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Robustness Analysis of Helicopter Ground Resonance with Parametric Uncertainties in Blade Properties

This paper presents a stability robustness analysis of the helicopter ground resonance phenomenon. By using the lifting procedure, the uncertain Linear Time-Periodic (LTP) model of the helicopter is transformed into an augmented uncertain Linear-Time-Invariant (LTI) model that allows the application of µ-analysis tools. The lifting procedure involves a periodic switching LTI piecewise model computed using oversampling of the system period. The representativeness of the lifted model for various oversampling period values and discretization methods is discussed and compared with a Floquet analysis for several parametric congurations. A µ-analysis is then applied to nd the worst case parametric conguration for a given rotor angular rate. The parametric uncertainties taken into account are the dynamic characteristics (stiness and damping) of each blade hinge. A signicant advantage of the proposed approach is that it enables performing ground resonance analysis for a rotor with dissimilar blade properties due to aging eects. Considering uncertainties on the four blade hinge sti-

nesses and damping factors, the µ-analysis performed on the lifted model leads to the conclusion that the worst case for degraded rotor stability corresponds to the symmetric perturbation of all the blades. Helicopter ground resonance is a dynamical phenomenon that has attracted much attention of from researchers over the last ve decades, particularly for rotors with hinged blades and a shift (oset) between the hinge axis and the main rotor axis. The prediction of critical rotor velocities at which the phenomenon occurs was rst studied by Coleman and Feingold [START_REF] Coleman | Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged Blades[END_REF] for helicopters with rotors with identical blade properties. The equations of motions were simplied [START_REF] Bir | Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis[END_REF] by eliminating their periodical characteristic and Linear Time Invariant (LTI) stability analysis was performed easily.

Major contributions to understanding this phenomenon in hingeless and bearingless rotors have been made since [START_REF] Donham | Ground and Air Resonance Characteristics of a Soft In-Plane Rigid-Rotor System[END_REF][START_REF] Hodges | An Aeromechanical Stability Analysis for Bearingless Rotor Helicopters[END_REF]. Criteria for determining the dimension of viscous dampers have been established and the design of passive control systems has been studied in order to dissipate energies and avoid unstable motions [57]. Semi-active and active control solutions using the pitch angle of each blade have also been proposed to reduce vibrations [START_REF] Arcara | Periodic Control of Helicopter Rotors for Attenuation of Vibrations in Forward Flight[END_REF][START_REF] Bittanti | Periodic Active Control of Vibrations in Helicopter: a Gain-Scheduled Approach[END_REF].

However, the eects of aging on various mechanical elements can induce unbalanced parametric variations from one blade to another and compromise the rotor's nominal behavior, leading to dangerous conditions in extreme cases. In the eld of aeronautics such situations must be mastered to reduce not only human risk but also maintenance costs. Therefore analysis tools for rotors with dissimilar blades are required to assess ground resonance instability.

When considering blades with dierent mechanical properties, the simplications made by Coleman are no longer valid and Floquet theory has been used to study the stability of time-periodic equations of motion [START_REF] Hammond | An Application of Floquet Theory to Prediction of Mechanical Instability[END_REF][START_REF] Skjoldan | On the Similarity of the Coleman and Lyapunov-Floquet Transformations for Modal Analysis of Bladed Rotor Structures[END_REF]. Predicting the ground resonance phenomenon for a wide range of dissimilar blade congurations means analyzing each point individually on a grid of parametric space, generating high computational costs. Furthermore, there is no guarantee that parametric gridding includes the worst-case parametric conguration.

On the other hand, the stability and performance robustness of linear time-invariant (LTI) systems under structural uncertainties have been analyzed by using the standard µ-analysis method and ecient tools are now available [START_REF] Balas | µ-Analysis and Synthesis Toolbox: for Use with MATLAB, User's Guide[END_REF] [1] [START_REF] Bir | Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis[END_REF] .

In [START_REF] Kalender | Control Design and Robustness Analysis of Linear Time-Periodic Systems[END_REF], the parametric robustness analysis of LTP systems is considered using a truncated point mapping technique and µ-analysis. the other in such systems was not studied. The robustness of uncertain polytopic discrete-time periodic systems was considered in [START_REF] Farges | Robust H2 Performance Analysis and Synthesis of Linear Polytopic Discrete-Time Periodic Systems via LMIs[END_REF] from the standpoint of periodic state-feedback design. The robustness analysis of ground resonance stability has been addressed more recently in [START_REF] Masarati | Robust Aeroservoelastic Stability of Helicopters: Application to Air/Ground Resonance[END_REF]. The authors considered complex uncertainties embedding uncertainties on the stiness and damping ratio of lead-lag dampers, but under the assumption that these dampers are identical from one blade to the other. However, the direct analysis of ground resonance stability for asymmetric rotor properties was dealt with unsatisfactorily.

Recently, the problem of robustness analysis of linear time periodic (LTP) dynamical systems [START_REF] Verdult | Identication of Linear Parameter-Varying State-Space Models with Application to Helicopter Rotor Dynamics[END_REF] under structured LTI uncertainties was solved [START_REF] Kim | Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty[END_REF][START_REF] Rabenasolo | Robust Stability for Linear Periodic Systems under Structured Uncertainties[END_REF], by combining Floquet theory with the lifting technique [2426]. The original uncertain LTP system was cast in the form of a Linear

Fractional Transformation (LFT) using discretization on an oversampling of the system period in order to use µ-analysis methods. The time-lifted LFT model involves an uncertainty structure with highly-repeated parameters which can raise problems for performing µ-analyses. In order to reduce the size of the uncertainty block and the associated computational burden of µ-analyses,
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the representativeness of the (lifted) LFT model for various oversampling period values and three discretization methods (zero-order hold (zoh), rst-order hold (foh) and Tustin method [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF][START_REF] Hoagg | First-Order-Hold Sampling of Positive Real Systems and Subspace Identication of Positive Real Models[END_REF]) is discussed in comparison with Floquet analysis for several parametric congurations. A general MATLAB R function was developed to implement this lifting procedure to any LTP model.

