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1. Introduction 1.1. Kinetic theory. Modern physics goes back to Newton and classical mechanics, and was later expanded into the understanding of electric and magnetic forces were (Ampère, Faraday, Maxwell), large velocities and large scales (Lorentz, Poincaré, Minkowski, Einstein), small-scale particle physics and quantum mechanics (Planck, Einstein, Bohr, Heisenberg, Born, Jordan, Pauli, Fermi, Schrödinger, Dirac, De Broglie, Bose, etc.). However, all these theories are classically devised to study one physical system (planet, ship, motor, battery, electron, spaceship, etc.) or a small number of systems (planets in the Solar system, electrons in a molecule, etc.) In many situations though, one needs to deal with an assembly made up of elements so numerous that their individual tracking is not possible: galaxies made of hundreds of billions of stars, fluids made of more than 10 20 molecules, crowds made of thousands of individuals, etc. Taking such large numbers into account leads to new effective laws of physics, requiring different models and concepts. This passage from microscopic rules to macroscopic laws is the founding principle of statistical physics. All branches of physics (classical, quantum, relativistic, etc.) can be studied from the point of view of statistical physics, in both stationary and dynamical perspectives. It was first done with the laws of classical mechanics, which resulted in kinetic theory, discovered by Maxwell [START_REF] Maxwell | On the dynamical theory of gases[END_REF] and Boltzmann [START_REF] Boltzmann | Weitere studien über das wärmegleichgewicht unter gasmolekülen[END_REF] in the 19th century after precursory works by D. Bernoulli, Herapath, Waterston, Joule, König, Clausius.

Kinetic theory replaces a huge number of objects, whose physical states are described by a certain phase space, and whose properties are otherwise identical, by a statistical distribution over that phase space. The fundamental role played by the velocity (kinetic) variable inaccessible to observation was counter-intuitive, and accounts for the denomination of kinetic theory. The theory introduces a distinction between three scales: the macroscopic scale of phenomena which are accessible to observation; the microscopic scale of molecules and infinitesimal constituents; and an intermediate scale, loosely defined and often called mesoscopic. This is the scale of phenomena which are not accessible to macroscopic observation but already involve a large number of particles, so that statistical effects are significant.

1.2. Main equations of kinetic theory. Maxwell wrote the first (weak) form of the evolution equation known now as the Boltzmann equation: the unknown is a (nonnegative) density function f (t, x, v), standing for the density of particles at time t in the phase space (x, v); the equation, in modern writing and assuming the absence of external forces, is

(1.1) ∂f ∂t + v • ∇ x f = Q(f, f ).
The left-hand side describes the evolution of f under the action of transport, with the free streaming operator. The right-hand side describes elastic collisions, with the nonlinear a function of the angular variable: this is a general feature of long-range interactions, nowadays sometimes called "non-cutoff property". The case α = 5, γ = 0 and 2s = 1/2 is called Maxwell molecules [START_REF] Maxwell | On the dynamical theory of gases[END_REF], the case α ∈ (5, +∞), γ > 0 and 2s ∈ (0, 1/2) is called hard potentials (without cutoff ), the case α ∈ [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF][START_REF] Alexandre | Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules[END_REF], γ ∈ [-1, 0), 2s ∈ (1/2, 1] is called moderately soft potentials (without cutoff ), and finally the case α ∈ (2, 3), γ ∈ (-3, -1), 2s ∈ (1, 2) is called very soft potentials (without cutoff ). The limits between hard and soft potentials (γ = 0) and between moderately and very soft potentials (γ + 2s = 0) are commonly taken as defining the "hard" / "moderately soft" / "very soft" terminology in any dimension, for kernel of the form

B = |v -v * | γ b(cos θ) with b(cos θ) ≃ θ -(1+2s) .
In order to find the stationary solutions, that is, time-independent solutions of (1.2), the first step is to identify particular hydrodynamic density functions, which make the collision contribution vanish: these are Gaussian distributions with a scalar co-variance

f (v) = ρ (2πT ) -3/2 e -|v-u| 2 2T
, where the parameters ρ > 0, u ∈ R 3 and T > 0 are the local density, mean velocity, and temperature of the fluid. These parameters can be fixed throughout the whole domain (providing in this case an equilibrium distribution), or depend on the position x and time t; in both cases collisions will have no effect. As pointed out in Maxwell's seminar paper, and later proved rigorously at least in some settings [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation[END_REF][START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF][START_REF] Golse | Hydrodynamic limits for the Boltzmann equation[END_REF][START_REF] Golse | The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials[END_REF], the Boltzmann equation is connected to classical fluid mechanical equations on ρ, u and T , and leads to them in certain regimes. This provides a rigorous connection between the mesoscopic (kinetic) level and the macroscopic level. At the other end of the scales, a rigorous derivation of the Boltzmann equation from manybody Newtonian mechanics for short time and short-range interactions was obtained by Lanford [START_REF] Lanford | Time evolution of large classical systems[END_REF] for hard spheres; see also [START_REF] King | BBGKY hierarchy for positive potentials[END_REF] for an extension to more general shortrange interactions, and the recent works [START_REF] Gallagher | From Newton to Boltzmann: hard spheres and short-range potentials[END_REF][START_REF] Pulvirenti | On the validity of the Boltzmann equation for short range potentials[END_REF] that revisit and complete the initial arguments of Lanford and King. Note however that at the moment the equivalent of Lanford theorem for the Boltzmann equation with long-range interactions is still missing, see [START_REF] Ayi | From Newton's law to the linear Boltzmann equation without cut-off[END_REF] for partial progresses.

To summarise the key mathematical points: the Boltzmann equation is an integro-(partial)-differential equation with non-local operator in the kinetic variable v. Moreover for long-range interactions with repulsive force F (r) ∼ r -α , this non-local operator has a singular kernel and shows, as we will see, fractional ellipticity of order 2/(α -1). The Boltzmann equation "contains" the hydrodynamic, and it is a fundamental equation in the sense that it is derived rigorously, at least in some settings, from microscopic first principles. From now on, we consider the position variable in R 3 or in the periodic box T 3 .

