicity $k$ for $k \geqslant 1$. As $\sum k x^{k}=x /(1-x)^{2}=-1 /\left((1-x)\left(1-x^{-1}\right)\right)$, we get

$$
\begin{aligned}
\sum_{\alpha} d_{\alpha} \alpha^{n} & =1+\sum_{i=1}^{2 g-2} \sum_{k=1}^{\infty} k \lambda^{-n k} \mu_{i}^{n}=1-\sum_{i=1}^{2 g-2} \frac{\mu_{i}^{n}}{\left(1-\lambda^{-n}\right)\left(1-\lambda^{n}\right)} \\
& =\frac{\left(1-\lambda^{-n}\right)\left(1-\lambda^{n}\right)-\sum_{i=1}^{2 g-2} \mu_{i}^{n}}{\left(1-\lambda^{-n}\right)\left(1-\lambda^{n}\right)}=\frac{2-\left(\lambda^{n}+\lambda^{-n}+\sum_{i=1}^{2 g-2} \mu_{i}^{n}\right)}{\left(1-\lambda^{-n}\right)\left(1-\lambda^{n}\right)} .
\end{aligned}
$$

Combining the two formulas with the definition of the flat trace, we get the conclusion of the theorem.

Organization of the paper. In Section 2, we define the anisotropic Banach spaces $\mathcal{B}^{-k_{h}, k_{v}}$ we will use to understand the spectrum of the composition operator $\mathcal{T}$. The construction works in any translation surface. We prove the basic properties of these Banach spaces, including notably compact inclusion statements, a duality result, and a cohomological interpretation of elements of the space which are vertically invariant. All these tools are put to good use in Section 3, where we describe the Ruelle spectrum of a linear pseudo-Anosov map preserving orientations, proving Theorem 1.4. Then, we use (and extend) this theorem in Section 4 to classify all vertically invariant distributions (proving Theorem 1.6), and in Section 5 to find smooth solutions to the cohomological equation (proving Theorem 1.7). Finally, Section 6 is devoted to the discussion of the Ruelle spectrum for linear pseudo-Anosov maps which do not preserve orientations.

## 2. Functional spaces on translation surfaces

2.1. Anisotropic Banach spaces on translation surfaces. In this section, we consider a translation surface $(M, \Sigma)$. We wish to define anisotropic Banach spaces of distributions on such a surface, i.e., spaces of distributions which are smooth along the vertical direction, and dual of smooth along the horizontal direction. Indeed, this is the kind of space on which the transfer operator associated to a pseudo-Anosov map will be well behaved, leading ultimately to the existence of Ruelle spectrum for such a map, and to its explicit description. The definition we use below is of geometric nature: we will require that the objects in our space can be integrated along horizontal segments when multiplied by smooth functions, and that they have vertical derivatives with the same property. This simple-minded definition in the spirit of [GL08, AG13] is very well suited for the constructions we have in mind below (especially for the cohomological interpretation in Paragraph 2.4 below) and makes it possible to deal transparently with the singularities. However, it is probably possible to use other approaches as explained in [Bal17] and references therein.

Let $V^{h}$ be the unit norm positively oriented horizontal vector field, i.e., the vector field equal to $1 \in \mathbb{C}$ in the translation charts. It is $C^{\infty}$ on $M-\Sigma$, but singular at $\Sigma$. In particular, the derivation $L_{h}$ given by this vector field acts on $C^{\infty}(M-\Sigma)$. In the same way, the vertical vector field $V^{v}$ (equal to $\mathbf{i}$ in the complex translation charts) is $C^{\infty}$ on $M-\Sigma$, and the corresponding derivation $L_{v}$ acts on $C^{\infty}(M-\Sigma)$. On this space, the two derivations $L_{v}$ and $L_{h}$ commute, as this is the case in $\mathbb{C}$.

Choose two real numbers $k \geqslant 0$ and $\beta>0$. Denote by $\mathcal{I}_{\beta}^{h}$ the set of horizontal segments of length $\beta$ in $M-\Sigma$. For $I \in \mathcal{I}_{\beta}^{h}$, denote by $C_{c}^{k}(I)$ the set of $C^{k}$ functions on $I$ which vanish on a neighborhood of the boundary of $I$, endowed with the $C^{k}$ norm (when $k$ is not an integer, this is the set of functions of class $C^{\lfloor k\rfloor}$ whose $\lfloor k\rfloor$-th derivative is Hölder continuous with exponent $k-\lfloor k\rfloor)$.

When $k_{h} \geqslant 0$ is a nonnegative real number, and $k_{v} \geqslant 0$ is an integer, we define a seminorm on $C_{c}^{\infty}(M-\Sigma)$ by

$$
\|f\|_{-k_{h}, k_{v}, \beta}^{\prime}=\sup _{I \in \mathcal{I}_{\beta}^{h}} \sup _{\varphi \in C_{c}^{k_{h}}(I),\|\varphi\|_{C^{k_{h}}} \leqslant 1}\left|\int_{I} \varphi \cdot\left(L_{v}\right)^{k_{v}} f \mathrm{~d} x\right| .
$$

Essentially, this seminorm measures $k_{v}$ derivatives in the vertical direction, and $-k_{h}$ derivatives in the horizontal direction (as one is integrating against a function with $k_{h}$ derivatives). Hence, it is indeed a norm of anisotropic type. One could define many such norms, but this one is arguably the simplest one: it takes advantage of the fact that the horizontal and vertical foliations are smooth, and even affine.
Proposition 2.1. If $\beta$ is smaller than the length of the shortest horizontal saddle connection, then this seminorm does not really depend on $\beta$ : if $\beta_{1}$ is another such number, then there exists a constant $C=C\left(\beta, \beta_{1}, k_{h}, k_{v}\right)$ such that, for any $f \in C_{c}^{\infty}(M-\Sigma)$,

$$
C^{-1}\|f\|_{-k_{h}, k_{v}, \beta_{1}}^{\prime} \leqslant\|f\|_{-k_{h}, k_{v}, \beta}^{\prime} \leqslant C\|f\|_{-k_{h}, k_{v}, \beta_{1}}^{\prime}
$$

We recall that a horizontal saddle connection is a horizontal segment connecting two singularities. There is no horizontal saddle connection in a surface carrying a pseudo-Anosov map: otherwise, iterating the inverse of the map (which contracts uniformly the horizontal segments), we would deduce the existence of arbitrarily short horizontal saddle connections, a contradiction.
Proof. Assume for instance $\beta_{1}>\beta$. The inequality $\|f\|_{-k_{h}, k_{v}, \beta}^{\prime} \leqslant\|f\|_{-k_{h}, k_{v}, \beta_{1}}^{\prime}$ is clear: an interval $I \in \mathcal{I}_{\beta}^{h}$ is contained in an interval $I_{1}$ in $\mathcal{I}_{\beta_{1}}^{h}$ as $\beta_{1}$ is smaller than the length of any horizontal saddle connection. Moreover, a compactly supported test function $\varphi$ on $I$ can be extended by 0 to outside of $I$ to get a test function on $I_{1}$. The result follows readily.

Conversely, consider a smooth partition of unity $\left(\rho_{j}\right)_{j \in J}$ on $\left[0, \beta_{1}\right]$ by $C^{\infty}$ functions whose support has length at most $\beta$ (we do not require that the functions vanish at 0 or $\beta_{1}$. Using this partition of unity, for $I_{1} \in \mathcal{I}_{\beta_{1}}^{h}$, one may decompose a test function $\varphi \in C_{c}^{k_{h}}\left(I_{1}\right)$ as the sum of the functions $\varphi \cdot \rho_{j}$, which are all compactly supported on intervals belonging to $\mathcal{I}_{\beta}^{h}$. Moreover, their $C^{k_{h}}$ norms are controlled by the $C^{k_{h}}$ norm of $\varphi$. It follows that the integrals defining $\|f\|_{-k_{h}, k_{v}, \beta_{1}}^{\prime}$ are controlled by finitely many integrals that appear in the definition of $\|f\|_{-k_{h}, k_{v}, \beta}^{\prime}$, giving the inequality $\|f\|_{-k_{h}, k_{v}, \beta_{1}}^{\prime} \leqslant C\|f\|_{-k_{h}, k_{v}, \beta}^{\prime}$.

By the above proposition, we may use any small enough $\beta$. For definiteness, let us choose once and for all $\beta=\beta_{0}$ much smaller than the distance between any two singularities. This implies that, in all the local discussions, we will have to consider at most one singularity. From this point on, we will keep $\beta_{0}$ implicit, unless there is an ambiguity.

The seminorms $\|\cdot\|_{-k_{h}, k_{v}}^{\prime}$ are not norms in general on $C_{c}^{\infty}(M-\Sigma)$. For instance, if there is a cylinder made of closed vertical leaves, then one may find a function which is constant on
each vertical leaf, vanishes close to the singularities, and is nevertheless not everywhere zero. Then $L_{v} f=0$, so that $\|f\|_{-k_{h}, k_{v}}^{\prime}=0$ if $k_{v}>0$, but still $f \neq 0$. This is not the case when there is no vertical connection: in this case, all vertical leaves are dense, hence a function which is constant along vertical leaves and vanishes on a neighborhood of the singularities has to vanish everywhere. In general, this remark indicates that the above seminorms do not behave very well by themselves. On the other hand, the following norm is much nicer:

$$
\begin{equation*}
\|f\|_{-k_{h}, k_{v}}=\sup _{j \leqslant k_{v}}\|f\|_{-k_{h}, j}^{\prime}=\sup _{j \leqslant k_{v}} \sup _{I \in \mathcal{I}^{h}} \sup _{\varphi \in C_{c}^{k_{h}}(I),\|\varphi\|_{C^{k_{h}} \leqslant 1}}\left|\int_{I} \varphi \cdot L_{v}^{j} f \mathrm{~d} x\right| \tag{2.1}
\end{equation*}
$$

This is obviously a norm on $C_{c}^{\infty}(M-\Sigma)$. Indeed, if a function $f$ is not identically zero, then it is nonzero at some point $x$. Taking a horizontal interval $I$ around $x$ and a test function $\varphi$ on $I$ supported on a small neighborhood of $x$, one gets $\int_{I} \varphi f \mathrm{~d} x \neq 0$, and therefore $\|f\|_{-k_{h}, k_{v}}>0$.

Then, let us define the space $\mathcal{B}^{-k_{h}, k_{v}}$ as the (abstract) completion of $C_{c}^{\infty}(M-\Sigma)$ for this norm. Note that all the linear forms $\ell_{I, \varphi, j}: f \mapsto \int_{I} \varphi \cdot L_{v}^{j} f \mathrm{~d} x$, initially defined on $C_{c}^{\infty}(M-\Sigma)$, extend by continuity to $\mathcal{B}^{-k_{h}, k_{v}}$ (for $I \in \mathcal{I}^{h}$ and $\varphi \in C_{c}^{k_{h}}(I)$ and $j \leqslant k_{v}$ ). Heuristically, an element in $\mathcal{B}^{-k_{h}, k_{v}}$ can be differentiated in the vertical direction, and integrated in the horizontal direction. Moreover, the norm of an element in $\mathcal{B}^{-k_{h}, k_{v}}$ is

$$
\begin{equation*}
\|f\|_{-k_{h}, k_{v}}=\sup _{j \leqslant k_{v}} \sup _{I \in \mathcal{I}^{h}} \sup _{\varphi \in C_{c}^{k_{h}}(I),\|\varphi\|_{C^{k_{h}}} \leqslant 1}\left|\ell_{I, \varphi, j}(f)\right| \tag{2.2}
\end{equation*}
$$

This follows directly from the definition of the norm on $C_{c}^{\infty}(M-\Sigma)$ and from the construction of $\mathcal{B}^{-k_{h}, k_{v}}$ as its completion.
Remark 2.2. In the spaces $\mathcal{B}^{-k_{h}, k_{v}}$ we have just defined, the parameter $k_{h}$ of horizontal regularity can be any nonnegative real, but the parameter $k_{v}$ of vertical regularity has to be an integer, as it counts a number of derivatives. One could also use a non-integer vertical parameter $k_{v}$, requiring additionally the following control: if $k_{v}=k+r$ where $k$ is an integer and $r \in(0,1)$, then we require the boundedness of

$$
\varepsilon^{-r}\left|\int_{I_{0}} \varphi_{0} L_{v}^{k} f \mathrm{~d} x-\int_{I_{\varepsilon}} \varphi_{\varepsilon} L_{v}^{k} f \mathrm{~d} x\right|
$$

when $I_{0}$ is a horizontal interval of length $\beta_{0}, \varphi_{0}$ is a compactly supported $C^{k_{h}}$ function on $I_{0}$ with norm at most $1, \varepsilon \in\left[0, \beta_{0}\right]$ is such that one can translate vertically the interval $I_{0}$ into an interval $I_{\varepsilon}$ without hitting any singularity, and $\varphi_{\varepsilon}$ is the push-forward of $\varphi_{0}$ on $I_{\varepsilon}$ using the vertical translation. In other words, we are requiring that $L_{v}^{k} f$ is Hölder continuous of order $r$ vertically, in the distributional sense. All the results that follow are true for such a norm, but the proofs become more cumbersome while the results are not essentially stronger, so we will only consider integer $k_{v}$ for the sake of simplicity.

Let $\varphi$ be a $C^{\infty}$ function on $M$, and denote by dLeb the flat Lebesgue measure on $M$. Then $\ell_{\varphi}: f \mapsto \int f \varphi \mathrm{dLeb}$ is a linear form on $C_{c}^{\infty}(M-\Sigma)$. Contrary to the previous linear forms, $\ell_{\varphi}$ does not extend to a linear form on $\mathcal{B}^{-k_{h}, k_{v}}$, because of the singularities: from the point of view of the $C^{\infty}$ structure, horizontals and verticals close to the singularity have a lot of curvature, so that the restriction of $\varphi$ to $I \in \mathcal{I}^{h}$ is $C^{k}$, but with a large
$C^{k}$ norm (larger when $I$ is closer to the singularity). This prevents the extension of $\ell_{\varphi}$ to $\mathcal{B}^{-k_{h}, k_{v}}$. On the other hand, if $\varphi$ is supported by $M-B(\Sigma, \delta)$, then one has a control of the form $\left|\ell_{\varphi}(f)\right| \leqslant C(\delta)\|\varphi\|_{C^{k_{h}}}\|f\|_{-k_{h}, k_{v}}$, so that $\ell_{\varphi}$ extends continuously to $\mathcal{B}^{-k_{h}, k_{v}}$. More precisely, denote by $\mathcal{D}^{\infty}(M-\Sigma)$ the set of distributions on $M-\Sigma$, i.e., the dual space of $C_{c}^{\infty}(M-\Sigma)$ with its natural topology. Then the above argument shows that there is a map $i: \mathcal{B}^{-k_{h}, k_{v}} \rightarrow \mathcal{D}^{\infty}(M-\Sigma)$, extending the canonical inclusion $C_{c}^{\infty}(M-\Sigma) \rightarrow \mathcal{D}^{\infty}(M-\Sigma)$ given by $\langle i(f), \varphi\rangle=\int f \varphi$ dLeb. Locally, if $\varphi$ is supported by a small rectangle foliated by horizontal segments $I_{t} \in \mathcal{I}^{h}$ (where $t$ is an arc-length parametrization along the vertical direction), one has the explicit description

$$
\begin{equation*}
\langle i(f), \varphi\rangle=\int \ell_{I_{t}, \varphi_{\mid I_{t}}, 0}(f) \mathrm{d} t \tag{2.3}
\end{equation*}
$$

Indeed, this formula holds when $f$ is $C^{\infty}$, and extends by uniform limit to all elements of $\mathcal{B}^{-k_{h}, k_{v}}$.

Proposition 2.3. The map $i: \mathcal{B}^{-k_{h}, k_{v}} \rightarrow \mathcal{D}^{\infty}(M-\Sigma)$ is injective. Therefore, one can identify $\mathcal{B}^{-k_{h}, k_{v}}$ with a space of distributions on $M-\Sigma$.

Proof. Consider $I \in \mathcal{I}^{h}$ and $\varphi \in C_{c}^{k_{h}}(I)$. For small enough $t$, one can shift vertically $I$ by $t$, and obtain a new interval $I_{t} \in \mathcal{I}^{h}$, as well as a function $\varphi_{t}: I_{t} \rightarrow \mathbb{R}$ (equal to the composition of the vertical projection from $I_{t}$ to $I$, and of $\varphi$ ). For any $f \in C_{c}^{\infty}(M-\Sigma)$, the function $t \mapsto \ell_{I_{t}, \varphi_{t}, 0}(f)$ is $C^{k_{v}}$, with successive derivatives $t \mapsto \ell_{I_{t}, \varphi_{t}, j}(f)$. An element $f \in \mathcal{B}^{-k_{h}, k_{v}}$ can be written as a limit of a Cauchy sequence of smooth functions. Then $\ell_{I_{t}, \varphi_{t}, j}\left(f_{n}\right)$ converges uniformly to $\ell_{I_{t}, \varphi_{t}, j}(f)$. Passing to the limit in $n$, we deduce that $t \mapsto \ell_{I_{t}, \varphi_{t}, 0}(f)$ is $C^{k_{v}}$, with successive derivatives $t \mapsto \ell_{I_{t}, \varphi_{t}, j}(f)$.

Consider a nonzero $f \in \mathcal{B}^{-k_{h}, k_{v}}$, with norm $c>0$. By (2.2), there exist $I, \varphi$ and $j$ such that $\left|\ell_{I, \varphi, j}(f)\right| \geqslant c / 2$. Let us shift $I$ vertically as above. The function $t \mapsto \ell_{I_{t}, \varphi_{t}, 0}(f)$ has a $j$-th derivative which is nonzero at 0 , hence it is not locally constant. In particular, it does not vanish at some parameter $t_{0}$. Consider $\delta$ such that it is almost constant on the interval $\left[t_{0}-\delta, t_{0}+\delta\right]$ by continuity. Let $\psi$ be a smooth function with positive integral, supported by $\left[t_{0}-\delta, t_{0}+\delta\right]$. In local coordinates, let us finally write $\zeta(x, y)=\varphi(x) \psi(y)$. It satisfies $\langle i(f), \zeta\rangle \neq 0$ thanks to the explicit description (2.3) for $i(f)$.

It follows that one can think of elements of $\mathcal{B}^{-k_{h}, k_{v}}$ as objects that can be integrated along horizontal segments, or after an additional vertical integration as distributions. Even better, since the elements of $\mathcal{B}^{-k_{h}, k_{v}}$ are designed to be integrated horizontally, the natural object to consider is rather $f \mathrm{~d} x$. This is a current, i.e., a differential form with distributional coefficients, but it is nicer than general currents as it can really be integrated along horizontal segments (i.e., it is regular in the vertical direction). The process that associates to such an object a global distribution is simply the exterior product with $\mathrm{d} y$. Going back and forth like that between 0 -currents and 1-currents will be an essential feature of the forthcoming arguments.

The next lemma makes it possible to use partitions of unity, to decompose an element of $\mathcal{B}^{-k_{h}, k_{v}}$ into a sum of elements supported in arbitrarily small balls.

Lemma 2.4. Let $\psi \in C^{\infty}(M)$ be constant in the neighborhood of each singularity. Then the map $f \mapsto \psi f$, initially defined on $C_{c}^{\infty}(M-\Sigma)$, extends continuously to a linear map on $\mathcal{B}^{-k_{h}, k_{v}}$.

Proof. We have to bound $\int_{I} \varphi \cdot L_{v}^{j}(\psi f) \mathrm{d} x$ when $I$ is a horizontal interval, $\varphi$ a compactly supported $C^{k_{h}}$ function on $I$, and $j \leqslant k_{v}$. We have $L_{v}^{j}(\psi f)=\sum_{k \leqslant j}\binom{j}{k} L_{v}^{j-k} \psi \cdot L_{v}^{k} f$, hence this integral can be decomposed as a sum of integrals of $L_{v}^{k} f$ against the functions $\varphi \cdot L_{v}^{j-k} \psi$ which are $C^{k_{h}}$ and compactly supported on $I$. This concludes the proof, by definition of $\mathcal{B}^{-k_{h}, k_{v}}$.

One may wonder how rich the space $\mathcal{B}^{-k_{h}, k_{v}}$ is, and if the choice to take the closure of the set of functions vanishing on a neighborhood of the singularities really matters. Other functions are natural, for instance the constants, or more generally the smooth functions that factorize through the covering projection $\pi: z \mapsto z^{p}$ around each singularity of angle $2 \pi p$. The largest natural class is the space of functions $f$ which are $C^{\infty}$ on $M-\Sigma$ and such that, for all indices $a_{h}$ and $a_{v}$, the function $L_{v}^{a_{v}} L_{h}^{a_{h}} f$ is bounded. The next lemma asserts that starting from any of these classes of functions would not make any difference, as our space $\mathcal{B}^{-k_{h}, k_{v}}$ is already rich enough to contain all of them.
Lemma 2.5. Consider a function $f$ on $M$ which is $C^{k_{v}}$ on every vertical segment and such that $L_{v}^{k} f$ is bounded and continuous on $M-\Sigma$ for any $k \leqslant k_{v}$. Then the function $f$ (or rather the corresponding distribution $i(f)$ ) belongs to $\mathcal{B}^{-k_{h}, k_{v}}$ for any $k_{h} \geqslant 0$. This is in particular the case of the constant function $f=1$.
Proof. First, if $f$ is supported away from the singularities, one shows that $f \in \mathcal{B}^{-k_{h}, k_{v}}$ by convolving it with a smooth kernel $\rho_{\varepsilon}$ : the sequence $f_{\varepsilon}=f * \rho_{\varepsilon}$ thus constructed is $C^{\infty}$ and forms a Cauchy sequence in $\mathcal{B}^{-k_{h}, k_{v}}$, hence it converges in this space to a limit. As it converges to $f$ in the distributional sense, this shows $f \in \mathcal{B}^{-k_{h}, k_{v}}$.

To handle the general case, by taking a partition of unity, it suffices to treat the case of a function $f$ supported in a small neighborhood of a singularity, such that $L_{v}^{k} f$ is continuous and bounded for any $k \leqslant k_{v}$. Let $\pi$ denote the covering projection, defined on a neighborhood of this singularity. Let $u$ be a real function, equal to 1 on a neighborhood of 0 , supported in $[-1,1]$. Let $N>0$ be large enough. For $\delta>0$, we define a function $\rho_{\delta}(x+\mathbf{i} y)=u\left(x / \delta^{N}\right) u(y / \delta)$, supported on the neighborhood $\left[-\delta^{N}, \delta^{N}\right]+\mathbf{i}[-\delta, \delta]$ of 0 in $\mathbb{C}$.

We claim that, if $N>k_{v}$, then in $\mathbb{C}$ one has $\left\|\rho_{\delta}\right\|_{-k_{h}, k_{v}} \rightarrow 0$ when $\delta \rightarrow 0$, where by $\|\cdot\|_{-k_{h}, k_{v}}$ we mean the formal expression (2.1), which makes sense for any function but could be infinite. To prove this, consider a horizontal interval $I$ of length $\beta_{0}$, a function $\varphi \in C_{c}^{k_{h}}(I)$ with norm at most 1 , and a differentiation order $j \leqslant k_{v}$. Then

$$
\begin{aligned}
\left|\int_{I} \varphi \cdot L_{v}^{j} \rho_{\delta} \mathrm{d} x\right| & =\delta^{-j}\left|\int_{I} \varphi \cdot u\left(x / \delta^{N}\right) u^{(j)}(y / \delta) \mathrm{d} x\right| \\
& \leqslant \delta^{-j}\|\varphi\|_{C^{0}}\|u\|_{C^{0}}\left\|u^{(j)}\right\|_{C^{0}} \operatorname{Leb}\left(\left[-\delta^{N}, \delta^{N}\right]\right)
\end{aligned}
$$

This quantity tends to 0 if $N>j$, as claimed.
The same computation, taking moreover into account the fact that the vertical derivatives of $f$ are bounded, shows that $\left\|f \cdot \rho_{\delta} \circ \pi\right\|_{-k_{h}, k_{v}} \rightarrow 0$ when $\delta \rightarrow 0$. It follows that the sequence $f_{n}=f\left(1-\rho_{1 / n} \circ \pi\right)$ is a Cauchy sequence in $\mathcal{B}^{-k_{h}, k_{v}}$, made of functions in $C_{c}^{k_{v}}(M-\Sigma)$
(which is indeed included in $\mathcal{B}^{-k_{h}, k_{v}}$ by the first step). It converges (in $L^{1}$, and therefore in the sense of distributions) to $f$, which has therefore to coincide with its limit in $\mathcal{B}^{-k_{h}, k_{v}}$.

In particular, if $\Sigma$ contains an artificial singularity $\sigma$ (i.e., around which the angle is equal to $2 \pi$ ), then one gets the same space $\mathcal{B}^{-k_{h}, k_{v}}$ by using the singularity sets $\Sigma$ or $\Sigma-\{\sigma\}$.

The horizontal and vertical derivations $L_{h}$ and $L_{v}$ act on $C_{c}^{\infty}(M-\Sigma)$. By duality, they also act on $\mathcal{D}^{\infty}(M-\Sigma)$. In view of Proposition 2.3 asserting that $\mathcal{B}^{-k_{h}, k_{v}}$ is a space of distributions, it makes sense to ask if they stabilize these spaces, or if they send one into the other.
Proposition 2.6. The derivation $L_{h}$ maps continuously $\mathcal{B}^{-k_{h}, k_{v}}$ to $\mathcal{B}^{-k_{h}-1, k_{v}}$, and it satisfies $\ell_{I, \varphi, j}\left(L_{h} f\right)=-\ell_{I, \varphi^{\prime}, j}(f)$ for every $I \in \mathcal{I}^{h}, \varphi \in C_{c}^{k_{h}+1}(I), j \leqslant k_{v}$ and $f \in \mathcal{B}^{-k_{h}, k_{v}}$.

The derivation $L_{v}$ maps continuously $\mathcal{B}^{-k_{h}, k_{v}}$ to $\mathcal{B}^{-k_{h}, k_{v}-1}$ if $k_{v}>0$, and it satisfies $\ell_{I, \varphi, j}\left(L_{v} f\right)=\ell_{I, \varphi, j+1}(f)$ for every $I \in \mathcal{I}^{h}, \varphi \in C_{c}^{k_{h}}(I), j \leqslant k_{v}-1$ and $f \in \mathcal{B}^{-k_{h}, k_{v}}$.
Proof. The formulas $\ell_{I, \varphi, j}\left(L_{h} f\right)=-\ell_{I, \varphi^{\prime}, j}(f)$ and $\ell_{I, \varphi, j}\left(L_{v} f\right)=\ell_{I, \varphi, j+1}(f)$ are obvious when $f$ is a smooth function. The general result follows by density.
Lemma 2.7. Assume that there is no horizontal saddle connection in M. Let $f \in \mathcal{B}^{-k_{h}, k_{v}}$ satisfy $L_{h} f=0$. Then $f$ is a constant function.
Proof. As $L_{h} f=0$, one has $\ell_{I, \varphi^{\prime}, 0}(f)=0$ for any smooth function $\varphi$ on a horizontal interval $I$. Denoting by $\tau_{h}$ the translation by $h$, one gets $\ell_{I, \varphi, 0}(f)=\ell_{I, \varphi \circ \tau_{h}, 0}(f)$ if $\varphi$ and $\varphi \circ \tau_{h}$ both have their support in $I$. It follows that the distribution induced by $f$ on a bi-infinite horizontal leaf is invariant by translation. Therefore, it is a multiple $c \mathrm{dLeb}$ of Lebesgue measure. Since there is no horizontal saddle connection by assumption, the horizontal flow is minimal by Keane's Criterion. In particular, the above bi-infinite horizontal leaf is dense. At the quantities $\ell_{I, \varphi, 0}(f)$ vary continuously when one moves $I$ vertically, it follows that $f$ is equal to $c \mathrm{dLeb}$ on all horizontal intervals.

We want to stress that Lemma 2.7 is wrong for $L_{v}$. A measure $\mu$ which is invariant for the vertical flow can locally be written as $\nu \otimes \mathrm{d} y$, where $\nu$ is a measure along horizontal leaves, invariant under vertical holonomy. Writing $\nu$ as a limit of measures which are equivalent to Lebesgue and with smooth densities, one checks that $\mu$ belongs to $\mathcal{B}^{-k_{h}, k_{v}}$, and moreover it satisfies $L_{v} \mu=0$. In a translation surface in which the vertical flow is minimal but not uniquely ergodic, one can find such examples where $\mu$ is not Lebesgue measure.

In the case of surfaces associated to pseudo-Anosov maps, the vertical flow is uniquely ergodic, so this argument does not apply. However, we will see later that there are still many nonconstant distributions $f$ in $\mathcal{B}^{-k_{h}, k_{v}}$ which satisfy $L_{v} f=0$.

It is enlightening to try to prove that $f \in \mathcal{B}^{-k_{h}, k_{v}}$ with $L_{v} f=0$ has to be constant, and see where the argument fails. The problem stems from the fact that $f$ is a distribution on horizontal segments. Let $F$ be a dense vertical leaf, let $I_{t}$ be a small horizontal interval around the point at height $t$ on $F$, and let $\varphi$ be a function on $I_{0}$ that we push vertically to a function on $I_{t}$ (still denoted $\varphi$ ) while this is possible. Then we get $\int_{I_{t}} \varphi f \mathrm{~d} x=\int_{I_{0}} \varphi f \mathrm{~d} x$ as $L_{v} f=0$. If this were true for all real $t$, then we would deduce that $f$ is constant. However, the support of $\varphi$ has positive length. Hence, when we push it vertically, we will encounter a singularity in finite time, and the argument is void afterwards. We could say something on
a longer time interval if we used a function $\tilde{\varphi}$ with smaller support, but the same problem will happen again. The key point is a competition between the speed at which $F$ fills the surface, and how close to singularities it passes. The existence of non-constant distributions $f$ with $L_{v} f=0$ is a manifestation of the fact that $F$ is often too close to singularities.

