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Abstract
Second generation anticoagulant rodenticides (SGAR) are generally highly efficient for rodent management
even towards warfarin-resistant rodents. Nevertheless, because of their long tissue-persistence, they are very
associated with non-target exposure of wildlife and have been identified as ‘Candidates for Substitution’ by the
European Union’s competent authority. A promising way to reduce ecotoxicity issues associated to SGAR could
be the improvement of SGAR based on their stereoisomery, and due to this improvement, positioning about
SGAR might be reconsidered.
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1. ARs : candidates for substitution
The 8 Anticoagulant Rodenticide (AR) active substances
have been identified as “Candidates for Substitution” by
the European Union’s competent authority as a result of
their evaluation as part of the Biocidal Products Regulation
528/2012. The concerning 8 AR’s are as follows: brodifa-
coum, bromadiolone, chlorophacinone, coumatetralyl, dife-
nacoum, difethialone, flocoumafen and warfarin. Why were
they identified as such? Two major problems are associated
with their use, the phenomenon of widespread resistance to
some of these molecules in some rodent populations1–5 and
their ecotoxicity6–8.

The first generation ARs -FGARs- including warfarin,
chlorophacinone, coumatetralyl, pindone and diphacinone
have been used since the late 1940s. Since their first use,
rodent management has very often relied on the use of these
molecules. They have therefore been used intensively in many
countries of the world9. This intensive use has led to a selec-
tion of rodent strains resistant to ARs. Resistance was first
detected in brown rats in 195810 and in house mice in the early
1960’s11 in the United Kingdom. Since this initial observation
resistance has been reported worldwide, in many European
countries, in the United States12, in Canada13, in Japan14 and
in Australia15. The emergence of resistance to FGARs has led
to the development of a second AR generation (bromadiolone,
difenacoum, brodifacoum, difethialone, flocoumafen) some-
times subdivided into 2 generations, generation 2 including
bromadiolone and difenacoum and generation 3 including
brodifacoum, difethialone and flocoumafen. This subdivision
is explained by the fact that if resistance phenomena have
been described for bromadiolone3,4 and difenacoum3,4 , no
resistance has yet been described for the other 3 molecules.

In addition to the resistance phenomena, ecotoxicity of
ARs is also an issue which has contributed to identify them as
candidates for substitution. Indeed, exposures or intoxications
to AR have been frequently reported in wildlife around the
world, in mammal species such as European mink (Mustela
lutreola), urban bobcat (Lynx rufus), stoat (Mustela erminea),
weasel (Mustela nivalis), red fox (Vulpes vulpes) and wild
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boar (Sus scrofa)7,16–19 and as well in many birds such as red
kite (Milvus milvus), Buzzard (Buteo buteo), kestrel (Falco
tinnunculus), barn owl (Tyto alba)6. Exposure may be primary
when non target species directly eat the bait8. But most often,
exposure of wildlife is secondary due to ingestion of poisoned
rodents by predators or scavengers.6,7,16–19 This secondary
exposure is due to the long tissue-persistence of ARs20, es-
pecially of SGARs, in rodents and wildlife. Indeed, because
SGARs were developed to overcome resistance phenomena,
they were designed to kill rodents in a single ingestion which
lead to select the most persistent molecules. Thus, secondary
poisoning of wildlife associated to the use of SGAR are more
often reported.

2. Why are SGARs still interesting and
promising molecules?

Despite these two major issues associated with the use of ARs
and despite their identification as candidates for substitution,
the authorizations of the 8 ARs were renewed provisionally
at the end of July 2017, until June 30, 2024 by the European
Union. These renewals were approved despite the toxicity
and the PBT (persistent, bioaccumulative and toxic) nature of
these molecules. This decision was taken after the ”compara-
tive” evaluation of these molecules with other rodent control
methods. Alternative solutions are not yet sufficiently numer-
ous or available to allow the prohibition of AR molecules
whose toxicity is nevertheless recognized as problematic.

Alternative chemical solutions must have a delayed effect
to overcome the food aversion and the neophobia of the ro-
dents. Currently, all AR molecules have a delayed action due
to inhibition of the activation of the coagulation factors by
stopping the Vitamin K epoxide reductase complex subunit 1
(VKORC1)-dependent recycling of vitamin K21. They must
not be carcinogenic, mutagenic or reprotoxic. ARs are nei-
ther carcinogenic nor mutagenic, but on the other hand have
very recently been classified as potentially reprotoxic based
on data acquired in humans relating to the therapeutic use of
warfarin22,23.

