
HAL Id: hal-01851706
https://hal.science/hal-01851706

Submitted on 30 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Execution in Selfie -a first step
Clement Poncelet, Christoph Kirsch

To cite this version:
Clement Poncelet, Christoph Kirsch. Symbolic Execution in Selfie -a first step. Klee Workshop 2018,
Apr 2018, Londres, United Kingdom. �hal-01851706�

https://hal.science/hal-01851706
https://hal.archives-ouvertes.fr


SymbolicExecution inSelfie
-afirst step -

Clément Poncelet, Christoph Kirsch
cponcelet@cs.uni-salzburg.at, ck@cs.uni-salzburg.at

Introduction
Our project consists in designing and implementing a low-level symbolic emulator following selfie’s
philosophy: simplicity. More precisely, we tackle the question of how to implement a fully, sound
and complete symbolic emulator capable of deducing properties for any machine code sequence given
in input. Our first goal being to have no loss of information for at least the selfie code and define
clearly the subset of RISC-U language it imply. This particular challenge is made possible thank to
the simple languages handled by this independent software, alleging and preventing us from the usual
assumptions in numerical analysis. All in all, we aim at using selfie’s self-property to symbolically
verify the selfie compilation and emulation.

Languages
High-level: C* RISC-U: Low-level

C* a tiny subset of C, supports only two data
types uint64_t and uint64_t*.

RISC-U a tiny subset of 64-bit RISC-V, con-
tains 14 instructions for unsigned
arithmetic only.

Selfie
Selfiea is an independent 64-bit implementation
of (1) a self-compiling compiler written in C*
targeting RISC-U, (2) a self-executing RISC-
U emulator, and (3) a self-hosting hypervisor
that virtualizes the emulated RISC-U machine.
Selfie is implemented in a single 8k-line file and
can compile, execute, and virtualize itself any
number of times. Selfie has originally been de-
veloped for educational purposes but has re-
cently become a research platform as well.

ahttp://selfie.cs.uni-salzburg.at

C*

RISC-U

RISC-U

selfie
RISC-U

output

compilation

emulation

hosting RISC-U machine

self-hosting: ./selfie -c selfie.c -m 4 -c selfie.c -h 2 -c selfie.c

RISC-U outputssymbolic

emulation

selfie

w
interval

263

0

x = read();
y = x + 2;
if(x == 10) return y;
return x;

ecall
ld $t0 -8($sp)
addi $t1 2
add $t0 $t0 $t1
sd $t0 -16($sp)
ld $t0 -8($sp)

addi $t1 10
sub $t0 $t1 $t0
addi $t1 1
sltu $t0 $t0 $t1
beq $t0 $zero #f

onto RISC-U
binaries

x[10,10] y[12,12]

then

x[11,9] y[13,11]

else

Symbolic Execution
The symbolic execution emulates a given
RISC-U binary, analysing numerically the in-
structions over abstract domains and oper-
ations. A current version implements w-
intervals and initializes read system calls’ re-
turn value as every possible value. The imple-
mentation logs each emulated instruction in a
trace recording a triple 〈inst, prev, value〉 of the
instruction binaries, the previous destination
register value and the new abstract one. More-
over, each register and memory records the trace
index of its last store. This data-structure allows
us to apply constrains and back-propagation al-
gorithms when the branch on equal instruction
(beq) is emulated by simply moving backward
or forward through the trace. An abstract do-
main for a complete and sound numerical anal-
ysis is still in investigation for the selfie binary,
its simplicity allows us to avoid the usual over-
approximations and fit exactly the possible val-
ues of each variable for all paths.

Logging trace

tc

pc
prev

vstart
vend

. . . n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9

. . . ld x addi add sd y ld x addi sub addi sltu beq

. . . prevt0 prevt1 n prevy n+2 n+1 n+4 n+5 n+6

. . . 0 2 0 0 0 10 0 1 0

. . . MAX 2 MAX MAX MAX 10 MAX 1 1

[11,9] [true][0,0][1,M]def use

[11,9] [13,11]

http://selfie.cs.uni-salzburg.at