In the limit case s → 1 (the Coulomb interactions), the Boltzmann collision operator is ill-defined. Landau [START_REF] Landau | Translation: The transport equation in the case of Coulomb interactions[END_REF] proposed an alternative operator for these Coulomb interactions that is now called the Landau-Coulomb operator

Q(f, f ) = ∇ v • ˆR3 P (v-v * ) ⊥ f (t, x, v * )∇ v f (t, x, v) -f (t, x, v)∇ v f (t, x, v * ) |v -v * | γ+2 dv * where P (v-v * ) ⊥ is the orthogonal projection along (v -v * ) ⊥ and γ = -3. It writes also Q(f, f ) = ∇ v • A[f ]∇ v f + B[f ]f (1.3) with        A[f ](v) = ˆR3 I - w |w| ⊗ w |w| |w| γ+2 f (t, x, v -w) dw, B[f ](v) = - ˆR3 |w| γ w f (t, x, v -w) dw.
This operator is a nonlinear drift-diffusion operator with coefficients given by convolutionlike averages of the unknown. This is a non-local integro-differential operator, with second-order local ellipticity. The resulting Landau equation (1.1)-(1.3) again "contains" the hydrodynamic. It is also considered fundamental because of its closed link to the Boltzmann equation for Coulomb interactions (note however that the equivalent to Lanford theorem for the Landau equation is lacking, even at a formal level, see [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF] for partial progresses). Because of the difficulty to handle the very singular kernel of the Landau-Coulomb operator, it is common to introduce artificially a scale of models by letting γ vary in [-3, 1] (or even [-d, 1] in general dimension d). The terminology hard potentials, Maxwell molecules, soft potentials are used as for the Boltzmann collision operator when γ > 0, γ = 0, γ < 0 respectively. The terminology moderately soft potentials corresponds here (since s = 1) to γ ∈ (-2, 0). [START_REF] Gualdani | Factorization for non-symmetric operators and exponential h-theorem[END_REF] and the references therein for some of the most recent results for the Boltzmann equation with short-range interactions, see [START_REF] Alexandre | The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential[END_REF][START_REF] Alexandre | The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential[END_REF][START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF][START_REF] Alexandre | Global existence and full regularity of the Boltzmann equation without angular cutoff[END_REF][START_REF] Gressman | Global classical solutions of the Boltzmann equation without angular cut-off[END_REF] for the Boltzmann equation with long-range interactions, and see [START_REF] Guo | The Landau equation in a periodic box[END_REF] for the Landau equation. However the construction of solutions "in the large" remains a formidable open problem. Since weak "renormalised" solutions have been constructed by DiPerna and Lions [START_REF] Diperna | On the Cauchy problem for Boltzmann equations: global existence and weak stability[END_REF] that play a similar role to the Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] solutions in fluid mechanics, this open problem can be compared with the millennium problem of the regularity of solutions to 3D incompressible Navier-Stokes equations.

1.3.2. Study of a priori solutions. Given that the Cauchy problem in the large seems out of reach at the moment, Truesdell and Muncaster [START_REF] Truesdell | Fundamentals of Maxwell's kinetic theory of a simple monatomic gas[END_REF] remarked almost 40 years ago that: "Much effort has been spent toward proof that place-dependent solutions exist for all time.

[. . . ] The main problem is really to discover and specify the circumstances that give rise to solutions which persist forever. Only after having done that can we expect to construct proofs that such solutions exist, are unique, and are regular." In other words, the Htheorem and the mathematical understanding of irreversibility are so important in the theory of Maxwell and Boltzmann that it cannot wait for the tremendously difficult issue of global well-posedness to be settled. Cercignani then formulated a precise conjecture along this idea, postulating in [START_REF] Cercignani | H-theorem and trend to equilibrium in the kinetic theory of gases[END_REF] a linear relation between the entropy production functional and the relative entropy functional of any a priori given classical solutions. The resolution of this conjecture, for certain interactions, lead to precise new quantitative information on a priori solutions of the Boltzmann and Landau equation (see [START_REF] Desvillettes | On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation[END_REF][START_REF] Desvillettes | Celebrating Cercignani's conjecture for the Boltzmann equation[END_REF][START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF][START_REF] Gualdani | Factorization for non-symmetric operators and exponential h-theorem[END_REF][START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF]). And it lead to the related question of the optimal relaxation rates of a priori solutions, with minimal regularity and moments conditions. It is now fairly well understood for many interactions. The results obtained along this line of research can all be summarised into the following general form:

Conditional relaxation. Any solution to the Boltzmann (resp. Landau) equation in

L ∞ x (T 3 ; L 1 v (R 3 , (1 + |v|) k dv)), k > 2 (
or a closely related functional space as large as possible) converges to the thermodynamic equilibrium with the optimal rate dictated by the linearized equation.

Note however that an interesting remaining open question in this program is to obtain a result equivalent to [START_REF] Gualdani | Factorization for non-symmetric operators and exponential h-theorem[END_REF][START_REF] Carrapatoso | Landau equation for very soft and Coulomb potentials near Maxwellians[END_REF] in the case of the Boltzmann equation with long-range interactions (with fractional ellipticity in the velocity variable). 1.3.3. Regularity conjectures for long-range interactions. In the case of long-range interactions, the Boltzmann and Landau-Coulomb operators show local ellipticity provided the solution enjoys some pointwise bounds on the hydrodynamic fields ρ(t, x) := ´R3 f dv, e(t, x) := ´R3 f |v| 2 dv and the local entropy h(t, x) := ´R3 f ln f dv. Whereas it is clear in the case of the Landau-Coulomb operator, it was understood almost two decades ago in the case of the Boltzmann collision operator [START_REF] Lions | Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire[END_REF][START_REF] Villani | Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off[END_REF][START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF]. This had lead colleagues working on non-local operators and fully nonlinear elliptic problems like Silvestre and Guillen and co-authors to attempt to use barriers' techniques reminiscent to the Krylov-Safonov theory [START_REF] Krylov | A property of the solutions of parabolic equations with measurable coefficients[END_REF] in order to obtain pointwise bounds for solutions to these equations. These first attempts, while unsuccessful, later proved crucial in attracting the attention of a larger community on this problem. And these authors rapidly reformulated the initial goal into, again, conditional conjectures on the regularity of the form:

Conditional regularity. Consider any solution to the Boltzmann equation with longrange interactions (resp. Landau equation) on a time interval [0, T ] such that its hydrodynamic fields are bounded:

(1.4) ∀ t ∈ [0, T ], x ∈ T 3 , m 0 ≤ ρ(t, x) ≤ m 1 , e(t, x) ≤ e 1 , h(t, x) ≤ h 1
where m 0 , m 1 , e 1 , h 1 > 0. Then the solution is bounded and smooth on (0, T ].