Because baits can be ingested by children, domestic carni-
vores and other species, a potent antidote should exist. Vita-
min K1 is a potent antidote for AR poisoning24. The alterna-
tive chemical solutions should also be readily incorporated in
highly palatable baits for rodents with a shelf life of at least 2
years and at low cost. These last criteria are almost all fulfilled
by ARs. Of course, new solutions must also not be associated
with resistance and ecotoxicity. So far, no miracle solution
has emerged. A reasonable and promising proposition is to
improve the current ARs by using their stereoisomerism.

3. A way to improve AR molecules: their
stereoisomerism

A molecule is referred to as chiral if it is not superimposable to
its image in a mirror similar to a right and left hand.25,26 Chi-
rality is linked to molecular asymmetry. An asymmetric center

is an atom, usually a carbon atom25,26. In a three-dimensional
representation, carbon is at the center of a tetrahedron and
each summit is occupied by a different substituent (Figure
1). If the substituents of two summits are exchanged, the new
structure is no more superimposable with the previous one
and the image in a mirror of the first structure corresponds to
the second. The two molecules are called enantiomers. Their
physical and chemical properties, in a non-asymmetric envi-
ronment, a common solvent for example, are strictly identical.
It is therefore very difficult to synthesize them independently
or to separate them analytically. Their light absorption spec-
trum is identical.

Figure 1. R- and S-enantiomers. An enantiomer is a
non-superimposable mirror image.

Nevertheless, in polarized light, one of the two enan-
tiomers will deviate the plane of polarization to the right, it
will be qualified as dextrogyre (+), while the other enantiomer
will deviate it to the left and will be qualified as levorotatory
(-) (Figure 1). The rules of Cahn Ingold Prelog define the ab-
solute configuration of a molecule unambiguously and define
the enantiomers R (for rectus, right) and S (for sinister, left)27.
Nevertheless, these rules are not related to the deviation of
the plane of polarization and a structure R can therefore be
dextrorotatory or levorotatory.

Among AR molecules, FGAR molecules (i.e., warfarin,
chlorophacinone and coumatetralyl) have one asymmetric
carbon atom, and thus exist as two R and S enantiomers28.

On the other hand, SGAR molecules have two asymmet-
ric carbons and each of them can be in R or S configura-
tion29,30. Thus, SGAR molecules exist as four stereoisomers
with asymmetric carbons (i.e., C1 and C3) being in R/R, R/S,
S/R or S/S configuration. The 1R/3R and 1S/3S configuration
molecules are not superimposable and the image of the 1R/3R
molecule in a mirror corresponds to the 1S/3S molecule. Both
molecules are therefore enantiomers (Figure 2). This is the
same for the 1R/3S and 1S/3R configuration molecules. For
such molecules with two asymmetry centers, diastereomerism
occurs when two or more stereoisomers of a compound have
different configurations at one of the equivalent stereocenters
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and are not mirror images of each other25. Thus the 1R/3S and
the 1S/3R stereoisomers are diastereoisomers of the 1R/3R
stereoisomer, but also of the 1S/3S stereoisomer (Figure 2
and 3). Unlike enantiomers, diastereoisomers have different
chemical and physical properties in a symmetric environment.

Figure 2. The four stereoisomers of difenacoum and
separation by non-chiral chromatography using C18-reverse
phase column.

Figure 3. Diastereosisomers of SGARs with asymmetric
carbon atoms highlighted.

It is often relatively easy to separate diastereoisomers by
non-chiral chromatography using classical column (i.e., by us-
ing normal- or reverse-phase) and when separating a racemic
mixture containing 4 stereoisomers of the same molecule with
two asymmetry centers , two peaks can be obtained31, each
of them containing a pair of enantiomers (Figure 2). Never-
theless, from a biological sample, the fact of observing both
chromatographic peaks corresponding to the diastereoisomers
does not give information on the ratio of the enantiomers
within each of the peaks.

4. Numerous examples of different
biological properties among

stereoisomers
Biological systems are systematically composed of asymmet-
ric molecules such as proteins or carbohydrates. If interaction
between one protein and its ligand is allowed due to at least
three molecular interaction bindings, this interaction can be
different between enantiomers. Membrane transport, plasma
transport, enzymatic metabolism, interaction with the phar-
macological target2, etc. may be qualified as enantioselective
phenomena.