A related but more detailed discussion is made before the proof of Theorem 3.11, where we study the existence of primitives under $L_{v}$ of some eigendistributions, not only 0 .
2.2. Compact inclusions. In this paragraph, we prove the following proposition, ensuring that there is inclusion (resp. compact inclusion) in the family of spaces $\mathcal{B}^{-k_{h}, k_{v}}$ if one requires less (resp. strictly less) regularity in all directions. This corresponds to the usual intuitions.

Proposition 2.8. Consider $k_{h}^{\prime}$ with $-k_{h}^{\prime} \leqslant-k_{h}$ (i.e., $k_{h}^{\prime} \geqslant k_{h}$ ) and $k_{v}^{\prime}$ with $k_{v}^{\prime} \leqslant k_{v}$. Then there is a continuous inclusion $\mathcal{B}^{-k_{h}, k_{v}} \subseteq \mathcal{B}^{-k_{h}^{\prime}, k_{v}^{\prime}}$. If the two inequalities are strict, this inclusion is compact.
Proof. The inclusion $\mathcal{B}^{-k_{h}, k_{v}} \subseteq \mathcal{B}^{-k_{u}^{\prime}, k_{v}^{\prime}}$ when $k_{h}^{\prime} \geqslant k_{h}$ and $k_{v}^{\prime} \leqslant k_{v}$ is obvious, as one uses less linear forms in the second space than in the first space to define the norm.

For the compact inclusion, we will use the following criterion. Let $\mathcal{B} \subseteq \mathcal{C}$ be two Banach spaces. Assume that, for every $\varepsilon>0$, there exist finitely many continuous linear forms $\ell_{1}, \ldots, \ell_{P}$ on $\mathcal{B}$ such that, for any $x \in \mathcal{B}$,

$$
\begin{equation*}
\|x\|_{\mathcal{C}} \leqslant \varepsilon\|x\|_{\mathcal{B}}+\sum_{p \leqslant P}\left|\ell_{p}(x)\right| . \tag{2.4}
\end{equation*}
$$

Then the inclusion of $\mathcal{B}$ in $\mathcal{C}$ is compact.
To prove the criterion, suppose its assumptions are satisfied, and consider a sequence $x_{n} \in \mathcal{B}$ of elements with norm at most 1. Extracting a subsequence, one can ensure that all the sequences $\ell_{i}\left(x_{n}\right)$ converge, for $i \leqslant P$. We deduce from the above inequality that $\limsup _{m, n \rightarrow \infty}\left\|x_{m}-x_{n}\right\|_{\mathcal{C}} \leqslant 2 \varepsilon$. By a diagonal argument, one can then extract a subsequence of $x_{n}$ which is a Cauchy sequence in $\mathcal{C}$, and therefore converges.

Let us now apply the criterion to $\mathcal{B}=\mathcal{B}_{5 \beta_{0}}^{-k_{h}, k_{v}}$ and $\mathcal{C}=\mathcal{B}_{\beta_{0}}^{-k_{h}^{\prime}, k_{v}^{\prime}}$ with $k_{h}^{\prime}>k_{h}$ and $k_{v}^{\prime}<k_{v}$. We take larger intervals in the first space than in the second space for technical convenience, but this is irrelevant for the result as the spaces do not depend on $\beta$, see Proposition 2.1.

Let us first fix a finite family of intervals $\left(J_{n}\right)_{n \leqslant N}$ in $\mathcal{I}_{5 \beta_{0}}^{h}$ such that any interval in $\mathcal{I}_{\beta_{0}}^{h}$ can be translated vertically by at most $\varepsilon / 2$, without hitting a singularity, and end up in one of the $J_{n}$, or even better in its central part denoted by $J_{n}\left[\beta_{0}, 4 \beta_{0}\right]$. Such a family exists by compactness, and the singularities do not create any problem there. Then, on each $J_{n}$, let us fix finitely many functions $\left(\varphi_{n, k}\right)_{k \leqslant K}$ in $C_{c}^{k_{h}^{\prime}}\left(J_{n}\right)$ with norm at most 1 such that, for any function $\varphi \in C^{k_{h}^{\prime}}\left(J_{n}\right)$ with $C^{k_{h}^{\prime}}$ norm at most 1 and with support included in $J_{n}\left[\beta_{0}, 4 \beta_{0}\right]$, there exists $k$ such that $\left\|\varphi-\varphi_{n, k}\right\|_{C^{k_{h}}} \leqslant \varepsilon / 2$. Their existence follows from the compactness of the inclusion of $C^{k_{h}^{\prime}}$ in $C^{k_{h}}$. We will use the linear forms $\ell_{n, k, j}=\ell_{J_{n}, \varphi_{n, k}, j}$ for $n \leqslant N$, $k \leqslant K$ and $j \leqslant k_{v}$ to apply the criterion (2.4).

Let us fix $f \in \mathcal{B}_{5 \beta_{0}}^{-k_{h}, k_{v}}$. We want to bound its norm in $\mathcal{B}_{\beta_{0}}^{-k_{h}^{\prime}, k_{v}^{\prime}}$. By density, it is enough to do it for $f \in C_{c}^{\infty}(M-\Sigma)$ - this does not change anything to the following argument, but it is comforting. Consider thus $I \in \mathcal{I}_{\beta_{0}}^{h}$, and $\varphi \in C_{c}^{k_{h}^{\prime}}(I)$ with norm at most 1 , and $j \leqslant k_{v}^{\prime}<k_{v}$. Let $\left(I_{t}\right)_{0 \leqslant t \leqslant \delta}$ be vertical shifts of $I$, parameterized by the vertical length $t$,
with $I_{\delta}$ included in an interval $J_{n}\left[\beta_{0}, 4 \beta_{0}\right]$ and $\delta \leqslant \varepsilon / 2$. Denote by $\varphi_{t}$ the push-forward of $\varphi$ on $I_{t}$. Integrating by parts, one gets

$$
\int_{I_{0}} \varphi \cdot L_{v}^{j} f \mathrm{~d} x=\int_{I_{\delta}} \varphi_{\delta} \cdot L_{v}^{j} f \mathrm{~d} x-\int_{0}^{\delta}\left(\int_{I_{t}} \varphi_{t} L_{v}^{j+1} f \mathrm{~d} x\right) \mathrm{d} t
$$

The integrals on each $I_{t}$ are bounded by $\|f\|_{-k_{h}, k_{v}}$ as $j \leqslant k_{v}^{\prime}<k_{v}$. Hence, the last term is at $\operatorname{most} \delta\|f\|_{-k_{h}, k_{v}} \leqslant(\varepsilon / 2)\|f\|_{-k_{h}, k_{v}}$. In the first term, choose $k$ such that $\left\|\varphi_{\delta}-\varphi_{n, k}\right\|_{C^{k_{h}}} \leqslant$ $\varepsilon / 2$. Then this integral is bounded by $(\varepsilon / 2)\|f\|_{-k_{h}, k_{v}}+\left|\ell_{n, k, j}(f)\right|$. We have proved that

$$
\|f\|_{-k_{h}^{\prime}, k_{v}^{\prime}} \leqslant \varepsilon\|f\|_{-k_{h}, k_{v}}+\max _{n, k, j}\left|\ell_{n, k, j}(f)\right| .
$$

This shows that the compactness criterion (2.4) applies, and concludes the proof.
2.3. Duality. Let us define the spaces $\breve{\mathcal{B}}^{\breve{k}_{h}},-\check{k}_{v}$ just like the spaces $\mathcal{B}^{-k_{h}, k_{v}}$ but exchanging horizontals and verticals. Hence, $\breve{k}_{v}$ quantifies the regularity of a test function in the vertical direction, and $\check{k}_{h}$ the number of permitted derivatives in the horizontal direction. The derivations $L_{v}$ and $L_{h}$ still act on $\check{\mathcal{B}}$, as in Proposition 2.6 , but their roles are swapped compared to $\mathcal{B}$.

Some of the arguments later to identify the spectrum and the multiplicities of a pseudoAnosov map rely on a duality argument, exchanging the roles of the horizontal and vertical directions. To carry out this argument, we need to show that there is a duality between the spaces $\mathcal{B}^{-k_{h}, k_{v}}$ and $\check{\mathcal{B}}^{{ }_{k}},-\check{k}_{v}$ when the global regularity is positive enough in every direction, i.e., when $-k_{h}+\check{k}_{h} \geqslant 2$ and $k_{v}-\check{k}_{v} \geqslant 0$ (or conversely, as one can exchange the two directions - it is possible that the duality holds if $\check{k}_{h}-k_{h} \geqslant 0$ and $k_{v}-\check{k}_{v} \geqslant 0$, but our proof requires a little bit more). This is not surprising: $g \in \mathcal{B}^{\breve{k}_{h},-\breve{k}_{v}}$ has essentially $\check{k}_{h}$ derivatives along horizontals, and $f \in \mathcal{B}^{-k_{h}, k_{v}}$ can be integrated along horizontals against $C^{k_{h}}$ functions, so if $\check{k}_{h} \geqslant k_{h}$ one expects that one can integrate the product $f g$ along horizontals, and therefore globally. This argument is wrong since the horizontal regularity of $g$ is only in the distributional sense, so we will also have to take advantage of the vertical smoothness of $f$. Using a computation based on suitable integrations by parts, it is easy to make this argument rigorous away from singularities. However, as it is often the case, the proof is much more delicate close to singularities, as integrations by parts can not cross the singularity, giving rise to additional boundary terms that can a priori not be controlled, unless one proceeds in a roundabout way as in the following proof. The technical difficulty of this proof is probably related to our choice of Banach spaces: it is possible that another choice of Banach space makes this proposition essentially trivial. This proof can be skipped on first reading.
Proposition 2.9. Assume $-k_{h}+\check{k}_{h} \geqslant 2$ and $k_{v}-\check{k}_{v} \geqslant 0$. Then there exists $C>0$ such that, for any $f, g \in C_{c}^{\infty}(M-\Sigma)$, one has

$$
\left|\int f g \mathrm{dLeb}\right| \leqslant C\|f\|_{\mathcal{B}^{-k_{h}, k_{v}}} \cdot\|g\|_{\tilde{\mathcal{B}}^{\breve{k}_{h}},-\check{k}_{v}} .
$$

Therefore, the map $(f, g) \mapsto \int f g$ dLeb extends by continuity to a bilinear map on $\mathcal{B}^{-k_{h}, k_{v}} \times$ $\check{\mathcal{B}}^{\breve{k}_{h}},-\check{k}_{v}$ that we denote by $\langle f, g\rangle$.

The proof will rely on a decomposition of $f$ into basic pieces for which all the above integrals can be controlled. We will denote by $\mathcal{H}$ the set of local half-planes around all singularities, bounded by horizontal or vertical lines. Specifically, if $\sigma$ is a singularity of angle $2 \pi \kappa$ with covering projection $\pi$, these sets are the $\kappa$ components of $\pi^{-1}\{z: \Re z \geqslant 0\}$ in a neighborhood of $\sigma$, intersected with a small disk around $\sigma$, and similarly for the upper half-planes, lower half-planes and left half-planes, giving rise to $4 \kappa$ half-planes around $\sigma$.

Lemma 2.10. Fix $k_{h}$ and $k_{v}$. There exist $N, C$, and rectangles $\left(R_{i}\right)_{i \leqslant N}$ away from the singularities with the following property. For any $f \in C_{c}^{\infty}(M-\Sigma)$, there is a decomposition

$$
\begin{equation*}
f=\sum_{i=1}^{N} f_{i}+\sum_{\sigma \in \Sigma} f_{\sigma}+\sum_{H \in \mathcal{H}} f_{H} \tag{2.5}
\end{equation*}
$$

where all the $f_{i}$ and $f_{\sigma}$ and $f_{H}$ are $C^{k_{v}}$ functions with compact support in $M-\Sigma$. They belong to $\mathcal{B}^{-k_{h}, k_{v}}$ and have norm at most $C\|f\|_{-k_{h}, k_{v}}$. Moreover, each $f_{i}$ is supported in $R_{i}$, each $f_{H}$ is supported in $H$, and each $f_{\sigma}$ is supported in a small disk $D_{\sigma}$ around $\sigma$ and is constant on the fibers of the covering projection $\pi$ around $\sigma$.

Proof. Multiplying $f$ by a partition of unity, we can assume that $f$ is supported in a small disk around a singularity $\sigma$ with angle $2 \pi \kappa$ (the terms away from the singularities will give rise to the terms $f_{i}$ in the decomposition (2.5)). We have to construct a decomposition

$$
\begin{equation*}
f=f_{\sigma}+\sum_{H \in \mathcal{H}_{\sigma}} f_{H} \tag{2.6}
\end{equation*}
$$

as in the statement of the lemma, where $\mathcal{H}_{\sigma}$ denotes the set of half-planes around $\sigma$. We assume $\|f\|_{-k_{h}, k_{v}} \leqslant 1$ for definiteness.

Let $\pi=\pi_{\sigma}$ be the covering projection, sending $\sigma$ to 0 . We may assume that $\pi^{-1}\left([-a, a]^{2}\right)$ only contains $\sigma$ as a singularity, and that $f$ is supported in $\pi^{-1}\left([-a / 2, a / 2]^{2}\right)$. Denote by $\omega=e^{2 \mathbf{i} \pi / \kappa}$ the fundamental $\kappa$-th root of unity. Let $R$ be the rotation by $2 \boldsymbol{\pi}$ around $\sigma$. For $q \in \mathbb{Z} / \kappa \mathbb{Z}$, let $f_{q}(z)=\kappa^{-1} \sum_{j=0}^{\kappa-1} \omega^{q j} f\left(R^{j} z\right)$. This is the component of $f$ that is multiplied by $\omega^{q}$ when one turns by $2 \pi$ around $\sigma$. We have $f=\sum f_{q}$ by construction, and each $f_{q}$ is $C^{\infty}$, compactly supported, and satisfies $\left\|f_{q}\right\|_{\mathcal{B}^{-k_{h}}, k_{v}} \leqslant 1$ since this is the case for $f$.

The function $f_{0}$ is constant along the fibers of $\pi$. It will be the function $f_{\sigma}$ in the decomposition of $f$. Consider now $q \neq 0$. We will first work in a chart $U$ sent by $\pi$ on $[-a, a]^{2}-[0, \infty)$, i.e., a chart cut along the positive real axis. When one crosses this axis from top to bottom, the function $f_{q}$ is multiplied by $\omega^{q}$. We will use the canonical complex coordinates on $U$.

Let us first show the following: for $\varphi \in C_{c}^{k_{h}}([-a, a])$ and $j \leqslant k_{v}$, one has

$$
\begin{equation*}
\left|\int_{-a}^{0} \varphi \cdot L_{v}^{j} f_{q} \mathrm{~d} x\right| \leqslant C\|\varphi\|_{C^{k_{h}}} \tag{2.7}
\end{equation*}
$$

The interest of this estimate is that $\varphi$ is a priori not compactly supported in $[-a, 0]$, so that this integral can not be controlled directly using $\left\|f_{q}\right\|_{-k_{h}, k_{v}}$.

For small $y>0$ and $\varepsilon \in\{-1,1\}$, the interval $[-a, a]+\varepsilon \mathbf{i} y$ is included in $U$. Therefore,

$$
\begin{equation*}
\left|\int_{-a}^{a} \varphi(x) f_{q}(x+\varepsilon \mathbf{i} y) \mathrm{d} x\right| \leqslant\|\varphi\|_{C^{k_{h}}} \tag{2.8}
\end{equation*}
$$

Let $y$ tend to 0 . For $x \leqslant 0, f_{q}(x+\varepsilon \mathbf{i} y)$ tends to $f_{q}(x)$. On the other hand, for $x>0$, the limit depends on $\varepsilon$ : one gets $f_{q}\left(x^{+}\right)$for $\varepsilon=1$ and $f_{q}\left(x^{-}\right)=\omega^{q} f_{q}\left(x^{+}\right)$for $\varepsilon=-1$. Hence,

$$
\int_{-a}^{a} \varphi(x) f_{q}(x+\mathbf{i} y) \mathrm{d} x-\omega^{-q} \int_{-a}^{a} \varphi(x) f_{q}(x-\mathbf{i} y) \mathrm{d} x \rightarrow\left(1-\omega^{-q}\right) \int_{-a}^{0} \varphi(x) f_{q}(x) \mathrm{d} x
$$

Combined with the control (2.8), this proves (2.7) for $j=0$ (for $C=2 /\left|1-\omega^{-q}\right|$ ). The argument is the same for $j>0$.

Consider a $C^{\infty}$ function $\rho_{2}$ which is equal to 1 on $[-a / 2, a / 2]^{2}$ and vanishes outside of $[-a, a]^{2}$. We define a function $f_{U}$ on $U$ by $f_{U}(x+\mathbf{i} y)=1_{x \leqslant 0} \rho_{2}(x+\mathbf{i} y) \sum_{j \leqslant k_{v}} y^{j} L_{v}^{j} f_{q}(x)$. This is a $C^{\infty}$ function, compactly supported in $M-\Sigma$ (we recall that $f$, and therefore $f_{q}$, vanishes in a neighborhood of $\sigma$, so that $f_{q}(x)=0$ for $x$ close to 0 in the chart $U$ ). This function is supported by $U$. Its interest is that its germ along $[-a, 0]$ is the same as that of $f_{q}$. Moreover, it follows from (2.7) that the norm of $f_{U}$ in $\mathcal{B}^{-k_{h}, k_{v}}$ is uniformly bounded. This function is supported in the left half-plane $H \in \mathcal{H}$ contained in $U$. Let us denote it by $f_{q, H}$. It will be part of the term $f_{H}$ in the decomposition (2.6).

For each horizontal segment $\tau$ coming out of the singularity $\sigma$, one can consider a chart $U$ as above cut along $\tau$ (with the difference that $[-a, a]^{2}$ can be cut along either the positive real axis, or the negative real axis, depending on $\tau$ ), and then the associated function $f_{U}$. Let $\tilde{f}_{q}=f_{q}-\sum_{U} f_{U}$. This function is bounded by a constant in $\mathcal{B}^{-k_{h}, k_{v}}$. Its interest is that it vanishes along every horizontal segment coming out of $\sigma$, and moreover all its vertical derivatives up to order $k_{v}$ also vanish there. In particular, the restriction of $\tilde{f}_{q}$ to any upper half-plane or lower half-plane $H \in \mathcal{H}$ is still $C^{k_{v}}$ and it can be extended to the rest of the manifold by zero. Denote this extended function by $f_{q, H}$. It belongs to $\mathcal{B}^{-k_{h}, k_{v}}$ and has a bounded norm in this space, and it is supported in $H$.

Finally, the decomposition (2.6) of $f$ is obtained by letting $f_{\sigma}=f_{0}$ and $f_{H}=\sum_{q \neq 0} f_{q, H}$.

Proof of Proposition 2.9. Decomposing $f$ as in Lemma 2.9, it suffices to show the inequality $\int f g$ dLeb $\leqslant C \leqslant C\|f\|_{\mathcal{B}^{-k_{h}, k_{v}}} \cdot\|g\|_{\breve{\mathcal{B}}^{\breve{k}_{h}},-\check{k}_{v}}$ when $f$ is:
(1) supported away from the singularities,
(2) or supported on a small neighborhood of a singularity, and constant on the fibers of the covering projection,
(3) or supported in a half-plane close to a singularity.

For definiteness, we will also assume $\|f\|_{\mathcal{B}^{-k_{h}, k_{v}}} \leqslant 1$ and $\|g\|_{\mathfrak{\mathcal { B }}_{h},-\check{k}_{v}} \leqslant 1$.
Let us first handle the case where $f$ is supported in a small rectangle $[-a, a]^{2}$ away from the singularities. We can even assume that $f$ is supported in $[-a / 4, a / 4]^{2}$. Multiplying $g$ by a cutoff function, we can assume that it is also supported in $[-a / 2, a / 2]^{2}$.

Using a local chart, we may work in $\mathbb{C}$. Along the horizontal interval $[-a, a]+\mathbf{i} y$, the successive primitives of $F_{0}=f$ vanishing at $-a+\mathbf{i} y$ are given by

$$
\begin{equation*}
F_{k}(x+\mathbf{i} y)=\int_{-a}^{x} f(t+\mathbf{i} y)(x-t)^{k-1} /(k-1)!\mathrm{d} t \tag{2.9}
\end{equation*}
$$

as one checks easily by induction over $k$. Let us take $k=k_{h}+2$. With $k$ integrations by parts, one gets

$$
\begin{equation*}
\int_{[-a, a]+\mathbf{i} y} f g \mathrm{~d} x=(-1)^{k} \int_{[-a, a]+\mathbf{i} y} F_{k} \cdot L_{h}^{k} g \mathrm{~d} x . \tag{2.10}
\end{equation*}
$$

Let us consider a function $\rho(x)$ equal to 1 for $x \geqslant-a / 2$ and vanishing on a neighborhood of $-a$. As $f$ is supported by $[-a / 2, a / 2]^{2}$, one has

$$
F_{k}(x+\mathbf{i} y)=\int_{-a}^{a} f(t+\mathbf{i} y) \cdot \rho(t) 1_{t \leqslant x}(x-t)^{k-1} /(k-1)!\mathrm{d} t
$$

The function

$$
\begin{equation*}
t \mapsto \rho(t) 1_{t \leqslant x}(x-t)^{k-1} /(k-1)! \tag{2.11}
\end{equation*}
$$

is of class $C^{k-2}$ on $[-a, a]$, with a bounded $C^{k-2}$ norm: Its singularity at $x$ is a zero of order $k-1$ to the left of $x$, and of infinite order to the right of $x$, so that everything matches in $C^{k-2}$ topology. Therefore, by the definition of $\mathcal{B}^{-k_{h}, k_{v}}$ and the choice $k=k_{h}+2$, one has $\left|F_{k}(x+\mathbf{i} y)\right| \leqslant C$ as $\|f\|_{\mathcal{B}^{-} k_{h}, k_{v}} \leqslant 1$. In the same way, the vertical derivatives of $F_{k}$ involve vertical derivatives of $f$, which can be integrated against $C^{k_{h}}$ functions along horizontals. We get, for all $j \leqslant k_{v}$ and all $x+\mathbf{i} y \in[-a, a]^{2}$, the inequality $\left|L_{v}^{j} F_{k}(x+\mathbf{i} y)\right| \leqslant C$. Therefore, along any vertical segment of the form $x+\mathbf{i}[-a, a]$, the function $F_{k}$ is $C^{k_{v}}$ with bounded norm, and it is compactly supported as it vanishes for $|y| \geqslant a / 2$ (as $f$ is supported by $\left.[-a / 2, a / 2]^{2}\right)$.

Let us integrate the equality (2.10) with respect to $y$. We get

$$
\begin{equation*}
\int f g \mathrm{dLeb}=(-1)^{k} \int_{x \in[-a, a]}\left(\int_{x+\mathrm{i}[-a, a]} F_{k} \cdot L_{h}^{k} g \mathrm{~d} y\right) \mathrm{d} x . \tag{2.12}
\end{equation*}
$$

When $x$ is fixed, every integral $\int_{x+\mathrm{i}[-a, a]} F_{k} \cdot L_{h}^{k} g \mathrm{~d} y$ is the integral against a $C^{k_{v}}$ function with bounded norm of the function $L_{h}^{k} g$, with $k \leqslant \check{k}_{h}$ and $k_{v} \geqslant \check{k}_{v}$ by assumption. By definition, this integral is bounded by $\left\|F_{k}\right\|_{C^{k_{v}}}\|g\|_{\mathcal{B}^{k_{k}},-\breve{k}_{v}} \leqslant C$. Integrating in $x$, we obtain the desired inequality $\left|\int f g \mathrm{dLeb}\right| \leqslant C$.

We still have to consider the case where $f$ is supported in the neighborhood of a singularity $\sigma$ with angle $2 \pi \kappa$. Multiplying $g$ by a cutoff function, we can assume that $g$ is also supported there. Write $\pi$ for the corresponding covering projection, sending $\sigma$ to 0 . We may assume that $\pi^{-1}\left([-a, a]^{2}\right)$ only contains $\sigma$ as a singularity, and that $f$ and $g$ are supported by $\pi^{-1}\left([-a / 2, a / 2]^{2}\right)$. We would like to carry out the same argument as before, but the function $F_{k}$ one obtains by integrating along a horizontal line is smooth along vertical lines to the left of the singularity, but it is discontinuous on vertical lines on the right of the singularity, breaking the argument.

Assume first that $f$ is invariant under the covering projection $\pi$. Denote by $\omega=e^{2 i \pi / \kappa}$ the fundamental $\kappa$-th root of unity. Let $R$ be the rotation by $2 \pi$ around $\sigma$. For $q \in \mathbb{Z} / \kappa \mathbb{Z}$, let $g_{q}(z)=\kappa^{-1} \sum_{j=0}^{\kappa-1} \omega^{q j} g\left(R^{j} z\right)$. This is the component of $g$ that is multiplied by $\omega^{q}$ when one turns by $2 \pi$ around $\sigma$. For $q \neq 0$, the function $f g_{q}$ is multiplied by $\omega^{q}$ when one turns around the singularity. Therefore, $\int f g_{q} \mathrm{dLeb}=\omega^{q} \int f g_{q} \mathrm{dLeb}$, which implies $\int f g_{q} \mathrm{dLeb}=0$ (this is just the classical fact that two functions living in different irreducible representations are
orthogonal). Let us now handle $g_{0}$. The functions $f$ and $g_{0}$ are both $R$-invariant. They can be written as $\tilde{f} \circ \pi$ and $\tilde{g} \circ \pi$ where $\tilde{f}$ and $\tilde{g}$ are functions on $\mathbb{C}$ supported by $[-a / 2, a / 2]^{2}$. The norms of these functions (in $\mathcal{B}^{-k_{h}, k_{v}}$ and $\check{\mathcal{B}}^{\breve{k}_{h}},-\breve{k}_{v}$ respectively) are bounded by 1 . The case of functions away from singularities, that we have already treated, shows that $\left|\int \tilde{f} \tilde{g} \mathrm{dLeb}\right| \leqslant C$. This gives the same estimate for $\int f g_{0} \mathrm{dLeb}$.

Assume now that $f$ is supported in a vertical half-plane $H$, to the left of $\sigma$ for instance. Let us show that

$$
\begin{equation*}
\left|\int f g \mathrm{dLeb}\right| \leqslant C \tag{2.13}
\end{equation*}
$$

We proceed like in the proof away from singularities, making integrations by parts along horizontals. Let $F_{j}$ be the $j$-th primitive of $f$ along horizontals, vanishing at $-a+\mathbf{i} y$. It is given by the formula (2.9). Then, we do $k=k_{h}+2$ integrations by parts along each horizontal line, to get

$$
\int_{[-a, 0]+\mathbf{i} y} f g \mathrm{~d} x=(-1)^{k} \int_{[-a, 0]+\mathbf{i} y} F_{k} \cdot L_{h}^{k} g \mathrm{~d} x+\sum_{j<k}(-1)^{j} F_{j+1}(\mathbf{i} y) L_{h}^{j} g(\mathbf{i} y) .
$$

The difference with (2.10) is the boundary terms, due to the fact that $g$ does not vanish on the line $x=0$. Integrating in $y$, we obtain

$$
\begin{equation*}
\int f g \mathrm{dLeb}=(-1)^{k} \int_{x \in[-a, 0]}\left(\int_{x+\mathbf{i}[-a, a]} F_{k} \cdot L_{h}^{k} g \mathrm{~d} y\right) \mathrm{d} x+\sum_{j<k}(-1)^{j}\left(\int_{\mathbf{i}[-a, a]} F_{j+1} \cdot L_{h}^{j} g \mathrm{~d} y\right) . \tag{2.14}
\end{equation*}
$$

The first term is controlled as in the case away from singularities, as the function $F_{k}$ is bounded and $C^{k_{v}}$ along vertical segments since $k=k_{h}+2$. On the other hand, the boundary terms are more delicate. The difficulty is that, a priori, $F_{j+1}(\mathbf{i} y)$ is not bounded just in terms of $\|f\|_{\mathcal{B}^{-k_{h}, k_{v}}}$ : The function (2.11) (with $k$ replaced by $j$ and $x=0$ ) is not $C^{k_{h}}$ for $j<k$ because of its singularity at 0 . Nevertheless, as the distribution $f$ is supported in $H$, we may replace the function in (2.11) by another function which coincides with it on $[-a, 0]$ and is $C^{k_{h}}$ with bounded norm on $[-a, a]$, without changing the value of the integral. It follows that in fact $F_{j}(\mathbf{i} y)$ is bounded in terms of $\|f\|_{\mathcal{B}^{-k_{h}}, k_{v}}$. In the same way, its vertical derivatives are also bounded. As $g \in \breve{\mathcal{B}}^{\breve{k}_{h}},-\check{k}_{v}$ has norm at most 1, we obtain (integrating on a segment with horizontal coordinate $-x$ with $x$ small to avoid the singularity)

$$
\left(\int_{-a}^{a} F_{j+1}(\mathbf{i} y) \cdot L_{h}^{j} g(-x+\mathbf{i} y) \mathrm{d} y\right) \leqslant C .
$$

Letting $x$ tend to 0 , we obtain that the second term in (2.14) is uniformly bounded. This proves (2.13).

