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08193 Bellaterra, Catalonia, Spain
3Research Centre for Nanoscience and Nanotechnology, CIN2 (CSIC-ICN), Campus UAB, 08193 Bellaterra,
Catalonia, Spain
4CNRS, CEMES (Centre d’Elaboration de Matériaux et d’Etudes Structurales), BP 94347, 29 Rue Jeanne
Marvig, F-31055 Toulouse, France
5Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore,
California 37831-6064, USA

(Received 28 October 2011; accepted 1 February 2012; published online 22 February 2012)

Self-assembled La0.7Sr0.3MnO3 perovskite nanodots have been grown on highly mismatched

rock-salt type MgO substrates by chemical solution deposition. The interfacial dislocation structure

indicates that the relaxation mechanism is governed by the easy glide of MgO 1/2h101i{101}

dislocations towards the interface, where they dissociate into misfit-relieving and tilting

components. The latter induce a 4-domain tilt pattern superimposed to the main cube-on-cube

epitaxial orientation. It is shown that the inheritance of the rotational component of the Burgers

vector has detrimental consequences on the interfacial quality, evidencing the impact of structural

and plastic dissimilarity on the design of self-assembled nanostructures. VC 2012 American Institute
of Physics. [doi:10.1063/1.3687692]

Size reduction of perovskite-based magnetic nanostruc-

tures is a necessary step towards the development of spin-

based applications. While top-down approaches hardly allow

patterning of oxide nanostructures below 100 nm,1 bottom-

up strategies offer a unique opportunity to overcome this

limitation. Self-assembling processes arising from lattice

misfit, however, are governed by a balance between elastic

strain, surface, and interface energies,2 nowadays mostly

established for conventional semiconductor systems.3 Much

less effort has been devoted to take advantage of self-

assembling phenomena in the case of oxides. Notably, the

atomic scale microstructural pathway satisfying this energy

balance appears specific of the involved crystal structures

and determines the functionality of the resulting nanostruc-

ture. Establishing a correlation between misfit relaxation

mechanisms and different interfacial scenarios thus becomes

essential to produce self-assembled oxide nanostructures in a

predictive way. Among deposition techniques, chemical so-

lution deposition (CSD) is emerging as a high-throughput

growth technique that has already been proved efficient for

the preparation of nanostructures of a variety of complex ox-

ide materials.4,5 Here, we present a structural analysis of the

perovskite/rock-salt interface between La0.7Sr0.3MnO3

(LSMO) and the MgO substrate, in order to get insights into

the role of plastic and structural dissimilarity on the develop-

ment of interfacial structures.

LSMO nanoislands on (001) oriented MgO substrates

were obtained by CSD from solutions of the metal propio-

nates in propionic acid6 and subsequent annealing at 900 �C
under oxygen atmosphere for 1-3 h. Fig. 1(a) is an atomic

force microscopy (AFM) image, obtained in the dynamic

mode, of the LSMO nanodot-decorated (001)-MgO surface,

showing homogeneous spatial and size distributions. A quan-

titative analysis indicates a broader distribution for equiva-

lent island diameters hDi¼ 50 6 20 nm than for island

heights hhi¼ 7 6 2 nm (Fig. 1(b)). A higher magnification

image resolving the MgO surface topography reveals unit

cell high steps aligned with the h110i-MgO directions (Fig.

1(c)). Most of the nanodots reside at kink sites and step

edges with the basal sides aligned with the steps. This mor-

phology suggests that LSMO nanodots preferentially

nucleated at kink sites and grew by diffusion of adatoms

along the steps edges. Since the LSMO nanodots hold a

cube-on-cube orientation relative to the MgO (see x-ray dif-

fraction (XRD) pole-figure, Fig. 2(a)), it can be inferred by

inspection of high resolution transmission electron micros-

copy (HRTEM) (see below, Fig. 3(a)) that the growth mech-

anism constrains the lateral facets of the nanodots to

combinations of {110} and {111} planes, truncated by larger

(001) top facets. The growth rate anisotropy inferred from

the high aspect ratio D/h� 7 is not clearly understood. There

are no surface energy determinations for different facets of

LSMO. For the La1-xCaxMnO3 solid solution, however, a

similar or slightly higher energy of the {001} facets com-

pared with {110} ones has been estimated depending on x

and atomic termination.7 Assuming a similar behavior for
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LSMO, it is thus likely that the shape of the nanodots is

kinetically determined by an enhancement of the lateral

growth rate favored by the high degree of misfit strain relax-

ation achieved by the dislocation mechanism (see below)

from the very early growth stages.8

Close inspection of the fine structure of the {101}-

LSMO-poles (see inset in Fig. 2(a)) reveals that each pole is

associated to four satellites lying along the [110] and [1-10]

directions, indicating the occurrence of four additional orien-

tation domains related to the precise cube-on-cube orientation

by 2� to 5� tilts about the [110] and [1-10] axes. In order to

determine the average in-plane strain state of the nanodots en-

semble, we conducted XRD / - 2h/x space mapping (/ is the

azimuthal orientation) at a grazing incidence angle of 0.5�

around the (200)-MgO and (200)-LSMO reflections using a

conventional in-house Cu-Ka1 source (see inset to Fig. 2(b)).