The contributions of this paper are:

• to provide practical and low CPU time-consuming tools allowing the application of µ-analysis

to LTP systems and

• to analyze helicopter ground resonance stability under parametric uncertainties using these tools and µ-analysis.

The example studied corresponds to independent uncertainties on (lead-lag) blade hinge stinesses and damping factors. The method proposed can be applied to any kind of parametric uncertainty but the result of analysis on the sensitivity to blade hinge stinesses (damping) is worth mentioning.

It is shown that the worst case parametric conguration corresponds to an identical variation of each stiness (damping), i.e. a rotor with identical blade dynamic properties.

Section 2 describes the lifting procedure for an uncertain LTP system with particular emphasis given to the discretization method. In section 3, the dynamic model used to study the ground resonance phenomenon is derived, the lifting procedure is validated and the results of stability analysis using the method proposed and µ-analysis are presented. Section 4 presents the conclusions.

II. Robustness Analysis of LTP Systems

A.

General background

Consider the uncertain LTP system S(∆) dened by an LFT representation M(s, t) -∆:

M(s, t) :        ẋ(t) = A(t) x(t) + B(t) w(t) z(t) = C(t) x(t) + D(t) w(t) (1) 
with: w(t) = ∆ z(t)

where x(t) ∈ R n is the state vector, w(t) and z(t) are input and output vectors of the LFT. The structured uncertainty matrix ∆ is a p×p diagonal matrix of unknown but bounded real parameters:

∆ = diag [δ 1 , δ 2 , . . . , δ p ] (2) 
Matrices A(t), B(t), C(t) and D(t) are real, piecewise continuous and periodic with a period T ,

A(t + T ) = A(t), B(t + T ) = B(t), C(t + T ) = C(t), D(t + T ) = D(t) . (3) 
The closed-loop LFT representation is

ẋ(t) = A(t) + B(t)∆(I n -D(t)∆) -1 C(t) x(t) = A p (t, ∆) x(t) (4) 
where the matrix A p (t, ∆) is also T -periodic.

The nominal system (∆ = 0) is assumed to be stable. The parametric robustness analysis consists in nding the smallest uncertainty ∆ worst matrix which makes the closed-loop system (4)

unstable.

Floquet theory [START_REF] Gökçek | Stability Analysis of Periodically Switched Linear Systems Using Floquet Theory[END_REF][START_REF] Bittanti | Periodic Systems: Filtering and Control[END_REF] can be used to analyze the stability for a particular value of ∆. Considering the transition matrix Φ(t, t 0 , ∆) associated with the closed-loop system (4), the stability analysis is then characterized by the monodromy matrix R(t 0 , ∆) dened as the transition matrix over one period: R(t 0 , ∆) = Φ(t 0 + T, t 0 , ∆) .

(

Without loss of generality, it can be assumed that t 0 = 0.

Then, the system (4) is exponentially stable if and only if R(∆) = R(t 0 = 0, ∆) is Schur, i.e., all the eigenvalues of R(∆), also called characteristic multipliers: λ i (∆) i = 1, 2, . . . , n, have a magnitude less than one.

In most practical cases matrix R(∆) cannot be determined analytically. Nevertheless, R(∆) can be approximated by assuming that the system in Eq.( 4) can be represented in the form of a periodic linear switched system dened by [START_REF] Gökçek | Stability Analysis of Periodically Switched Linear Systems Using Floquet Theory[END_REF]:

ẋ(t) = A p (kh, ∆)x(t) (6) 
∀ t ∈ [lT + kh, lT + (k + 1)h[, l = 0, 1, 2, . . . , k = 0, 1, 2, . . . n h -1 where h = T n h
is the oversampling period and n h is a positive integer. That is to say the system is assumed to be LTI during the oversampling period h.

The LFT representation of the switched system ( 6) is:

M(s, kh) :

       ẋ(t) = A(kh) x(t) + B(kh) w(t) z(t) = C(kh) x(t) + D(kh) w(t) (7) 
with:

w(t) = ∆ z(t) ∀t ∈ [kh + lT, (k + 1) + lT [, l = 0, 1, 2, . . . , k = 0, 1, . . . , n h -1
and can be represented by the augmented M(s) -∆ interconnection shown in Figure 1. This LFT involves n h blocks ∆ packed in a p n h × p n h augmented uncertainty block ∆.

. . . switch . . . The integration over one period of the n h switched LTI systems allows approximating the

C(0) A(0) A(h) A((n h -1)h) . . . ∆ ∆ . . . ∆ ẋ(t) x(t) . dt B(0) C((n h -1)h) B((n h -1)h) B(h) C(h) . . . t r = remainder(t,T) t t r + + t r ∈ [(n h -1)h, T [ t r ∈ [0, h[ t r ∈ [h, 2h[ . . . + + + + ∆ M(s)
monodromy matrix R(∆) by R a (∆): R(∆) ≈ R a (∆) = n h -1 k=0 e Ap(kh,∆)h = e Ap((n h -1)h,∆)h . . . e Ap(h,∆)h e Ap(0,∆)h . ( 8 
)
Thus computation of the monodromy matrix on a p-dimension parametric space gridding would be too CPU time-consuming to characterize the stability in the whole parameter space. Eq.( 8)

will be used to validate the lifting procedure proposed in the next section for several representative parametric congurations and for the worst-case parametric conguration provided by the µ-analysis on the lifted model (section III).