Finally, assume that $f$ is supported in a horizontal half-plane $H$, for instance an upper half plane above $\sigma$. We proceed exactly as in the case without singularities, integrating by parts along horizontal segments. Let $F_{j}$ be the $j$-th primitive of $f$ that vanishes on $-a+\mathbf{i}(0, a]$. The only difference is at the end of the argument: the analog of (2.12) in our
case is

$$
\int_{H} f \cdot g \mathrm{dLeb}=(-1)^{k} \int_{x \in[-a, a]}\left(\int_{x+\mathbf{i}(0, a]} F_{k} \cdot L_{h}^{k} g \mathrm{~d} y\right) \mathrm{d} x
$$

The function $F_{k}$ is still smooth along vertical segments, with uniformly bounded derivatives. However, it is not compactly supported in $x+\mathbf{i}[0, a]$, which prevents us from writing.

$$
\begin{equation*}
\left|\int_{x+\mathbf{i}(0, a]} F_{k} \cdot L_{h}^{k} g \mathrm{~d} y\right| \leqslant C\|g\|_{\check{\mathcal{B}}_{h},-\check{k}_{v}} \tag{2.15}
\end{equation*}
$$

On the other hand, $F_{k}$ vanishes on $[-a, a]$, as well as its successive derivatives. Indeed, $f$ is supported in $H$ and smooth vertically, so by approximating the left and half parts of the boundary of $H$ from below one obtains this vanishing property. Therefore, we may extend $F_{k}$ by 0 for points with negative imaginary part. This extension is still $C^{k_{v}}$ along vertical lines. This justifies the inequality (2.15). Integrating in $x$, we obtain the desired inequality $\left|\int f \cdot g \mathrm{dLeb}\right| \leqslant C$.
Lemma 2.11. We have the following duality formulas for $f \in \mathcal{B}^{-k_{h}, k_{v}}$ and $g \in \check{\mathcal{B}}^{k_{h},-\breve{k}_{v}}$ :

$$
\begin{equation*}
\left\langle L_{h} f, g\right\rangle=-\left\langle f, L_{h} g\right\rangle, \quad\left\langle L_{v} f, g\right\rangle=-\left\langle f, L_{v} g\right\rangle \tag{2.16}
\end{equation*}
$$

Proof. It is enough to check these formulas for functions in $C_{c}^{\infty}(M-\Sigma)$, as they extend by density to the whole spaces thanks to Proposition 2.9. The function $f g$ vanishes on a neighborhood of the singularities. Denote by $\Omega$ the complement of a union of small disks around the singularities such that $f g=0$ outside of $\Omega$. We have

$$
\int_{M} L_{h}(f g) \mathrm{d} x \wedge \mathrm{~d} y=\int_{\Omega} \mathrm{d}(f g \mathrm{~d} y)=-\int_{\partial \Omega} f g \mathrm{~d} y=0
$$

Hence, $\int L_{h} f \cdot g \mathrm{dLeb}+\int f \cdot L_{h} g \mathrm{dLeb}=0$. This proves the first identity in (2.16). The second one is identical, upon exchanging the roles of $x$ and $y$.
2.4. Cohomological interpretation. In the study of the Ruelle spectrum of pseudoAnosov maps, a special role will be played by the elements of $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$. Heuristically, the relevant object associated to $f \in \mathcal{B}^{-k_{h}, k_{v}}$ is the current $f \mathrm{~d} x$. When $f$ satisfies additionally $L_{v} f=0$, then the formal derivative of this current is $\mathrm{d}(f \mathrm{~d} x)=\left(\partial_{x} f \mathrm{~d} x+\partial_{y} f \mathrm{~d} y\right) \wedge \mathrm{d} x$. The term $\mathrm{d} x \wedge \mathrm{~d} x$ vanishes. When $L_{v} f=0$, one has $\partial_{y} f=0$, and one gets $\mathrm{d}(f \mathrm{~d} x)=0$. Therefore, the current $f \mathrm{~d} x$ is closed. It defines a cohomology class in $H^{1}(M-\Sigma)$. We will give a more explicit description of this cohomology class, and show that it even belongs to $H^{1}(M)$ (i.e., it vanishes if one integrates it along a small path around a singularity).

Let $\gamma$ be a continuous closed loop in $M-\Sigma$ and let $f \in \mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$. We define the integral of $f$ along $\gamma$, denoted by $\int_{\gamma} f \mathrm{~d} x$, as follows. Deforming $\gamma$ slightly, we can first transform it into a loop made of finitely many horizontal and vertical segments. In $\int_{\gamma} f \mathrm{~d} x$, the vertical components of $\gamma$ do not appear. For a horizontal component $I$, we would like it to contribute by $\int_{I} f \mathrm{~d} x$, but this does not make sense since $f$ can only be integrated against smooth functions, which is not the case for the characteristic function of $I$. Let us smoothen this function by adding to the end of $I$ a smooth function going from 1 to 0 . In the next horizontal interval $J$, that follows $I$ in $\gamma$, on the contrary, we subtract $\varphi$ (pushed forward by the vertical translation from $I$ to $J$ ) to the characteristic function $\chi_{J}$ of $J$ - this
process changes it to the function $\chi_{J}-\varphi$, which is smooth. In this way, we obtain integrals that are well defined. As $f$ is invariant under vertical holonomy by the assumption $L_{v} f=0$, it follows that the result is independent of the choice of $\varphi$, and of the choice of the initial deformation of $\gamma$ in $M-\Sigma$. This concludes the definition of $\int_{\gamma} f \mathrm{~d} x$. This construction is reminiscent of [Buf14b, Paragraph 1.3], although the fact that our distributions can not be integrated against characteristic functions enforces an additional smoothing step in the definition above.

Proposition 2.12. Let $f \in \mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$. Then the integral $\int_{\gamma} f \mathrm{~d} x$ only depends on the homology class of $\gamma$ in $H_{1}(M)$. Therefore, the map $\gamma \mapsto \int_{\gamma} f \mathrm{~d} x$ defines a linear map from $H_{1}(M)$ to $\mathbb{R}$, i.e., a cohomology class in $H^{1}(M)$ which we denote by $[f]$ or $[f \mathrm{~d} x]$.
Proof. The fact that $\int_{\gamma} f \mathrm{~d} x$ only depends on the homology class of $\gamma$ in $M-\Sigma$ follows directly from the definitions. The only assertion that remains to be checked is that this integral is not modified when one crosses a singularity. Equivalently, we have to show that $\int_{\gamma} f \mathrm{~d} x=0$ when $\gamma$ is a positive path around a singularity $\sigma$.

Let $\pi$ be the covering projection around $\sigma$, well defined on a neighborhood of size $\delta \in$ $\left(0, \beta_{0} / 10\right)$. Let us fix a function $\varphi$ on $\mathbb{R}$ equal to 1 around 0 , with support included in $[-\delta, \delta]$. For $y>0$, we may construct a path $\gamma$ around $\sigma$ by considering $I_{y}^{+}=\pi^{-1}([-\delta, \delta]+\mathbf{i} y)$ (a union of $\kappa$ horizontal segments, where $\kappa$ is the degree of $\sigma$ ), crossed negatively, and $I_{y}^{-}=\pi^{-1}([-\delta, \delta]-\mathbf{i} y)$ (a union of $\kappa$ horizontal segments), crossed positively, as well as the corresponding vertical segments. Then

$$
\begin{equation*}
\int_{\gamma} f \mathrm{~d} x=\int_{I_{y}^{-}} \varphi(x) f \mathrm{~d} x-\int_{I_{y}^{+}} \varphi(x) f \mathrm{~d} x \tag{2.17}
\end{equation*}
$$

for any $y>0$, by definition.
Let $\varepsilon>0$. By definition of $\mathcal{B}^{-k_{h}, k_{v}}$, we may choose $g \in C_{c}^{\infty}(M-\Sigma)$ with $\|f-g\|_{-k_{h}, k_{v}}<\varepsilon$. When $y$ tends to 0 , we have $\int_{I_{y}^{-}} \varphi g \mathrm{~d} x-\int_{I_{y}^{+}} \varphi g \mathrm{~d} x \rightarrow 0$ as the horizontal segments compensate each other, and the singularity does not contribute as $g$ vanishes close to $\sigma$. We can in particular choose $y$ for which this quantity is less than $\varepsilon$. We have

$$
\left|\int_{I_{y}^{-}} \varphi g \mathrm{~d} x-\int_{I_{y}^{-}} \varphi f \mathrm{~d} x\right| \leqslant \kappa\|\varphi\|_{C^{k_{h}}}\|g-f\|_{-k_{h}, k_{v}} \leqslant C \varepsilon,
$$

as the integral along each of the $\kappa$ horizontal segments composing $I_{y}^{-}$is bounded by $\|\varphi\|_{C^{k_{h}}}\|g-f\|_{-k_{h}, k_{v}}$. The same holds on $I_{y}^{+}$. Finally, we get $\left|\int_{I_{y}^{-}} \varphi f \mathrm{~d} x-\int_{I_{y}^{+}} \varphi f \mathrm{~d} x\right| \leqslant$ $(2 C+1) \varepsilon$. This concludes the proof thanks to (2.17).

By definition of cohomology, a closed current of degree 1 vanishes in cohomology if and only if it is the differential of a current of degree 0 . In the case of currents in $\mathcal{B}^{-k_{h}, k_{v}} \cap \mathrm{ker} L_{v}$, we will see that this primitive is of the same type in the next proposition. The primitive of the current $f \mathrm{~d} x$ is obtained by integrating $f$ along horizontal leaves. We will have to see that this makes sense, and that the primitive thus defined has all the required regularity properties. Equivalently, the primitive $g$ has to satisfy $L_{h} g=f$.

Proposition 2.13. Assume that there is no horizontal saddle connection. Consider $f \in$ $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ such that $[f]=0 \in H^{1}(M)$, with $k_{h}>0$. Then there exists $g \in \mathcal{B}^{-k_{h}+1, k_{v}} \cap$ ker $L_{v}$ such that $f=L_{h} g$.

Proof. Let $x_{0}$ be a basepoint, and $F$ a horizontal half-line starting at $x_{0}$, positively oriented, which does not end at a singularity. Since we assume there is no horizontal saddle connection, it is dense. We identify it with $[0, \infty)$. We will denote by $x_{t}$ the point of $F$ at horizontal distance $t$ of $x_{0}$. Choose on $F$ a function $\rho_{0}$ equal to 1 in a neighborhood of $x_{0}$, and to 0 on $[\delta / 2,+\infty)$, where $\delta$ is small enough that there is no singularity in the ball of radius $10 \delta$ around $x_{0}$.

Let $\varphi$ be a $C^{k_{h}-1}$ function on $F$ with compact support. Let $\Phi$ be its unique primitive that vanishes at $x_{0}$. It is constant after some time $T$, equal to $\int \varphi$. Choose a time $t>T$ such that $x_{t}$ belongs to the vertical segment of size $\delta$ through $x_{0}$ (it exists as the half-line $F$ is dense). Consider then the function $\Phi_{t}$ equal to $\Phi$ on $[0, t]$, to $\left(\int \varphi\right) \cdot \rho_{0}$ on $[t, t+\delta]$ (where $\rho_{0}$ is pushed vertically to $\left[x_{t}, x_{t+\delta}\right]$ ), and to 0 further on. This is a function of class $C^{k_{h}}$ with compact support in $F$, so that $\int_{F} \Phi_{t} f \mathrm{~d} x$ is well defined. Then we define formally an object $g$ by the formula

$$
\begin{equation*}
\int \varphi \cdot g \mathrm{~d} x=-\int \Phi_{t} \cdot f \mathrm{~d} x . \tag{2.18}
\end{equation*}
$$

Let us first notice that this quantity does not depend on $t$. Indeed, if we choose another time $s>t$ such that $x_{s}$ also belongs to the vertical segment of size $\delta$ through $x_{0}$, then the difference between these two quantities is given by $\left(\int \varphi\right) \int_{\gamma} f \mathrm{~d} x$, where $\gamma$ is the union of the piece of $F$ between $x_{t}$ and $x_{s}$, and a subsegment of the vertical segment through $x_{0}$. As $[f]=0$, this integral vanishes. Note that, for now, $g$ is only a distribution along $F$.

The interest of this definition is the following. If we prove that $g$ defines a genuine element of $\mathcal{B}^{-k_{h}+1, k_{v}}$, we will have by definition of $L_{h}$ that, for any function $\varphi$ with compact support on a segment $I \subseteq F$,

$$
\int_{I} \varphi \cdot L_{h} g \mathrm{~d} x=-\int_{I} \varphi^{\prime} \cdot g \mathrm{~d} x=\int_{I} \Psi_{t} \cdot f \mathrm{~d} x,
$$

where $\Psi_{t}$ is the primitive of $\varphi^{\prime}$ vanishing at $x_{0}$, extended to the right by $\left(\int \varphi^{\prime}\right) \rho_{0}=0$. Hence, $\Psi_{t}=\varphi$. This formula shows that $L_{h} g=f$, at least along subintervals of $F$. As we will see later that $g$ is invariant under vertical holonomy, we will obtain $L_{h} g=f$ everywhere, as desired.

The same argument using $[f]=0$ shows that, if two segments $I$ and $J$ of $F$ are obtained one from the other by a vertical translation in a small chart without singularity, and if $\varphi_{I}$ is a function on $I$, then $\int_{I} \varphi_{I} g \mathrm{~d} x=\int_{J} \varphi_{J} g \mathrm{~d} x$, where $\varphi_{J}$ is the push-forward to $J$ of $\varphi_{I}$ by vertical translation. This makes it possible to define $\int_{I} \varphi g \mathrm{~d} x$ for any horizontal segment $I$ and any $\varphi \in C_{c}^{k_{h}-1}(I)$, by using the integral on a small vertical translate of $I$ included in $F$. By the above, it does not depend on the choice of the translate.

Let $\delta>0$ be such that any horizontal segment of length $\beta_{0}$ can be translated vertically, in the positive or negative direction, by at least $\delta$. If $T$ is large enough, then $F[0, T]$ is $\delta$-dense in $M$. This implies that, to compute $\int_{I} \varphi g \mathrm{~d} x$ for any interval $I$ of length $\beta_{0}$, one can first translate it vertically to reduce the computation to an interval included in $F\left[0, T+\beta_{0}\right]$, and
then use a time $t$ independent of $I$. The function $\Phi_{t}$ obtained in this way has a $C^{k_{h}}$ norm which is bounded by $C\|\varphi\|_{C^{k_{h}-1}}$. This shows that, uniformly in $I \in \mathcal{I}^{h}$,

$$
\left|\int_{I} \varphi \cdot g \mathrm{~d} x\right| \leqslant C\|\varphi\|_{C^{k_{h}-1}}
$$

Moreover, as $g$ is locally invariant under vertical translations, we have $\int_{I} \varphi \cdot L_{v}^{j} g \mathrm{~d} x=0$ for all $j>0$. Therefore, $g$ satisfies all the inequalities that are satisfied by the elements of $\mathcal{B}^{-k_{h}+1, k_{v}}$.

However, this is not enough to conclude that $g$ is indeed an element of $\mathcal{B}^{-k_{h}+1, k_{v}}$. We should come back to the definition of this space as the closure of $C_{c}^{\infty}(M-\Sigma)$, and show that $g$ is a limit of smooth functions with compact support. This is the hardest part of the proof, as one may not regularize $g$ blindly by convolving it with a smooth kernel along horizontal segments: this fails for segments that hit the singularity. We prove the statement locally, as one can then extend it using a partition of unity. We treat the harder case of the neighborhood of a singularity $\sigma$, the case away from singularities is easier. Let $\pi: U \rightarrow \mathbb{C}$ be the covering projection of a neighborhood $U$ of $\sigma$ in $\mathbb{C}$, sending $\sigma$ to 0 . We write $U_{r}=\pi^{-1}([-r, r]+\mathbf{i}[-r, r])$. Let $a>0$ be small enough. We fix a smooth function $\rho$ that is equal to 1 on $U_{4 a}$ and vanishes outside of $U_{5 a}$.

By assumption, $f$ itself is the limit in $\mathcal{B}^{-k_{h}, k_{v}}$ of a sequence of functions $f_{n} \in C_{c}^{\infty}(M-\Sigma)$. Let us consider around $\sigma$ the function $g_{n}^{0}$ which is a primitive of $f_{n}$ along every horizontal segment, and vanishes on the vertical segments going through $\sigma$. Then $\rho g_{n}^{0} \in C_{c}^{\infty}(M-\Sigma)$. However, $g_{n}^{0}$ will not converge in general to $g$, as one has to adjust integration constants. The difficulty is that, if we adjust the integration constant by considering what happens to the left of $\sigma$ in complex charts (i.e., on the set of points whose image under $\pi$ has negative real part), then this integration constant will behave nicely along vertical segments to the left of $\sigma$, but it will be discontinuous along vertical segments to the right of $\sigma$. The converse problem shows up if we fix the integration constant by using what happens to the right of $\sigma$. The idea will be to have two integration constants, coming from the left and from the right, and to show that they are necessarily close.

Let $\eta$ be a nonnegative $C^{\infty}$ function on $\mathbb{R}$ with support in $[0, a]$ and with integral 1 . We will write $\eta_{t}$ for $\eta(\cdot-t)$, whose support is contained in $[t, t+a]$. Given a point $y$ on a vertical segment through $\sigma$, we write

$$
\begin{aligned}
& c_{n}^{+}(y)=\int_{[6 a, 7 a]+\mathbf{i} y} \eta_{6 a} g \mathrm{~d} x-\int_{[6 a, 7 a]+\mathbf{i} y} \eta_{6 a} g_{n}^{0} \mathrm{~d} x, \\
& c_{n}^{-}(y)=\int_{[-7 a,-6 a]+\mathbf{i} y} \eta_{-7 a} g \mathrm{~d} x-\int_{[-7 a,-6 a]+\mathbf{i} y} \eta_{-7 a} g_{n}^{0} \mathrm{~d} x
\end{aligned}
$$

(where we used the local complex coordinates given by $\pi$ ). These functions are uniformly bounded. As $g$ is invariant under vertical shift and as $g_{n}^{0}$ is $C^{\infty}$, they are smooth along vertical segments. More precisely, $c_{n}^{+}$is $C^{\infty}$ along vertical segments on the right of the singularity (in the chart $\pi$ ), while $c_{n}^{-}$is $C^{\infty}$ along vertical segments to the left of the singularity.

We claim that, for $y$ as above, for any function $\varphi \in C_{c}^{k_{h}-1}([-3 a, 3 a]+\mathbf{i} y)$ with norm at most 1 , and for any sign $s= \pm$,

$$
\begin{equation*}
\left|\int \rho \varphi g \mathrm{~d} x-\int \rho \varphi g_{n}^{0} \mathrm{~d} x-\left(\int \rho \varphi\right) c_{n}^{s}(y)\right| \leqslant C\left\|f-f_{n}\right\|_{-k_{h}, k_{v}}, \tag{2.19}
\end{equation*}
$$

where $C$ does not depend on $n$. Let us prove this for $s=+$ for instance. By density of $F$ and by continuity of all the objects under consideration, it suffices to prove it if $y \in F$. The function $\rho \varphi-\left(\int \rho \varphi\right) \eta_{6 a}$ has a vanishing integral on $[-3 a, 7 a]+\mathbf{i} y$. Its primitive $\Phi$ vanishing at $-3 a+\mathbf{i} y$ also vanishes at $7 a+\mathbf{i} y$. The definition of $g$ entails

$$
\int\left(\rho \varphi-\left(\int \rho \varphi\right) \eta_{6 a}\right) g=-\int \Phi f .
$$

Moreover,

$$
\int\left(\rho \varphi-\left(\int \rho \varphi\right) \eta_{6 a}\right) g_{n}^{0}=\int \Phi^{\prime} g_{n}^{0}=-\int \Phi\left(g_{n}^{0}\right)^{\prime}=-\int \Phi f_{n}
$$

Taking the difference between these two equations and using the definition of $c_{n}^{+}(y)$ yields

$$
\int \rho \varphi g-\int \rho \varphi g_{n}^{0}-\left(\int \rho \varphi\right) c_{n}^{+}(y)=\int \Phi f_{n}-\int \Phi f .
$$

Thanks to the definition of the norm, this proves (2.19) since $\Phi$ is $C^{k_{h}}$ with norm and support uniformly bounded.

Let us now consider a function $\varphi$ supported by $[-3 a, 3 a]$ with integral 1 . We have $\int \rho \varphi=1$ if $|y| \leqslant 3 a$ by definition of $\rho$. Using the inequalities (2.19) with the signs + and - and taking their differences, we get in particular

$$
\begin{equation*}
\left|c_{n}^{+}(y)-c_{n}^{-}(y)\right| \leqslant C\left\|f-f_{n}\right\|_{-k_{h}, k_{v}} . \tag{2.20}
\end{equation*}
$$

Let $h_{n}$ be a smooth function on $\mathbb{R}$ equal to 0 in a neighborhood of 0 and to 1 for $|x| \geqslant 1 / n$. We define $g_{n}$ by $g_{n}(x+\mathbf{i} y)=g_{n}^{0}(x+\mathbf{i} y)+c_{n}^{\operatorname{sgn} x}(y) h_{n}(x)$. This is a $C^{\infty}$ function on $U_{3 a}$, vanishing in a neighborhood of $\sigma$. Let $\bar{\rho}$ be a smooth function equal to 1 on $U_{a}$, vanishing outside of $U_{2 a}$. Let us show that $\bar{\rho} g_{n}$ converges to $\bar{\rho} g$ in $\mathcal{B}^{-k_{h}+1, k_{v}}$, to conclude the proof.

We first control what happens without vertical derivatives. Let $I$ be a horizontal interval. We may assume that it is close to $\sigma$, at height $y$ with $|y|<2 a$, otherwise $\bar{\rho}$ vanishes on $I$ and everything is trivial. Consider also $\varphi \in C_{c}^{k_{h}-1}(I)$. Then

$$
\begin{gathered}
\int_{I} \varphi \cdot \bar{\rho} g \mathrm{~d} x-\int_{I} \varphi \cdot \bar{\rho} g_{n} \mathrm{~d} x=\int_{I} \rho \cdot \bar{\rho} \varphi \cdot g \mathrm{~d} x-\int_{I} \rho \cdot \bar{\rho} \varphi \cdot g_{n}^{0} \mathrm{~d} x-\int_{I} \rho \cdot \bar{\rho} \varphi c_{n}^{\operatorname{sgn} x}(y) h_{n}(x) \mathrm{d} x \\
=\left(\int_{I} \rho \cdot \bar{\rho} \varphi\right) c_{n}^{+}(y)-\int_{I} \rho \cdot \bar{\rho} \varphi \cdot c_{n}^{\operatorname{sgn} x}(y) h_{n}(x) \mathrm{d} x+O\left(\left\|f-f_{n}\right\|_{-k_{h}, k_{v}}\right),
\end{gathered}
$$

where the first equality comes from the definition of $g_{n}$, and the second one from (2.19). In the last integral, if one replaces $c_{n}^{-}(y)$ by $c_{n}^{+}(y)$, one makes a mistake which is bounded by $C\left\|f-f_{n}\right\|_{-k_{h}, k_{v}}$, thanks to (2.20). We are left with

$$
c_{n}^{+}(y) \cdot \int_{I} \rho \cdot \bar{\rho} \varphi \cdot\left(1-h_{n}(x)\right) \mathrm{d} x+O\left(\left\|f-f_{n}\right\|_{-k_{h}, k_{v}}\right) .
$$

Since $1-h_{n}$ is supported in an interval of length $2 / n$ and since the function $\rho \cdot \bar{\rho} \varphi$ is uniformly bounded, as well as $c_{n}^{+}$, this quantity is bounded by $C / n+C\left\|f-f_{n}\right\|_{-k_{h}, k_{v}}$, which tends to 0 with $n$. We have therefore proved that $\left\|\bar{\rho} g_{n}-\bar{\rho} g\right\|_{-k_{h}+1,0} \rightarrow 0$.

Let us then consider what happens with successive derivatives in the vertical direction. In $L_{v}^{j}(\bar{\rho} g)$, if one differentiates $\bar{\rho}$, then the number of derivatives of $g$ is less than $j$, and one concludes by induction. We are left with proving the convergence to 0 of

$$
\int_{I} \varphi \cdot \bar{\rho} L_{v}^{j} g \mathrm{~d} x-\int_{I} \varphi \cdot \bar{\rho} L_{v}^{j} g_{n} \mathrm{~d} x
$$

As the vertical derivative of $g$ vanishes, the first term is 0 . For the second term, the vertical derivatives of $f_{n}$, integrated against a smooth function, are small since they are close to the corresponding term for $f$, which vanishes as $L_{v} f=0$. Integrating horizontally, we deduce that the vertical derivatives of $g_{n}^{0}$ are small in the distributional sense. As a consequence, the vertical derivatives of $c_{n}^{+}$and $c_{n}^{-}$are also small. The same is true for the vertical derivatives of $g_{n}$. This concludes the proof.

The following lemma will be very important for us, to show that the eigenvalue $\lambda^{-1}$ of a pseudo-Anosov map acting on $H^{1}(M)$ does not show up in its Ruelle spectrum.

Lemma 2.14. There is no $f \in \mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ with $[f]=[\mathrm{d} y]$.
Proof. We argue by contradiction, assuming that $f \in \mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ satisfies $[f]=[\mathrm{d} y]$. Increasing $k_{h}$ (which only makes the space larger), we can assume $k_{h} \geqslant 1$. Since $f$ is in the kernel of $L_{v}$, its vertical smoothness is infinite, so we can also assume $k_{v} \geqslant 3$. We claim that, in this case, there exists $g \in \mathcal{B}^{-k_{h}+1, k_{v}}$ with $L_{h} g=f$ and $L_{v} g=1$.

We follow the construction in Proposition 2.13 to construct the primitive $g$ of $f$. Let us use all the notations of the corresponding proof. In particular, let $F$ be a half-infinite horizontal leaf starting at a point $x_{0}$, and let $x_{t}$ be the point at distance $t$ of $x_{0}$ in $F$, and let $\rho_{0}$ be a function on $F$ which is equal to 1 on a neighborhood of $x_{0}$ and to 0 on $[\delta / 2,+\infty[$, where $\delta$ is small enough.

Let $\varphi$ be a $C^{k_{h}-1}$ function on $F$, with compact support. Denote by $\Phi$ its primitive that vanishes at 0 . It is eventually constant and equal to $\int \varphi$ after some time $T$. Choose $t>T$ such that $x_{t}$ belongs to the vertical segment of size $\delta$ through $x_{0}$ (such a time exists as the half-leaf $F$ is dense), at a vertical distance $y\left(x_{t}\right)$. Let us consider the function $\Phi_{t}$ equal to $\Phi$ on $[0, t]$, to $\left(\int \varphi\right) \cdot \rho_{0}$ on $[t, t+\delta]$ (where $\rho_{0}$ is pushed vertically to $\left[x_{t}, x_{t+\delta}\right]$ ), and to 0 afterwards. This is a compactly support $C^{k_{h}}$ function on $F$. Therefore, $\int_{F} \Phi_{t} f \mathrm{~d} x$ is well defined. Let us define formally

$$
\begin{equation*}
\int \varphi \cdot g \mathrm{~d} x=-\int \Phi_{t} \cdot f \mathrm{~d} x-y\left(x_{t}\right) \cdot \int \varphi \tag{2.21}
\end{equation*}
$$

The last term is the only difference with (2.18).

This quantity does not depend on $t$. Indeed, choose $s>t$ such that $x_{s}$ is also on the vertical leaf of size $\delta$ through $x_{0}$. Then

$$
\begin{aligned}
\left(-\int \Phi_{s} \cdot f \mathrm{~d} x-y\left(x_{s}\right) \cdot \int \varphi\right)-\left(-\int \Phi_{t} \cdot f \mathrm{~d} x\right. & \left.-y\left(x_{t}\right) \cdot \int \varphi\right) \\
& =-\left(\int \varphi\right)\left(\int_{\gamma} f \mathrm{~d} x+y\left(x_{s}\right)-y\left(x_{t}\right)\right),
\end{aligned}
$$

where $\gamma$ is the union of the piece of $F$ between $x_{t}$ and $x_{s}$, and of the small vertical segment between $x_{s}$ and $x_{t}$. As $[f]=[\mathrm{d} y]$, we have $\int_{\gamma} f \mathrm{~d} x=y\left(x_{t}\right)-y\left(x_{s}\right)$. Therefore, the above difference vanishes.

Let $I_{0}$ be a subsegment of $F$, let $\varphi$ be a compactly supported function on $I_{0}$, let $I_{\varepsilon}$ be a vertical translate of $I_{0}$ by a small parameter $\varepsilon$ so that there is no singularity in between and so that $I_{\varepsilon}$ is also included in $F$. Then we have

$$
\begin{equation*}
\int_{I_{\varepsilon}} \varphi \cdot g \mathrm{~d} x-\int_{I_{0}} \varphi \cdot g \mathrm{~d} x=\left(\int \varphi\right) \varepsilon . \tag{2.22}
\end{equation*}
$$

Indeed, let us use in Definition (2.21) a time $t$ which is large enough to work as well for $I_{0}$ and $I_{\varepsilon}$. The difference between the primitives of $\varphi$ on $I_{0}$ and $I_{\varepsilon}$ is then supported on the subsegment of $F$ between $I_{0}$ and $I_{\varepsilon}$, and is equal to $\int \varphi$ except in the boundaries $I_{0}$ and $I_{\varepsilon}$. We obtain

$$
\int_{I_{\varepsilon}} \varphi \cdot g \mathrm{~d} x-\int_{I_{0}} \varphi \cdot g \mathrm{~d} x=-\left(\int \varphi\right) \int_{\gamma} f \mathrm{~d} x
$$

where $\gamma$ is made of a horizontal piece of $F$ and of the vertical segment between the left endpoints of $I_{\varepsilon}$ and $I_{0}$, with length $\varepsilon$. As $[f]=[\mathrm{d} y]$, we have $\int_{\gamma} f \mathrm{~d} x=\int_{\gamma} \mathrm{d} y=-\varepsilon$. This proves (2.22).