Numerous examples of different biological properties
among stereoisomers are available32–39. Drugs including
both enantiomers in racemic proportion are often only active
through a single enantiomer32,38,39. Moreover, the enantiomer
that is not active may be sometimes harmful.37 Since inter-
conversion between enantiomers is classically reported it is
sometimes useless to synthesize, and thus administer, only one
of the enantiomers under the pretext that it is the only active
or the only one supporting a particular biological activity36.

A common and particularly interesting example in the
context of rodents management is that of warfarin, which is
an anticoagulant used as rodenticide and in human medicine
to treat or prevent thromboembolic disorders. Warfarin is used
as a racemic mixture of the two R- and S-enantiomers. The
main part of the pharmacodynamic properties is due to the
S-enantiomer. The metabolism of warfarin is enantioselec-
tive and regioselective33. S-warfarin is mainly oxidized by
cytochrome P450 (CYP) 2C9 which produces 6 or 7 hydroxy-
S-warfarin while R-warfarin is metabolized by CYP1A1, 1A2
and 3A4 producing 6-, 8-, 10-hydroxy-warfarin (Figure 4).
The polymorphism of CYP2C9 gene has serious consequences
on the therapeutic efficacy of warfarin. Common variants of
this gene (i.e., the CYP2C9*2 and CYP2C9*3) oxidizes S-
warfarin with limited (for the CYP2C9*2) or very limited
efficiency (for the CYP2C9*3)34. Consequently, human pa-
tients homozygous for the CYP2C9*3 gene present a reduced
clearance for S-warfarin and a limited requirement of warfarin
to obtain the therapeutic effect.

Figure 4. Oxidative metabolism of R- and S-warfarin.

5. What about SGARs ?
SGARs are always a mixture of four stereoisomers in com-
mercial baits and proportions among stereoisomers are set by
the relevant authorities through the given approvals. What
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Trans-isomers Cis-isomers
identity proportion identity proportion

Bromadiolone (1R/3S)(1S/3R) > 70% (1R/3R)(1S/3S) < 30%
Difenacoum (1R/3R)(1S/3S) 20 to 50% (1R/3S)(1S/3R) 50 to 80%
Brodifacoum (1R/3R)(1S/3S) 20 to 50% (1R/3S)(1S/3R) 50 to 80%
Flocoumafen (1R/3R)(1S/3S) 20 to 50% (1R/3S)(1S/3R) 50 to 80%
Difethialone (1R/3R)(1S/3S) <30% (1R/3S)(1S/3R) >70%

Table 1. Composition of SGAR molecules set by authorities.

SGAR Diastereoisomer Half-life (h)
Bromadiolone Trans-isomers 75

Cis-isomers 27
Difenacoum Trans-isomers 24

Cis-isomers 78
Brodifacoum Trans-isomers 69

Cis-isomers 121
Difethialone Trans-isomers 53

Cis-isomers 72
Flocoumafen Trans-isomers 177

Cis-isomers 77
Table 2. Half-life of cis- and trans-isomers of SGAR
molecules in 8-week old male Sprague-Dawley rats30. The
major pair of stereoisomers present in the commercial
preparation is highlighted in bold.

is set is the proportion between diastereoisomers40–44 (Ta-
ble 1). For example, bromadiolone is a mixture of more
than 70% (1R/3S)(1S/3R)-isomers (both that can be also re-
ferred to as trans-isomers for bromadiolone) and less than
30% (1R/3R)(1S/3S)-isomers (both that can be also referred
to as cis-isomers for bromadiolone). Because syntheses of
SGAR are carried out in an achiral environment, proportions
between enantiomers are probably identical within a pair of
diastereoisomers. That means, for example, bromadiolone in
baits is composed of more than 70% of trans-isomers with
equal proportions of 1R/3S- and 1S/3R-stereoisomers and less
than 30% of cis-isomers with equal proportions of 1R/3R- and
1S/3S-stereoisomers.

Because biological properties of each stereoisomer may
be different, biological properties (i.e., efficacy, tissue per-
sistence, or even reprotoxicity) of SGAR molecules, are a
reflection of the biological properties of the 4 stereoisomers
mixed according to the proportions currently defined by the
approvals. Modification of stereoisomers proportions should
modify biological properties of the mix. The evolution of
these proportions can be done only after very precise charac-
terization of the properties of each stereoisomer. Neverthe-
less this is difficult because of the necessity to obtain each
stereoisomer independently. For this, stereoselective chemical
syntheses or purifications using chiral phases are necessary
but unfortunately often difficult and expensive without the
success being certain (Table 2).