B. The lifting procedure

The lifting method is performed as follows [START_REF] Kim | Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty[END_REF]. Initially, the n h continuous-time LTI systems

M(s, kh) (k = 0, 1, • • • , n h -1)
dened by Eq. ( 7) and represented in Figure 1 are discretized with a sampling period h, as discussed in section II C. The resulting discrete-time periodic system is:

M d (z, k) :        x d (k + 1) = A d (k) x d (k) + B d (k) w d (k) z d (k) = C d (k) x d (k) + D d (k) w d (k) (9) 
with:

w d (k) = ∆ z d (k) . Matrices A d (k), B d (k), C d (k) and D d (k)
depend on the discretization method and are n hperiodic:

A d (k + n h ) = A d (k), B d (k + n h ) = B d (k), C d (k + n h ) = C d (k), D d (k + n h ) = D d (k) . ( 10 
)
In the second step, the system ( 9) is integrated over one period n h . The nal discrete-time-invariant

LFT model M d (z) -∆ (lifted model) is: M d (z) :        x d (k + n h ) = A d x d (k) + B d V T w d (k) z d (k) = VC d x d (k) + VD d V T w d (k) (11) 
with:

w d (k) = ∆ z d (k)
where: The third step uses an inverse Tustin transform to convert the system M d (z) (Eq. 11) back to the continuous-time domain in order to apply µ-analysis tools available only in continuous-time.

∆ = diag [δ 1 I n h , δ 2 I n h , . . . δ p I n h ]. Matrices (A d , B d , C d , D d ),
Since the µ-analysis is performed in the frequency domain, the Tustin transform (with a sampling period equal to T ) is selected here for its property of preserving the input-output frequency-domain response [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF]. The nal continuous-time

-invariant LFT model M c (s) -∆ is M c (s) :        ẋc (t) = A c x c (t) + B c w c (t) z c (t) = C c x c (t) + D c w c (t) (12) 
with: w c (t) = ∆ z c (t)

where:

• A c = 2 T (I n + A d ) -1 (A d -I n ) • B c = 2 T (I n + A d ) -1 B d V T • C c = 2VC d (I n + A d ) -1 • D c = VD d V T -VC d (I n + A d ) -1 B d V T
The original LTP system S(∆) in Eq.( 1) is now in the standard continuous-time LFT form M c (s) -∆, as given in Eq.( 12). In the next section, the lifting procedure [3] . is applied to the parametric robustness analysis of the ground resonance phenomenon.

C. Discretization methods

From the stability analysis accuracy point of view, errors in the evaluation of the perturbed monodromy matrix R a (∆) and its characteristic multipliers can only be introduced in the rst step (discretization). The approach was to re-use the discretization methods commonly used in the eld of automatic control [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF]: (i) impulse invariance, (ii) zero-order hold, (iii) rst-order hold, (iv) Tustin transformation, (v) matched pole-zero. The impulse invariance and matched pole-zero methods are not considered since the impulse invariance method cannot handle systems with direct feed-through and the matched pole-zero method works only for single-input single-output systems. The three remaining methods are compared here from the angle of monodromy matrix R a (∆) approximation.

For k = 0, • • • , n h the closed-loop LFT representation (9) is:

x d (k + 1) = A d (k) + B d (k)∆(I n -D d (k)∆) -1 C d (k) x d (k) (13) = A d p (k, ∆) x d (k)
and by integration over one period n h , the closed-loop lifted LFT (11) can be expressed as:

x d (k + n h ) = n h -1 k=0 A d p (k, ∆) x d (k) . (14) 
[3] The whole procedure for converting an LTP system into a continuous-time lifted system is embedded in a MATLAB R function ltp2lti.m which can be downloaded from http://personnel.isae.fr/daniel-alazard/ matlab-packages/lifting-procedure-for-linear-time.html. The package also contains a tutorial on the Mathieu equation.

The objective is to approximate the uncertain monodromy matrix for any value of ∆:

R a (∆) = n h -1 k=0 e Ap(kh,∆)h ≈ n h -1 k=0 A d p (k, ∆) . (15) 
Therefore, for all k, matrices e Ap(kh,∆)h and A d p (k, ∆) must be compared for the various discretization methods. This problem of continuous-time LFT discretization was rst addressed in [START_REF] Imbert | Robustness Analysis of a Launcher Attitude Controller via µ-Analysis[END_REF]. The discretization error according to various methods is also discussed in-depth [START_REF] Tóth | On the Discretization of LPV state-space representations[END_REF][START_REF] Toth | On the Discretization of Linear Fractional Representations of LPV Systems[END_REF] in the more general framework of the Linear Parameter-Varying (LPV) system where the bounds on the discretization error are proposed in terms of approximating the state or output evolution. Here, we focus on the approximation error on the uncertain transition matrix e Ap(kh,∆)h .