We can then extend by continuity $g$ to all horizontal segments, ensuring that (2.22) is always satisfied. Then, by definition, $L_{v} g=1$ in the distributional sense. It remains to check that $g$ belongs to $\mathcal{B}^{-k_{h}+1, k_{v}}$. The argument is completely identical to the corresponding argument in the proof of Proposition 2.13.

We have obtained $g \in \mathcal{B}^{-k_{h}+1, k_{v}}$ with $L_{v} g=1$. With the duality from Lemma 2.11, we get

$$
\operatorname{Leb} M=\langle 1,1\rangle=\left\langle L_{v} g, 1\right\rangle=-\left\langle g, L_{v} 1\right\rangle=0 .
$$

This is a contradiction, concluding the proof of the lemma.

## 3. The Ruelle spectrum of pseudo-Anosov maps with orientable foliations

Let $T$ be a pseudo-Anosov map preserving orientations, on a translation surface ( $M, \Sigma$ ). This section is devoted to the description of its Ruelle spectrum, culminating with the proof of Theorem 1.4.
3.1. Quasi-compactness of the transfer operator. In this paragraph, we show that the operator $\mathcal{T}$ of composition with $T$ acts on $\mathcal{B}^{-k_{h}, k_{v}}$, and is quasi-compact with a small essential spectral radius. Namely:
Theorem 3.1. The operator $\mathcal{T}$ acting on $\mathcal{B}^{-k_{h}, k_{v}}$ has a spectral radius bounded by 1 , and an essential spectral radius bounded by $\lambda^{-\min \left(k_{h}, k_{v}\right)}$.

The proof will use a Lasota-Yorke inequality given in the next proposition.

Proof of Theorem 3.1 assuming Proposition 3.2. This follows readily from Hennion's Theorem [Hen93], from the compact embedding proposition 2.8 and from the Lasota-Yorke inequality given in Proposition 3.2.

Proposition 3.2. Let $k_{h}, l_{v} \geqslant 0$. The operator $\mathcal{T}: f \mapsto f \circ T$, initially defined for $f \in$ $C_{c}^{\infty}(M-\Sigma)$, extends to a continuous linear operator on $\mathcal{B}^{-k_{h}, k_{v}}$, whose iterates are uniformly bounded. Moreover, it satisfies the inequality

$$
\begin{equation*}
\left\|\mathcal{T}^{n} f\right\|_{-k_{h}, k_{v}} \leqslant C \lambda^{-\min \left(k_{h}, k_{v}\right) n}\|f\|_{-k_{h}, k_{v}}+C_{n}\|f\|_{-k_{h}-1, k_{v}-1} \tag{3.1}
\end{equation*}
$$

where $C$ and $C_{n}$ are constants that do not depend on $f$. (When $k_{v}=0$, the last term should be omitted).

Proof. Assume that we can prove the inequality (3.1) for $f \in C_{c}^{\infty}(M-\Sigma)$. Then, it extends to $\mathcal{B}^{-k_{h}, k_{v}}$ by density, and proves that $\mathcal{T}$ acts continuously on this space thanks to the inclusion $\mathcal{B}^{-k_{h}, k_{v}} \subseteq \mathcal{B}^{-k_{h}-1, k_{v}-1}$.

Let us now prove (3.1) for smooth $f$. In the course of the proof, we will also establish the boundedness of the iterates of $\mathcal{T}$ on $\mathcal{B}^{-k_{h}, k_{v}}$. First, we estimate the contribution of $\left\|\mathcal{T}^{n} f\right\|_{-k_{h}, k_{v}}^{\prime}$ to $\left\|\mathcal{T}^{n} f\right\|_{-k_{h}, k_{v}}$. Consider $I \in \mathcal{I}^{h}$ and $\varphi \in C_{c}^{k_{h}}(I)$ with norm at most 1 , and compute

$$
\int_{I} \varphi \cdot L_{v}^{k_{v}}\left(f \circ T^{n}\right) \mathrm{d} x=\lambda^{-k_{v} n} \int_{I} \varphi \cdot\left(L_{v}^{k_{v}} f\right) \circ T^{n} \mathrm{~d} x=\lambda^{-k_{v} n} \cdot \lambda^{-n} \int_{T^{n} I} \varphi \circ T^{-n} \cdot L_{v}^{k_{v}} f \mathrm{~d} x
$$

Let us then introduce a partition of unity $\rho_{p}$ on $T^{n} I$ into smooth functions with supports of size $\leqslant \beta_{0}$ and bounded intersection multiplicity. Thus, we decompose $T^{n} I$ as a union of at most $C \lambda^{n}$ intervals in $\mathcal{I}^{h}$. On each of these intervals, the integral is bounded by $C\|f\|_{-k_{h}, k_{v}}^{\prime}$ as the function $\varphi \circ T^{-n} \cdot \rho_{p}$ has a $C^{k_{h}}$-norm which is uniformly bounded (this is the case for $\varphi$ and $\rho_{p}$, and the map $T^{-n}$ only makes things better as it is a uniform contraction by $\lambda^{-n}$ ). Summing over $p$, we get a bound $C \lambda^{-k_{v} n}\|f\|_{-k_{h}, k_{v}}^{\prime}$. Hence,

$$
\begin{equation*}
\left\|\mathcal{T}^{n} f\right\|_{-k_{h}, k_{v}}^{\prime} \leqslant C \lambda^{-k_{v} n}\|f\|_{-k_{h}, k_{v}} \tag{3.2}
\end{equation*}
$$

If we use the same argument with a norm involving $j<k_{v}$ stable derivatives, we get a weaker gain $\lambda^{-j n}$. Summing over $j$, this shows that the iterates of $\mathcal{T}$ are uniformly bounded on $\mathcal{B}^{-k_{h}, k_{v}}$, but this is not enough to prove (3.1). To prove it, we will take advantage of the expansion in the horizontal direction, which we have not used yet. We can extend $I$ in one of the two horizontal directions without meeting a singularity, for instance to its right, to an interval $I^{\prime} \in \mathcal{I}_{2 \beta_{0}}^{h}$. Let $\varphi_{\varepsilon}=\varphi \star \theta_{\varepsilon}$ where $\theta_{\varepsilon}$ is a kernel supported on $[0, \varepsilon]$, and $\varepsilon<\beta_{0}$ is a small parameter that will be chosen later on, depending on $n$. (If the interval $I$ had been extended to its left, we would have taken the support of $\theta_{\varepsilon}$ in $\left.[-\varepsilon, 0]\right)$. Then $\varphi_{\varepsilon}$ is compactly supported in $I^{\prime}$ if $\varepsilon<\beta_{0}$, and it satisfies

$$
\begin{equation*}
\left\|\varphi-\varphi_{\varepsilon}\right\|_{C^{k_{h}-1}} \leqslant C \varepsilon, \quad\left\|\varphi_{\varepsilon}\right\|_{C^{k_{h}}} \leqslant C, \quad\left\|\varphi_{\varepsilon}\right\|_{C^{k_{h}+1}} \leqslant C / \varepsilon \tag{3.3}
\end{equation*}
$$

Let us compute as above, introducing a partition of unity $\rho_{p}$ on $T^{n} I^{\prime}$. We get

$$
\begin{aligned}
\int_{I} \varphi \cdot L_{v}^{j}\left(f \circ T^{n}\right) \mathrm{d} x=\lambda^{-j n} \cdot \lambda^{-n} \sum_{p} \int_{I_{p}}\left(\varphi-\varphi_{\varepsilon}\right) \circ T^{-n} \cdot \rho_{p} \cdot L_{v}^{j} f \mathrm{~d} x
\end{aligned} \quad \begin{aligned}
& \quad+\lambda^{-j n} \cdot \lambda^{-n} \sum_{p} \int_{I_{p}} \varphi_{\varepsilon} \circ T^{-n} \cdot \rho_{p} \cdot L_{v}^{j} f \mathrm{~d} x
\end{aligned}
$$

In the second sum, the test function $\varphi_{\varepsilon} \circ T^{-n} \cdot \rho_{p}$ has a $C^{k_{h}+1}$ norm which is bounded by $C / \varepsilon$. As the number $j$ of derivatives we consider is $<k_{v}$, we deduce that this term is bounded by $C \lambda^{-j n} \varepsilon^{-1}\|f\|_{-k_{h}-1, k_{v}-1} \leqslant C(\varepsilon, n)\|f\|_{-k_{h}-1, k_{v}-1}$. In the first sum, the first $k_{h}-1$ derivatives of $\left(\varphi-\varphi_{\varepsilon}\right) \circ T^{-n}$ are bounded by $C \varepsilon$, as this already holds for $\varphi-\varphi_{\varepsilon}$ by (3.3). The $k_{h}$-th derivative of $\varphi-\varphi_{\varepsilon}$ is only bounded by a constant. As $T^{-n}$ contracts by $\lambda^{-n}$, the $k_{h}$-th derivative of $\left(\varphi-\varphi_{\varepsilon}\right) \circ T^{-n}$ is therefore bounded by $C \lambda^{-k_{h} n}$. Hence, taking $\varepsilon=\lambda^{-k_{h} n}$, we get $\left\|\left(\varphi-\varphi_{\varepsilon}\right) \circ T^{-n}\right\|_{C^{k} h} \leqslant C \lambda^{-k_{h} n}$. Multiplying by $\rho_{p}$ (whose derivatives are all bounded) and then integrating and summing, we find that the first sum is bounded by $C \lambda^{-\left(j+k_{h}\right) n}\|f\|_{-k_{h}, k_{v}} \leqslant C \lambda^{-k_{h} n}\|f\|_{-k_{h}, k_{v}}$.

Finally, we have proved that, for $j<k_{v}$,

$$
\left\|\mathcal{T}^{n} f\right\|_{-k_{h}, j}^{\prime} \leqslant C \lambda^{-k_{h} n}\|f\|_{-k_{h}, k_{v}}+C_{n}\|f\|_{-k_{h}-1, k_{v}-1}
$$

Together with the inequality (3.2), we get the conclusion of the proposition.
Theorem 3.1 shows that the spectrum of $\mathcal{T}$ acting on $\mathcal{B}^{-k_{h}, k_{v}}$ is discrete in $\{z:|z|>$ $\left.\lambda^{-\min \left(k_{h}, k_{v}\right)}\right\}$, made of at most countably many eigenvalues which are all discrete and of finite multiplicity. A priori, the spectrum could depend on the space $\mathcal{B}^{-k_{h}, k_{v}}$ we consider. However, all these spaces contain the dense subspace $C_{c}^{\infty}(M-\Sigma)$ and they are all continuously embedded in the distribution space $\mathcal{D}^{\infty}(M-\Sigma)$. A theorem of Baladi-Tsujii [BT08, Lemma A.1] then ensures that the spectrum (and even the eigenspaces, considered as subspaces of the space of distributions) do not depend on the space one considers, if one is beyond the essential spectral radius. Hence, it makes sense to talk about the spectrum of $\mathcal{T}$, independently of the space $\mathcal{B}^{-k_{h}, k_{v}}$. We have proved the existence of a Ruelle spectrum for $T$ in the sense of Definition 1.1. To complete the proof of Theorem 1.4, we still have to identify this spectrum.

For $\alpha \neq 0$, let us denote by $E_{\alpha}^{(1)}$ the eigenspace corresponding to the eigenvalue $\alpha$, and by $E_{\alpha}$ the corresponding generalized eigenspace (containing the eigenvectors and more generally the generalized eigenvectors, i.e., such that $(\mathcal{T}-\alpha I)^{k} f=0$ for some $\left.k>0\right)$. They are included in $\mathcal{B}^{-k_{h}, k_{v}}$ when $|\alpha|>\lambda^{-\min \left(k_{h}, k_{v}\right)}$.
3.2. Description of the spectrum. To describe the spectrum, we will rely crucially on the action of the operators $L_{h}$ and $L_{v}$.

Proposition 3.3. We have $\mathcal{T} \circ L_{v}=\lambda L_{v} \circ \mathcal{T}$ on $C_{c}^{\infty}(M-\Sigma)$. This equality still holds on all spaces to which these operators extend continuously, in particular as operators from $\mathcal{B}^{-k_{h}, k_{v}}$ to $\mathcal{B}^{-k_{h}, k_{v}-1}$ when $k_{v}>0$.

In the same way, $\mathcal{T} \circ L_{h}=\lambda^{-1} L_{h} \circ \mathcal{T}$ on $C_{c}^{\infty}(M-\Sigma)$. This equality still holds on all spaces to which these operators extend continuously, in particular as operators from $\mathcal{B}^{-k_{h}, k_{v}}$ to $\mathcal{B}^{-k_{h}-1, k_{v}}$.

Proof. We compute: $\left(\mathcal{T} \circ L_{v}\right)(f)=\left(L_{v} f\right) \circ T$, and $\left(L_{v} \circ \mathcal{T}\right)(f)=L_{v}(f \circ T)=\lambda^{-1}\left(L_{v} f\right) \circ T$ as $T$ contracts by $\lambda^{-1}$ in the vertical direction. This proves the desired equality for $L_{v}$. The argument is the same for $L_{h}$.

Corollary 3.4. The operator $L_{v}$ sends $E_{\alpha}$ to $E_{\lambda \alpha}$. The operator $L_{h}$ sends $E_{\alpha}$ to $E_{\lambda^{-1} \alpha}$.
Proof. A generalized eigendistribution $f$ for $\alpha$ satisfies $(\mathcal{T}-\alpha I)^{k} f=0$ for large enough $k$. Moreover, we have $(\mathcal{T}-\lambda \alpha I) \circ L_{v}=\lambda L_{v} \circ(\mathcal{T}-\alpha I)$ by Proposition 3.3. By induction, $(\mathcal{T}-\lambda \alpha I)^{k} \circ L_{v}=\lambda^{k} L_{v} \circ(\mathcal{T}-\alpha I)^{k}$. Therefore, $(\mathcal{T}-\lambda \alpha I)^{k}\left(L_{v} f\right)=\lambda^{k} L_{v}\left((\mathcal{T}-\alpha I)^{k} f\right)=0$. This shows that $L_{v}$ maps $E_{\alpha}$ to $E_{\lambda \alpha}$. The argument is the same for $L_{h}$.

Corollary 3.5. For $f \in E_{\alpha}$, we have $L_{v}^{k} f=0$ when $k$ is large enough, more specifically when $\lambda^{k}|\alpha|>1$.

Proof. We have $L_{v}^{k} f \in E_{\lambda^{k} \alpha}$. This space is trivial if $\left|\lambda^{k} \alpha\right|>1$ as the iterates of $\mathcal{T}$ are bounded on $\mathcal{B}^{-k_{h}, k_{v}}$ by Proposition 3.2.

If we start from a nonzero generalized eigendistribution, we can consider the smallest $k$ such that $L_{v}^{k} f=0$. Then $L_{v}^{k-1} f$ is a generalized eigendistribution for $\mathcal{T}$, and it satisfies $L_{v} f=0$. Such elements are the main building blocks to describe the spectrum of $\mathcal{T}$. We will take advantage of the cohomological description of such objects we have given in Paragraph 2.4 to go further in the description of the spectrum.

Let us now try to see if any cohomology class can be realized by elements in $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ - and if the class is a (generalized) eigenfunction for the action of $T$ on cohomology we will try to realize it by a (generalized) eigendistribution for $\mathcal{T}$, for the same eigenvalue. This is not always possible: if one considers the action of a linear Anosov matrix on the torus, then the cohomology has dimension 2 , but the spectrum of $\mathcal{T}$ is reduced to $\{1\}$ : it is not possible to realize in this way the cohomology class corresponding to the stable foliation. We will see that this is the only obstruction: all the other eigenvectors in cohomology (which correspond to eigenvalues in $\left.\left(\lambda^{-1}, \lambda\right]\right)$ can be realized.

Theorem 3.6. Let $h \in H^{1}(M)$ be a cohomology class which is a generalized eigenfunction for the linear action of $T$ on cohomology: we have $\left(T^{*}-\mu\right)^{J} h=0$ for some $J \geqslant 1$ and some $\mu$ with $|\mu| \in\left[\lambda^{-1}, \lambda\right]$ (where $\mu=\lambda$ if and only if $h$ is a multiple of the class of the horizontal foliation $\mathrm{d} x$, and $\mu=\lambda^{-1}$ if and only if $h$ is a multiple of the class of the vertical foliation $\mathrm{d} y)$. We assume $\mu \neq \lambda^{-1}$, i.e., we exclude multiples of $\mathrm{d} y$.

Then, for $\min \left(k_{h}, k_{v}\right) \geqslant 3$, there exists $f \in \mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ in the generalized eigenspace $E_{\lambda^{-1} \mu}$ whose cohomology class $[f]$ is equal to $h$. In particular, if $h \neq 0$, the eigenspace is nontrivial.

Proof. Let $\omega$ be a closed 1-form with compact support in $M-\Sigma$ such that $[\omega]=h$, i.e., $\int_{\gamma} \omega=\langle h, \gamma\rangle$ for any closed curve $\gamma$. It is possible to choose such an $\omega$ which vanishes on a neighborhood of $\Sigma$ as part of the long exact sequence in cohomology reads $H_{c}^{1}(M-\Sigma) \rightarrow$ $H_{c}^{1}(M) \rightarrow H_{c}^{1}(\Sigma)$. As the last term is 0 , the previous arrow is onto.

Let us write $\omega=\omega_{x} \mathrm{~d} x+\omega_{y} \mathrm{~d} y$ where $\omega_{x}$ and $\omega_{y}$ belong to $C_{c}^{\infty}(M-\Sigma)$. Then we have

$$
\left(T^{n}\right)^{*} \omega=\lambda^{n}\left(\mathcal{T}^{n} \omega_{x}\right) \mathrm{d} x+\lambda^{-n}\left(\mathcal{T}^{n} \omega_{y}\right) \mathrm{d} y
$$

as $T$ expands horizontally by $\lambda$ and contracts vertically by $\lambda$.

Consider a closed path $\gamma$ made of horizontal and vertical segments, away from the singularities. Denote by $\gamma_{t}$ the same path but shifted horizontally by $t$. If $t$ is small enough, it does not meet any singularity either. Let $\bar{\gamma}=\int_{t} \eta(t) \gamma_{t}$ where $\eta$ is a smooth function whose support is small enough to ensure that this is well defined. This integral should be understood in the weak sense, i.e., for any form $\omega$ the integral of $\omega$ on $\bar{\gamma}$ is by definition $\int_{t} \eta(t)\left(\int_{\gamma_{t}} \omega\right)$. Then $\bar{\gamma}$ is made of horizontal segments weighted by a $C^{\infty}$ compactly supported function - we denote this part by $\bar{\gamma}_{h}$ - and of vertical parts that we denote by $\bar{\gamma}_{v}$. Then

$$
\int_{\bar{\gamma}_{h}}\left(\mathcal{T}^{n} \omega_{x}\right) \mathrm{d} x=\lambda^{-n} \int_{\bar{\gamma}}\left(T^{n}\right)^{*} \omega-\lambda^{-2 n} \int_{\bar{\gamma}_{v}}\left(\mathcal{T}^{n} \omega_{y}\right) \mathrm{d} y .
$$

The last integral is uniformly bounded as $\omega_{y}$ is a bounded function. Hence, its contribution is $O\left(\lambda^{-2 n}\right)$. In the first term, as $\left(T^{n}\right)^{*} \omega$ is closed, it is equivalent to integrate just on $\gamma$. This only depends on the homology class $h$ of $\omega$, which is a generalized eigenvector for $T^{*}$. By Jordan's decomposition, we may write

$$
\left(T^{n}\right)^{*} h=\mu^{n} \sum_{j<J} n^{j} h_{j}
$$

with $h_{0}=h$. We get

$$
\begin{equation*}
\int_{\bar{\gamma}_{h}}\left(\mathcal{T}^{n} \omega_{x}\right) \mathrm{d} x=\left(\int \eta\right) \cdot\left(\lambda^{-1} \mu\right)^{n} \sum_{j<J} n^{j}\left\langle h_{j}, \gamma\right\rangle+O\left(\lambda^{-2 n}\right) \tag{3.4}
\end{equation*}
$$

In $\mathcal{B}^{-k_{h}, k_{v}}$, we can write

$$
\mathcal{T}^{n} \omega_{x}=\sum_{|r| \geqslant \lambda^{-2}} \sum_{j \leqslant C} r^{n} n^{j} f_{r, j}+R_{n}
$$

where $r$ runs along the eigenvalues of modulus $\geqslant \lambda^{-2}$ of $\mathcal{T}$, the $f_{r, j}$ belong to $E_{r}$ and $R_{n}$ is a remainder term which decays faster than $\lambda^{-2 n}$. Identifying the terms in the asymptotic (3.4) thanks to the assumption $|\mu|>\lambda^{-1}$ and using $h_{0}=h$, we obtain for $f=f_{\lambda^{-1} \mu, 0}$ the equality

$$
\begin{equation*}
\int_{\bar{\gamma}_{h}} f \mathrm{~d} x=\left(\int \eta\right)\langle h, \gamma\rangle . \tag{3.5}
\end{equation*}
$$

Let us show that $f$ satisfies $L_{v} f=0$. Consider a horizontal interval $I_{0}=[0, q]$, a small vertical translate $I_{\varepsilon}=I_{0}+\mathbf{i} \varepsilon$ of this interval (in a chart away from singularities), and a compactly supported test function $\varphi_{0}$ on $I_{0}$. We want to show that $\int_{I_{0}} \varphi_{0} f \mathrm{~d} x=\int_{I_{\varepsilon}} \varphi_{\varepsilon} f \mathrm{~d} x$ where $\varphi_{\varepsilon}$ is the vertical push-forward of $\varphi_{0}$ on $I_{\varepsilon}$. To do this, denote by $\gamma_{t}$ the path from 0 to $t$ then to $\mathbf{i} \varepsilon+t$ then to $\mathbf{i} \varepsilon$ then to 0 . 0 . Let also $\eta(t)=-\varphi_{0}^{\prime}(t)$. In $\bar{\gamma}=\int \eta(t) \gamma_{t} \mathrm{~d} t$, a point $x \in[0, q]$ is counted with a weight $\int_{t \in[x, q]} \eta(t) \mathrm{d} t=-\varphi_{0}(q)+\varphi_{0}(x)=\varphi_{0}(x)$. One can argue similarly along $I_{\varepsilon}$. Therefore, by definition, $\int_{I_{0}} \varphi_{0} f \mathrm{~d} x-\int_{I_{\varepsilon}} \varphi_{\varepsilon} f \mathrm{~d} x=\int_{\bar{\gamma}_{h}} f \mathrm{~d} x$. This integral vanishes by (3.5) as $\int \eta=0$. This shows that $f$ is invariant under vertical translation, i.e., $L_{v} f=0$.

The cohomology class $[f]$ is then well defined by Proposition 2.12 , as well as $\int_{\gamma} f \mathrm{~d} x$ for any closed path. By definition of this integral, it coincides with $\int_{\bar{\gamma}_{h}} f \mathrm{~d} x$ when $\bar{\gamma}$ is a smoothing of $\gamma$ as above and $\eta$ has integral 1. We deduce from (3.5) that $\int_{\gamma} f \mathrm{~d} x=\langle h, \gamma\rangle$ for any closed path $\gamma$. By definition, this shows that $[f]=h$.

We can use this statement to show that the spectrum of $T$ contains the set mentioned in Theorem 1.4:

Corollary 3.7. The Ruelle spectrum of $T$ contains all the $\lambda^{-n} \mu$ for $n \geqslant 1$ and $\mu \in \Xi$, where $\Xi$ is the spectrum of $T^{*}$ on the subspace of $H^{1}(M)$ made of 1-forms which are orthogonal to $\mathrm{d} x$ and $\mathrm{d} y$, as in the statement of Theorem 1.4.

Proof. Theorem 3.6 ensures that $\lambda^{-1} \mu$ belongs to the Ruelle spectrum of $T$. The map $L_{h}$ is injective on the generalized eigenspace $E_{\lambda^{-1} \mu}$ by Lemma 2.7, as the kernel of $L_{h}$ is included in $E_{1}$. It sends it to $E_{\lambda^{-2} \mu}$ by Corollary 3.4 , hence this space is nontrivial. By induction, one proves in the same way that all the spaces $E_{\lambda^{-n} \mu}$ are nontrivial.

Proposition 3.8. For any $\alpha \neq 0$, the operator $L_{h}$ is onto from $E_{\alpha} \cap$ ker $L_{v}$ to $E_{\lambda^{-1} \alpha} \cap$ $\operatorname{ker} L_{v} \cap \operatorname{ker}[\cdot]$. It is bijective for $\alpha \neq 1$.

Proof. First, $L_{h}$ sends $E_{\alpha}$ to $E_{\lambda^{-1} \alpha}$ by Corollary 3.4. As it commutes with $L_{v}$, it even sends $E_{\alpha} \cap \operatorname{ker} L_{v}$ to $E_{\lambda^{-1} \alpha} \cap \operatorname{ker} L_{v}$. Let us show that its image is contained in ker[•]. Let $f \in \operatorname{ker} L_{v}$, we have to see that $\left[L_{h} f\right]=0$. Consider a path $\gamma$ made of horizontal and vertical segments. We compute $\int_{\gamma} L_{h} f \mathrm{~d} x$ by coming back to its definition. Informally, we have $\int_{\gamma} L_{h} f \mathrm{~d} x=\sum_{I} \int_{I} L_{h} f \mathrm{~d} x$ where the sum is over horizontal parts of $\gamma$. With an integration by parts, $\int_{\gamma} L_{h} f \mathrm{~d} x=\sum_{I}\left(f\left(y_{I}\right)-f\left(x_{I}\right)\right)$ where $y_{I}$ and $x_{I}$ are the endpoints of $I$. As $\gamma$ is a closed path and $f$ is invariant vertically each $f\left(y_{I}\right)$ cancels out with $-f\left(x_{J}\right)$ where $J$ is the horizontal interval following $I$ in $\gamma$. We are left with $\int_{\gamma} L_{h} f \mathrm{~d} x=0$.

This computation is not rigorous as $f$ can not be integrated against characteristic functions, and $f\left(y_{I}\right)$ makes no sense ( $f$ is only a distribution). This is why $\int_{\gamma} L_{h} f \mathrm{~d} x$ is defined in Paragraph 2.4 by using a regularization of the characteristic function of $I$. The above argument works with the regularization. As $f$ is vertically invariant, the contribution of the end of the interval $I$ to $\int_{\gamma} L_{h} f \mathrm{~d} x$ compensates exactly with the contribution of the beginning of the next interval, and we are left with $\int_{\gamma} L_{h} f=0$ as desired.

It remains to show that $L_{h}: E_{\alpha} \cap \operatorname{ker} L_{v} \rightarrow E_{\lambda^{-1} \alpha} \cap \operatorname{ker} L_{v} \cap \operatorname{ker}[\cdot]$ is surjective (its bijectivity for $\alpha \neq 1$ follows directly as $L_{h}$ is injective away from constants by Lemma 2.7). Fix $f \in E_{\lambda^{-1} \alpha} \cap \operatorname{ker} L_{v} \cap \operatorname{ker}[\cdot]$. By Proposition 2.13, if $k_{h}$ and $k_{v}$ are large enough, there exists $g \in \mathcal{B}^{-k_{h}+1, k_{v}}$ such that $L_{v} g=0$ and $L_{h} g=f$. The question is whether one can take $g \in E_{\alpha}$.

Consider $j$ such that $\left(\mathcal{T}-\lambda^{-1} \alpha\right)^{j} f=0$. We have $\left(\mathcal{T}-\lambda^{-1} \alpha\right)^{j} \circ L_{h}=\lambda^{-j} L_{h} \circ(\mathcal{T}-\alpha)^{j}$ by Proposition 3.3. Therefore, $L_{h}\left((\mathcal{T}-\alpha)^{j} g\right)=0$, i.e., there exists a constant $c$ such that $(\mathcal{T}-\alpha)^{j} g=c$ by Lemma 2.7. If $\alpha \neq 1$, we have then $(\mathcal{T}-\alpha)^{j}\left(g-c /(1-\alpha)^{j}\right)=0$. Therefore, $\tilde{g}=g-c /(1-\alpha)^{j}$ satisfies $\tilde{g} \in E_{\alpha} \cap \operatorname{ker} L_{v}$ and $L_{h} \tilde{g}=f$, as announced. If $\alpha=1$, then $(\mathcal{T}-\alpha)^{j+1} g=(\mathcal{T}-1) c=0$, so $g$ itself already belongs to $E_{\alpha}$.

There are two possible spectral values, corresponding to the eigenvalues $\lambda$ and $\lambda^{-1}$ of $T^{*}: H^{1}(M) \rightarrow H^{1}(M)$, i.e., to $\mathrm{d} x$ and $\mathrm{d} y$. They have a special status in Theorem 1.4: the first one is simple and does not interact with the rest of the spectrum, while the second one does not belong to the Ruelle spectrum. Let us now give the specific results about these values that we will need to classify the Ruelle spectrum.

Lemma 3.9. The generalized eigenspace $E_{1}$ is one-dimensional, made of constants.