The interest in the concept and the possibility of modify-
ing the properties of the SGARs to overcome the problems

associated with their application in rodent management were
therefore first of all addressed by the study of the biological
properties of the pairs of cis- and trans-isomers. It could be
shown that :

1. a diastereoisomeric pair is not converted in vivo into
the other pair, whether it is the cis-isomers pair or the
trans-isomers pair for all SGAR molecules. It is there-
fore quite possible to modify the biological properties
of SGARs by modifying the proportions between di-
astereoisomers29,30.

2. the efficiency to inhibit the VKORC1 enzyme, which
is the target of ARs, is identical between diastereoiso-
meric pairs of SGARs in warfarin-susceptible rats29,30.
This suggests that modifications of proportions between
diastereoisomeric pairs should not affect the efficacy of
SGAR molecules. Nevertheless, the characterization of
the efficacy of stereoisomers is only beginning. Indeed,
this evaluation has been reported for the moment only
for warfarin-susceptible rats for cis- and trans-isomers.
It seems therefore necessary to continue this evalua-
tion for the 4 stereoisomers considered individually
and no longer 2 by 2, in rats but also in other rodents
whose populations must be controlled, and especially
in AR-resistant rodents. Indeed, mutations of VKORC1
supporting resistance are numerous and very varied
between rodent species1,2,5.

3. systematically, regardless of the SGAR considered, a
diastereomeric pair has a half-life lower than that of
the other pair in rats29,30. The couple that is the most
persistent is consistently the one that is most abundant
in the composition currently approved, except for flo-
coumafen. More than 70% of bromadiolone is rep-
resented by trans-isomers according to the European
product types41, while their half-life when adminis-
tered together in identical proportion is 3 times longer
than that of cis-isomers together30.

The reasons which led to the systematic registration of a
mixture containing mainly the most persistent diastereoiso-
meric pair have never been discussed in the scientific commu-
nity. We could assume that such ratios resulted from the need
to kill the rodent after a single dose when these SGAR were
developed by enriching the mix with either the most potent
inhibitor or the most persistent pair of diastereomer and that
single feeding was an important step forward for management.

The homologation of a new molecule containing only the



The stereoisomerism of second generation anticoagulant rodenticides: a way to improve this class of molecules to
meet the requirements of society ? — 5/8

least persistent diastereoisomeric pair or simply, for the sake
of convenience, enriched with the least persistent diastereoiso-
meric pair would allow a faster elimination of the SGAR
residues from the body of rats. This would reduce the amount
of SGAR residues ingested by a predator or scavenger con-
suming a moribund or even dead intoxicated rat and would
undoubtedly contribute to reducing secondary poisoning29,30.
Moreover, within a pair of diastereoisomer, one enantiomer
could present different biological properties compared to the
other one. Again, the 4 stereoisomers must be considered
individually and no longer 2 by 2.

6. Conclusions
Before evolving definitively towards a modification of the pro-
portions between the stereoisomers in the context of rodent
management, an extension of the concept is necessary. Indeed,
the change in proportions must lead to a new molecule that
is less persistent in all rodents, but also in non-target species
susceptible to being exposed to SGARs. The pharmacokinetic
studies needed to definitively answer this question are difficult
or impossible to implement in all potential non-target species.
The use of model species such as japanese quail (Coturnix
japonica), dogs (Canis familiaris), etc. could be considered.
Furthermore, the technological advances in analytical chem-
istry make it possible to evolve towards highly specific and
highly sensitive analytical methods able to detect and quan-
tify the various stereoisomers of SGARs in various complex
biological matrices (liver, blood, eggs, etc.) collected in non-
target species exposed to SGARs31. The development of such
a method has already allowed us to evaluate the proportions
between diastereoisomeric pairs of SGAR in different species
such as wild Norway rat (Rattus norvegicus), red kite (Milvus
milvus) and red fox (Vulpes vulpes). Only trans-isomers of bro-
madiolone were detected in liver of red kites45 or red foxes46

poisoned or exposed to bromadiolone, confirming elimination
of cis-isomers by the double filter composed of the target
and the non-target species. This monitoring in wildlife will
enable to contribute to the identification of the least ecotoxic
stereoisomer of SGARs and thus to enrich SGAR molecules
with this stereoisomer to reduce ecotoxicity associated to ARs.

The use of a stereoisomer or a mixture of stereoisomers
which allows 1/ a faster elimination of the SGAR residues
from the body of rodents and 2/ a fast elimination by the
predators or the scavengers could highly reduce the ecotoxic-
ity of these modified SGAR. This way of improvement could
represent the chemical alternative expected by the European
authorities and professionals.
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