Note that this conjecture can be strengthened by removing the assumption that the mass is bounded from below and replacing it by a bound from below on the total mass ´T3 ρ(t, x) dx ≥ M 0 > 0. Mixing in velocity through collisions combined with transport effects indeed generate lower bounds in many settings, see [START_REF] Mouhot | Quantitative lower bounds for the full Boltzmann equation. I. Periodic boundary conditions[END_REF][START_REF] Filbet | Analysis of spectral methods for the homogeneous Boltzmann equation[END_REF][START_REF] Briant | Instantaneous filling of the vacuum for the full Boltzmann equation in convex domains[END_REF][START_REF] Briant | Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions[END_REF]; moreover it was indeed proved for the Landau equation with moderately soft potentials in [START_REF] Henderson | Local existence, lower mass bounds, and smoothing for the Landau equation[END_REF].

This conjecture is now been partially solved in the case of the Landau equation, when the interaction is "moderately soft" γ ∈ (-2, 0). This result has been the joint efforts of several groups [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF][START_REF] Henderson | ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF][START_REF] Henderson | Local existence, lower mass bounds, and smoothing for the Landau equation[END_REF][START_REF] Imbert | A toy nonlinear model in kinetic theory[END_REF], and this is the object of the next section. It is currently an ongoing program of research in the case of the Boltzmann equation with hard and moderately soft potentials, and this is the object of the fourth and last section. The conjecture interestingly remains open in the case of very soft potentials for both equations, and making progress in this setting is likely to require new conceptual tools.

De Giorgi-Nash-Moser meet Hörmander

2.1. The resolution of Hilbert 19-th problem. The De Giorgi-Nash-Moser theory [START_REF] De Giorgi | analiticità delle estremali degli integrali multipli[END_REF][START_REF] De Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF][START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF][START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] was born out of the attempts to answer Hilbert's 19th problem. This problem is about proving the analytic regularity of the minimizers u of an energy functional ˆU L(∇u) dx, with u : R d → R and where the Lagrangian L : R d → R satisfies growth, smoothness and convexity conditions and U ⊂ R d is a compact domain. The Euler-Lagrange equations for the minimizers take the form

∇ • ∇L(∇u) = 0 i.e. d i,j=1 (∂ ij L)(∇u) b ij ∂ ij u = d i,j=1 b ij ∂ ij u = 0.
For instance the Dirichlet energy L(p) = |p| 2 leads to linear Euler-Lagrange equations, whereas the minimal surface energy L(p) = 1 + |p| 2 leads to nonlinear Euler-Lagrange equations. With suitable assumptions on L and the domain, the pointwise control of ∇u was known in the 1950s. However applying the Schauder estimates to get higher regularity requires more information: if u ∈ C 1,α with α > 0 then b ij ∈ C α and Schauder estimates [START_REF] Schauder | über lineare elliptische Differentialgleichungen zweiter Ordnung[END_REF] imply u ∈ C 2,α ; a bootstrap argument then yields higher regularity, and analyticity follows from this C ∞ regularity [START_REF] Bernstein | Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre[END_REF][START_REF] Petrowsky | Sur l'analyticité des solutions des systèmes d'équations différentielles[END_REF].

Hence, apart from specific result in two dimensions [START_REF] Morrey | On the solutions of quasi-linear elliptic partial differential equations[END_REF], the missing piece in solving Hilbert 19th problem, in the 1950s, was the proof of the Hölder regularity of ∇u. The equation satisfied by a derivative f := ∂ k u is the divergence form elliptic equation:

d i,j=1 ∂ i (∂ ij L)(∇u) a ij ∂ j f = ∇ • (A∇f ) = 0.
De Giorgi [START_REF] De Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] and Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] independently proved this Hölder regularity of f under the sole assumption that the symmetric matrix A := (a ij ) satisfies the controls 0 < λ ≤ A ≤ Λ, and is measurable (no regularity is assumed). The proof of Nash uses what is now called the "Nash inequality", an L log L energy estimate, and refined estimates on the fundamental solution. The proof of De Giorgi uses an iterative argument to gain integrability, and an "isoperimetric argument" to control how oscillations decays when refining the scale of observation. Moser later gave an alternative proof [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF][START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] based on one hand on an iterative gain of integrability, formulated differently but similar to that of De Giorgi, and on the other hand on relating Lebesgue norms on f and 1/f through energy estimates on the equation satisfied by g := ln f and the use of a Poincaré inequality; the proof of Moser had an important further contribution in that it also proved, as an intermediate step towards the Hölder regularity, the Harnack inequality for the equation considered, i.e. a universal control on the ratio between local maxima and local minima.

Let us mention that the De Giorgi-Nash-Moser (DGNM) theory only considers elliptic or parabolic equations in divergence form. An important counterpart result for nondivergence elliptic and parabolic equations was later discovered by Krylov and Safonov [START_REF] Krylov | A property of the solutions of parabolic equations with measurable coefficients[END_REF]. The extension of the DGNM theory to hypoelliptic equations with rough coefficients that we present in this section requires the equation to be in divergent form. It is an open problem whether the Krylov-Safonov theory extends to hypoelliptic non-divergent equations of the form discussed below.

2.2.

The theory of hypoellipticity. The DGNM theory has revolutionised the study of nonlinear elliptic and parabolic partial differential equations (PDEs). However it remained limited to PDEs where the diffusion acts in all directions of the phase space.

In kinetic theory, as soon as the solution is non spatially homogeneous, the diffusion or fractional diffusion in velocity is combined to a conservative Hamiltonian dynamic in position and velocity. This structure is called hypoelliptic.

The study of regularity properties of such equations can be traced back, at the linear level, to the short note of Kolmogorov [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF]. This note considered the combination of free transport with drift-diffusion in velocity: the law satisfies what is now sometimes called the Kolmogorov equation, that writes

∂ t f + v • ∂ x f = ∆ v f on x, v ∈ R d in the simpler case.
It is the equation satisfied by the law of a Brownian motion integrated in time. Kolmogorov then wrote the fundamental solution associated with a Dirac distribution δ x 0 ,v 0 initial data:

G(t, x, v) = √ 3 2πt 2 d exp - 3|x -x 0 -tv 0 -t(v -v 0 )/2| 2 t 3 - |v -v 0 | 2 4t .
The starting point of Hörmander's seminal paper [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF] is the observation that this fundamental solution shows regularisation in all variables, even though the diffusion acts only in the velocity variable. The regularisation in (t, x) is produced by the interaction between the transport operator v • ∇ x and the diffusion in v. Hörmander's paper then proposes general geometric conditions for this regularisation, called hypoelliptic, to hold, based on commutator estimates. In short, given X 0 , X 1 , . . . , X n a collection of smooth vector fields on R N and the second-order differential operator L = -1 2.3. Extending the DGNM theory to hypoelliptic settings. The main question of interest here is the extension of the DGNM theory to hypoelliptic PDEs of divergent type. Hypoelliptic PDEs of second order L = -1 2 n i=1 X * i X i + X 0 naturally split into two classes: the simpler "type I" when X 0 = 0 and the operator is a sum of squares, and the "type II" such as the Kolmogorov equation above, where X 0 = 0 and the operator combines a first-order anti-symmetric operator with some partially diffusive second-order operator. Two main research groups had already been working on the question.