Proof. The generalized eigenspace $E_{1}$ contains the constants as the function 1 belongs to $\mathcal{B}^{-k_{h}, k_{v}}$ by Lemma 2.5. Moreover, any element $f$ of $E_{1}$ satisfies $L_{v} f=0$ (as $L_{v} f$ belongs to $E_{\lambda}$ by Corollary 3.4, and this space is trivial by Theorem 3.1). Therefore, there is a linear map $f \mapsto[f]$ from $E_{1}$ to $H^{1}(M)$, taking its values in the generalized eigenspace for the eigenvalue $\lambda$ of $T^{*}$. This space has dimension 1. To conclude, it suffices to show that this map is injective, i.e., if $f \in E_{1}$ satisfies $[f]=0$ then $f$ vanishes. When $[f]=0$, Proposition 3.8 shows that $f$ can be written as $L_{h} g$ with $g \in E_{\lambda}$. As this space is trivial, we get $g=0$ and then $f=0$.

We have almost all the tools to show that the Ruelle spectrum of $T$ is given exactly by the set described in Theorem 1.4. More precisely, we can already show the following partial result.
Proposition 3.10. The Ruelle spectrum of $T$ is given exactly by the set described in Theorem 1.4, i.e., it is made of 1 and of the numbers $\lambda^{-n} \mu$ with $n \geqslant 1$ and $\mu \in \Xi$.
Proof. On the one hand, 1 belongs to the spectrum by Lemma 3.9. On the other hand, for $\mu \in \Xi$ and $n \geqslant 1$, then $E_{\lambda^{-n} \mu}$ is nontrivial by Corollary 3.7. This shows one inclusion in the proposition.

For the converse, consider $\alpha \neq 0$ such that $E_{\alpha}$ is nontrivial, and take a nonzero $f \in E_{\alpha}$. Let $k \geqslant 0$ be the integer such that $L_{v}^{k} f \neq 0$ and $L_{v}^{k+1} f=0$. It exists by Corollary 3.5. The function $f_{k}=L_{v}^{k} f$ belongs to $E_{\lambda^{k} \alpha}$ by Corollary 3.5, and to ker $L_{v}$ by construction. If $\left[f_{k}\right]=0$, Proposition 3.8 shows that there exists $f_{k+1} \in E_{\lambda^{k+1} \alpha} \cap \operatorname{ker} L_{v}$ with $L_{h} f_{k+1}=f_{k}$. If $\left[f_{k+1}\right]=0$, we can iterate the same process. It has to stop at some point as $E_{\lambda^{k+n} \alpha}$ is trivial for $n$ large. Therefore, we get an integer $n$ and a distribution $f_{k+n} \in E_{\lambda^{k+n} \alpha} \cap \operatorname{ker} L_{v}$ with $L_{h}^{n} f_{k+n}=f_{k}$ and $\left[f_{k+n}\right] \neq 0$. The cohomology class $\left[f_{k+n}\right]$ belongs to the generalized eigenspace for $T^{*}: H^{1}(M) \rightarrow H^{1}(M)$ for the eigenvalue $\alpha^{\prime}=\lambda^{k+n+1} \alpha$. We have $\alpha^{\prime} \neq \lambda^{-1}$, since otherwise the corresponding cohomology class would be a nonzero multiple of [d $y$ ], contradicting Lemma 2.14. Hence, $\alpha^{\prime} \in \Xi$ or $\alpha^{\prime}=\lambda$. If $\alpha^{\prime} \in \Xi$, we have written $\alpha$ as $\lambda^{-p} \alpha^{\prime}$ with $p \geqslant 1$, in accordance with the claim of the proposition. If $\alpha^{\prime}=\lambda$, then $f_{k+n} \in E_{1}$. By Lemma 3.9, $f_{k+n}$ is constant. As $L_{h}^{n} f_{k+n}=f_{k} \neq 0$, we deduce $n=0$. Then $L_{v}^{k} f=f_{k}$ is a nonzero constant $c$. Using the duality formula from Lemma 2.11, we get

$$
c \operatorname{Leb} M=\left\langle f_{k}, 1\right\rangle=\left\langle L_{v}^{k} f, 1\right\rangle=-\left\langle f, L_{v}^{k} 1\right\rangle
$$

If $k$ were nonzero, then $L_{v}^{k} 1$ would vanish and we would get a contradiction. Therefore, $k=0$. Finally, $\alpha=1$, again in accordance with the claim.

The conclusion of the proof of Theorem 1.4 relies on the following statement.
Theorem 3.11. Let $\alpha \notin\{0,1\}$. Then $L_{v}: E_{\lambda^{-1} \alpha} \rightarrow E_{\alpha}$ is onto.
Before proving the theorem, let us show how we can conclude the proof of Theorem 1.4.
Proof of Theorem 1.4 using Theorem 3.11. To simplify the notations, we will assume that for $\mu \in \Xi$ then $\lambda^{-1} \mu \notin \Xi$ (otherwise, there is a superposition phenomenon as explained after the statement of Theorem 1.4, which makes things more complicated to write but does not change anything to the proof).

In Proposition 3.10, we have described exactly the spectrum of $T$, and moreover we have shown how the generalized eigenspaces were constructed. On the one hand, there is the
space $E_{1}$, which is one-dimensional by Lemma 3.9. On the other hand, for $\mu \in \Xi$, the space $E_{\lambda^{-1} \mu}$ is in bijection with the generalized eigenspace for the action of $T^{*}$ on $H^{1}(M)$ and the eigenvalue $\mu$, with dimension $d_{\mu}$.

Finally, $E_{\lambda^{-(n+1)} \mu}$ is made of elements sent by $L_{v}$ to $E_{\lambda^{-n} \mu}$, and of elements in $E_{\lambda^{-(n+1)} \mu} \cap$ ker $L_{v}$. Proposition 3.8 shows that $L_{h}$ is a bijection between $E_{\lambda^{-n} \mu} \cap \operatorname{ker} L_{v}$ and $E_{\lambda^{-(n+1)}{ }_{\mu} \cap} \cap$ ker $L_{v}$ (as, on the second space, the condition $[f]=0$ is always satisfied thanks to our non-superposition assumption). Therefore, by induction, all these spaces have dimension $d_{\mu}$. As $L_{v}: E_{\lambda^{-(n+1) \mu}} \rightarrow E_{\lambda^{-n} \mu}$ is onto by Theorem 3.11, we get

$$
\operatorname{dim} E_{\lambda^{-(n+1)} \mu}=\operatorname{dim} E_{\lambda^{-n} \mu}+\operatorname{dim} E_{\lambda^{-(n+1)} \mu} \cap \operatorname{ker} L_{v}=\operatorname{dim} E_{\lambda^{-n} \mu}+d_{\mu} .
$$

By induction, we obtain $\operatorname{dim} E_{\lambda^{-n} \mu}=n d_{\mu}$. In fact, we have even proved the flag decomposition expressed in (1.1).

We recall that $L_{v}$ sends $E_{\lambda-1} \alpha$ to $E_{\alpha}$ by Corollary 3.4. To prove Theorem 3.11, the most natural approach would be to start from an element of $E_{\alpha}$ with $\alpha \notin\{0,1\}$ and to construct a preimage under $L_{v}$, by integrating along vertical lines as we did in the proof of Proposition 2.13. But we have no cohomological condition to use, and moreover we only have a distributional object for which the meaning of vertical integration is not clear. If one thinks about it, the result of the theorem is even counterintuitive.

Let us try to prove the opposite of Theorem 3.11, to see the subtlety. Assume for instance that $f \in E_{\alpha}$ is nonzero and satisfies $L_{v} f=0$, and that we can find a vertical primitive $g$ of $f$, i.e., one has $L_{v} g=f$. Let us try to prove that $f=0$. We should not succeed (this would be a contradiction with Theorem 3.11), but we will see that there is a strong nonrigorous argument in favor of the equality $f=0$. Consider an embedded rectangle with horizontal sides $I_{0}$ and $I_{R}$ and very long vertical sides of length $R$. Fix a smooth compactly supported function $\varphi$ on $I_{0}$, and push it vertically to $I_{R}$. We should have $\int_{I_{R}} \varphi g \mathrm{~d} x-\int_{I_{0}} \varphi g \mathrm{~d} x=$ $R \int_{I_{0}} \varphi f \mathrm{~d} x$. As the left hand side is bounded, we obtain

$$
\int_{I_{0}} \varphi f \mathrm{~d} x=O\left(\|\varphi\|_{C^{k_{h}}} / R\right) .
$$

Letting $R$ tend to infinity, we can almost deduce that $f$ vanishes, except that this argument is not correct as one can not take $R$ arbitrarily large because of the singularities. If one tries to cut $I_{0}$ into smaller pieces for which one can increase $R$, then we will use a partition of unity with a large $C^{k_{h}}$ norm, so that we will improve the bound at the level of $1 / R$, but lose at the level of $\|\varphi\|_{C^{k_{h}}}$. Therefore, we can not prove in this way that $f$ vanishes, so there is hope that Theorem 3.11 is true. But this shows that this theorem is non-trivial, and follows from a subtle balance.

The proof we will give of Theorem 3.11 will not follow the constructive approach we sketched above. Instead, it will follow from an indirect duality argument: we will show that the adjoint of $L_{v}$ is injective. To do this, let us define the operator $\check{\mathcal{T}}$ which extends to $\check{\mathcal{B}}^{\breve{k}_{h}},-\breve{k}_{v}$ the operator $f \mapsto f \circ T^{-1}$ initially defined on $C_{c}^{\infty}(M-\Sigma)$. As $T^{-1}$ is a pseudoAnosov map, all the results of the previous paragraphs apply to $\mathscr{T}$. In particular, one can talk about its Ruelle spectrum. We will write $\check{E}_{\alpha}$ for the generalized eigenspace of $\check{\mathcal{T}}$ associated to the eigenvalue $\alpha$, on any space $\breve{\mathcal{B}}^{\check{k}_{h},-\check{k}_{v}}$ with $|\alpha|>\lambda^{-\min \left(\check{k}_{h}, \check{k}_{v}\right)}$.

From this point on, we will only consider non-negative integers $k_{h}, k_{v}, \check{k}_{h}$ and $\check{k}_{v}$ that satisfy the conditions of the duality Proposition 2.9, i.e., $-k_{h}+\breve{k}_{h} \geqslant 2$ and $k_{v}-\breve{k}_{v} \geqslant 0$ (or conversely). If we are dealing with an eigenvalue $\alpha$, we will moreover choose them with $|\alpha|>\lambda^{-\min \left(k_{h}, k_{v}\right)}$ and $|\alpha|>\lambda^{-\min \left(\breve{k}_{h}, \check{k}_{v}\right)}$ to ensure that the corresponding generalized eigenspaces for $\mathcal{T}$ and $\check{\mathcal{T}}$ are included respectively in $\mathcal{B}^{-k_{h}, k_{v}}$ and $\mathcal{B}^{\check{k}_{h},-\breve{k}_{v}}$. This implies in particular that the duality is well defined on $E_{\alpha} \times \check{E}_{\alpha^{\prime}}$ for all $\alpha, \alpha^{\prime} \neq 0$.

In addition to the duality formulas for $L_{h}$ and $L_{v}$ given in Lemma 2.11, we will also use the following one: For $f \in \mathcal{B}^{-k_{h}, k_{v}}$ and $g \in \breve{\mathcal{B}}^{\check{k}_{h}},-\check{k}_{v}$,

$$
\begin{equation*}
\langle\mathcal{T} f, g\rangle=\langle f, \check{\mathcal{T}} g\rangle \tag{3.6}
\end{equation*}
$$

It follows readily from the definitions and the fact that $T$ preserves Lebesgue measure.
Lemma 3.12. We have $\langle f, g\rangle=0$ for $f \in E_{\alpha}$ and $g \in \check{E}_{\alpha^{\prime}}$ with $\alpha \neq \alpha^{\prime}$. Moreover, $(f, g) \mapsto\langle f, g\rangle$ is a perfect duality on $E_{\alpha} \times \check{E}_{\alpha}$, i.e., it identifies $E_{\alpha}$ with the dual of $\check{E}_{\alpha}$, and conversely.

Proof. Take $f \in E_{\alpha}$. Then $\mathcal{T}^{n} f=\sum_{j \leqslant J} \alpha^{n} n^{j} f_{j}$ for some $f_{j} \in E_{\alpha}$, with $f_{0}=f$. In the same way, for $g \in \check{E}_{\alpha^{\prime}}$, we have $\check{\mathcal{T}}^{n} g=\sum_{j \leqslant J}\left(\alpha^{\prime}\right)^{n} n^{j} g_{j}$ for some $g_{j} \in \check{E}_{\alpha^{\prime}}$ with $g_{0}=g$. Using the duality (3.6), we obtain for all $n$

$$
\sum \alpha^{n} n^{j}\left\langle f_{j}, g\right\rangle=\left\langle\mathcal{T}^{n} f, g\right\rangle=\left\langle f, \check{\mathcal{T}}^{n} g\right\rangle=\sum\left(\alpha^{\prime}\right)^{n} n^{j}\left\langle f, g_{j}\right\rangle
$$

When $\alpha \neq \alpha^{\prime}$, one gets by identifying the asymptotics that $\left\langle f_{j}, g\right\rangle=0$ for all $j$. In particular, for $j=0$, this gives $\langle f, g\rangle=0$ and shows that $E_{\alpha}$ and $\check{E}_{\alpha^{\prime}}$ are orthogonal.

To prove that there is a perfect duality between $E_{\alpha}$ and $\check{E}_{\alpha}$, we have to show that the duality is nondegenerate: for any $f \in E_{\alpha}$, we have to find $g \in \breve{E}_{\alpha}$ with $\langle f, g\rangle \neq 0$ (and conversely, but the argument is the same). As $f$ is a distribution, there exists a function $h \in C_{c}^{\infty}(M-\Sigma)$ with $\langle f, h\rangle \neq 0$. We think of $h$ as an element of $\check{\mathcal{B}}^{\check{k}_{h}},-\check{k}_{v}$, and we write its spectral decomposition for $\check{\mathcal{T}}$ : we have $\check{\mathcal{T}}^{n} h=\sum_{i, j} \alpha_{i}^{n} n^{j} h_{i, j}+O\left(\varepsilon^{n}\right)$ where $\varepsilon<|\alpha|$ and $h_{i, j} \in \check{E}_{\alpha_{i}}$. As above, using (3.6), we find

$$
\sum \alpha^{n} n^{j}\left\langle f_{j}, h\right\rangle=\left\langle\mathcal{T}^{n} f, h\right\rangle=\left\langle f, \check{\mathcal{T}}^{n} h\right\rangle=\sum_{i, j} \alpha_{i}^{n} n^{j}\left\langle f, h_{i, j}\right\rangle+O\left(\varepsilon^{n}\right)
$$

In the sum on the left, there is the term $\alpha^{n}\left\langle f_{0}, h\right\rangle$ with $\left\langle f_{0}, h\right\rangle=\langle f, h\rangle \neq 0$. Therefore, there also has to be a term in $\alpha^{n}$ on the right hand side. This entails that one of the $\alpha_{i}$ equals $\alpha$, and the corresponding function $g=h_{i, 0}$ belongs to $\check{E}_{\alpha}$ and satisfies $\langle f, g\rangle \neq 0$, as desired.

Proof of Theorem 3.11. Let $\alpha \notin\{0,1\}$. We want to show that $L_{v}: E_{\lambda^{-1} \alpha} \rightarrow E_{\alpha}$ is onto. Equivalently, we want to show that its adjoint, from $E_{\alpha}^{*}$ to $E_{\lambda-1}^{*}$, is injective. These spaces are identified respectively with $\check{E}_{\alpha}$ and $\check{E}_{\lambda^{-1} \alpha}$ by the duality of Lemma 3.12 , and the adjoint of $L_{v}$ is $-L_{v}$ by (2.16). Hence, it is enough to show that $L_{v}: \check{E}_{\alpha} \rightarrow \check{E}_{\lambda^{-1} \alpha}$ is injective. This follows from Lemma 2.7 (we recall that $L_{v}$ plays in $\check{\mathcal{B}}$ the same role as $L_{h}$ in $\mathcal{B}$ ).

## 4. Vertically invariant distributions

Let $(M, \Sigma)$ be a translation surface, and $T$ a linear pseudo-Anosov map on $(M, \Sigma)$, preserving orientations. Theorem 1.4 and its proof give a whole set of distributions which are annihilated by $L_{v}$. Indeed, this is the case of the constant distribution, of the distributions in $E_{\lambda^{-1} \mu_{i}} \cap \operatorname{ker} L_{v}$, and of their images under $L_{h}^{n}$. These are the only distributions in $\mathcal{B}^{-k_{h}, k_{v}}$ which are vertically invariant:
Lemma 4.1. Any distribution in $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ belongs to the linear span of the constant distributions and of the spaces $L_{h}^{n}\left(E_{\lambda^{-1} \mu_{i}} \cap \operatorname{ker} L_{v}\right)$ for $i=1, \ldots, 2 g-2$ and $n \geqslant 0$.

Proof. This follows from the same inductive strategy used to classify Ruelle resonances. We show that any $\omega \in \mathcal{B}^{-k_{h}, k_{v}} \cap$ ker $L_{v}$ belongs to the space $F$ spanned by the constant distributions and the spaces $L_{h}^{n}\left(E_{\lambda^{-1} \mu_{i}} \cap \operatorname{ker} L_{v}\right)$ for $i=1, \ldots, 2 g-2$ and $n \geqslant 0$, by induction on the order of $\omega$.

The constant distributions and the distributions in $E_{\lambda^{-1} \mu_{i}} \cap \operatorname{ker} L_{v}$ have cohomology classes which span all the classes without any $[\mathrm{d} y]$ components, i.e., the orthogonal to $[\mathrm{d} x]$. Therefore, there exists $\tilde{\omega}$ in $F$ such that $[\omega-\tilde{\omega}]$ is a multiple of [dy]. By Lemma 2.14, we have in fact $[\omega-\tilde{\omega}]=0$. Therefore, by Proposition 2.13 , there exists $\eta \in \mathcal{B}^{-k_{h}+1, k_{v}} \cap \operatorname{ker} L_{v}$ (and therefore in $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ ) such that $\omega-\tilde{\omega}=L_{h} \eta$. The order of $\eta$ being strictly smaller than the order of $\omega$, the induction assumption ensures that $\eta \in F$. As $F$ is stable under $L_{h}$, we get $\omega=\tilde{\omega}+L_{h} \eta \in F$.

We should also check the initial step of the induction, when $\omega$ is of order 0 . With the same construction as above, $\eta$ is a continuous function. As it is vertically invariant, we deduce that it is constant by minimality of the vertical flow. In particular, it belongs to $F$, and so does $\omega$.

However, there are some distributions that are not seen with this point of view, as they are not in the closure of $C_{c}^{\infty}(M-\Sigma)$. To describe them, we will follow the same route as above, but replacing our Banach space $\mathcal{B}^{-k_{h}, k_{v}}$ by an extended space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$.

We define an element $\omega$ of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ to be a family of distributions $\omega_{I}$ of order at most $k_{h}$ on all horizontal segments $I$ in $\mathcal{I}^{h}$, with the following conditions:
(1) Compatibility: if two segments $I, I^{\prime} \in \mathcal{I}^{h}$ intersect, then the corresponding distributions coincide on functions supported in $I \cap I^{\prime}$.
(2) Smoothness in the vertical direction: for any interval $I \in \mathcal{I}$, and any test function $\varphi \in C_{c}^{k_{h}}(I)$ with norm at most 1 , denote by $I_{t}$ the vertical translation by $t$ of $I$ for small enough $t$, and by $\varphi_{t}$ the vertical push-forward of $\varphi$ on $I_{t}$. Then we require that $t \mapsto \int_{I_{t}} \varphi_{t} \omega_{I_{t}}$ is $C^{k_{v}}$, with all derivatives bounded by a constant $C$ independent of $I$ or $\varphi$. The best such $C$ is by definition the norm of $\omega$ in $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$.
(3) Extension to the singularity: if $\left(I_{t}\right)_{t \in(0, \varepsilon]}$ is a family of vertical translates of a horizontal segment, parameterized by height, such that the limit $I_{0}$ contains a singularity, then we require that $\omega_{I_{t}}$ and all its $k_{v}$ vertical derivatives extend continuously up to $I_{0}$.
The first two conditions are very natural, and reproduce directly what we have imposed in the construction of $\mathcal{B}^{-k_{h}, k_{v}}$ in Paragraph 2.1. The third condition is to exclude pathological behaviour such as in the following example. Consider a vertical segment $\Gamma=(0, \varepsilon]$ ending
on a singularity at 0 , a function $\rho$ on $\Gamma$ with support in $[0, \varepsilon / 2]$ that oscillates like $\sin (1 / t)$ at 0 , and define $\omega_{I}$ to be equal to $\rho\left(x_{I}\right) \delta_{x_{I}}$ if $I$ intersects $\Gamma_{\sigma}$ at a point $x_{I}$, and 0 otherwise. Then this would be an element of our extended space without the third condition. Recall that $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} \neq \mathcal{B}^{-k_{h}, k_{v}}$ (see the example on Page 7).

With this definition, many of the results of the previous sections extend readily. We indicate in the next proposition all the results for which the statements and the proofs do not need any modification.
Proposition 4.2. The spaces $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ have the following properties:
(1) The space $\mathcal{B}^{-k_{h}, k_{v}}$ is a closed subspace of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$.
(2) The space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ is canonically a space of distributions, as in Proposition 2.3.
(3) Multiplication by $C^{\infty}$ functions which are constant on a neighborhood of the singularities, or more generally by $C^{k_{h}+k_{v}}$-functions on $M-\Sigma$ with $L_{h}^{a} L_{v}^{b} \psi$ uniformly bounded for $a \leqslant k_{h}$ and $b \leqslant k_{v}$, maps $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ into itself continuously, as in Lemma 2.4.
(4) The derivation $L_{h}$ maps continuously $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ to $\mathcal{B}_{\text {ext }}^{-k_{h}-1, k_{v}}$. The derivation $L_{v}$ maps continuously $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ to $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}-1}$ if $k_{v} \geqslant 1$, as in Proposition 2.6.
(5) As there is no horizontal saddle connection, an element in $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ satisfying $L_{h} f=0$ is constant, as in Lemma 2.7.
(6) The space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ is continuously included in $\mathcal{B}^{-k_{h}^{\prime}, k_{v}^{\prime}}$ if $k_{h}^{\prime} \geqslant k_{h}$ and $k_{v}^{\prime} \leqslant k_{v}$. This inclusion is compact if both inequalities are strict, as in Proposition 2.8.
(7) The composition operator $\mathcal{T}$ acts continuously on $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$, and it satisfies a LasotaYorke inequality (3.1). Therefore, its spectral radius is bounded by 1, and its essential spectral radius is at most $\lambda^{-\min \left(k_{h}, k_{v}\right)}$, as in Theorem 3.1.
(8) We have $\mathcal{T} \circ L_{v}=\lambda L_{v} \circ \mathcal{T}$ and $\mathcal{T} \circ L_{h}=\lambda^{-1} L_{h} \circ \mathcal{T}$, as in Proposition 3.3.

The space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ is relevant to study vertically invariant distributions, as all such distributions belong to these spaces:
Lemma 4.3. Assume that $\omega$ is an $L_{v}$-annihilated distribution. Then for large enough $k_{h}$ and for any $k_{v}$ one has $\omega \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$.
Proof. Let $\omega$ be an $L_{v}$-annihilated distribution. For an interval $I \in \mathcal{I}^{h}$, define a distribution $\eta_{I}$ on $I$ by the equality $\int_{I} \varphi(x) \eta_{I}(x)=\int \varphi(x) \rho(y) \omega(x, y)$, where $\rho$ is a smooth function supported in $[-\delta, \delta]$ (where $\delta$ is small enough so that $I \times[-\delta, \delta]$ does not contain any singularity) with $\int \rho=1$. We claim that this quantity does not depend on $\rho$. Indeed, if $\tilde{\rho}$ is another such function, then $(x, y) \mapsto \varphi(x)(\rho(y)-\tilde{\rho}(y))$ has zero average along every vertical segment through $I \times[-\delta, \delta]$, hence it can be written as $L_{v} f$ for some function $f$ supported in $I \times[-\delta, \delta]$. Then

$$
0=\left\langle L_{v} \omega, f\right\rangle=-\left\langle\omega, L_{v} f\right\rangle=\langle\omega, \varphi(x) \tilde{\rho}(y)\rangle-\langle\omega, \varphi(x) \rho(y)\rangle
$$

This shows that $\eta_{I}$ is well defined. It is a finite order distribution on any interval $I$. Moreover, as $\omega$ is vertically invariant, one has $\eta_{I_{t}}=\eta_{I}$ if $I_{t}$ is a vertical family of horizontal segments through $I$.

By compactness of the manifold, there is a finite family of horizontal segments such that any horizontal segment can be obtained as a subinterval of a vertical translate of one interval
in the finite family. If follows that the order of all the distributions $\eta_{I}$ is uniformly bounded, independently of $I \in \mathcal{I}^{h}$. By vertical invariance, it follows that the family $\eta_{I}$ defines an element $\eta \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ if $k_{h}$ is large enough.

Let us finally prove that $\omega=\eta$ as distributions. Consider a smooth function $\varphi$ supported by a rectangle $I \times[-\delta, \delta]$ away from singularities. Then

$$
\begin{aligned}
\langle\eta, \varphi\rangle & =\int_{t=-\delta}^{\delta} \int_{I_{t}} \varphi(x, t) \eta_{I_{t}}=\int_{t=-\delta}^{\delta} \int_{I_{t}} \varphi(x, t) \eta_{I}=\int_{I}\left(\int_{t=-\delta}^{\delta} \varphi(x, t) \mathrm{d} t\right) \eta_{I} \\
& =\int\left(\int_{t=-\delta}^{\delta} \varphi(x, t) \mathrm{d} t\right) \rho(y) \omega(x, y)
\end{aligned}
$$

where the last equality is the definition of $\eta_{I}$. Since the integrals of $\left(\int_{t=-\delta}^{\delta} \varphi(x, t) \mathrm{d} t\right) \rho(y)$ and $\varphi$ are the same along all vertical segments, this is equal to $\int \varphi \omega$ thanks to the vertical invariance of $\omega$ as we have explained above.

We have proved that $\langle\eta, \varphi\rangle=\langle\omega, \varphi\rangle$ for any smooth function $\varphi$ with compact support in a rectangle away from the singularities. As any $\varphi \in C_{c}^{\infty}(M-\Sigma)$ can be decomposed as a finite sum of such functions, we obtain $\eta=\omega$ as desired.

Since the space $C_{c}^{\infty}(M-\Sigma)$ is not dense in $\mathcal{B}_{e x t}^{-k_{h}, k_{v}}$, we can not use the theorem of BaladiTsujii to claim that the eigenspaces beyond the essential spectral radius do not depend on $k_{h}$ or $k_{v}$. Nevertheless, we will show that this is the case, by describing explicitly the new eigenvalues compared to $\mathcal{B}^{-k_{h}, k_{v}}$.

For $\sigma \in \Sigma$ and $i_{h}, i_{v} \geqslant 0$, we define a distribution $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ as follows. Choose a vertical segment $\Gamma_{\sigma}$ ending on $\sigma$ and whose image under the covering projection is in the negative half-plane, choose a function $\rho$ on this segment which is equal to 1 on a neighborhood of the singularity and to 0 on a neighborhood of the other endpoint of the segment, and define a distribution $\xi_{\sigma, i_{h}, i_{v}}^{(0)} \in \mathcal{B}_{e x t}^{-k_{h}, k_{v}}$ by $\left\langle\xi_{\sigma, i_{h}, i_{v}}^{(0)} f\right\rangle=\int_{\Gamma_{\sigma}} \rho(y) y^{i_{v}} L_{v}^{i_{h}} f(y) \mathrm{d} y$. In other words, the corresponding distribution on a horizontal segment $I$ is equal to $\rho\left(y_{I}\right) y_{I}^{i_{v}} \delta_{x_{I}}^{\left(i_{h}\right)}$ if $I$ intersects $\Gamma_{\sigma}$ at a point $z_{I}=\left(x_{I}, y_{I}\right)$, and 0 otherwise. This is clearly an element of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ if $i_{h} \leqslant k_{h}$.

Proposition 4.4. An element $\omega$ of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ can be written uniquely as

$$
\begin{equation*}
\omega=\tilde{\omega}+\sum_{\sigma \in \Sigma} \sum_{i_{h} \leqslant k_{h}, i_{v} \leqslant k_{v}} c_{\sigma, i_{h}, i_{v}} \xi_{\sigma, i_{h}, i_{v}}^{(0)} \tag{4.1}
\end{equation*}
$$

with $\tilde{\omega} \in \mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. Moreover, this decomposition depends continuously on $\omega$.
The reason we have $\tilde{\omega} \in \mathcal{B}^{-k_{h}-1, k_{v}}$ and not $\tilde{\omega} \in \mathcal{B}^{-k_{h}, k_{v}}$ in the statement is that a distribution of order $k_{h}$ is not well approximated in $\left(C^{k_{h}}\right)^{*}$ by a regularization by convolution: one needs to use smoother test functions, in $C^{k_{h}+1}$, to get uniform norm controls.