A third order Taylor expansion in h of e Ap(kh,∆)h leads to (kh is omitted for brevity)

e Ap(∆)h ≈ I n + (A + ∆ A )h + (A + ∆ A ) 2 h 2 2 + (A + ∆ A ) 3 h 3 6 . ( 16 
)
with • Zero order hold (zoh) method [START_REF] Hoagg | First-Order-Hold Sampling of Positive Real Systems and Subspace Identication of Positive Real Models[END_REF]: the input w(t) of system M(s, kh) is assumed to be constant over the oversampling period h:

∆ A = B∆(I n -D∆) -1 C. The expressions of A d (k), B d (k), C d (k), D d (k) from A(kh), B ( 
w(t) = w d (k), ∀ t ∈ [kh, (k + 1)h[. Then A d =e A h (17a) B d =A -1 e A h -I n B (17b) C d =C (17c) D d =D (17d)
associated with the state x d (k) = x(kh) and

A d p (∆) ≈ I n + (A + ∆ A )h + A(A + ∆ A ) h 2 2 + A 2 (A + ∆ A ) h 3 6 . (18) 
• First order hold (foh) method: the input w(t) of system M(s, kh) is assumed to be linear between two consecutive over-samples:

w(t) = w d (k) + t -kh h (w d (k + 1) -w d (k)), ∀ t ∈ [kh, (k + 1)h[. Thus A d =e A h (19a) B d = 1 h A -1 e A h -I n B (19b) C d =CA -1 e A h -I n (19c) D d =D + 1 h CA -1 e A h -I n -A h A -1 B (19d) associated with state x d (k) = (e A h -I n ) -1 (Ax(kh) + Bw(kh)) -1 h A -1 Bw(kh) and A d p (∆) ≈ I n +(A+∆ A )h+(A+∆ A ) 2 h 2 2 +(A+∆ A ) 3 h 3 6 +(A+∆ A )∆ A (A+∆ A ) h 3 12 . (20) 
• Tustin method [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF]: the continuous-time integration presented in Figure 1 is approximated by a numerical integration using the trapezoidal rule:

x

((k + 1)h) = x(kh) + h 2 ( ẋ((k + 1)h) + ẋ(kh)) .
Then, with w d (k) = w(kh),

A d =(I n + h 2 A)(I n - h 2 A) -1 (21a) B d =h(I n - h 2 A) -1 B(kh) (21b) C d =C(I n - h 2 A) -1 (21c) D d =D + h 2 C(I n - h 2 A) -1 B (21d) associated with state x d (k) = I n -h 2 A(kh) x(kh) -h 2 B(kh)w(kh) and A d p (∆) ≈ I n + (A + ∆ A )h + (A + ∆ A ) h 2 2 + (A + ∆ A ) 3 h 3 4 . ( 22 
)
Thus the approximation of e A(∆)h by A d p (∆) is only a rst order approximation if the zoh method is used, whereas it is a second order approximation with the foh and Tustin methods. Note that for the zoh and foh methods, A d , as dened in Eq.(A3a), is equal to the nominal monodromy matrix (R a (∆ = 0)) obtained from Eq.( 8) while approximations are made when the Tustin method is used. Therefore if ∆ A is assumed to be small, a better approximation with the foh method than the Tustin method can be expected. Indeed, the Taylor expansion ( 20) is equal to ( 16) except for a fourth order term in ∆ A h 3 /12. It is also important to underline the crucial inuence of n h on the accuracy of the result. High values of n h tend to minimize errors with all the methods, but also substantially increase robustness analysis computation time since the number of inputs and outputs of the initial LFT model is multiplied by n h in the new uncertainty block ∆.

This Taylor expansion based analysis allows us to recommend the foh method for the discretization of the LFT representation of uncertain systems instead of the more commonly used zoh method. This will be conrmed through the numerical results on the study of the ground resonance phenomenon in section III B.

III. Ground Resonance Parametric Analysis

A.

Ground resonance modeling

Figure 2 provides a general diagram of the dynamical system. It represents a simplied helicopter model similar to that used in the earliest research of the ground resonance phenomenon [START_REF] Coleman | Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged Blades[END_REF].

The fuselage is modeled as a rigid body with mass m f . x f (t) and y f (t) represent the fuselage positions along the longitudinal and lateral directions, respectively. The mechanical impedance between the fuselage and the ground (landing gear) is modeled by two stinesses K f X and K f Y and two damping factors C X and C Y acting in the longitudinal and lateral directions. At equilibrium, the fuselage center of mass (point O) coincides with the origin of the inertial reference frame The origin of the fuselage frame (x, y, z), parallel to the inertial frame, is located at the geometric center of the rotor hub (coincident at point O). The rotor angular velocity is denoted Ω.

(X 0 , Y 0 , Z 0 ).
The fuselage and rotor head are joined by a rigid shaft while aerodynamic forces on the blades are not taken into account. This assumption is quite realistic since the helicopter is on the ground.

Also note that aerodynamic eects can be embedded in the uncertainties on blade hinge damping The position of the k-th blade center of mass, written in the inertial reference frame, is given as:

x b k = a cos (ψ k ) + b cos (ψ k + ϕ k (t)) + x f (t) (23a) y b k = a sin (ψ k ) + bsin (ψ k + ϕ k (t)) + y f (t) (23b)
where a is the hinge oset and ψ k = Ωt + 2π(k-1)

N b , k = 1, • • • , N b .
The expressions of the kinetic energy, the potential energy and the work of dissipative forces are presented separately in Appendix B. By applying Lagrange equations and a rst order expansion of trigonometric terms, the linear dynamic model can be derived:

M q + G q + K q = F ext (24) 
where q (t) = [ x f (t) y f (t) ϕ 1 (t) ϕ 2 (t) ϕ 3 (t) ϕ 4 (t) ] T is the generalized coordinates vector. M, G and K correspond to the mass, damping and stiness matrices respectively and are described in Eq.25. These matrices are not symmetric due to the presence of periodic terms. F ext is equal to zero if all the blades have the same inertial and geometrical properties.