The extension of the DGNM theory to hypoelliptic operators of "type I" is relatively straightforward. Regarding the "type II", Polidoro and collaborators [START_REF] Polidoro | On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type[END_REF][START_REF] Lanconelli | On a class of hypoelliptic evolution operators[END_REF][START_REF] Polidoro | A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equations[END_REF][START_REF] Manfredini | Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients[END_REF][START_REF] Polidoro | Hölder regularity for solutions of ultraparabolic equations in divergence form[END_REF][START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF][START_REF] Cinti | Pointwise estimates for a class of non-homogeneous Kolmogorov equations[END_REF] had obtained the Hölder regularity for coefficients with various continuity assumptions, and had obtained the improvement of integrability and pointwise bound for measurable coefficients (see also the isolated result [START_REF] Di Francesco | Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form[END_REF] for equations in non-divergence form). Wang and Zhang [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF] Wang | The C α regularity of weak solutions of ultraparabolic equations[END_REF][START_REF] Zhang | The C α regularity of a class of ultraparabolic equations[END_REF] had extended the proof of Moser for the "type II" equations to obtain Hölder regularity, with technical calculations that did not seem easy to export. Note also that the use of the DGNM theory in kinetic theory had also been advocated almost a decade before in the premonitory lecture notes [START_REF] Villani | Cours Peccot at the Collège de France[END_REF].

We present here the work [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] (see also the two previous related preprints [START_REF] Golse | Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients[END_REF][START_REF] Imbert | Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients[END_REF]) that (1) provides an elementary and robust proof of the gain of integrability and Hölder regularity in this "type II" hypoelliptic setting, (2) proves the stronger Harnack inequality for these equations (i.e. a quantitative version of the strong maximum principle).

Let us consider the following kinetic Fokker-Planck equation (2.1)

∂ t f + v • ∇ x f = ∇ v • (A∇ v f ) + B • ∇ v f + s, t ∈ (0, T ), (x, v) ∈ Ω,
where Ω is an open set of R 2d , f = f (t, x, v), B and s are bounded measurable coefficients depending on (t, x, v), and the d × d real matrices A, B and source term s are measurable and satisfy

(2.2) 0 < λI ≤ A ≤ ΛI, |B| ≤ Λ, s essentially bounded
for two constants λ, Λ > 0. Given z 0 = (t 0 , x 0 , v 0 ) ∈ R 2d+1 , we define the "cylinder" Q r (z 0 ) centered at z 0 of radius r that respects the invariances of the equation:

(2.3) Q r (z 0 ) := (t, x, v) ∈ R 2d+1 : |x -x 0 -(t -t 0 )v 0 | < r 3 , |v -v 0 | < r, t ∈ t 0 -r 2 , t 0 .
The weak solutions to equation (2.1) on

I × U x × U v with U x ⊂ R d open, U v ⊂ R d open, I = [a, b] with -∞ < a < b ≤ +∞, are defined as functions f ∈ L ∞ t (I, L 2 x,v (U x × U v ))) ∩ L 2 t,x (I × U x , H 1 v (U v )) such that ∂ t f + v • ∇ x f ∈ L 2 t,x (I × U x , H -1 v (U v )
) and f satisfies the equation (2.1) in the sense of distributions.

Theorem 1 (Hölder continuity [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]). Let f be a weak solution of (2.1)

in Q 0 := Q r 0 (z 0 ) and let Q 1 := Q r 1 (z 0 ) with r 1 < r 0 . Then f is α-Hölder continuous with respect to (x, v, t) in Q 1 and f C α (Q 1 ) ≤ C f L 2 (Q 0 ) + s L ∞ (Q 0 )
for some α ∈ (0, 1) and C > 0 only depending on d, λ, Λ, r 0 , r 1 (plus z 0 for C).

In order to prove such a result, we first prove that L 2 sub-solutions are locally bounded; we refer to such a result as an L 2 -L ∞ estimate. We then prove that solutions are Hölder continuous by proving a lemma which is a hypoelliptic counterpart of De Giorgi's "isoperimetric lemma".

We moreover prove the Harnack inequality:

Theorem 2 (Harnack inequality [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]). If f is a non-negative weak solution of (2.1) in Q 1 (0, 0, 0), then

(2.4) sup Q - f ≤ C inf Q + f + s L ∞ (Q 1 (0,0,0))
where Q + := Q R (0, 0, 0) and Q -:= Q R (0, 0, -∆) and C > 1 and R, ∆ ∈ (0, 1) are small (in particular Q ± ⊂ Q 1 (0, 0, 0) and they are disjoint), and universal, i.e. only depend on dimension and ellipticity constants.

Note that using the transformation T z 0 (t, x, v) = (t 0 + t, x 0 + x + tv 0 , v 0 + v), we get a Harnack inequality for cylinders centered at an arbitrary point z 0 = (t 0 , x 0 , v 0 ).

Our proof combines the key ideas of De Giorgi and Moser and the velocity averaging method, which is a special type of smoothing effect for solutions of the free transport equation (∂ t + v • ∇ x )f = S observed for the first time in [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF][START_REF] Golse | Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport[END_REF] independently, later improved and generalized in [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF][START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF]. This smoothing effect concerns averages of f in the velocity variable v, i.e. expressions of the form ´Rd f (t, x, v) φ(v) dv with, say, φ ∈ C ∞ c . Of course, no smoothing on f itself can be observed, since the transport operator is hyperbolic and propagates the singularities. However, when S is of the form

S = ∇ v • (A(t, x, v)∇ v f ) + s,
where s is a given source term in L 2 , the smoothing effect of velocity averaging can be combined with the H 1 regularity in the v variable implied by the energy inequality in order to obtain some regularity in all directions. A first observation of this type (at the level of a compactness argument) can be found in [START_REF] Lions | On Boltzmann and Landau equations[END_REF]; Bouchut [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] had then obtained quantitative Sobolev regularity estimates.