Proof. Let us first prove the uniqueness in the decomposition (4.1). Consider a singularity $\sigma$, of angle $2 \pi \kappa$. There are $\kappa$ half-planes above $\sigma$, and $\kappa$ half-planes below $\sigma$. Along any of these half-planes $U$, consider horizontal intervals $I_{t}$ which are all vertical translates of an interval $I_{0}=I_{0}(U)$ through the singularity $\sigma$, identified with $[-\delta, \delta] \subset \mathbb{C}$ by the covering
projection sending $\sigma$ to 0 . By Condition (3) in the definition of $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$, the corresponding distributions $\omega_{I_{t}}$ converge to $\omega_{I_{0}(U)}$. Consider now the distribution on $[-\delta, \delta]$ defined by

$$
\omega_{\sigma}:=\sum \omega_{I_{0}\left(U^{+}\right)}-\sum \omega_{I_{0}\left(U^{-}\right)}
$$

where the first sum is over all half-planes above $\sigma$, and the second sum is over all half-planes below $\sigma$. By vertical continuity to the left and to the right of the singularity, there are many cancellations in the definition of $\omega_{\sigma}$, so that this distribution on $[-\delta, \delta]$ is in fact supported at 0 . Therefore, it is a linear combination of derivatives of Dirac masses [Hör03, Theorem 2.3.4], of the form $\sum_{i \leqslant k_{h}} c_{i} \delta_{0}^{(i)}$. Let us do the same construction with the term on the right of (4.1). For functions $f \in C_{c}^{\infty}(M-\Sigma)$, the distribution $f_{\sigma}$ is obviously 0 . By density, this extends to $\mathcal{B}^{-k_{h}-1, k_{v}}$, hence $\tilde{\omega}_{\sigma}=0$. In the same way, the singularities different from $\sigma$ do not contribute, and the functions $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ contribute only when $i_{v}=0$, with a distribution $\delta^{\left(i_{h}\right)}$. Identifying the coefficients, we get that $c_{\sigma, i_{h}, 0}=c_{i}$ is uniquely defined by $\omega$. In the same way, we can identify $c_{\sigma, i_{h}, i_{v}}$ from $\omega$ by the same process after $i_{v}$ vertical differentiations. This shows that the decomposition (4.1) is unique. Moreover, the continuity of the decomposition follows from the continuity of all the coefficients $c_{\sigma, i_{h}, i_{v}}$, which is obvious from the construction.

For the existence, let us decompose $\omega$ as

$$
\omega=\sum_{i=1}^{N} \omega_{i}+\sum_{\sigma \in \Sigma} \omega_{\sigma}+\sum_{H \in \mathcal{H}} \omega_{H}
$$

as in Lemma 2.10, where $\omega_{i}$ is supported in a rectangle $R_{i}$ away from the singularities, and $\omega_{\sigma}$ is supported in a small disk around the singularity $\sigma$ and is constant along fibers of the covering projection $\pi_{\sigma}$, and $\omega_{H}$ is supported in a local half-plane $H$ based at a singularity. Indeed, the proof of Lemma 2.10 goes through in $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. We will show that each term in this decomposition can be written as in (4.1).

We start with $\omega_{i}$. Let $\rho_{\varepsilon}(x)$ be a real $C^{\infty}$ approximation of the identity. For $z=(x, y)$ in a chart, define

$$
f_{\varepsilon}(z)=\omega_{i} * \rho_{\varepsilon}(z)=\int \omega_{i}(x-h, y) \rho_{\varepsilon}(h) \mathrm{d} h .
$$

This is an integral of $\omega_{i}$ along a small horizontal interval against a $C_{c}^{\infty}$ function, hence it is well defined. Moreover, $f_{\varepsilon}$ is $C^{\infty}$ along the horizontal direction, $C^{C_{v}}$ along the vertical direction, and compactly supported away from the singularities. By Lemma $2.5, f_{\varepsilon} \in$ $\mathcal{B}^{-k_{h}-1, k_{v}}$. Moreover, $f_{\varepsilon}$ converges in $\mathcal{B}^{-k_{h}-1, k_{v}}$ to $\omega_{i}$ thanks to the fact that $\omega_{i}$ is of order $k_{h}$ and to the fact that we are using $C^{k_{h}+1}$ test functions: standard properties of convolutions ensure that their difference is bounded by $O(\varepsilon)$ in norm. It follows that $\omega_{i} \in \mathcal{B}^{-k_{h}-1, k_{v}}$. This gives the decomposition (4.1) for $\omega_{i}$, just taking $\tilde{\omega}=\omega_{i}$ and the other terms equal to 0 .

Let us now consider $\omega_{\sigma}$. Its push-forward $\eta=\pi_{*} \omega_{\sigma}$ under the covering projection $\pi$ is almost in $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}(\mathbb{C})$, except for the fact that the horizontal distributions do not have to match when one reaches 0 from above and from below. The difference is exactly given by a sum of the form $\sum_{i_{h}, i_{v}} c_{i_{h}, i_{v}} \xi_{0, i_{h}, i_{v}}^{(0)}$ as constructed above. In other words, we have

$$
\eta=\tilde{\eta}+\sum_{i_{h}, i_{v}} c_{i_{h}, i_{v}} \xi_{0, i_{h}, i_{v}}^{(0)},
$$

with $\tilde{\eta} \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}(\mathbb{C})$. The case away from singularities shows that $\tilde{\eta} \in \mathcal{B}^{-k_{h}-1, k_{v}}(\mathbb{C})$. Lifting everything with $\pi$, we get

$$
\omega_{\sigma}=\eta \circ \pi=\tilde{\eta} \circ \pi+\sum_{i_{h}, i_{v}} c_{i_{h}, i_{v}} \xi_{0, i_{h}, i_{v}}^{(0)} \circ \pi
$$

The first term $\tilde{\eta} \circ \pi$ belongs to $\mathcal{B}^{-k_{h}-1, k_{v}}$. For the other terms, $\xi_{0, i_{h}, i_{v}}^{(0)} \circ \pi$ is not equal to $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ as the latter is supported on one single vertical segment ending on $\sigma$ while the former is supported on all $\kappa$ such segments. We claim that the difference belongs to $\mathcal{B}^{-k_{h}-1, k_{v}}$, which will conclude the proof.

To prove this, consider a vertical half-plane $H$ with $\sigma$ in its boundary, and denote by $\Gamma_{+}$ and $\Gamma_{-}$the two components of its boundary, above and below $\sigma$. Define a distribution $\alpha_{H}=$ $\int_{\Gamma_{-}} y^{i_{v}} \delta^{\left(i_{h}\right)} \rho(y) \mathrm{d} y+\int_{\Gamma_{+}} y^{i_{v}} \delta^{\left(i_{h}\right)} \rho(y) \mathrm{d} y$ where $\rho$ is smooth and equal to 1 on a neighborhood of 0 . This distribution belongs to $\mathcal{B}^{-k_{h}-1, k_{v}}$, as it is the limit of a smooth function supported in the interior of $H$, constructed by approximating inside $H$ the derivative of the Dirac mass with a smooth function. Consider now two consecutive half-planes $H$ and $H^{\prime}$ sharing the same $\Gamma_{+}$. Taking the difference between $\alpha_{H}$ and $\alpha_{H^{\prime}}$, we deduce that

$$
\int_{\Gamma_{-}} y^{i_{v}} \delta^{\left(i_{h}\right)} \rho(y) \mathrm{d} y-\int_{\Gamma_{-}^{\prime}} y^{i_{v}} \delta^{\left(i_{h}\right)} \rho(y) \mathrm{d} y \in \mathcal{B}^{-k_{h}-1, k_{v}} .
$$

Iterating the argument using a sequence of half-planes, we deduce that the same holds for any vertical segments $\Gamma_{-}$and $\Gamma_{-}^{\prime}$ ending at $\sigma$. This concludes the proof of the decomposition for $\omega_{\sigma}$.

Let us now consider $\omega_{H}$ where $H$ is a local vertical half-plane with a singularity $\sigma$ in its boundary. This case is easy: as in the case away from singularities, one can smoothen $\omega_{i}$ by convolving it with a kernel $\rho_{\varepsilon}$, with the additional condition that $\rho_{\varepsilon}$ is supported in $[\varepsilon, 2 \varepsilon]$ if $H$ is to the right of $\sigma$, and in $[-2 \varepsilon,-\varepsilon]$ if $H$ is to the left of $\sigma$ : this ensures that $\omega_{i} * \rho_{\varepsilon}$ is supported in $H$ and everything matches vertically. In fact, the resulting distribution will not be smooth vertically if there is a discrepancy between what happens on the boundaries $\Gamma_{+}$and $\Gamma_{-}$of $H$ above and below $\sigma$. This discrepancy is handled as in the case of $\omega_{\sigma}$, by first subtracting a distribution supported on $\Gamma_{-}$to make sure there is no discrepancy, and then arguing that this distribution supported on $\Gamma_{-}$can be written in the form (4.1).

Finally, let us consider $\omega_{H}$ where $H$ is a local horizontal half-plane with a singularity $\sigma$ in its boundary. Subtracting if necessary a distribution $\eta$ supported in the vertical segment inside $H$ ending on $\sigma$, we can assume that the distribution induced by $\omega_{H}$ on the boundary of $H$ vanishes, as well as all its vertical derivatives up to order $k_{v}$. The distribution $\eta$ is handled as in the two previous cases. Let us then smoothen $\omega_{H}$ by convolving with a kernel $\rho_{\varepsilon}$ in the horizontal direction. Inside $H$, we get a smooth function. On the boundary of $H$, this function vanishes, as well as its vertical derivatives up to order $k_{v}$. Hence, if one extends this function by 0 outside of $H$, we get a $C^{k_{v}}$ function, which belongs to $\mathcal{B}^{-k_{h}-1, k_{v}}$ by Lemma 2.5. It approximates $\omega_{H}$ in the $\mathcal{B}_{e x t}^{-k_{h}, k_{v}}$ norm, showing that $\omega_{H} \in \mathcal{B}^{-k_{h}-1, k_{v}}$. This concludes the proof.
Corollary 4.5. The spectrum of $\mathcal{T}$ on $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ in $\left\{z:|z|>\lambda^{-\min \left(k_{h}, k_{v}\right)}\right\}$ is given by the spectrum of $\mathcal{T}$ on $\mathcal{B}^{-k_{h}, k_{v}}$ in this region as described in Theorem 1.4, and additionally $j$ Card $\Sigma$ eigenvalues of modulus $\lambda^{-j}$ for any $j \geqslant 1$ with $j<\min \left(k_{h}, k_{v}\right)$.

One can be more specific about the additional eigenvalues. If $T$ stabilizes pointwise each singularity, then $\lambda^{-j}$ itself is an eigenvalue of multiplicity $j$ Card $\Sigma$. Otherwise, there are cycles of singularities, and each cycle of length $p$ gives rise to eigenvalues $e^{2 \mathbf{i} k \pi / p} \lambda^{-j}$ with multiplicity $j$ for $k=0, \ldots, p-1$.

We can also formulate the results in terms of the action of $T^{*}$ on relative cohomology group $H^{1}(M, \Sigma, \mathbb{C})$ (the eigenvalues of $T^{*}$ are then $\lambda, \lambda^{-1}, \mu_{i}$ for $i=1, \ldots, 2 g-2$ and roots of unity $e^{2 \mathbf{i} k \pi / p}$ for some $p$ corresponding to cycles of singularities of length $p$ ).

Proof. Define $E=\mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ and $F=\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} /\left(\mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}\right)$. The space $E$ is closed and the space $F$ is finite-dimensional, isomorphic to the span of $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ for $i_{h} \leqslant k_{h}$ and $i_{v} \leqslant k_{v}$, by Proposition 4.4.

The space $E$ is stable under $\mathcal{T}$, and the essential spectral radius of $\mathcal{T}$ on this space is $\leqslant \lambda^{-\min \left(k_{h}, k_{v}\right)}$ as this is the case on the whole space $\mathcal{B}_{e x t}^{-k_{h}, k_{v}}$ by Proposition 4.2(7). Since $C_{c}^{\infty}(M-\Sigma)$ is dense in $E$, it follows from the theorem of Baladi-Tsujii that the spectrum of $\mathcal{T}$ on $E$ beyond $\lambda^{-\min \left(k_{h}, k_{v}\right)}$ is the same as on $\mathcal{B}^{-k_{h}, k_{v}}$. Moreover, since $\mathcal{T}$ stabilizes $E$, its spectrum on the whole space is the union of its spectrum on $E$ and on $F$. To conclude, we should thus describe the spectrum of $\mathcal{T}$ on $F$.

The image under $\mathcal{T}$ of $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ is equal to the sum of $\lambda^{-1-i_{h}-i_{v}} \xi_{T^{-1} \sigma, i_{h}, i_{v}}^{(0)}$ and of a distribution in $\mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. Indeed, this follows readily from the definition if the vertical segment $\Gamma_{T^{-1} \sigma}$ is sent by $T$ to $\Gamma_{\sigma}$. In general, it is sent to another vertical segment ending on $\sigma$, but Proposition 4.4 shows that changing the choice of the vertical segment results in a difference in $\mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. This shows that the matrix of $\mathcal{T}$ on the finite-dimensional space $F$ is a union of permutation matrices multiplied by $\lambda^{-j}$ for $j=1+i_{h}+i_{v}$. The spectrum of such a permutation matrix, along a cycle of length $p$, is made of the eigenvalues $e^{2 \mathrm{i} k \pi / p}$ for $k=0, \ldots, p-1$. Hence, the spectrum of $\mathcal{T}$ on $F$ is made of eigenvalues of modulus $\lambda^{-j}$, and the number of such eigenvalues is

$$
\operatorname{Card}\left\{\left(i_{h}, i_{v}\right): i_{h} \leqslant k_{h}, i_{v} \leqslant k_{v}, j=i_{h}+i v+1\right\} \cdot \operatorname{Card} \Sigma
$$

For $j<\min \left(k_{h}, k_{v}\right)$, this is equal to $j \operatorname{Card} \Sigma$.
The description of the spectrum of $\mathcal{T}$ on $F$ in this proof is reminiscent of the description of the spectrum of $\mathcal{T}$ on $\mathcal{B}^{-k_{h}, k_{v}}$, but in a simpler situation. Assume to simplify the discussion that $T$ acts as the identity on $\Sigma$. Then there are some basic eigenfunctions for the eigenvalue $\lambda^{-1}$, which are the classes of the functions $\xi_{\sigma}^{(0)}=\xi_{\sigma, 0,0}^{(0)}=\int_{\Gamma_{\sigma}} \delta \cdot \rho(y) \mathrm{d} y$ modulo $\mathcal{B}^{-k_{h}-1, k_{v}} \cap$ $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. The other eigenfunctions are given by $\xi_{\sigma, i_{h}, i_{v}}^{(0)}=\int_{\Gamma_{\sigma}} y^{i_{v}} \delta^{\left(i_{h}\right)} \cdot \rho(y) \mathrm{d} y$. They are obtained by differentiating the original function $i_{h}$ times in the horizontal direction, and integrating it $i_{v}$ times in the vertical direction. To obtain the eigenvalue $\lambda^{-j}$, the total number of such operations $i_{h}+i_{v}$ should be equal to $j-1$, giving $j$ choices.

It follows from the above corollary that one can define the generalized eigenspace $E_{\alpha, \text { ext }}$ associated to the eigenvalue $\alpha$ of $\mathcal{T}$ acting on $\mathcal{B}^{-k_{h}, k_{v}}$ for large enough $k_{h}$ and $k_{v}$. This space of distributions does not depend on $k_{h}$ and $k_{v}$ if they are large enough. Moreover, $L_{v}$ maps $E_{\alpha, e x t}$ to $E_{\lambda \alpha, e x t}$ and $L_{h} \operatorname{maps} E_{\alpha, e x t}$ to $E_{\lambda^{-1} \alpha, e x t}$ as in Corollary 3.4.

To proceed, we will need some ingredients of duality. In general, there is no canonical way to define a pairing between $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ and $\check{\mathcal{B}}_{\text {ext }}^{\check{k}_{h},-\breve{k}_{v}}$. Indeed, consider a distribution $\varphi$ on $[-1,1]$
for which $\int_{-1}^{1} 1_{y \leqslant 0} \varphi(y)$ does not make sense, and define a distribution $\omega \in \check{\mathcal{B}}_{\text {ext }}^{-\check{k}_{h}, \check{k}_{v}}$ which is equal to $\varphi$ on each vertical leaf around a singularity $\sigma$, multiplied by a cutoff function to extend it by 0 elsewhere. Then one can not make sense of $\left\langle\xi_{\sigma, 0,0}^{(0)}, \varphi\right\rangle$. However, there is no difficulty to define $\langle\omega, 1\rangle$ by integrating a partition of unity along horizontal segments, and then summing over the partition of unity. When $\omega$ belongs to $\mathcal{B}^{-k_{h}, k_{v}}$, this coincides with the duality between $\mathcal{B}^{-k_{h}, k_{v}}$ and $\check{\mathcal{B}}^{\check{h}_{h},-\check{k}_{v}}$ defined in Proposition 2.9 if one considers the distribution 1 as an element of $\check{\mathcal{B}}^{{ }_{k}},-\check{k}_{v}$. The main property of this linear form we will use is the following.

Lemma 4.6. Let $\omega \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$. Consider its decomposition given by Proposition 4.4. Then

$$
\left\langle L_{v} \omega, 1\right\rangle=\sum_{\sigma} c_{\sigma, 0,0}
$$

Proof. We should show that $\left\langle L_{v} \tilde{\omega}, 1\right\rangle=0$, and that $\left\langle L_{v} \xi_{\sigma, i_{h}, i_{v}}^{(0)}, 1\right\rangle=1$ if $i_{h}=i_{v}=0$ and 0 otherwise. First, $\left\langle L_{v} \tilde{\omega}, 1\right\rangle=-\left\langle\tilde{\omega}, L_{v} 1\right\rangle=0$ by Lemma 2.11. The fact that $L_{v}$ is antiselfadjoint does not apply to $\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ as additional boundary terms show up when one does integrations by parts (contrary to the case of elements of $\mathcal{B}^{-k_{h}, k_{v}}$, which are in the closure of compactly supported functions and for which there is therefore no boundary term). These boundary terms are responsible for the formula in the lemma, as we will see in the following computation.

We show that $\left\langle L_{v} \xi_{\sigma, 0,0}^{(0)}, 1\right\rangle=1$, the other case is similar. Write $\xi_{\sigma, 0,0}^{(0)}=\int_{y=-\delta}^{0} \rho(y) \delta_{(x, y)} \mathrm{d} y$ as in its definition, where we are integrating on a vertical segment ending at a singularity and $\rho$ vanishes on a neighborhood of $-\delta$ and is equal to 1 on a neighborhood of 0 . Then $L_{v} \xi_{\sigma, 0,0}^{(0)}=\int_{y=-\delta}^{0} \rho^{\prime}(y) \delta_{(x, y)} \mathrm{d} y$. Therefore,

$$
\left\langle L_{v} \xi_{\sigma, 0,0}^{(0)}, 1\right\rangle=\int_{y=-\delta}^{0} \rho^{\prime}(y) \mathrm{d} y=\rho(0)-\rho(-\delta)=1
$$

We can now prove Proposition 1.5, asserting that $\xi_{\sigma}^{(0)}=\xi_{\sigma, 0,0}^{(0)}$ can be modified by adding an element of $\mathcal{B}^{-k_{h}, k_{v}}$ to obtain a distribution which is mapped by $L_{v}$ to the constant distribution $1 /$ Leb $M$. As in the statement of the proposition, we will denote this modified distribution by $\xi_{\sigma}$ or $\xi_{\sigma, 0,0}$.
Proof of Proposition 1.5. We work in $\mathcal{B}_{\text {ext }}^{-2, k_{v}}$. On this space, the essential spectral radius of $\mathcal{T}$ is $\leqslant \lambda^{-2}<\lambda^{-1}$. Replacing $T$ by a power of $T$ if necessary, we can assume without loss of generality that $\sigma$ is fixed by $T$. Then $\mathcal{T} \xi_{\sigma}^{(0)}=\lambda^{-1} \xi_{\sigma}^{(0)}+\eta$ where $\eta \in E=\mathcal{B}^{-3, k_{v}} \cap \mathcal{B}_{\text {ext }}^{-2, k_{v}}$ as explained in the proof of Corollary 4.5. Since the essential spectral radius of $\mathcal{T}$ on $E$ is $\leqslant \lambda^{-2}$ (see again the proof of Corollary 4.5), we can decompose $\eta=\eta_{1}+\eta_{2}$ where $\eta_{1}$ is in the generalized eigenspace associated to $\lambda^{-1}$, and $\eta_{2}$ belongs to its spectral complement, on which $\mathcal{T}-\lambda^{-1}$ is invertible. Therefore, we can write $\eta_{2}=-\left(\mathcal{T}-\lambda^{-1}\right) \omega$ for some $\omega \in E$. Finally, we have

$$
\left(\mathcal{T}-\lambda^{-1}\right)\left(\xi_{\sigma}^{(0)}+\omega\right)=\eta-\eta_{2}=\eta_{1}
$$

Since $\eta_{1}$ is a generalized eigenvector for the eigenvalue $\lambda^{-1}$, we have $\left(\mathcal{T}-\lambda^{-1}\right)^{N} \eta_{1}=0$ for large enough $N$. Hence, $\left(\mathcal{T}-\lambda^{-1}\right)^{N+1}\left(\xi_{\sigma}^{(0)}+\omega\right)=0$. This shows that $\xi_{\sigma}^{(0)}+\omega$ belongs to
the generalized eigenspace $E_{\lambda^{-1}, \text { ext }}$ associated to the eigenvalue $\lambda^{-1}$ of $\mathcal{T}$ acting on $\mathcal{B}_{\text {ext }}^{-2,2}$. Moreover, as $\min \left(k_{h}, k_{v}\right) \geqslant 3$, we have $\omega \in \mathcal{B}^{-k_{h}, k_{v}}$.

To conclude the proof, it remains to show that $L_{v}\left(\xi_{\sigma}^{(0)}+\omega\right)=1 /$ Leb $M$. Since $\xi_{\sigma}^{(0)}+\omega \in$ $E_{\lambda^{-1}, \text { ext }}$, we have $L_{v}\left(\xi_{\sigma}^{(0)}+\omega\right) \in E_{1, \text { ext }}$. The description of the spectrum in Corollary 4.5 shows that this space is just $E_{1}$. By Lemma 3.9, it is made of constants. We get the existence of a constant $c$ such that $L_{v}\left(\xi_{\sigma}^{(0)}+\omega\right)=c$.

To identify $c$, we compute

$$
c \operatorname{Leb} M=\langle c, 1\rangle=\left\langle L_{v}\left(\xi_{\sigma}^{(0)}+\omega\right), 1\right\rangle=1
$$

thanks to Lemma 4.6. This proves that $c=1 /$ Leb $M$.
Lemma 4.7. Let $k_{h}, k_{v} \geqslant 3$. Then all $L_{v}$-annihilated distributions in $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ are of the form described in Theorem 1.6, i.e., they are linear combinations of distributions $\xi_{\sigma}-\xi_{\sigma^{\prime}}$ for $\sigma, \sigma^{\prime} \in \Sigma$, of $L_{h}^{n} \xi_{\sigma}$ with $n \geqslant 1$ and $\sigma \in \Sigma$, of 1 , and of $L_{h}^{n} E_{\lambda^{-1} \mu_{i}}^{H}$ with $n \geqslant 0$ and $i=1, \ldots, 2 g-2$.
Proof. Define a distribution $\xi_{\sigma, i_{h}, i_{v}}=L_{h}^{i_{h}} \xi_{\sigma, 0,0}$ if $i_{v}=0$ and $\xi_{\sigma, i_{h}, i_{v}}=\xi_{\sigma, i_{h}, i_{v}}^{(0)}$ otherwise. Then we have

$$
\mathcal{B}_{e x t}^{-k_{h}, k_{v}}=\left(\mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{e x t}^{-k_{h}, k_{v}}\right) \oplus \bigoplus_{i_{h} \leqslant k_{h}, i_{v} \leqslant k_{v}} \mathbb{R} \xi_{\sigma, i_{h}, i_{v}}
$$

by Proposition 4.4 and the fact that $\xi_{\sigma, i_{h}, i_{v}}-\xi_{\sigma, i_{h}, i_{v}}^{(0)} \in \mathcal{B}^{-k_{h}-1, k_{v}} \cap \mathcal{B}_{e x t}^{-k_{h}, k_{v}}$. Write this decomposition as $\mathcal{B}_{e x t}^{-k_{h}, k_{v}}=E \oplus F$. On $\mathcal{B}_{e x t}^{-k_{h}, k_{v}} / E$, the operator $L_{v} \operatorname{maps} \xi_{\sigma, i_{h}, i_{v}}$ to $\xi_{\sigma, i_{h}, i_{v}-1}$ if $i_{v}>0$, and to 0 if $i_{v}=0$. Therefore, a distribution $\omega$ with $L_{v} \omega=0$ must have zero components on $\xi_{\sigma, i_{h}, i_{v}}$ for $i_{v}>0$ : it can be written as $\tilde{\omega}+\sum_{i_{h} \leqslant k_{h}} c_{\sigma, i_{h}} \xi_{\sigma, i_{h}, 0}$. Moreover, $L_{v} \tilde{\omega}=0$.

By Lemma 4.6, we have

$$
0=\left\langle L_{v} \omega, 1\right\rangle=\sum_{\sigma} c_{\sigma, 0}
$$

This shows that $\omega-\tilde{\omega}$ belongs to the vector space generated by the $\xi_{\sigma}-\xi_{\sigma^{\prime}}$ over $\sigma, \sigma^{\prime}$, and by all the $L_{h}^{n} \xi_{\sigma}$ for $n>0$. Moreover, Lemma 4.1 shows that $\tilde{\omega}$ belongs to the span of the constant distribution and of $L_{h}^{n} E_{\lambda^{-1} \mu_{i}}^{H}$ with $n \geqslant 0$ and $i=1, \ldots, 2 g-2$. This concludes the proof.

Since all $L_{v}$-invariant distributions belong to some space $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}}$ by Lemma 4.3, Theorem 1.6 giving the classification of all vertically invariant distributions follows directly from Lemma 4.7.

Remark 4.8. Although it is not needed for the above proof, it is enlightening to describe a cohomological interpretation for all the elements of $\mathcal{B}_{e x t}^{-k_{h}, k_{v}} \operatorname{ker} L_{v}$, i.e., for all vertically invariant distributions.

If $\gamma$ is a continuous closed loop in $M-\Sigma$ and $\omega \in \mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$, one can define the integral $\int_{\gamma} \omega$ just like for elements in $\mathcal{B}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ (see the discussion before Proposition 2.12). This integral only depends on $\gamma$ up to deformation in $M-\Sigma$. Therefore, it defines an element of $H^{1}(M-\Sigma)$, that we denote by $[\omega]_{\text {ext }}$. Contrary to the case of $\mathcal{B}^{-k_{h}, k_{v}} \cap$ ker $L_{v}$, however, the integral $\int_{\gamma_{\sigma}} \omega$ along a small loop $\gamma_{\sigma}$ around a singularity $\sigma$ does not have to
vanish, so that $[\omega]_{\text {ext }}$ is not an element of $H^{1}(M)$ in general. Indeed, if one considers two different singularities $\sigma$ and $\sigma^{\prime}$, then $\xi_{\sigma}-\xi_{\sigma}^{\prime}$ is annihilated by $L_{v}$, but the corresponding cohomology class integrates to 1 along a small positive loop around $\sigma$, and to -1 along a small positive loop around $\sigma^{\prime}$. This is a direct consequence of the definition of $\xi_{\sigma}^{(0)}$, with a Dirac mass along a vertical segment ending at $\sigma$, that will be intersected once by a small loop around $\sigma$. In general, for $\omega \in \mathcal{B}_{e x t}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$, one has

$$
\begin{equation*}
\int_{\gamma_{\sigma}}[\omega]_{e x t}=c_{\sigma, 0,0}(\omega) \tag{4.2}
\end{equation*}
$$

where $c_{\sigma, 0,0}$ is defined in the decomposition of Proposition 4.4. Indeed, $\xi_{\sigma, 0,0}^{(0)}$ contributes by 1 to the integral along a small loop around $\sigma$, while the contribution of all the other terms tends to 0 when the loop tends to $\sigma$. In fact, the map $\omega \mapsto c_{\sigma, 0,0}(\omega)$ corresponds to the boundary operator of [MY16] (it does not appear in the case of Ruelle resonances as all our functions are continuous in this setting).

If a distribution $\omega \in \mathcal{B}_{e x t}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ satisfies $[f]_{e x t}=0$, then one proves as in Proposition 2.13 that it can be written as $\omega=L_{h} \eta$ for some $\eta \in \mathcal{B}_{\text {ext }}^{-k_{h}+1, k_{v}} \cap \operatorname{ker} L_{v}$. Indeed, the proof of this proposition goes through, and it is in fact easier as one does not need to show that the resulting object one constructs by horizontal integration belongs to the closure of $C_{c}^{\infty}(M-\Sigma)$, which is the hard part in Proposition 2.13.

With (4.2) and Lemma 4.6, one has

$$
\sum_{\sigma} \int_{\gamma_{\sigma}}[\omega]_{e x t}=\sum_{\sigma} c_{\sigma, 0,0}(\omega)=\left\langle L_{v} \omega, 1\right\rangle=0
$$

This corresponds to the fact that, in the homology of $M-\Sigma$, one has $\sum\left[\gamma_{\sigma}\right]=0$.
The cohomology classes one can get in this way are all cohomology classes without any [d $y$ ] component, i.e., orthogonal to [d $x$ ], as one can realize all such classes in $H^{1}(M)$ using $\mathcal{B}^{-k_{h}, k_{v}}$, and one can account for the additional Card $\Sigma-1$ dimensions in $H^{1}(M-\Sigma)$ by using the $\xi_{\sigma}-\xi_{\sigma^{\prime}}$. It turns out that one can also recover the class [dy]. Indeed, start from $\xi_{\sigma, 0,0}$ and consider a path $\gamma$ made of horizontal and vertical segments. As $\mathrm{d} \xi_{\sigma, 0,0}$ is exact, one may compute formally

$$
0=\int_{\gamma} \mathrm{d} \xi_{\sigma, 0,0}=\int_{\gamma} L_{h} \xi_{\sigma, 0,0} \mathrm{~d} x+\int_{\gamma} L_{v} \xi_{\sigma, 0,0} \mathrm{~d} y=\int_{\gamma} L_{h} \xi_{\sigma, 0,0} \mathrm{~d} x+\frac{1}{\operatorname{Leb} M} \int_{\gamma} \mathrm{d} y
$$

where the last equality follows from Proposition 1.5. It follows that the element - Leb $M$. $L_{h} \xi_{\sigma, 0,0}$, which belongs to $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$, has a cohomology class whose integral along any path coincides with the integral of $\mathrm{d} y$ along this path, i.e., $\left[-\operatorname{Leb} M \cdot L_{h} \xi_{\sigma, 0,0}\right]_{e x t}=[\mathrm{d} y]$. The above formal computation can be made rigorous by smoothing the path $\gamma$ horizontally, as we did to define the cohomology classes. This shows that, for $k_{h}, k_{v} \geqslant 3$, the map from $\mathcal{B}_{\text {ext }}^{-k_{h}, k_{v}} \cap \operatorname{ker} L_{v}$ to $H^{1}(M-\Sigma)$ is onto. This is the analogue of [For02, Theorem 7.1(ii)] in our setting.