M(t) =     1 0 -rm1 sin(ψ1) -rm2 sin(ψ2) -rm3 sin(ψ3) -rm4 sin(ψ4) 0 1 rm1 cos(ψ1) rm2 cos(ψ2) rm3 cos(ψ3) rm4 cos(ψ4) -r b1 sin(ψ1) r b1 cos(ψ1) 1 0 0 0 -r b2 sin(ψ2) r b2 cos(ψ2) 0 1 0 0 -r b3 sin(ψ3) r b3 cos(ψ3) 0 0 1 0 -r b4 sin(ψ4) r b4 cos(ψ4) 0 0 0 1     (25a) G(t) =    r cX 0 -2Ωrm1cos(ψ1) -2Ωrm2 cos(ψ2) -2Ωrm3 cos(ψ3) -2Ωrm4 cos(ψ4) 0 r cY -2Ωrm1sin(ψ1) -2Ωrm2 sin(ψ2) -2Ωrm3 sin(ψ3) -2Ωrm4 sin(ψ4) 0 0 rc1 0 0 0 0 0 0 rc2 0 0 0 0 0 0 rc3 0 0 0 0 0 0 rc4    (25b) K(t) =      ω 2 x 0 Ω 2 rm1 sin(ψ1) Ω 2 rm2 sin(ψ2) Ω 2 rm3 sin(ψ3) Ω 2 rm4 sin(ψ4) 0 ω 2 y -Ω 2 rm1 cos(ψ1) -Ω 2 rm2 cos(ψ2) -Ω 2 rm3 cos(ψ3) -Ω 2 rm4 cos(ψ4) 0 0 ω 2 b 1 +Ω 2 r 2 a 1 0 0 0 0 0 0 ω 2 b 2 +Ω 2 r 2 a 2 0 0 0 0 0 0 ω 2 b 3 +Ω 2 r 2 a 3 0 0 0 0 0 0 ω 2 b 4 +Ω 2 r 2 a 4      (25c) F ext (t) =       N b P k=1 Ω 2 r m k ( a+b a ) cos(ψ k ) N b P k=1 Ω 2 r m k ( a+b a ) sin(ψ k ) 0 0 0 0       (25d)
where:

r m k = b m b k m f + P N b k=1 m b k , r b k = b m b k b 2 m b k +Iz b k , r 2 a k = a r b k , r c X..Y = C X..Y m f + P N b k=1 m b k , ω 2 x = K f X m f + P N b k=1 m b k , ω 2 y = K f Y m f + P N b k=1 m b k , r c k = C b k b 2 m b k +Iz b k , ω 2 b k = K b k b 2 m b k +Iz b k , k = 1, • • • , N b
The aging or failure of mechanical elements comprising the helicopter rotor head, e.g., springs or dampers, has a direct inuence on the dynamical behavior of the whole system. Depending on the degradation of these elements, new critical rotating velocities may be reached at which the ground resonance phenomenon will occur. Thus the robustness analysis of helicopters under structured uncertainties is required to predict the smallest perturbation leading the system to instability. The 

ω 2 b k = (1 + δ k ) ω 2 b k (k = 1, 2, 3, 4) (26) 
where δ k corresponds to the relative uncertainties related to ω 2 b k (i.e.: square of the nominal blade resonance frequency).

According to Eq.( 1), the LTP model S(∆) of the ground resonance phenomenon taking into account uncertainties on the 4 blade hinge stinesses takes to form: 

A(t) = O6×6 I6 -M -1 (t)K(t) -M -1 (t)G(t) , B(t) =      O6×4 -M -1 (t) 2 
C(t) = O 4×2 diag[ω 2 b 1 , ω 2 b 2 , ω 2 b 3 , ω 2 b 4 ] O 4×6 , D(t) = O 4×4 (28) 
∆ = diag[δ 1 , δ 2 , δ 3 , δ 4 ] (29) 
associated with the state vector x = [q T qT ] T .

The model relative to the 4 blade hinge damping factors is described in section III C, equation [START_REF] Imbert | Robustness Analysis of a Launcher Attitude Controller via µ-Analysis[END_REF]. The numerical data are summarized in Table 1.

Table 1: Nominal parameters of a helicopter with identical blades Fuselage m f = 2902.9 • only the 4-th blade hinge stiness is considered to be uncertain (i.e.,∆ = diag[0, 0, 0, δ 4 ]),

• the rotor angular velocity is constant: Ω = 10π rad/s.

The discrete-time lifted model M d (z) in Eq.( 11) is constructed for three dierent values of n h (10, 30 and 100) and the three discretization methods (zoh, foh, Tustin). Then, for each value of the uncertainty δ 4 (from -100% to 100% by steps of 10%), the LFT M d (z) -∆ is resolved and compared with the Floquet monodromy matrix R a (diag[0, 0, 0, δ 4 ]) computed with n h = 100 (Eq. 2. From these results, it can be concluded that:

• for high values of n h (n h = 100), the stability analyses obtained with the three methods converge with the Floquet-based prediction,

• for low values of n h , the stability analysis based on the zoh method is poor,

• the best trade-o between stability-analysis accuracy and the reduction of n h is obtained with the foh method and n h = 30. This value will be adopted in the next section. only for very low values of δ 4 (δ 4 < -90%).

Remark III.1 The CPU-time for computing the lifted model [START_REF] Skjoldan | On the Similarity of the Coleman and Lyapunov-Floquet Transformations for Modal Analysis of Bladed Rotor Structures[END_REF] on a standard desk-top computer is 0.39 s, 1.98 s and 17.7 s, respectively for n h = 10, 30 and 100 (the eect of the discretization method on CPU-time is negligible). The CPU-time for computing the monodromy matrix [START_REF] Flowers | Nonlinear Rotorcraft Analysis Using Symbolic Manipulation[END_REF] with n h = 100 is 1.26 s. for dierent values of n h using the Tustin method in the lifting procedure, and |λ Ra |(δ 4 ).