Our proof of the L 2 -L ∞ gain of integrability follows the so-called "De Giorgi-Moser iteration", see [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] where it is presented in both the equivalent formulations of De Giorgi and of Moser. We emphasize that, in both approaches, the main ingredient is a local gain of integrability of non-negative sub-solutions. This latter is obtained by combining a comparison principle and a fractional Sobolev regularity estimate following from (1) the velocity averaging method discussed above and (2) energy estimates. We then prove the Hölder continuity through a De Giorgi type argument on the decrease of oscillation for solutions. We also derive the Harnack inequality by combining the decrease of oscillation with a result about how positive lower bounds on non-negative solutions deteriorate with time. It is worth mentioning here that our "hypoelliptic isoperimetric argument" is proved non-constructively, by a contradiction method, whereas the original isoperimetric argument of De Giorgi is obtained by a quantitative direct argument. It is an interesting open problem to obtain such quantitative estimates in the hypoelliptic case.

Conditional regularity of the Landau equation

3.1. Previous works and a conjecture. The infinite smoothing of solutions to the Landau equation has been investigated so far in two different settings. On the one hand, it has been investigated for weak spatially homogeneous solutions (non-negative in L 1 and with finite energy), see [START_REF] Desvillettes | Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff[END_REF] and the subsequent follow-up papers [START_REF] Alexandre | Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules[END_REF][START_REF] Huo | Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Alexandre | Uncertainty principle and kinetic equations[END_REF][START_REF] Alexandre | Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules[END_REF][START_REF] Morimoto | Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Arsen ′ Ev | On a connection between the solution of the Boltzmann equation and the solution of the Landau-Fokker-Planck equation[END_REF][START_REF] Desvillettes | Plasma kinetic models: the Fokker-Planck-Landau equation[END_REF]128,[START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF], and see also the related entropy dissipation estimates in [START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications[END_REF][START_REF] Desvillettes | Entropy dissipation estimates for the Landau equation in the Coulomb case and applications[END_REF], and see the analytic regularisation of weak spatially homogeneous solutions for Maxwellian or hard potentials in [START_REF] Chen | Analytic smoothness effect of solutions for spatially homogeneous Landau equation[END_REF]. Furthermore, Silvestre [START_REF] Silvestre | Upper bounds for parabolic equations and the Landau equation[END_REF] derives an L ∞ bound (gain of integrability) for spatially homogeneous solutions in the case of moderately soft potentials without relying on energy methods. Let us also mention works studying modified Landau equations [START_REF] Krieger | Global solutions to a non-local diffusion equation with quadratic non-linearity[END_REF][START_REF] Gressman | A non-local inequality and global existence[END_REF] and the work [START_REF] Gualdani | Estimates for radial solutions of the homogeneous Landau equation with Coulomb potential[END_REF] that shows, using barrier arguments, that any weak radial solution to the Landau-Coulomb equation that belongs to L 3/2 is automatically bounded and C 2 . On the other hand, fewer investigations of the regularity of spatially heterogeneous solutions have been done, focusing on the regularisation of classical solutions [START_REF] Chen | Smoothing effects for classical solutions of the full Landau equation[END_REF][START_REF] Liu | Regularizing effects for the classical solutions to the Landau equation in the whole space[END_REF].

The general question of conditional regularity hence suggests the following question in the context of the Landau equation: An important progress has been made by solving a weaker version of this conjecture when the exponent γ ∈ (-2, 0), which corresponds to moderately soft potentials, i.e. γ + 2s > 0 since here s = 1. We describe in this section the different steps and combined efforts of different groups.

DGNM theory and local Hölder regularity.

The first step is the work [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF] already mentioned. A corollary of Theorem 1 is the following: Theorem 3 (Local Hölder regularity for the LE [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]). Given any γ ∈ [-3, 1], there are universal constants C > 0, α ∈ (0, 1) such that any essentially bounded weak solution f of (1.1)-( 1

.3) in (-1, 0] × B 1 × B 1 satisfying (1.4) is α-Hölder continuous with respect to (t, x, v) ∈ (-1/2, 0] × B 1/2 × B 1/2 and f C α (-1 2 ,0]×B 1 2 ×B 1 2 ≤ C f L 2 ((-1,0]×B 1 ×B 1 ) + f 2 L ∞ ((-1,0]×B 1 ×B 1 ) .
Note that this theorem includes the physical case of Coulomb interactions γ = -3. The adjective "universal" for the constants refers to their independence from the solution.

3.3. Maximum principles and pointwise bounds. This line of research originates in the work of Silvestre both on the spatially homogeneous Boltzmann (SHBE) and Landau (SHLE) equations [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF][START_REF] Silvestre | Upper bounds for parabolic equations and the Landau equation[END_REF]. These papers build upon the ideas of "nonlinear maximum principles" introduced in [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF] in the case of the Boltzmann collision operator, and upon the so-called "Aleksandrov-Bakelman-Pucci Maximum Principle" in the case of the Landau collision operator, see for instance [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF][START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF].

The main result of [START_REF] Silvestre | Upper bounds for parabolic equations and the Landau equation[END_REF] is: 

4).

Then f 1 + t -3/2 with constant depending only on the bounds (1.4).

As noted by the author, this estimate implies quite straightforwardly existence, uniqueness and infinite regularity for the spatially homogeneous solution. For the difficult case of very soft potentials γ ∈ [-3, 2), this paper includes a weaker result where the L ∞ bound depends on a certain weighted Lebesgue norms; unfortunately it is not yet known how to control such norm along time. This conceptual barrier, when crossing the "very soft potentials threshold", is reminiscent of the state of the art for the Cauchy theory in Lebesgue and Sobolev spaces by energy estimates, for both the spatially homogeneous Boltzmann with long-range interactions [START_REF] Desvillettes | Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions[END_REF] and Landau equation [START_REF] Alexandre | Some a priori estimates for the homogeneous Landau equation with soft potentials[END_REF][START_REF] Wu | Global in time estimates for the spatially homogeneous Landau equation with soft potentials[END_REF].

The pointwise bounds estimates were then extended to the spatially inhomogeneous case in [START_REF] Cameron | Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials[END_REF]. The main result in this paper is: Theorem 5 (Pointwise bound for the LE). Let γ ∈ (-2, 0] (moderately soft potentials without the limit case) and let f be a bounded non-negative weak solution to the Landau equation (1.1)-(1.3) on [0, T ] × R 2d for some T > 0, satisfying the assumptions (1.4). Then f

(1 + t -3/2 )(1 + |v|) -1 with constant depending only on the bounds (1.4) (and not on the L ∞ norm of the solution). Moreover if f in (x, v) ≤ C 0 e -α|v| 2 , for some C 0 > 0 and a sufficiently small α > 0 (depending on γ and (1.4)), then f (t, x, v) ≤ C 1 e -α|v| 2 with C 1 > 0 depending only on C 0 , γ and the bounds (1.4).