## 5. Solving the cohomological equation

Consider a $C^{\infty}$ function $f$ which is compactly supported away from the singularity set $\Sigma$ on a translation surface $M$. Solving the cohomological equation for the vertical flow on
$M$ amounts to finding a function $F$, which is smooth along vertical lines, and satisfies the equality $L_{v} F=f$. In general, the function $F$ will not be compactly supported on $M-\Sigma$, but it will hopefully be continuous on $M$. More generally, one may ask how smooth the solution $F$ can be chosen.

A direct obstruction to solve the cohomological equation with a smooth solution is given by distributions in the kernel of $L_{v}$ : if $L_{v} \omega=0$, then

$$
\langle\omega, f\rangle=\left\langle\omega, L_{v} F\right\rangle=-\left\langle L_{v} \omega, F\right\rangle=0,
$$

where the last equalities make sense if $F$ belongs to the space on which $\omega$ acts. Indeed, in general, a distribution $\omega \in \mathcal{D}^{\infty}(M-\Sigma)$ is in the dual of $C_{c}^{\infty}(M-\Sigma)$, so that $\langle\omega, F\rangle$ does not make sense if $F$ is not $C^{\infty}$ or not compactly supported away from $\Sigma$. However, many distributions act on larger classes of functions, so an important question in the discussion below will be to see if $\langle\omega, F\rangle$ is meaningful.

The Gottschalk-Hedlund theorem states that, for a minimal continuous flow on a compact manifold, a continuous function is a continuous coboundary if and only if its Birkhoff integrals $\int_{0}^{T} f\left(g_{t} x\right) \mathrm{d} t$ are bounded independently of $x$ and $T$. We will use a variation around this result due to Giulietti-Liverani [GL14]. Its interest is that it gives an explicit formula for the coboundary, which we will use to study its smoothness.

In this section, we fix once and for all a $C^{\infty}$ function $\chi: \mathbb{R} \rightarrow[0,1]$ which is equal to 1 on a neighborhood of $(-\infty, 0]$ and to 0 on a neighborhood of $[1, \infty)$.

Lemma 5.1. Consider a semiflow $g_{t}$ on a space $X$, and a function $f: X \rightarrow \mathbb{R}$ for which there exist $C>0$ and $\varepsilon>0$ and $r \in \mathbb{N}$ with the following property: for any $x \in X$, for any $\tau \geqslant 1$, for any function $\varphi$ which is compactly supported on $(0,1)$,

$$
\begin{equation*}
\left|\int_{t=0}^{\tau} \varphi(t / \tau) f\left(g_{t} x\right) \mathrm{d} t\right| \leqslant C\|\varphi\|_{C^{r}} / \tau^{\varepsilon} \tag{5.1}
\end{equation*}
$$

Then $f$ is a coboundary: there exists a function $F$ such that $\int_{0}^{\tau} f\left(g_{t} x\right) \mathrm{d} t=F(x)-F\left(g_{\tau} x\right)$ for all $x \in X$ and all $\tau \geqslant 0$.

More specifically, $F$ can be constructed as follows. Fix $\lambda>1$. Define a function $F_{n}(x)=$ $\int_{t=0}^{\lambda^{n}} \chi\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t$. Then $F_{n}$ converges uniformly to a function $F$ as above. Moreover, $\left|F_{n}(x)-F(x)\right| \leqslant C \lambda^{-\varepsilon n}$ where $C$ does not depend on $x$ or $n$.

In fact, one can even prove that $\int_{t=0}^{\tau} \chi(t / \tau) f\left(g_{t} x\right) \mathrm{d} t$ converges to $F(x)$ at a uniform rate $O\left(1 / \tau^{\varepsilon}\right)$ when $\tau \rightarrow \infty$, without having to restrict to the subsequence $\lambda^{n}$, with a small modification of the following proof. We will not need this more precise version of the lemma.

Proof. This is essentially a reformulation of [GL14, Lemmas 1.4 and 3.1].
Define $\varphi(t)=\chi(t)-\chi(\lambda t)$. This is a $C^{\infty}$ function with compact support on $(0,1)$. Moreover,

$$
F_{n+1}(x)-F_{n}(x)=\int_{t=0}^{\lambda^{n+1}}\left(\chi\left(t / \lambda^{n+1}\right)-\chi\left(t / \lambda^{n}\right)\right) f\left(g_{t} x\right) \mathrm{d} t=\int_{t=0}^{\lambda^{n+1}} \varphi\left(t / \lambda^{n+1}\right) f\left(g_{t} x\right) \mathrm{d} t
$$

Under the assumptions of the lemma, this is bounded by $C(\varphi) / \lambda^{(n+1) \varepsilon}$. This shows that $F_{n}(x)$ is a Cauchy sequence, converging uniformly to a limit $F(x)$ with $\left|F_{n}(x)-F(x)\right| \leqslant$ $C \lambda^{-\varepsilon n}$.

To conclude, we should show that $F$ solves the cohomological equation. Let us fix $x$ and $\tau$. We have

$$
\begin{aligned}
& F_{n}\left(g_{\tau} x\right)+\int_{0}^{\tau} f\left(g_{t} x\right) \mathrm{d} t-F_{n}(x) \\
& =\int_{\tau}^{\lambda^{n}+\tau} \chi\left((t-\tau) / \lambda^{n}\right) f\left(g_{t} x\right)+\int_{0}^{\tau} \chi\left((t-\tau) / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t-\int_{0}^{\lambda^{n}} \chi\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t \\
& =
\end{aligned}
$$

where

$$
\varphi_{n, \tau}(s)=\chi\left(\left(\left(\lambda^{n}+\tau\right) s-\tau\right) / \lambda^{n}\right)-\chi\left(\left(\lambda^{n}+\tau\right) s / \lambda^{n}\right)
$$

The function $\varphi_{n, \tau}$ has compact support in $(0,1)$ and uniformly bounded $C^{r}$ norm when $n$ tends to infinity. By (5.1) applied to $\varphi_{n, \tau}$, we deduce that $F_{n}\left(g_{\tau} x\right)+\int_{0}^{\tau} f\left(g_{t} x\right) \mathrm{d} t-F_{n}(x)$ tends to 0 . Passing to the limit, we get $F\left(g_{\tau} x\right)+\int_{0}^{\tau} f\left(g_{t} x\right)-F(x)=0$.

We will denote by $C_{h}^{k}$ the space of functions $M \rightarrow \mathbb{R}$ which are $C^{k}$ along the horizontal direction and such that $L_{h}^{i} f$ is continuous and bounded on $M-\Sigma$ for $i \leqslant k$. Elements of $C_{h}^{k}$ belong to $\check{\mathcal{B}}^{k, 0}$ by Lemma 2.5. To formulate the assumptions of our theorems, we will use the following fact:

$$
\begin{equation*}
\langle\omega, f\rangle \text { makes sense for } f \in C_{h}^{k+2} \text { and } \omega \in E_{\alpha} \text { with }|\alpha| \geqslant \lambda^{-k-1} \tag{5.2}
\end{equation*}
$$

Indeed, elements of $E_{\alpha}$ for $|\alpha| \geqslant \lambda^{-k-1}$ belong to $\mathcal{B}^{-k-2, k+2}$ as the essential spectral radius of $\mathcal{T}$ on this space is $\leqslant \lambda^{-k-2}<\lambda^{-k-1}$. Therefore, since $f \in \check{\mathcal{B}}^{k+2,0}$, the coupling $\langle\omega, f\rangle$ is well defined by Proposition 2.9 (exchanging the roles of the horizontal and the vertical direction to make sure that the inequalities on the exponents are satisfied). One could even weaken slightly more the conditions, by requiring only $f \in C_{h}^{k+1+\varepsilon}$ for $\varepsilon>0$, by exploring the route alluded to in Remark 2.2 if one were striving for minimal assumptions.

We will apply the previous lemma in the setting of the vertical flow on a translation surface endowed with a pseudo-Anosov map preserving orientations, with expansion factor $\lambda$. We obtain the following criterion to have a continuous coboundary.

Theorem 5.2. Let $T$ be a linear pseudo-Anosov map preserving orientations on a translation surface $(M, \Sigma)$. Denote by $g_{t}$ the vertical flow on this surface. Consider a function $f$ on $M$ in $C_{h}^{2}$. Assume that, for any $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-1}} E_{\alpha}$, one has $\langle\omega, f\rangle=0$. Then $f$ is a continuous coboundary: there exists a continuous function $F$ on $M$ such that, for any $x$ and any $\tau$ such that $g_{t} x$ is well defined for $t \in[0, \tau]$, holds

$$
\begin{equation*}
\int_{0}^{\tau} f\left(g_{t} x\right) \mathrm{d} t=F(x)-F\left(g_{\tau} x\right) \tag{5.3}
\end{equation*}
$$

The assumptions of the theorem make sense by (5.2). The distributions appearing in the statement of the theorem have been completely classified in Theorem 1.4 and its proof. In particular, they are all vertically invariant.

To prove this theorem, let us first check that the assumptions of the Giulietti-Liverani criterion of Lemma 5.1 are satisfied.

Lemma 5.3. Under the assumptions of Theorem 5.2, there exists $\varepsilon>0$ such that the inequality $\left|\int_{t=0}^{\tau} \varphi(t / \tau) f\left(g_{t} x\right) \mathrm{d} t\right| \leqslant C\|\varphi\|_{C^{2}} / \tau^{\varepsilon}$ in (5.1) holds, with $r=2$.

Proof. It suffices to prove the estimate for $\tau$ of the form $\lambda^{n}$, as the case of a general $\tau$ follows by using $n$ such that $\tau \in\left[\lambda^{n-1}, \lambda^{n}\right]$. Fix $x$ and $\varphi$. We have

$$
\begin{equation*}
\int_{0}^{\lambda^{n}} \varphi\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t=\lambda^{n} \int_{0}^{1} \varphi(s) f\left(T^{-n}\left(g_{s}\left(T^{n} x\right)\right)\right) \mathrm{d} s=\lambda^{n} \int_{0}^{1} \varphi(s) \check{\mathcal{T}}^{n} f\left(g_{s} y\right) \mathrm{d} s \tag{5.4}
\end{equation*}
$$

for $y=T^{n} x$. The integral is the integral of $\check{\mathcal{T}}^{n} f \in \check{\mathcal{B}}^{2,-2}$ along a vertical manifold against a $C^{2}$ smooth function. Therefore, this is bounded by $\lambda^{n}\|\varphi\|_{C^{2}}\left\|\check{\mathcal{T}}^{n} f\right\|_{\tilde{\mathcal{B}}^{2,-2}}$.

On this space, the essential spectral radius of $\check{\mathcal{T}}$ is $\leqslant \lambda^{-2}<\lambda^{-1}$, by Theorem 3.1. Let us decompose $f$ as $\sum_{\alpha} f_{\alpha}+\tilde{f}$, where $\alpha$ runs among the (finitely many) eigenvalues of $\check{\mathcal{T}}$ of modulus $>\lambda^{-2}$, and $f_{\alpha}$ is the component of $f$ on the corresponding generalized eigenspace $\check{E}_{\alpha}$. By assumption, $\langle\omega, f\rangle=0$ for any $\omega \in E_{\alpha}$ with $|\alpha| \geqslant \lambda^{-1}$. Thanks to the perfect duality statement given in Lemma 3.12, this gives $f_{\alpha}=0$ for all such $\alpha$. Let $\gamma<\lambda^{-1}$ be such that all eigenvalues of modulus $<\lambda^{-1}$ have in fact modulus $<\gamma$. We deduce that $\left\|\check{\mathcal{T}}^{n} f\right\|_{\mathcal{B}^{2},-2}$ grows at most like $C \gamma^{n}$. Together with (5.4), this gives

$$
\left|\int_{0}^{\lambda^{n}} \varphi\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t\right| \leqslant C\|\varphi\|_{C^{2}}(\lambda \gamma)^{n}
$$

As $\lambda \gamma<1$, one may write $\lambda \gamma=\lambda^{-\varepsilon}$ for some $\varepsilon>0$. Then this bound is of the form $C\|\varphi\|_{C^{2}} /\left(\lambda^{n}\right)^{\varepsilon}$, as requested.

There is a difficulty to apply Lemma 5.1 due to the singularities, which imply that the flow is not defined everywhere for all times. One can circumvent the difficulty by going to a bigger space in which trajectories ending on a singularity are split into two trajectories going on both sides of the singularity. This results in a compact space with a Cantor transverse structure and a minimal flow, to which Lemma 5.1 applies. This classical strategy works well for continuous coboundary results, but there are difficulties in higher smoothness. Instead, we will use a strategy which avoids the use of such an extension, and works also for higher smoothness. The idea is to iterate the flow in forward time or backward time depending on the point one considers.

Proof of Theorem 5.2. Let $M_{n}^{+} \subseteq M$ be the set of points for which the vertical flow is defined for all times in $\left[0, \lambda^{n}\right]$, and let $M^{+}=\bigcap_{n} M_{n}^{+}$, i.e., the set of points that do not reach a singularity in finite positive time. In the same way, but using backward time, we define $M_{n}^{-}$and $M^{-}$. Then $M-\Sigma=M^{+} \cup M^{-}$as there is no vertical saddle connection.

Let us define functions $F_{n}^{+}(x)$ on $M_{n}^{+}$and $F_{n}^{-}$on $M_{n}^{-}$by

$$
F_{n}^{+}(x)=\int_{0}^{\lambda^{n}} \chi\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t, \quad F_{n}^{-}(x)=-\int_{0}^{\lambda^{n}} \chi\left(t / \lambda^{n}\right) f\left(g_{-t} x\right) \mathrm{d} t
$$

For $x \in M_{n}^{+} \cap M_{n}^{-}$, the difference $F_{n}^{+}(x)-F_{n}^{-}(x)$ can be written as

$$
F_{n}^{+}(x)-F_{n}^{-}(x)=\int_{-\lambda^{n}}^{\lambda^{n}} \tilde{\chi}\left(t / \lambda^{n}\right) f\left(g_{t} x\right) \mathrm{d} t
$$

where $\tilde{\chi}(t)=\chi(|t|)$. By Lemma 5.3, this tends to 0 like $C(\tilde{\chi}) /\left(2 \lambda^{n}\right)^{\varepsilon}$.

Lemma 5.1 applied to the semiflow $g_{t}$ on $M^{+}$, and to the semiflow $g_{-t}$ on $M^{-}$, shows that $F_{n}^{+}(x)$ converges uniformly to a function $F^{+}(x)$ on $M^{+}$, and that $F_{n}^{-}(x)$ converges uniformly to a function $F^{-}(x)$ on $M^{-}$. From the fact that the difference between $F_{n}^{+}$and $F_{n}^{-}$is small where defined, we deduce that $F^{+}=F^{-}$on $M^{+} \cap M^{-}$. Let us define a function $F$ on $M-\Sigma$, equal to $F^{+}$on $M^{+}$and to $F^{-}$on $M^{-}$. By the above, we have

$$
\begin{equation*}
\left|F_{n}^{+}(x)-F(x)\right| \leqslant C / \lambda^{\varepsilon n} \text { for } x \in M_{n}^{+}, \quad\left|F_{n}^{-}(x)-F(x)\right| \leqslant C / \lambda^{\varepsilon n} \text { for } x \in M_{n}^{-} \tag{5.5}
\end{equation*}
$$

Moreover, the function $F$ satisfies the coboundary equation (5.3), as $F^{+}$and $F^{-}$satisfy it respectively on $M^{+}$and $M^{-}$by Lemma 5.1.

Let us show that $F$ is continuous on $M-\Sigma$. Take $x \in M-\Sigma$, for instance in $M^{+}$. Let $\delta>0$. Let $n$ be large. The function $F_{n}^{+}$is well defined and continuous on a neighborhood of $x$. In particular, it oscillates by at most $\delta$ on a neighborhood of $x$. As $F$ differs from $F_{n}^{+}$ by $C / \lambda^{n}$, we deduce that $F$ oscillates by at most $\delta+C / \lambda^{n}$ on a neighborhood of $x$. This proves the continuity of $F$ at $x$.

Finally, let us show that $F$ extends continuously to $\Sigma$. It suffices to show that it is uniformly continuous on $M-\Sigma$. For this, it suffices to show that it is uniformly continuous on small horizontal segments close to a singularity, as uniform continuity along vertical segments follows from the coboundary equation. Let $\left(I_{t}\right)_{t \in(0, \delta]}$ be a family of vertical translates of horizontal segments such that $I_{0}$ contains a singularity. For $x, y \in I_{0}$, we have $F(x)-F(y)=F\left(g_{t} x\right)-F\left(g_{t} y\right)+\int_{0}^{t}\left(f\left(g_{s} x\right)-f\left(g_{s} y\right)\right) \mathrm{d} s$. Thanks to the boundedness of $L_{h} f$, the last integral is small if $x$ and $y$ are close and $t$ is small, while the first difference is small if $x$ and $y$ are close enough thanks to the continuity of $F$ on $I_{t}$. Hence, $F(x)-F(y)$ itself is small. This concludes the proof.

To get further smoothness results, one needs to assume more cancellations for $f$. The next theorem gives such conditions ensuring that $F$ is $C^{1}$.
Theorem 5.4. Under the assumptions of Theorem 5.2, assume additionally that $f \in C_{h}^{3}$. Assume moreover that, for any $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha} \cap \operatorname{ker} L_{v}$, one has $\langle\omega, f\rangle=0$. Then the function $F$ solving the cohomological equation (5.3) is $C^{1}$ along the horizontal direction, and $L_{h} F$ extends continuously to $M$.

The assumptions of the theorem make sense by (5.2). The distributions appearing in the statement of the theorem have been completely classified in Theorem 1.4 and its proof.

Let us start with a preliminary reduction.
Lemma 5.5. To prove Theorem 5.4, it is sufficient to prove it assuming the stronger condition that $\langle\omega, f\rangle=0$ for all $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha}$.

The difference with the assumptions in Theorem 5.4 is that our new assumption is not restricted only to the vertically invariant distributions.
Proof. Consider a function $f \in C_{h}^{3}$ such that $\langle\omega, f\rangle=0$ for all $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha} \cap \operatorname{ker} L_{v}$. We can not deduce from the assumptions of the lemma that $f$ is a smooth coboundary, as there might exist distributions $\omega \in E_{\alpha}-\operatorname{ker} L_{v}$ with $\langle\omega, f\rangle \neq 0$. We will bring these quantities back to 0 by subtracting from $f$ a suitable coboundary. The additional distributions we have to handle belong to $E_{\lambda^{-2} \mu_{i}}$ for some $\mu_{i}$ with $\left|\mu_{i}\right| \in[1, \lambda)$. Denote by $F_{i}$ a subspace of $E_{\lambda^{-2} \mu_{i}}$ sent isomorphically by $L_{v}$ to $E_{\lambda^{-1} \mu_{i}}$. Then $E_{\lambda^{-2} \mu_{i}}=F_{i} \oplus\left(E_{\lambda^{-2} \mu_{i}} \cap \operatorname{ker} L_{v}\right)$, see (1.1).

Consider on $\bigoplus_{\left|\mu_{i}\right| \in[1, \lambda)} E_{\lambda^{-1} \mu_{i}}$ the linear form $\omega \mapsto\left\langle L_{v}^{-1} \omega, f\right\rangle$, where by $L_{v}^{-1} \omega$ we mean the unique $\tilde{\omega} \in \bigoplus F_{i}$ with $L_{v} \tilde{\omega}=\omega$. As $\mathcal{B}^{-k_{h}, k_{v}}$ is a space of distributions, any linear form on a finite-dimensional subspace can be realized by a smooth function. Hence, there exists $g_{0} \in C_{c}^{\infty}(M-\Sigma)$ such that, for any $\omega \in \bigoplus_{\left|\mu_{i}\right| \in[1, \lambda)} E_{\lambda^{-1} \mu_{i}}$, then $\left\langle L_{v}^{-1} \omega, f\right\rangle=\left\langle\omega, g_{0}\right\rangle$. Hence, for $\tilde{\omega} \in \bigoplus F_{i}$, applying the previous equality to $\omega=L_{v} \tilde{\omega}$, we have

$$
\langle\tilde{\omega}, f\rangle=\left\langle L_{v} \tilde{\omega}, g_{0}\right\rangle=-\left\langle\tilde{\omega}, L_{v} g_{0}\right\rangle
$$

This shows that the function $\tilde{f}=f+L_{v} g_{0}$ vanishes against any distribution in $\bigoplus F_{i}$. It also vanishes against any distribution on $\bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha} \cap \operatorname{ker} L_{v}$, as this is the case of $f$ by assumption, and of $L_{v} g_{0}$. Hence, it vanishes against all distributions in $\bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha}$. Under the assumptions of the lemma, it follows that $f+L_{v} g_{0}$ can be written as $L_{v} F$ for some function $F \in C_{h}^{1}$. Then $f=L_{v}\left(F-g_{0}\right)$, concluding the proof.

From this point on, we will assume that $f$ satisfies the strengthened assumptions of Lemma 5.5. To prove the theorem, we start with a stronger version of Lemma 5.3.

Lemma 5.6. Under the assumptions of Lemma 5.5, there exists $\varepsilon>0$ such that the inequality $\left|\int_{t=0}^{\tau} \varphi(t / \tau) f\left(g_{t} x\right) \mathrm{d} t\right| \leqslant C\|\varphi\|_{C^{3}} / \tau^{1+\varepsilon}$ in (5.1) holds, with $r=3$.

Proof. The proof is the same as for Lemma 5.6, with the difference that the additional vanishing conditions in Lemma 5.5 give more vanishing terms in the spectral decomposition of $f$, and thus a faster decay of $\check{\mathcal{T}}^{n} f$.

Let us now prove that the function $F$ given by Theorem 5.2 is Lipschitz along horizontal segments. This is the main step of the proof.

Lemma 5.7. Under the assumptions of Lemma 5.5, there exists $C$ such that, for any points $x, y$ on the same horizontal segment, one has $|F(x)-F(y)| \leqslant C d(x, y)$.

Proof. It suffices to prove the result for nearby points. Let $\delta>0$ be such that any horizontal segment of size $\leqslant \delta$ can be completed above or below to form a rectangle of vertical size 1 , not containing any singularity. We will show the statement when $d=d(x, y)$ belongs to $(0, \delta / \lambda)$.

Let $n \geqslant 1$ be the integer such that $\lambda^{n} d \in(\delta / \lambda, \delta]$. Let $I$ be the horizontal interval between $x$ and $y$. Assume for instance that $T^{n} I$ (which is of length $\leqslant \delta$ ) can be completed above by a rectangle of height 1 (otherwise, it can be completed below, and the argument is the same but using $F_{n}^{-}$instead of $F_{n}^{+}$). In particular, there is no singularity in the rectangle of height $\lambda^{n}$ above $I$. Note first that

$$
\left|F_{0}^{+}(x)-F_{0}^{+}(y)\right|=\left|\int_{t=0}^{1} \chi(t) f\left(g_{t} x\right)-f\left(g_{t} y\right) \mathrm{d} t\right|
$$

As $L_{h} f$ is bounded by assumption and $g_{t} x$ and $g_{t} y$ are at distance $d$ along a horizontal segment, we get

$$
\begin{equation*}
\left|F_{0}^{+}(x)-F_{0}^{+}(y)\right| \leqslant C d \tag{5.6}
\end{equation*}
$$

Next, for $0<k \leqslant n$, we have $F_{k}^{+}(x)-F_{k-1}^{+}(x)=\int_{t=0}^{\lambda^{k}} \varphi\left(t / \lambda^{k}\right) f\left(g_{t} x\right) \mathrm{d} t$ where $\varphi(t)=$ $\chi(t)-\chi(\lambda t)$. Taking the difference, we get

$$
\begin{aligned}
\left(F_{k}^{+}(x)-F_{k-1}^{+}(x)\right)-\left(F_{k}^{+}(y)-F_{k-1}^{+}(y)\right) & =\int_{t=0}^{\lambda^{k}} \varphi\left(t / \lambda^{k}\right)\left(f\left(g_{t} x\right)-f\left(g_{t} y\right)\right) \mathrm{d} t \\
& =\lambda^{k} \int_{s=0}^{1} \varphi(s)\left(\check{\mathcal{T}}^{k} f\left(g_{s} x_{k}\right)-\check{\mathcal{T}}^{k} f\left(g_{s} y_{k}\right)\right) \mathrm{d} s
\end{aligned}
$$

for $x_{k}=T^{k} x$ and $y_{k}=T^{k} y$, as in (5.4). Since the points $g_{s} x_{k}$ and $g_{s} y_{k}$ are on the same horizontal segment of length $\lambda^{k} d$, we can integrate by parts and get

$$
\left(F_{k}^{+}(x)-F_{k-1}^{+}(x)\right)-\left(F_{k}^{+}(y)-F_{k-1}^{+}(y)\right)=\lambda^{k} \int_{u=y_{k}}^{x_{k}}\left(\int_{s=0}^{1} \varphi(s) L_{h} \check{\mathcal{T}}^{k} f\left(g_{s} u\right) \mathrm{d} s\right) \mathrm{d} u
$$

Each integral over $s$ is an integral over a vertical segment, against a smooth function $\varphi$. By the definition of $\check{\mathcal{B}}$, it is bounded by $C\|\varphi\|_{C^{3}}\left\|\check{\mathcal{T}}^{k} f\right\|_{\mathcal{\mathcal { B }}^{3,-3}}$. Moreover, the vanishing conditions on $f$ in the assumptions of Theorem 5.4 ensure that $\left\|\check{\mathcal{T}}^{k} f\right\|_{\mathcal{\mathcal { B }}^{3,-3}}$ decays like $C \lambda^{-(2+\varepsilon) k}$ for some $\varepsilon>0$. We get

$$
\begin{aligned}
\left|\left(F_{k}^{+}(x)-F_{k-1}^{+}(x)\right)-\left(F_{k}^{+}(y)-F_{k-1}^{+}(y)\right)\right| & \leqslant C \lambda^{k}\left|x_{k}-y_{k}\right| \lambda^{-(2+\varepsilon) k}=C \lambda^{k} \cdot \lambda^{k} d \cdot \lambda^{-(2+\varepsilon) k} \\
& =C d \lambda^{-\varepsilon k}
\end{aligned}
$$

As the geometric series $\lambda^{-\varepsilon k}$ is summable, we get starting from (5.6) and summing over $k$ from 1 to $n$ the inequality

$$
\begin{equation*}
\left|F_{n}^{+}(x)-F_{n}^{+}(y)\right| \leqslant C d \tag{5.7}
\end{equation*}
$$

Moreover, by (5.5) (but with $\varepsilon$ replaced by $1+\varepsilon$ thanks to Lemma 5.6), we have

$$
\left|F_{n}^{+}(x)-F(x)\right| \leqslant C / \lambda^{(1+\varepsilon) n} \leqslant C \lambda^{-n} \leqslant C(\lambda d / \delta)
$$

thanks to the inequality $\lambda^{n} d \geqslant \delta / \lambda$. This is bounded by $C d$. In the same way, $\mid F_{n}^{+}(y)-$ $F(y) \mid \leqslant C d$. Together with (5.7), this gives $|F(x)-F(y)| \leqslant C d$.

Remark 5.8. Under the weaker assumptions of Theorem 5.2, then the same proof goes through to prove that $|F(x)-F(y)| \leqslant C d(x, y)^{\varepsilon}$, where $\varepsilon$ comes from Lemma 5.3. Hence, the solution $F$ to the cohomological equation is automatically Hölder continuous, without any further assumption. This corresponds in a different setting to the main result of [MY16].

Proof of Theorem 5.4. Consider a function $f$ satisfying the assumptions of Lemma 5.5. We have to show that it is a $C^{1}$ coboundary. Let $F$ be the solution to the coboundary equation given by Theorem 5.2. By Lemma 5.7, along any horizontal segment, it is differentiable almost everywhere, and equal to the primitive of its derivative. We get a bounded measurable function $F_{h}$ such that, for every horizontal interval $I$, for every $x, y \in I$, one has

$$
\begin{equation*}
F(y)-F(x)=\int_{x}^{y} F_{h}(u) \mathrm{d} u \tag{5.8}
\end{equation*}
$$

The difficulty is that we do not know if $F_{h}$ is continuous and well defined everywhere.
The function $L_{h} f$ belongs to $C_{h}^{2}$. Moreover, it satisfies $\left\langle\omega, L_{h} f\right\rangle=0$ for $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-1}} E_{\alpha}$, as this is equal to $-\left\langle L_{h} \omega, f\right\rangle$, which vanishes under the assumptions of Lemma 5.5 as $L_{h} \omega \in \bigcup_{|\alpha| \geqslant \lambda^{-2}} E_{\alpha}$. It follows that $L_{h} f$ satisfies all the assumptions of Theorem 5.2. Hence,
there exists a continuous function $G$ on $M$ such that $\int_{0}^{\tau} L_{h} f\left(g_{t} x\right)=G(x)-G(g \tau x)$ for all $x$ and $\tau$.

Consider two points $x$ and $y$ on a small horizontal interval, and $\tau>0$ so that there is no singularity between the orbits $\left(g_{s} x\right)_{s \leqslant \tau}$ and $\left(g_{s} y\right)_{s \leqslant \tau}$. Then one can compute

$$
\begin{aligned}
\int_{u=x}^{y}\left(G-F_{h}\right)(u)- & \left(G-F_{h}\right)\left(g_{\tau} u\right) \mathrm{d} u \\
& =\int_{u=x}^{y} \int_{0}^{\tau} L_{h} f\left(g_{t} u\right) \mathrm{d} t \mathrm{~d} u-(F(y)-F(x))+\left(F\left(g_{\tau} y\right)-F\left(g_{\tau} x\right)\right) \\
& =\int_{0}^{\tau} f\left(g_{t} y\right)-f\left(g_{t} x\right) \mathrm{d} t-(F(y)-F(x))+\left(F\left(g_{\tau} y\right)-F\left(g_{\tau} x\right)\right)=0
\end{aligned}
$$

Since this also holds along any subsegment $\left[x^{\prime}, y^{\prime}\right]$ of $[x, y]$, it follows that $\left(G-F_{h}\right)(u)-(G-$ $\left.F_{h}\right)\left(g_{\tau} u\right)$ vanishes almost everywhere on the segment $[x, y]$. One deduces that, for almost every $\tau \geqslant 0$ and almost every $u \in M$, one has $\left(G-F_{h}\right)\left(g_{\tau} u\right)=\left(G-F_{h}\right)(u)$. By ergodicity of the vertical flow, it follows that $G-F_{h}$ is almost everywhere constant, and we can even assume that this constant vanishes by subtracting it from $G$ if necessary.

By Fubini, for almost every horizontal interval $I$ one has $F_{h}=G$ almost everywhere on $I$. On such an interval, we deduce from (5.8) the equality $F(y)-F(x)=\int_{x}^{y} G(u) \mathrm{d} u$. By continuity of $F$ and $G$, this equality extends to all horizontal intervals. It follows from this formula that $F$ is differentiable in the horizontal direction, with derivative $G$. As $G$ is continuous on $M$, this concludes the proof of the theorem.

The following theorem is the precise version of Theorem 1.7 on $C^{k}$ solutions to the cohomological equation.
Theorem 5.9. Under the assumptions of Theorem 5.2, assume additionally that $f \in C_{h}^{k+2}$. Assume moreover that, for any $\omega \in \bigcup_{|\alpha| \geqslant \lambda^{-k-1}} E_{\alpha} \cap \operatorname{ker} L_{v}$, one has $\langle\omega, f\rangle=0$. Then the function $F$ solving the cohomological equation (5.3) is $C^{k}$ along the horizontal direction, and $L_{h}^{j} F$ extends continuously to $M$ for all $j \leqslant k$.

The assumptions of the theorem make sense by (5.2). As explained after that equation, the assumptions of the theorem could even be weakened to $f \in C_{h}^{k+1+\varepsilon}$. The loss of $1+\varepsilon$ derivatives corresponds in this setting to the result of Forni on the regularity loss in the cohomological equation on almost every translation surface [For07]. The conclusion can also be strengthened as the $k$-th derivative is also Hölder continuous for some small exponent, see Remark 5.8.

Proof. We argue by induction on $k$, the cases $k=0$ and $k=1$ being true thanks to Theorems 5.2 and 5.4. Assume $k \geqslant 2$. By Theorem 5.4, there exists a function $F$ solving the cohomological equation for $f$, such that $L_{h} F$ is well defined and continuous. Differentiating horizontally, one gets that $L_{h} F$ is a continuous function, solving the cohomological equation for $L_{h} f$.

Moreover, the function $L_{h} f$ satisfies all the assumptions of the theorem for the smoothness degree $k-1$. By the inductive assumption, there exists a function $G$ solving the cohomological equation for $L_{h} f$, such that $L_{h}^{i} G$ is well defined for $i \leqslant k-1$. The functions $G$ and $L_{h} F$ solve the same cohomological equation. Hence, $G-L_{h} F$ is constant along orbits
of the vertical flow. As this flow is minimal, it follows that $G-L_{h} F$ is constant. Therefore, $L_{h} F$ has $k-1$ continuous horizontal derivatives. This concludes the proof.

## 6. When orientations are not preserved

6.1. Orientable foliations whose orientations are not preserved. Consider a translation surface ( $M, \Sigma$ ), and a linear pseudo-Anosov map $T$ on $M$ which does not necessarily preserve the orientations of the horizontal and vertical foliations. There are two global signs $\varepsilon_{h}$ and $\varepsilon_{v}$ indicating respectively if $T$ preserves the orientations of the horizontal and the vertical foliations. Then the spectrum of $T^{*}$ on $H^{1}(M)$ is given by $\varepsilon_{h} \lambda$, by $\varepsilon_{v} \lambda^{-1}$, and by $\Xi=\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$ with $\left|\mu_{i}\right| \in\left(\lambda^{-1}, \lambda\right)$ (where this last property follows from the same result for the map $T^{2}$, which preserves orientations). One can describe the Ruelle spectrum exactly as we did in the orientations preserving case, with the only difference that the commutation relations between the composition operator $\mathcal{T}$ and the horizontal and vertical derivatives are not the same: Proposition 3.3 should be replaced by the equalities

$$
\mathcal{T} \circ L_{v}=\varepsilon_{v} \lambda L_{v} \circ \mathcal{T}, \quad \mathcal{T} \circ L_{h}=\varepsilon_{h} \lambda^{-1} L_{h} \circ \mathcal{T}
$$

on appropriate spaces. On the other hand, the definition of the Banach spaces $\mathcal{B}^{-k_{h}, k_{v}}$ need not be changed (their very definition in Section 2 is independent of the existence of a pseudo-Anosov map on the surface).

The largest eigenvalues of $\mathcal{T}$, in addition to 1 , are given by $\varepsilon_{h} \lambda^{-1} \mu_{i}$. Then, to build new eigenfunctions from such an eigenfunction, one can either differentiate in the horizontal direction, or integrate in the vertical direction. When $\varepsilon_{h} \neq \varepsilon_{v}$, this gives rise to two different eigenvalues, while when they coincide one obtains the same eigenvalue again. In general, choosing to apply $k-1$ horizontal derivatives and $\ell$ vertical integrations (with $k \geqslant 1$ and $\ell \geqslant 0$ ) gives an eigenfunction for the eigenvalue $\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}$. Hence, one obtains the following description of the spectrum:

Theorem 6.1. Let $T$ be a linear pseudo-Anosov map on a translation surface of genus $g$, with orientable horizontal and vertical foliations. Denoting by $\lambda>1$ its expansion factor, then the spectrum of $T^{*}$ on $H^{1}(M)$ has the form $\left\{\varepsilon_{h} \lambda, \varepsilon_{v} \lambda^{-1}, \mu_{1}, \ldots, \mu_{2 g-2}\right\}$ with $\left|\mu_{i}\right| \in$ $\left(\lambda^{-1}, \lambda\right)$ for all $i=1, \ldots, 2 g-2$. Then $T$ has a Ruelle spectrum on $\mathcal{C}=C_{c}^{\infty}(M-\Sigma)$, given (with multiplicities) by

$$
\{1\} \cup \bigcup_{i=1}^{2 g-2} \bigcup_{k \geqslant 1} \bigcup_{\ell \geqslant 0}\left\{\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}\right\} .
$$

For $\varepsilon_{h}=\varepsilon_{v}=1$, one recovers Theorem 1.4.
One can also obtain a full description of the vertically invariant distributions, and solve the cohomological equation for the vertical flow. However, the simplest way to do this is certainly to apply the results of the previous sections to the map $T^{2}$, which preserves orientations, so we will not discuss these results any further.

It is more interesting to check that the trace formula of Theorem 1.8 still holds in this more general context.

Theorem 6.2. Let $T$ be a linear pseudo-Anosov map on a compact surface with orientable horizontal and vertical foliations. Then, for all $n$,

$$
\begin{equation*}
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=\sum_{\alpha} d_{\alpha} \alpha^{n}, \tag{6.1}
\end{equation*}
$$

where the sum is over all Ruelle resonances $\alpha$ of $T$, and $d_{\alpha}$ denotes the multiplicity of $\alpha$.
Proof. We follow the proof of Theorem 1.8, with appropriate modifications. The Lefschetz fixed-point formula gives

$$
\begin{aligned}
\sum_{T^{n} x=x} \operatorname{ind}_{T^{n}} x & =\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{0}(M)}^{*}\right)-\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{1}(M)}^{*}\right)+\operatorname{tr}\left(\left(T^{n}\right)_{\mid H^{2}(M)}^{*}\right) \\
& =1-\left(\varepsilon_{h}^{n} \lambda^{n}+\varepsilon_{v}^{n} \lambda^{-n}+\sum_{i=1}^{2 g-2} \mu_{i}^{n}\right)+\varepsilon_{h}^{n} \varepsilon_{v}^{n},
\end{aligned}
$$

where $\left\{\mu_{1}, \ldots, \mu_{2 g-2}\right\}$ denote the eigenvalues of $T^{*}$ on the subspace of $H^{1}(M)$ orthogonal to $[\mathrm{d} x]$ and $[\mathrm{d} y]$, as in the statement of Theorem 1.4. The last term $\varepsilon_{h}^{n} \varepsilon_{v}^{n}$ is equal to 1 if $T^{n}$ preserves orientation, -1 if it reverses orientation.

We can also compute the right hand side of (6.1), using the description of Ruelle resonances: By Theorem 6.1, $\sum d_{\alpha} \alpha^{n}$ is given by

$$
\begin{aligned}
& 1+\sum_{i=1}^{2 g-2} \sum_{k=1}^{\infty} \sum_{\ell=0}^{\infty}\left(\varepsilon_{h}^{k} \lambda^{-k}\right)^{n}\left(\varepsilon_{v}^{\ell} \lambda^{-\ell}\right)^{n} \mu_{i}^{n}=1+\sum_{i=1}^{2 g-2} \frac{\varepsilon_{h}^{n} \lambda^{-n}}{1-\varepsilon_{h}^{n} \lambda^{-n}} \cdot \frac{1}{1-\varepsilon_{v}^{n} \lambda^{-n}} \cdot \mu_{i}^{n} \\
& =1-\sum_{i=1}^{2 g-2} \frac{\mu_{i}^{n}}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right) \cdot\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)}=\frac{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right) \cdot\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)-\sum_{i=1}^{2 g-2} \mu_{i}^{n}}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right) \cdot\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)} \\
& =\frac{1-\left(\varepsilon_{h}^{n} \lambda^{n}+\varepsilon_{v}^{n} \lambda^{-n}+\sum_{i=1}^{2 g-2} \mu_{i}^{n}\right)+\varepsilon_{h}^{n} \varepsilon_{v}^{n}}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right) \cdot\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)} .
\end{aligned}
$$

Combining the two formulas with the definition of the flat trace, we get the conclusion of the theorem.
6.2. Non-orientable foliations. Consider a pseudo-Anosov map $T$ on a half-translation surface $M$, but such that the horizontal and vertical foliations are not orientable. Note that, with our Definition 1.2, a half-translation surface is always orientable as $x \mapsto-x$ preserves orientation in $\mathbb{R}^{2}$. Hence, if the horizontal foliation is not orientable, then neither is the vertical foliation, and conversely. In this case, one can not argue directly in $M$ as the differentiation operators $L_{h}$ and $L_{v}$ do not make sense anymore: there is a sign ambiguity regarding the direction of differentiation. (On the other hand, the squares $L_{h}^{2}$ and $L_{v}^{2}$ of these operators are well defined.)

Let $\bar{M}$ be the two fold orientation (ramified) covering of $M$ : away from singularities, an element of $\bar{M}$ is a pair $(x, v)$ where $x \in M-\Sigma$ and $v$ is an orientation of the horizontal foliation at $x$ (equivalently, it is a horizontal unit-norm vector). Let $\bar{\pi}: \bar{M} \rightarrow M$ be the covering projection, and write $\bar{\Sigma}=\bar{\pi}^{-1}(\Sigma)$. Then $(\bar{M}, \bar{\Sigma})$ is a translation surface. Let $i: \bar{M} \rightarrow \bar{M}$ be the involution $i(x, v)=(x,-v)$. It is a homeomorphism of $\bar{M}$.
$T$ lifts to two pseudo-Anosov maps $\bar{T}$ and $i \circ \bar{T}$ of $\bar{M}$ and the homeomorphism $i$ commutes with $\bar{T}$. Let us consider $\varepsilon_{h}, \varepsilon_{v}$ where $\varepsilon_{h}, \varepsilon_{v} \in\{ \pm 1\}$ indicate whether $\bar{T}$ fixes or reverses the orientation in the horizontal (resp. vertical) direction, as in Paragraph 6.1. Obviously the corresponding pair associated to the other lift $i \circ \bar{T}$ is $\left(-\varepsilon_{h},-\varepsilon_{v}\right)$.

The action of $i^{*}$ gives rise to a splitting of $H^{1}(\bar{M})$ as the direct sum of the two subspaces $H_{ \pm}^{1}(\bar{M})=\left\{h \in H^{1}(\bar{M}): i^{*} h= \pm h\right\}$. The invariant part $H_{+}^{1}(\bar{M})$ corresponds to classes that are lifts of classes in $H^{1}(M)$. On the other hand, $[\mathrm{d} x]$ and [ $\mathrm{d} y$ ] belong to the anti-invariant part. If $f$ is a function on $M$, then $f \circ \pi \cdot \mathrm{~d} x$ if also anti-invariant.

The spectrum of $\bar{T}^{*}$ on $H_{+}^{1}(\bar{M})$ is equal to the spectrum of $T$ on $H^{1}(M)$, given by $2 g$ eigenvalues that we denote by $\mu_{1}^{+}, \ldots, \mu_{2 g}^{+}$. Let us denote the spectrum of $\bar{T}^{*}$ on $H_{-}^{1}(\bar{M})$ by $\varepsilon_{h} \lambda, \varepsilon_{v} \lambda^{-1}$ and $\mu_{1}^{-}, \ldots, \mu_{2 g_{-}-2}^{-}$. The Ruelle spectrum of $\bar{T}$ is expressed in terms of all these data as in Theorem 6.1, but the Ruelle spectrum of $T$ is a strict subset of the Ruelle spectrum of $\bar{T}$ as one should only consider those distributions in the spectrum that do not vanish on functions coming from the basis.

Theorem 6.3. In this setting, $T$ has a Ruelle spectrum on $\mathcal{C}=C_{c}^{\infty}(M-\Sigma)$, given (with multiplicities) by

$$
\{1\} \cup \bigcup_{i=1}^{2 g} \bigcup_{\substack{k \geqslant 1, \ell \geqslant 0 \\ k+\ell \text { even }}}\left\{\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}^{+}\right\} \cup \bigcup_{i=1}^{2 g_{-}-2} \bigcup_{\substack{k \geqslant 1, \ell \geqslant 0 \\ k+\ell \text { odd }}}\left\{\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}^{-}\right\}
$$

It is remarkable that, in this theorem only mentioning the correlations of functions in $M$, all the eigenvalues of $\bar{T}^{*}$ appear: both the invariant and anti-invariant parts of the cohomology can be read off the correlations of functions in $M$.

This statement does not depend on the choice of the lift of $T$. Indeed, if one chooses the other lift $i \circ \bar{T}$ of $T$, then the $\mu_{i}^{+}$do not change, but $\varepsilon_{h}, \varepsilon_{v}$ and $\mu_{i}^{-}$are replaced by their opposites, so that the above spectrum is not modified.

Proof. Among the distributions constructed in the proof of Theorem 6.1, one should understand which are orthogonal to functions from the basis, and which come from the basis. First, for the cohomology classes, one writes them as $h=f \mathrm{~d} x$ for some $f$ in the Banach space $\mathcal{B}^{-k_{h}, k_{v}}$. As $\mathrm{d} x$ is anti-invariant, it follows that $f$ is invariant if and only if $h$ is antiinvariant. Hence, the eigenvalues $\mu_{i}^{-}$give rise to distributions coming from the base, for the eigenvalue $\varepsilon_{h} \lambda^{-1} \mu_{i}^{-}$. On the other hand, the eigendistributions for $\varepsilon_{h} \lambda^{-1} \mu_{i}^{+}$are antiinvariant, and do not appear in the Ruelle spectrum of $T$. Then, in $\bar{M}$, differentiating with respect to $L_{h}$ or integrating with respect to $L_{v}$ exchanges the invariant and anti-invariant subspaces. The full description of the spectrum follows.

In this context, the trace formula of Theorem 1.8 still holds.
Theorem 6.4. Let $T$ be a linear pseudo-Anosov map. Then, for all $n$,

$$
\begin{equation*}
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=\sum_{\alpha} d_{\alpha} \alpha^{n} \tag{6.2}
\end{equation*}
$$

where the sum is over all Ruelle resonances $\alpha$ of $T$, and $d_{\alpha}$ denotes the multiplicity of $\alpha$.

Proof. We have already proved this result when the foliations are orientable, in Theorem 6.2. Hence, we can assume that the foliations are not orientable. In this case, the Ruelle spectrum is given in Theorem 6.3.

Let $x$ be a fixed point of $T^{n}$. Denote by $x_{1}$ and $x_{2}$ its two lifts. They are either fixed or exchanged by $\bar{T}^{n}$. We say that $x$ is positively fixed if its lifts are fixed by $\bar{T}^{n}$, and negatively fixed if they are exchanged by $\bar{T}^{n}$, i.e., fixed by $i \circ \bar{T}^{n}$. Let $\mathrm{Fix}^{+}\left(T^{n}\right)$ and $\mathrm{Fix}^{-}\left(T^{n}\right)$ denote respectively the set of positively and negatively fixed points of $T^{n}$. Around a positively fixed point, the local picture of $T^{n}$ is the same as the local picture of $\bar{T}^{n}$ around the lifts. In particular, $\operatorname{det}\left(I-D T^{n}\right)$ is equal to $\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{n}\right)$. If $x$ is negatively fixed, on the other hand, the local picture of $T^{n}$ is the same as that of $i \circ \bar{T}^{n}$, hence locally $\operatorname{det}\left(I-D T^{n}\right)=\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{n}\right)$. With the definition of the flat trace, we get

$$
\begin{equation*}
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=\sum_{x \in \operatorname{Fix}^{+}\left(T^{n}\right)} \frac{\operatorname{ind}_{T^{n}} x}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)}+\sum_{x \in \operatorname{Fix}^{-}\left(T^{n}\right)} \frac{\operatorname{ind}_{T^{n}} x}{\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{-n}\right)} \tag{6.3}
\end{equation*}
$$

To proceed, we note that to one point in $\mathrm{Fix}^{+}\left(T^{n}\right)$ correspond two fixed points of $\bar{T}^{n}$, with the same Lefschetz index. Therefore,

$$
2 \sum_{x \in \operatorname{Fix}^{+}\left(T^{n}\right)} \operatorname{ind}_{T^{n}}(x)=\sum_{\bar{T}^{n} y=y} \operatorname{ind}_{\bar{T}^{n}}(y)
$$

We can apply Lefschetz index formula for $\bar{T}^{n}$ to the last sum, yielding

$$
\begin{aligned}
2 \sum_{x \in \mathrm{Fix}^{+}\left(T^{n}\right)} \operatorname{ind}_{T^{n}}(x) & =\operatorname{tr}\left(\left(\bar{T}^{n}\right)_{\mid H^{0}(\bar{M})}^{*}\right)-\operatorname{tr}\left(\left(\bar{T}^{n}\right)_{\mid H^{1}(\bar{M})}^{*}\right)+\operatorname{tr}\left(\left(\bar{T}^{n}\right)_{\mid H^{2}(\bar{M})}^{*}\right) \\
& =1-\left(\varepsilon_{h}^{n} \lambda^{n}+\varepsilon_{v}^{n} \lambda^{-n}+\sum_{i=1}^{2 g}\left(\mu_{i}^{+}\right)^{n}+\sum_{i=1}^{2 g_{-}-2}\left(\mu_{i}^{-}\right)^{n}\right)+\varepsilon_{h}^{n} \varepsilon_{v}^{n} \\
& =\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)-\sum_{i=1}^{2 g}\left(\mu_{i}^{+}\right)^{n}-\sum_{i=1}^{2 g_{-}-2}\left(\mu_{i}^{-}\right)^{n}
\end{aligned}
$$

A point in $\mathrm{Fix}^{-}\left(T^{n}\right)$ corresponds to two fixed points of $i \circ \bar{T}^{n}$. Applying the Lefschetz formula to $i \circ \bar{T}^{n}$, we get in the same way

$$
2 \sum_{x \in \operatorname{Fix}^{-}\left(T^{n}\right)} \operatorname{ind}_{T^{n}}(x)=\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{-n}\right)-\sum_{i=1}^{2 g}\left(\mu_{i}^{+}\right)^{n}+\sum_{i=1}^{2 g_{-}-2}\left(\mu_{i}^{-}\right)^{n}
$$

as the eigenvalues of $i \circ \bar{T}^{n}$ in cohomology are $-\varepsilon_{h}^{n} \lambda^{n},-\varepsilon_{v}^{n} \lambda^{n},\left(\mu_{i}^{+}\right)^{n}$ and $-\left(\mu_{i}^{-}\right)^{n}$. Combining these two formulas with (6.3), we obtain

$$
\begin{align*}
\operatorname{tr}^{b}\left(\mathcal{T}^{n}\right)=1 & -\frac{1}{2} \sum\left(\mu_{i}^{+}\right)^{n}\left(\frac{1}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)}+\frac{1}{\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{-n}\right)}\right)  \tag{6.4}\\
& -\frac{1}{2} \sum\left(\mu_{i}^{-}\right)^{n}\left(\frac{1}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)}-\frac{1}{\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{-n}\right)}\right)
\end{align*}
$$

Let us expand

$$
\begin{aligned}
\frac{1}{\left(1-\varepsilon_{h}^{n} \lambda^{n}\right)\left(1-\varepsilon_{v}^{n} \lambda^{-n}\right)} & =-\varepsilon_{h}^{n} \lambda^{-n} \frac{1}{1-\varepsilon_{h}^{n} \lambda^{-n}} \cdot \frac{1}{1-\varepsilon_{v}^{n} \lambda^{-n}} \\
& =-\varepsilon_{h}^{n} \lambda^{-n}\left(\sum_{k \geqslant 0}\left(\varepsilon_{h}^{n} \lambda^{-n}\right)^{k}\right)\left(\sum_{k \geqslant 0}\left(\varepsilon_{v}^{n} \lambda^{-n}\right)^{\ell}\right) \\
& =-\sum_{k \geqslant 1, \ell \geqslant 0}\left(\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell}\right)^{n}
\end{aligned}
$$

and analogously

$$
\frac{1}{\left(1+\varepsilon_{h}^{n} \lambda^{n}\right)\left(1+\varepsilon_{v}^{n} \lambda^{-n}\right)}=-\sum_{k \geqslant 1, \ell \geqslant 0}(-1)^{k+\ell}\left(\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell}\right)^{n}
$$

Therefore, when one computes the terms in (6.4), there comes out a factor $\left(1+(-1)^{k+\ell}\right) / 2$ on the first line, which is 1 when $k+\ell$ is even and 0 otherwise, and a factor $\left(1-(-1)^{k+\ell}\right) / 2$ on the second line, which is 1 when $k+\ell$ is odd and 0 otherwise. We finally get

$$
\operatorname{tr}^{\mathrm{b}}\left(\mathcal{T}^{n}\right)=1+\sum_{i=1}^{2 g} \sum_{\substack{k \geqslant 1, \ell \geqslant 0 \\ k+\ell \text { even }}}\left(\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}^{+}\right)^{n}+\sum_{i=1}^{2 g_{-}-2} \sum_{\substack{k \geqslant 1, \ell \geqslant 0 \\ k+\ell \text { odd }}}\left(\varepsilon_{h}^{k} \varepsilon_{v}^{\ell} \lambda^{-k-\ell} \mu_{i}^{+}\right)^{n}
$$

In view of the expression for the Ruelle spectrum given in Theorem 6.3, this is the desired result.

## References

[Ada17] Alexander Adam, Generic non-trivial resonances for Anosov diffeomorphisms, Nonlinearity 30 (2017), no. 3, 1146-1164. 3622282. Cited page 3.
[AG13] Artur Avila and Sébastien Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math. (2) $\mathbf{1 7 8}$ (2013), 385-442. MR3071503. Cited pages 5 and 11.
[Bal05] Viviane Baladi, Anisotropic Sobolev spaces and dynamical transfer operators: $C^{\infty}$ foliations, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 123-135. MR2180233. Cited page 5.
[Bal17] , The quest for the ultimate anisotropic Banach space, J. Stat. Phys. 166 (2017), no. 3-4, 525-557. 3607580. Cited page 11.
[BJ08] Oscar F. Bandtlow and Oliver Jenkinson, Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Adv. Math. 218 (2008), no. 3, 902-925. 2414325. Cited page 3.
[BJS13] Oscar F. Bandtlow, Wolfram Just, and Julia Slipantschuk, Analytic expanding circle maps with explicit spectra, Nonlinearity 26 (2013), no. 12, 3231-3245. 3141853. Cited page 3.
[BJS17] , Complete spectral data for analytic Anosov maps of the torus, Nonlinearity 30 (2017), no. 7, 2667-2686. 3670002. Cited page 3.
[BT07] Viviane Baladi and Masato Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms, Ann. Inst. Fourier (Grenoble) 57 (2007), 127-154. MR2313087. Cited pages 3 and 5.
[BT08] __, Dynamical determinants and spectrum for hyperbolic diffeomorphisms, Geometric and probabilistic structures in dynamics, Contemp. Math., vol. 469, Amer. Math. Soc., Providence, RI, 2008, pp. 29-68. MR2478465. Cited page 31.
[Buf14a] Alexander I. Bufetov, Finitely-additive measures on the asymptotic foliations of a Markov compactum, Mosc. Math. J. 14 (2014), no. 2, 205-224, 426. 3236492. Cited page 8.
[Buf14b] , Limit theorems for translation flows, Ann. of Math. (2) $\mathbf{1 7 9}$ (2014), no. 2, 431-499. 3152940. Cited page 24.
[DFG15] Semyon Dyatlov, Frédéric Faure, and Colin Guillarmou, Power spectrum of the geodesic flow on hyperbolic manifolds, Anal. PDE 8 (2015), no. 4, 923-1000. 3366007. Cited page 3.
[For97] Giovanni Forni, Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. of Math. (2) 146 (1997), no. 2, 295-344. 1477760. Cited pages 3 and 9 .
[For02] , Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1-103. MR1888794. Cited pages 3, 6, 7, 8, and 46.
[For07] Giovanni Forni, Sobolev regularity of solutions of the cohomological equation, Preprint, 2007. Cited pages 3, 9, and 53 .
[For18] , Ruelle resonances dnd cohomological equations, Preprint, 2018. Cited page 9.
[GL08] Sébastien Gouëzel and Carlangelo Liverani, Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differential Geom. 79 (2008), 433-477. MR2433929. Cited pages 3,5 , and 11 .
[GL14] Paolo Giulietti and Carlangelo Liverani, Parabolic dynamics and anisotropic Banach spaces, preprint, 2014. Cited pages 3, 9, and 47.
[Hen93] Hubert Hennion, Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc. 118 (1993), 627-634. MR1129880. Cited page 30.
[HK95] Boris Hasselblatt and Anatole Katok, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995, With a supplementary chapter by Katok and Leonardo Mendoza. MR1326374. Cited page 10.
[Hör03] Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003, Distribution theory and Fourier analysis, Reprint of the second (1990) edition. MR1996773. Cited page 41.
[Jéz17] Malo Jézéquel, Local and global trace formulae for $\mathcal{C}^{\infty}$ hyperbolic diffeomorphisms, Preprint, 2017. Cited page 10.
[MMY05] Stefano Marmi, Pierre Moussa, and Jean-Christophe Yoccoz, The cohomological equation for Rothtype interval exchange maps, J. Amer. Math. Soc. 18 (2005), no. 4, 823-872. 2163864. Cited page 9.
[MY16] Stefano Marmi and Jean-Christophe Yoccoz, Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps, Comm. Math. Phys. 344 (2016), no. 1, 117-139. 3493139. Cited pages 9,46 , and 52.
[Nau12] Frédéric Naud, The Ruelle spectrum of generic transfer operators, Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2521-2531. 2900558. Cited page 3.
[Rue90] David Ruelle, An extension of the theory of Fredholm determinants, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 175-193. MR1087395. Cited page 3.
[Thu88] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. 956596. Cited page 4.
[Zor06] Anton Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry (2006), 437-583. Cited page 3.

Univ. Grenoble Alpes, CNRS UMR 5582, Institut Fourier, F-38000 Grenoble, France
E-mail address: frederic.faure@univ-grenoble-alpes.fr
Laboratoire Jean Leray, CNRS UMR 6629, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

E-mail address: sebastien.gouezel@univ-nantes.fr
Univ. Grenoble Alpes, CNRS UMR 5582, Institut Fourier, F-38000 Grenoble, France
E-mail address: erwan.lanneau@univ-grenoble-alpes.fr


[^0]:    Date: July 31, 2018.
    We thank Corinna Ulcigrai, Mauro Artigiani and Giovanni Forni for their enlightening comments.