C.

µ-analysis of ground resonance stability

In this section, all blade hinge stinesses are considered to be uncertain and independent. The µ-analysis toolbox [2] can be directly applied to the continuous-time lifted model M c (s) in Eq.( 12).

The structure of the uncertainty block ∆ 120×120 is therefore 4 real independent parameters repeated 30 times each. At each frequency ω, the µ-analysis computes an upper bound μ(ω) and a lower bound µ(ω) of the structured singular value µ. The µ-upper bound provides a guarantee of robust stability, i.e.

S(∆)

is stable ∀ δ i / |δ i | ≤ 1 max ω μ(ω) , i = 1, 2, 3, 4
while the µ-lower bound provides the worst parametric conguration ∆ worst (ω) [START_REF] Ferreres | A Practical Approach to Robustness Analysis with Aeronautical Applications[END_REF].

For the nominal rotor angular velocity Ω = 10π rad/s, the µ-upper and lower bounds provided by the Skew Mu Toolbox are plotted in Figure 6. It can be concluded that max ω μ(ω) = 12 (i.e.

the parametric robustness margin is 8.3 %) and max ω µ(ω) ≈ max ω μ(ω) (i.e. this margin is not at all conservative). The µ-analysis tools also provide the critical frequency ω c worst = 23.7 rad/s, the frequency of the instability that occurs when ∆ = ∆ worst . The parametric conguration at ω c worst [START_REF] Bir | Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis[END_REF] Ferreres, G. and Biannic, J.-M., The Skew Mu Toolbox", http://www.onera.fr/staff-en/jean-marc-biannic/.

is ∆ worst = diag[0.085, 0.085, 0.085, 0.085] .

It is now possible to compute the monodromy matrix R a (∆ worst ) (Eq.15) to validate the µ-analysis result and the representativeness of the lifted model. The 12 eigenvalues (characteristic multipliers) of R a (∆ worst ) associated with the 6 monodromic modes are given in Table 3. Mode # 2 is unstable with a magnitude very close to one. Although rotor stability is quite robust regarding uncertainty on a single blade hinge stiness (see section III B), robustness to uncertainties on all four blades is quite poor. Our analysis showed that the worst case conguration corresponds to a rotor with identical blades. An interesting observation regarding this analysis is that no dissimilar blades congurations are worse than ∆ worst from a stability point of view. This point is conrmed by further analysis considering uncertainties on 2 adjacent blades, 2 opposing blades and 3 blades (see Table 4 for a summary of µ-analysis results).

Once again, considering Figure 4 

This analysis conrms that the parametric robustness margin is better for a rotor with dissimilar blade hinges. Thus to improve ground resonance stability it is possible to imagine a mechanism mounted on a single blade hinge and only operated on the ground in order to create asymmetry in the rotor's properties. Of course, this analyze concerns only the ground resonance phenomenon and any conclusion regarding the advantages of a rotor with dissimilar blade hinges cannot be extended to behavior during ight.

Other analyses were performed for various rotor angular rates Ω (from 1 to 10 Hz). In all cases, the worst case conguration corresponds to a symmetric conguration (i.e.: δ 1 = δ 2 = δ 3 = δ 4 = δ).

Assuming that δ is repeated for the 4 blades, the stability analysis can be simplied (1 uncertain parameter repeated 120 times) and it is possible to plot the stability domain according to δ for various rotor angular rates Ω. This stability domain in the Ω -δ plane is shown in Figure 7 and conrms that the stability margin of the nominal conguration (Ω = 10π (rad/s), δ = 0) is very weak. It is also noteworthy that if the stability analysis is restricted to symmetric uncertainties, the discrete-time lifted model M d (z) can be used directly to plot the evolution of characteristic multipliers as a function of δ in the z-plane using a basic root locus [START_REF] Franklin | Digital Control of Dynamic Systems[END_REF]. This plot is presented in A possible physical justication of the worst-case conguration can be formulated: for a rotor with identical blade hinges, it is easy to check in Table 3 that modes # 5 and 6 are identical. This multiple-monodromic mode may be more signicant in the kinematic energy exchange between the rotor and the fuselage than single modes. In other words, the dissymmetry in the rotor breaks this multiple mode and leads to 6 single modes associated with 6 dierent frequencies and lower modal participation factors. This result must be conrmed by further analyses and confronted with an arbitrary number N b of blades (an odd number for instance).

Remark III. [START_REF] Bir | Multi-Blade Coordinate Transformation and its Application to Wind Turbine Analysis[END_REF] The CPU-time to compute the lifted model (with n h = 30) and µ-upper bound is 

Once again, the worst case corresponds to a symmetric reduction of all damping factors.

IV. Conclusions

A procedure that combines Floquet theory and the Lifting technique to convert the uncertain linear time periodic (LTP) system into an uncertain linear time-invariant (LTI) lifted system makes it possible to use µ-analysis to determine the smallest perturbation in helicopter blade properties having the worst case eect on rotor stability.

Three discretization methods were compared in order to reduce the complexity (and hence the CPU time) of the lifted model and minimize discretization errors. The conclusion is that the rst order hold method gives signicantly better results than the more commonly used zero-order hold method.

By taking into account uncertainties on the four blade hinge stinesses and damping factors, the µ-analysis shows that the worst case parametric conguration corresponds to a symmetric perturbation for all blade hinges. Thus stability analysis methods restricted to symmetric rotors like the Coleman method are still relevant. Nevertheless, tools are now available to perform further analyses and verify whether this result can be extended to other rotor congurations (for example a rotor system with an odd number of blades). Such tools save signicant CPU-time in comparison with a pure Floquet analysis combined with a parametric space exploration.