The proof relies on using locally the Harnack inequality in Theorem 2 adapted to the Landau equation and on devising a clever change of variable to track how this local estimate behaves at large velocities. The Gaussian bound is then obtained by combining existing maximum principle arguments at large velocities (using that well-constructed Gaussians provide supersolutions at large v) in the spirit of [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF], and the previous pointwise bound for not-so-large velocities. Finally the authors remarked that the Hölder regularity estimate of Theorem 3 can be made global using the Gaussian decay bound.

3.4. Schauder estimates and higher regularity. Once the L ∞ norm and the Hölder regularity is under control, the next step is to obtain higher-order regularity. The classical tool is the so-called Schauder estimates [START_REF] Schauder | über lineare elliptische Differentialgleichungen zweiter Ordnung[END_REF]. The purpose of such estimates in general is to show that the solution to an elliptic or parabolic equation whose coefficients are Hölder continuous gains two derivatives with respect to the data (source term, initial data). The gain of the two derivatives is obtained in Hölder spaces:

C δ → C 2+δ .
Two works have been obtained independently along this line of research. The first one [START_REF] Henderson | ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF] focuses on the use of combination of Hölder estimates, maximum principles and Schauder estimates to obtain conditional infinite regularity for solutions to the Landau equation with moderately soft potentials γ ∈ (-2, 0). The second one [START_REF] Imbert | A toy nonlinear model in kinetic theory[END_REF] focuses on the use of these ingredients to "break the super-criticality" of the nonlinearity for a toy model of the Landau equation. Both these works develop, in different technical ways, Schauder estimates for this hypoelliptic equation. The main result in [START_REF] Henderson | ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF] is: Theorem 6 (Conditional regularity for LE). Let γ ∈ (-2, 0) (moderately soft potentials without the limit case) and let f be a bounded non-negative weak solution to the Landau equation (1.1)-(1.3) on [0, T ] × R 2d for some T > 0, satisfying the assumptions (1.4) and f in (x, v) ≤ C 0 e -α|v| 2 , for some C 0 > 0 and a sufficiently small α > 0 (depending on γ and (1.4)). Then f is smooth and its derivatives have some (possibly weaker) Gaussian decay.

Note that: (1) the regularity and decay bounds are uniform in time, as long as the bounds (1.4) remain uniformly bounded in time, (2) further conditional regularity are given in the paper for very soft potentials γ ∈ [-3, -2] but they require higher L ∞ t,x L 1 v (1+ |v|) q moments and the constants depend on time when γ ∈ [-3, -5/2] in dimension 3, (3) a useful complementary result is provided by [START_REF] Henderson | Local existence, lower mass bounds, and smoothing for the Landau equation[END_REF] where a local existence is proved in weighted locally uniform Sobolev spaces and the lower bound on the mass is relaxed by using the regularity to find a ball where the solution is uniformly positive: the combination of the two papers provide a conditional existence, uniqueness and regularity result for moderately soft potentials, conditionally to upper bounds on the local mass, energy and entropy.

The work [START_REF] Imbert | A toy nonlinear model in kinetic theory[END_REF] considers the toy model:

(3.1) ∂f + v • ∇ x f = ρ[f ]∇ v (∇ v f + vf ) , ρ[f ] := ˆRd f dv, in x ∈ T d , v ∈ R d , d ≥ 1.
This model preserves the form of the steady state, the ellipticity in v, the non-locality, the bilinearity and the mass conservation of the LE. It however greatly simplifies the underlying hydrodynamic and the maximum principle structure.

Here H k (T d × R d ) denotes the standard L 2 -based Sobolev space. The main result states (note that solutions are constructed and not conditional here):

Theorem 7. For all non-negative initial data

f in such that f in / √ µ ∈ H k (T d × R d ) with k > d/2 and satisfying C 1 µ ≤ f in ≤ C 2 µ for some C 1 , C 2 > 0,
there exists a unique global-in-time solution f to (3.1) with initial data f in satisfying for all time t > 0:

f (t)/ √ µ ∈ H k (T d × R d ) and C 1 µ ≤ f ≤ C 2 µ and f (t, •, •) ∈ C ∞ .
Note that the initial regularity exponent k could be relaxed with more work. A key step of the proof is the Schauder estimate. It gives the following additional information on this solution: the hypoelliptic Hölder norm H α (defined below) of f / √ µ is uniformly bounded in terms of the L 2 norm of f in / √ µ for times away from 0. This norm is defined on a given open connected set Q by

g H α (Q) := sup Q |g| + sup Q |(∂ t + v • ∇ x )g| + sup Q |D 2 v g| + [(∂ t + v • ∇ x )g] C 0,α (Q) + [D 2 v g] C 0,α (Q)
where [•] C 0,α (Q) is a Hölder anisotropic semi-norm, i.e. the smallest C > 0 such that

∀ z 0 ∈ Q, r > 0 s.t. Q r (z 0 ) ⊂ Q, g -g(z 0 ) L ∞ (Qr(z 0 )) ≤ Cr α where Q r (z 0 ) := z : 1 r (z -1 0 • z) ∈ Q 1 = (t, x, v) : t 0 -r 2 < t ≤ t 0 , |x -x 0 -(t -t 0 )v 0 | < r 3 , |v -v 0 | < r
and rz := (r 2 t, r 3 x, rv) and

z 1 • z 2 := (t 1 + t 2 , x 1 + x 2 + t 2 v 1 , v 1 + v 2 ).
The specific contribution of this work is the study of the Cauchy problem: the maximum principle provides Gaussian upper and lower bounds on the solution, and we then provide energy estimates and a blow-up criterion à la Beale-Kato-Majda [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3-D Euler equations[END_REF]. We then use the extensions of the DGNM and Schauder theories to control the L ∞

x (H 1 v ) type norm that governs the blow-up. We prove Hölder regularity through the method of [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]. We then develop Schauder estimates following the method of [START_REF] Krylov | Lectures on elliptic and parabolic equations in Hölder spaces[END_REF] (see also [START_REF] Polidoro | On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type[END_REF][START_REF] Manfredini | The Dirichlet problem for a class of ultraparabolic equations[END_REF][START_REF] Di Francesco | Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form[END_REF][START_REF] Bramanti | Schauder estimates for parabolic nondivergence operators of Hörmander type[END_REF][START_REF] Lunardi | Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in R n[END_REF][START_REF] Radkevich | Equations with nonnegative characteristic form. II. Sovrem. Mat. Prilozh[END_REF][START_REF] Henderson | ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF]). New difficulties arise compared with the parabolic case treated in [START_REF] Krylov | Lectures on elliptic and parabolic equations in Hölder spaces[END_REF] in relation with the hypoelliptic structure and we develop hypoelliptic commutator estimates directly at the level of trajectories to solve them. We also borrow some ideas from hypocoercivity [START_REF] Villani | [END_REF] in the proof of the so-called gradient estimate.