Using aMgO¼ 4.21 Å (Ref. 9) as a reference, a fit of peak posi-

tions in the corresponding 2h/x scan (Fig. 2(b)) yields an in-

plane lattice parameter aLSMO¼ 3.876 6 0.006 Å (bulk value

aLSMO¼ 3.876 Å (Ref. 10)), indicating a full relaxation of the

misfit strain d¼ (aMgO� aLSMO)/aLSMO¼ 0.086.

Fig. 3(a) is a cross-section HRTEM image of a typical

LSMO nanodot viewed along the [100] zone axis, obtained

in a Cs-corrected Tecnai F20 electron microscope operated

at 200 kV at Cs¼�455.7 nm and a defocus value

Df¼þ13 nm. From inspection of contrast variations, it can

be inferred that the nanodot exhibits three facets: a central

one inclined to [100] (viewing direction) and [001] (perpen-

dicular to the substrate), and two side ones inclined to [100],

[010], and [001]. The apparent inclination angle of the two

side facets to [001] is 45�. We, therefore, assign (101), (1-

11), and (111) to the lateral facets and (001) to the top one.

The location and character of interfacial dislocations labeled

1 to 7 is indicated. Interfacial dislocation core structures are

shown in an enlarged image of the boxed area in (a) compris-

ing dislocations 3, 4, and 5 (Fig. 3(b)). Closure failures of

Burgers circuits yield projected Burgers vectors

b(3)¼ 1=2[011] and b(4)¼ b(5)¼ 1=2[010]. The image shows

that dislocation 3 has an extended core with partials

bjj ¼ 1=2[010] and b
\¼ 1=2[001], while 4 and 5 are single dis-

locations with Burgers vector of the type bjj. Severe bending

of atomic planes is clearly observed in the neighborhood of

dislocation 3 as a result of b
\. The dislocation structure is

thus similar to that observed in other perovskite/MgO hetero-

structures (SrTiO3, PbTiO3, Ba0.6Sr0.4TiO3, and BaZrO3

(Refs. 11–13)) and contrasts with Burgers vectors b¼h010i
typically reported for LSMO films on perovskite

substrates.14–16

Noticing that 1=2h011i{011} is the most prominent glide

system in the rock-salt structure,17 and that LSMO is stiffer

than MgO,18,19 a likely mechanism to explain our observa-

tions is that 1=2h011i dislocations are inherited from the sub-

strate, as often observed in semiconductor heterostructures.20

Accordingly, dislocations would reach the interface by glid-

ing on MgO {011} planes intersecting the interface at 45�.
Once at the interface, such dislocations would dissociate into

a misfit relieving component bjj, glissile on the interface

plane, and a b
\ rotation component. The latter one introdu-

ces an aMgO/2[001] interfacial step thereby increasing the

interfacial roughness. Analysis of the interface of 13 nano-

dots indicates that as a general trend bjj dislocations outnum-

ber b\ ones. This suggests that once dissociated, b\

dislocations tend to annihilate. The process can be visualized

considering two 1=2h011i dislocations reaching the interface

by gliding on the (0-11) and (011) planes. After dissociation,

the resulting two b\ partials have opposite signs and can

cancel each other by a climb movement on the interface

plane. These dislocation reactions would generate the irregu-

lar concave shape of the interface observed in Fig. 3(a). Con-

versely, glide of b
\ partials on the (010) plane normal to the

interface towards the surface of the nanodot seems unlikely

because this movement would leave an antiphase boundary

on the glide plane which has not been observed. Though the

driving force for the annihilation of the b\ partials is not

fully understood, we believe that it constitutes a selection

mechanism of dislocations with the same sign which mini-

mizes opposite tilts within the same nanodot. In addition, it

reduces the tensile misfit strain. It is worth emphasizing that

the observed interfacial structure is determined by the con-

fluence of plastic and structural dissimilarities which favors

the inheritance of dislocations which do not belong to the

FIG. 1. (Color online) LSMO-nanodot/MgO template morphology. (a)

Topographic AFM image of the LSMO/MgO nanostructure; z scale: 40 nm.

(b) Diameter and height distribution histograms of LSMO nanodots. (c)

AFM image showing the preferential location of the nanodots at kink sites

along steps aligned with h110i azimuths. The nanodots exhibit a square base

with edges aligned with the substrate steps.
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primary slip system of the nanodots. The features of the dis-

location structure evidence that the "as-inherited" configura-

tion is unstable and evolves to decrease its strain energy.

However, topological constrains impede the complete anni-

hilation of the undesired rotational b\ partials, resulting in

severe residual strains as can readily be appreciated by direct

inspection of HRTEM images (see Figs. 3(a) and 3(b)),

which would be absent if the misfit was accommodated by

dislocations belonging to the nanodot.

Turning now to the correlation between the average do-

main pattern revealed in the pole-figure (inset in Fig. 2(a))

and the interfacial dislocation structure, it is straightforward

to see that the [100] and [010] tilts induced by two orthogo-

nal sets of b\ dislocations result in a net rotation about the

in-plane h110i directions. Taking into account the two possi-

ble tilt senses, the four satellite {101}-LSMO poles are

reproduced, as depicted in Fig. 3(c). The higher intensity of

the main central poles, on the other hand, indicates that a sig-

nificant volume fraction of LSMO still adopts a precise

cube-on-cube epitaxial association with the substrate.

In summary, the LSMO-nanodot/MgO interface is

shown to be inherently rough and defective as a consequence

of the interfacial behavior of misfit dislocations inherited

from the substrate. The present results highlight the role of

structural and plastic dissimilarity in determining the interfa-

cial quality of self-assembled functional nanostructures.
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