V.

NomenclatureA

  (t), B(t), C(t), D(t) = continuous-time state-space matrices A c , B c , C c , D c = state-space matrices of the continuous-time lifted model A d (k), B d (k), C d (k), D d (k) = discrete-time state-space matrices A d , B d , C d , D d = state-space matrices of the discrete-time lifted model a = rotor eccentricity (m) b = blade equivalent length (m) C X , C Y = fuselage damping factors in x and y directions (Ns/m) C b k = k-th blade hinge damping factor (Nms/rad) F ext = normalized external force vector h = oversampling period (s) O n×m = n × m null matrix I n = n × n identity matrixI Zb k = k-th blade lag inertia (kg m 2 ) K b k = k-th blade hinge stiness (Nm rad -1 ) K f X , K f Y = fuselagelongitudinal and lateral stinesses (N m -1 ) M, K, D = mass, stiness and damping matrices m f , m b k = fuselage and k-th blade masses (kg) n = system order (integer) n h = number of over-samples in one period (integer) N b = number of blades (integer) p = number of uncertain parameters q = vector of degrees of freedom r a k = √ a r b k r b k = k-th blade static moment to total inertia ratio (m -1 ) r c k = k-th blade damping factor to total inertia ratio (s -1 ) r c X , r c Y = fuselage damping factor to total mass ratios, (s -1 ) r m k = k-th blade static moment to total mass ratio (m) R = monodromy matrix t = time (s) T = period of the Linear-Time-Periodic (LTP) system (s) V = permutation matrix x,w,z = state, input and output vectors x (t) , y (t) = fuselage longitudinal and lateral position (m) x bk , y bk = k-th blade positions (m) (x, y, z) = frame attached to the rotor hub (X 0 , Y 0 , Z 0 ) = inertial frame ∆ = uncertainty matrix µ = structured singular value ϕ k (t) = k -th blade lead-lag angle (rad) Ω = rotor angular velocity (rad s -1 ) ζ k = k-th blade azimuth angle (rad) ω b k = k-th blade cantilevered frequency (rad s -1 ) ω x , ω y = cantilevered fuselage frequencies (rad s -1 )

Figure 1 :

 1 Figure 1: Sketch of the n h LTI models switched over one period T in positive feedback with the augmented uncertainty block ∆ (direct feed-through matrices are omitted for legibility).

  the re-ordering matrix V, augmented input and output vectors w d (k) and z d (k) are detailed in Appendix A.

  kh), C(kh), D(kh) and h, the mapping between discrete-time state x d (k) and continuous-time state x(kh) and input w(kh), and the third order expansion of A d (k, ∆) are described below for the three discretization methods (k and kh are omitted for brevity):

  The rotor head system is comprised of one rigid rotor hub and an assembly of N b blades. The k-th blade has a mass m b k , a moment of inertia I zb k around the z -axis located at its center of mass and an in-plane lead-lag motion dened by ϕ k (t). The radius of gyration is dened by the length b. Angular spring and viscous damping are considered on each blade hinge (point B). Spring stiness and viscous damping coecients are denoted K b k and C b k , respectively.

Figure 2 :

 2 Figure 2: Diagram of the Mechanical System

  uncertainties introduced on the mechanical model are related to blade hinge stinesses K b k and damping factors C b k . The 4 blade hinge stinesses are normalized with respect to the in-plane lead-lag cantilevered frequency squared:

  [kg] ωx = 6.0 π [rad/s] ωy = 8.0 π [rad/s] CX = 5.71 10 3 [Ns/m] CY = 7.62 10 3 [Ns/m] Rotor a = 0.2 [m] b = 2.5 [m] m b k = 31.9 [kg] ω b k = 3.0 π [rad/s] I zb 1..4 = 259 [kg m 2 ] C b 1..4 = 432 [Nms/rad] B. Validation of the lifting procedure The objectives of this section are: (i) to validate the lifting procedure presented in section II B by comparison with Floquet analyses for various congurations of the uncertain parameters, and (ii) to select the best discretization method while minimizing the over-sample number n h in order to obtain a good trade-o between analysis accuracy and CPU-time reduction. The following assumptions are made:

8 ).

 8 The comparison index is the highest eigenvalue (or characteristic multiplier) magnitude denoted |λ l |(δ 4 ) and |λ Ra |(δ 4 ) for the lifted model and the monodromy matrix, respectively. Note that the nominal angular velocity (Ω = 10π rad/) leads to a weak stability margin (in terms of characteristic multiplier magnitude), which is quite sensitive to parametric uncertainties. Indeed, the maximal characteristic multiplier magnitude of R a (O 4×4 ) is |λ Ra |(0) = 0.982. The results for the three discretization methods are presented in Figures 3 to 5 and summarized in Table

Figure 3 :

 3 Figure 3: Evolution of the magnitude of the highest characteristic multiplier with respect to δ 4 : |λ l |(δ 4 ), for dierent values of n h using zoh method in the lifting procedure, and |λ Ra |(δ 4 ).

Figure 4 :

 4 Figure 4: Evolution of the highest magnitude of the characteristic multiplier with respect to δ 4 : |λ l |(δ 4 ), for dierent values of n h using foh method in the lifting procedure, and |λ Ra |(δ 4 ).

Figure 5 :

 5 Figure 5: Evolution of the highest characteristic multiplier magnitude with respect to δ 4 : |λ l |(δ 4 ),

where ω 2 b 4 ← 1 .5 ω 2 b 4

 4124 , the best stability margin in term of the highest characteristic multiplier magnitude is obtained for δ 4 = 0.5. The stability robustness analysis for an asymmetric rotor leads to the following results: max ω μ(ω) = 8.11, ∆ worst = diag[0.1312, 0.1312, 0.1312, -0.1312] .