Note that it would be interesting to give a proof of Schauder estimates for such hypoelliptic equations that is entirely based on scaling arguments in the spirit [START_REF] Simon | Schauder estimates by scaling[END_REF] (see also the use of such scaling arguments in [START_REF] Hairer | A theory of regularity structures[END_REF], in the elliptic-parabolic case). This might indeed prove useful for generalising such estimates to the integral Boltzmann collision operator, see the next section. 2) was obtained in [START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF] for sufficiently regular initial data f 0 . Global existence was obtained in [START_REF] Desvillettes | Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions[END_REF] for moderately soft potentials in the spatially homogeneous case. In the next subsections, we present the progresses made so far in the case of moderately soft potentials: the estimate in L ∞ for t > 0 was obtained in [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF], the local Hölder regularity in [START_REF] Imbert | Weak harnack inequality for the Boltzmann equation without cut-off[END_REF], and finally the polynomial pointwise decay estimates in [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cut-off[END_REF]. The bootstrap mechanism to obtain higher regularity through Schauder estimates remains however unsolved at now.

Let us briefly review the existing results about regularisation. The very first mathematical observation that long-range interactions are associated with fractional ellipticity in the kinetic variable goes back to Desvillettes [START_REF] Desvillettes | About the regularizing properties of the non-cut-off Kac equation[END_REF] in the mid 1990s. In [START_REF] Alexandre | Regularizing effect and local existence for the non-cutoff Boltzmann equation[END_REF], the authors prove that if the solution f has five derivatives in L 2 , with respect to all variables t, x and v, weighted by (1 + |v|) q for arbitrarily large powers q, and in addition the mass density is bounded below, then the solution f is C ∞ . It is not known however whether these hypotheses are implied by (1.4). Note also the previous partial results [START_REF] Desvillettes | Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff[END_REF][START_REF] Alexandre | Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. I. Non-cutoff case and Maxwellian molecules[END_REF][START_REF] Huo | Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Alexandre | Uncertainty principle and kinetic equations[END_REF][START_REF] Alexandre | Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II. Non cutoff case and non Maxwellian molecules[END_REF][START_REF] Morimoto | Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff[END_REF][START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: Spatially inhomogeneous case[END_REF] in the spatially homogeneous case and with less assumptions on the initial data, and the work [START_REF] Chen | Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case[END_REF] in the spatially inhomogeneous case but with much stronger a priori assumptions.

Note that, drawing inspiration from the case of the Landau equation, in order for the iterative gain of regularity in [START_REF] Henderson | ∞ smoothing for weak solutions of the inhomogeneous Landau equation[END_REF][START_REF] Imbert | A toy nonlinear model in kinetic theory[END_REF] to work, it is necessary to start with a solution that decays, as |v| → ∞, faster than any algebraic power rate |v| -q . We expect the same general principle to apply to the Boltzmann equation, even if the appropriate Schauder type estimates for kinetic integro-differential equations to carry out an iterative gain in regularity are not yet available.

The question of conditional regularity suggests the following conjecture in the context of the Boltzmann equation with long-range interactions: The rest of this section is devoted to describing the partial progresses made in the case of, again, moderately soft potentials γ + 2s > 0. 4.2. Maximum principle and pointwise L ∞ bound. This first breakthrough is due to Silvestre [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF]. This article draws inspiration from his own previous works on non-local operators and from the "nonlinear maximum principle" of Constantin and Vicol [START_REF] Constantin | Nonlinear maximum principles for dissipative linear nonlocal operators and applications[END_REF]. It is based on a maximum principle argument for a barrier supersolution that is constant in x, v and blowing-up as t → 0 + ; it uses the decomposition of the collision operator and "cancellation lemma" going back to [START_REF] Alexandre | Entropy dissipation and long-range interactions[END_REF], the identification of a cone of direction for (v ′ -v) is order to obtain lower bounds on the f -dependent kernel of the elliptic part of the operator, and finally some Chebycheff inequality and nonlinear lower bound on the collision integral. The main result is: Theorem 8 (Pointwise bound for the BE [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF]). Let γ ∈ [-2, 1], s ∈ (0, 1) with γ+2s > 0 (moderately soft potentials). Let f be a classical non-negative solution to the Boltzmann equation (1.1)-(1.3) on [0, T ] × T d × R d for some T > 0, satisfying the assumptions (1.4). Then f ≤ C(1 + t -β ) with C > 0 and β > 0 depending only on γ, s and the bounds (1.4).

Note that the paper also includes further results in the case of very soft potentials but conditionally to additional estimates of the form L ∞ t,x L p v (1 + |v| q ) for some p > 1, q > 0; it is not known at present how to deduce the latter estimates from the hydrodynamic bounds (1.4).

Weak Harnack inequality and local Hölder regularity.

The second breakthrough is the paper [START_REF] Imbert | Weak harnack inequality for the Boltzmann equation without cut-off[END_REF]. In comparison to the Landau equation, the Boltzmann equation has a more complicated integral structure, that shares similarity with "fully nonlinear" fractional elliptic operators. The main result proved is: Theorem 9 (Local Hölder regularity for the BE [START_REF] Imbert | Weak harnack inequality for the Boltzmann equation without cut-off[END_REF]). Given any γ ∈ (-3, 1] and s ∈ (0, 1) with γ + 2s > 0, there are universal constants C > 0, α ∈ (0, 1) such that any essentially bounded non-negative weak solution f to

(1.1)-(1.2) in (-1, 0] × B 1 × R 3 satisfying (1.4) is α-Hölder continuous with respect to (t, x, v) ∈ (-1/2, 0] × B 1/2 × B 1/2 ,
where C, α only depend on the L ∞ bound of f and the bounds (1.4).

The proof goes in two steps. The first step is a local L 2 → L ∞ gain of integrability, following the approach of De Giorgi and Moser as reformulated in a kinetic context in [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF] and [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]. It requires further technical work to formulate the De Giorgi iteration for such integro-differential equations with degenerate kernels (see also the related works [START_REF] Kassmann | A priori estimates for integro-differential operators with measurable kernels[END_REF][START_REF] Felsinger | Local regularity for parabolic nonlocal operators[END_REF][START_REF] Bux | Quadratic forms and Sobolev spaces of fractional order[END_REF]). The regularity mechanism at the core of the averaging velocity method is used; it is however presented differently than in most papers on this topic, by relying on explicit calculations on the fundamental solution of the fractional Kolmogorov equation. In the second step of the proof, the authors establish a weak Harnack inequality, i.e. the control from above of local L ǫ t,x,v averages with ǫ > 0 small by a local infimum multiplied by a universal constant. This inequality is sufficient to deduce the Hölder regularity. Two different strategies are used depending on whether s ∈ (0, 1/2) or s ∈ [1/2, 1). In the first case, they construct a barrier function to propagate lower bounds as in the method by Krylov and Safonov for equations in nondivergence form. In the second case, they use a variant of the isometric argument of De Giorgi proved by compactness as in [START_REF] Golse | Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation[END_REF]. Again the regularity of velocity averages plays a crucial role but is exploited by direct calculation on the fundamental solution of the fractional Kolmogorov equation. 4.4. Maximum principle and decay at large velocities. Finally in the paper [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cut-off[END_REF], the nonlinear maximum principle argument of [START_REF] Silvestre | A new regularization mechanism for the Boltzmann equation without cut-off[END_REF] is refined to obtain "pointwise counterpart" of velocity moments. The main result established in this paper is: Theorem 10 (Decay at large velocities for the BE [START_REF] Imbert | Decay estimates for large velocities in the Boltzmann equation without cut-off[END_REF]). Given any γ ∈ (-3, 1] and s ∈ (0, 1) with γ + 2s ≥ 0, there are universal constants C > 0, α ∈ (0, 1) such that for any classical non-negative solution f to (1.1)-(1.2) in [0, T ] × T 3 × R 3 satisfying (1.4), it holds for any q > 0: (i) if f in (1 + |v|) -q then f (t, x, v) ≤ C(1 + |v|) -q for all t > 0, (ii) assuming furthermore that γ > 0, then f (t, x, v) ≤ C ′ (1 + t -β )(1 + |v|) -q for all t > 0. All the constants depend on γ, s, q and the bounds (1.4).

The study of large velocity decay in weighted L 1 spaces, known as the study of moments, is an old and important question in kinetic equations. The study of moments was initiated, for spatially homogeneous solutions, in [START_REF] Ikenberry | On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory[END_REF] for Maxwellian potentials (γ = 0). In the case of hard potentials (γ > 0), Povzner identities [START_REF] Povzner | On the Boltzmann equation in the kinetic theory of gases[END_REF][START_REF] Elmroth | Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range[END_REF][START_REF] Wennberg | The Povzner inequality and moments in the Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF] play an important role. For instance, Elmroth [START_REF] Elmroth | Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range[END_REF] used them to prove that if moments are initially bounded, then they remain bounded for all times. Desvillettes [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] then proved that only one moment of order q > 2 is necessary for the same conclusion to hold true. It is shown in [START_REF] Wennberg | The Povzner inequality and moments in the Boltzmann equation[END_REF][START_REF] Mischler | On the spatially homogeneous Boltzmann equation[END_REF] that even the condition on one moment of order q > 2 can be dispensed with, in both (homogeneous) cutoff and non-cutoff case. These moment estimates were used by Bobylev [START_REF] Bobylev | Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems[END_REF] in order to derive (integral) Gaussian tail estimates. In the case of soft potentials, Desvillettes [START_REF] Desvillettes | Some applications of the method of moments for the homogeneous Boltzmann and Kac equations[END_REF] proved for γ ∈ (-1, 0) that initially bounded moments grow at most linearly with time and it is explained in [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] that the method applies to γ ∈ [-2, 0). The case of measure-valued solutions is considered in [START_REF] Lu | On measure solutions of the Boltzmann equation, part I: moment production and stability estimates[END_REF].

However the extension of these integral moments estimates to spatially inhomogeneous solutions is a hard and unclear question at the moment. The only result available is [START_REF] Gualdani | Factorization for non-symmetric operators and exponential h-theorem[END_REF]Lemma 5.9 & 5.11] which proves the propagation and appearance of certain exponential moments for the spatially inhomogeneous Boltzmann equation for hard spheres (or hard potentials with cutoff), however in a space of the form W 3,1

x L 1 (1 + |v| q ). Another line of research opened by [START_REF] Gamba | Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation[END_REF] consists in establishing exponential Gaussian pointwise decay by maximum principle arguments (see also [START_REF] Bobylev | Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules[END_REF][START_REF] Alonso | Exponentially-tailed regularity and time asymptotic for the homogeneous Boltzmann equation[END_REF][START_REF] Gamba | On pointwise exponentially weighted estimates for the Boltzmann equation[END_REF]). But these works assumes exponential integral moments whose propagation in time is not known, therefore it is not clear how to use them in this context.

We finally recall that the last part of the research program, the Schauder estimates, is missing for the Boltzmann equation with moderately soft potentials, and is an interesting open question for future research.

Conjecture 1 .

 1 Any solutions to the Landau equation (1.1)-(1.3) (with Coulomb interaction γ = -3) on [0, T ] satisfying (1.4) is bounded and smooth on (0, T ].

Theorem 4 (

 4 Pointwise bound for the SHLE). Let γ ∈ [-2, 0] (moderately soft potentials) and let f be a classical non-negative spatially homogeneous solution to the Landau equation (1.1)-(1.3) on [0, T ] × R d for some T > 0, and satisfying the assumptions (1.

4 .

 4 Conditional regularity of the Boltzmann equation 4.1. Previous works and a conjecture. Short time existence of solutions to (1.1)-(1.

Conjecture 2 .

 2 Any solutions to the Boltzmann equation (1.1)-(1.2) with long-range interactions (γ ∈ (-3, 1], s ∈ (0, 1), γ + 2s ∈ (-1, 1)) on [0, T ] satisfying (1.4) is bounded and smooth on (0, T ].

n i=1 X * i X i + X 0 , then the semigroup e tL is regularising (hypoelliptic) as soon as the Lie algebra generated by X 0 , . . . , X n has dimension N throughout the domain of L.Let us also mention the connexion with the Malliavin calculus in probability, which gives a probabilistic proof to the Hörmander theorem in many settings, see[START_REF] Malliavin | Stochastic calculus of variation and hypoelliptic operators[END_REF] as well as the many subsequent works, for instance[START_REF] Kusuoka | Applications of the Malliavin calculus. I. In Stochastic analysis[END_REF][START_REF] Kusuoka | Applications of the Malliavin calculus[END_REF][START_REF] Bismut | the Malliavin calculus and hypoellipticity under general Hörmander's conditions[END_REF][START_REF] Norris | Simplified Malliavin calculus[END_REF].
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