Figure 8

 8 Figure 8 in the case Ω = 10π (rad/s). Instability occurs for δ = 0.085 at frequency

Figure 6 :

 6 Figure 6: µ upper bound (line) and lower bound (• marks) -robustness stability analysis with respect to uncertainties on the 4 blade hinge stinesses at Ω = 5 Hz.

  Analyses were also performed to evaluate robustness with respect to the hinge damping factors(parameters r c k , k = 1, • • • , N b in Eq. (25a)) which are certainly also very sensitive to aging eects.

Figure 7 :

 7 Figure 7: Rotor stability domain (dotted area) according to angular rate Ω and an identical uncertainty δ on the 4 blade hinge stinesses.

Figure 8 :

 8 Figure 8: Characteristic multiplier loci in the z-plane according to an identical uncertainty δ > 0 (black) or δ < 0 (grey) on the 4 blade hinge stinesses at Ω = 5 Hz.

  The continuoustime LTP model is transformed into a discrete-time LTI model and the size of the uncertainty block is increased according to the truncation order. Additional uncertainties are taken into account to handle this truncation error but introduce conservatism. In [1418], symbolic methods (e.g., the multiple scale and harmonic balance methods) are used to analyze helicopter ground resonance by considering mechanical nonlinearities. However, the inuence of dissimilarities from one blade to

Table 2 :

 2 Maximal relative error (%) on the highest characteristic multiplier magnitude with respect to the nominal stability margin: max δ4 |λ l |(δ 4 ) -|λ Ra |(δ 4 ) /(1 -|λ Ra |(0)).

	n h	10	30	100
	zoh	323	115	35
	foh	14.5	1.43	0.49
	Tustin	125	14.5	1.49
	It can also be concluded that rotor stability is quite robust with respect to variations of single
	blade stiness. Instability occurs (i.e. highest characteristic multiplier magnitude greater than 1)

Table 3 :

 3 Characteristic multipliers of matrix R a (∆ worst ).

	Mode Characteristic multipliers Magnitude
	# 1	0.1836 ± 0.7602 j	0.7821
	# 2	-0.6981 ± 0.7164 j	1.0003
	# 3	-0.5907 ± 0.4742 j	0.7575
	# 4	-0.7088 ± 0.5466 j	0.8951
	# 5	-0.5962 ± 0.6876 j	0.9101
	# 6	-0.5962 ± 0.6876 j	0.9101

Table 4 :

 4 µ-analysis results for uncertainties on 1 blade, 2 adjacent blades, 2 opposite blades, 3 blades or 4 blades at Ω = 5 Hz.

	Case	maxω μ(ω)	∆worst
	1 blade	1.1	-0.9
	2 adjacent blades	1.41	diag[-0.71, -0.71]
	2 opposite blades	1.31	diag[-0.78, -0.78]
	3 blades	6.2	diag[0.17, 0.17, 0.17]
	4 blades	12	diag[0.085, 0.085, 0.085, 0.085]

Appendix A: LIFTING PROCEDURE

The lifting procedure, as described in [START_REF] Kim | Robustness Analysis of Linear Periodic Time-Varying Systems Subject to Structured Uncertainty[END_REF][START_REF] Colaneri | Constant-Coecient Representations of Periodic-Coecient Discrete Linear Systems[END_REF], is summarized here for the reader's convenience.

The state-space matrices of the discrete-time lifted model are expressed directly from the state-space matrices provided by the selected discretization method (Eqs. [START_REF] Flowers | Chaotic Dynamical Behavior in a Simplied Rotor Blade Lag Model[END_REF] to [START_REF] Verdult | Identication of Linear Parameter-Varying State-Space Models with Application to Helicopter Rotor Dynamics[END_REF]) and do not involve the transition matrix.

From Eq.( 9), let us dene the packed output and input vectors

Then, the integration over one period of system in Eq.( 9) leads to the discrete-time lifted system

where

Φ u l =I n otherwise.

(A3c)

The general expression for the lower triangular terms of matrix D d is

Finally, since each δ i for i = 1, 2, . . . , p appears in each ∆ block, the row re-ordering matrix can be dened as V so that

Let us dene the re-ordered packed input and output vectors

then the LFT representation (A2) is transformed into the LFT representation [START_REF] Skjoldan | On the Similarity of the Coleman and Lyapunov-Floquet Transformations for Modal Analysis of Bladed Rotor Structures[END_REF].

Appendix B: KINETIC AND POTENTIAL ENERGY AND WORK OF DISSIPATIVE FORCE

The kinetic and potential energy expressions and the work expression of dissipative forces of the dynamical system are presented here for the reader's convenience [START_REF] Coleman | Theory of Self-Excited Mechanical Oscillations of Helicopter Rotors with Hinged Blades[END_REF][START_REF] Hammond | An Application of Floquet Theory to Prediction of Mechanical Instability[END_REF]. They are all written in the inertial reference frame.

• The kinetic energy of the whole dynamical system consists of the sum of kinetic energy expression of the fuselage T F us and rotor head T RH systems:

2b(Ω ẏ+ ẏ φk )cos(ψ k +ϕ k )-2b(Ω ẋ+ ẋ φk )sin(ψ k +ϕ k )

• The potential energy of the whole dynamical system consists of the sum of the potential energy of the fuselage, U F us , and rotor head, U RH , systems:

• The work of dissipative forces of the whole dynamical system consists of the sum of the work done by dissipative forces acting on the fuselage δF F us and the rotor head δF RH systems: