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Robustness Analysis of Helicopter Ground

Resonance with Parametric Uncertainties in Blade

Properties

Leonardo Sanches1 and Daniel Alazard2

Université Toulouse, DMIA, ISAE, 10 av. Édouard Belin, 31055 Toulouse, France

Guilhem Michon3

Université Toulouse, ICA, ISAE, 10 av. Édouard Belin, 31055 Toulouse, France

Alain Berlioz4

Université Toulouse, ICA, UPS, 118 route de Narbonne 31062 Toulouse, France

This paper presents a stability robustness analysis of the helicopter ground reso-

nance phenomenon. By using the lifting procedure, the uncertain Linear Time-Periodic

(LTP) model of the helicopter is transformed into an augmented uncertain Linear-

Time-Invariant (LTI) model that allows the application of µ-analysis tools. The lifting

procedure involves a periodic switching LTI piecewise model computed using oversam-

pling of the system period. The representativeness of the lifted model for various

oversampling period values and discretization methods is discussed and compared with

a Floquet analysis for several parametric con�gurations. A µ-analysis is then applied

to �nd the worst case parametric con�guration for a given rotor angular rate. The

parametric uncertainties taken into account are the dynamic characteristics (sti�ness

and damping) of each blade hinge. A signi�cant advantage of the proposed approach is

that it enables performing ground resonance analysis for a rotor with dissimilar blade

properties due to aging e�ects. Considering uncertainties on the four blade hinge sti�-
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nesses and damping factors, the µ-analysis performed on the lifted model leads to the

conclusion that the worst case for degraded rotor stability corresponds to the symmetric

perturbation of all the blades.

Nomenclature

A(t), B(t), C(t), D(t) = continuous-time state-space matrices

Ac, Bc, Cc, Dc = state-space matrices of the continuous-time lifted model

Ad(k), Bd(k), Cd(k), Dd(k) = discrete-time state-space matrices

Ad, Bd, Cd, Dd = state-space matrices of the discrete-time lifted model

a = rotor eccentricity (m)

b = blade equivalent length (m)

CX , CY = fuselage damping factors in x and y directions (Ns/m)

Cb k = k-th blade hinge damping factor (Nms/rad)

Fext = normalized external force vector

h = oversampling period (s)

On×m = n×m null matrix

In = n× n identity matrix

IZb k = k-th blade lag inertia (kg m2)

Kb k = k-th blade hinge sti�ness (Nm rad−1)

KfX
, KfY

= fuselage longitudinal and lateral sti�nesses (N m−1)

M,K,D = mass, sti�ness and damping matrices

mf , mb k = fuselage and k-th blade masses (kg)

n = system order (integer)

nh = number of over-samples in one period (integer)

Nb = number of blades (integer)

p = number of uncertain parameters

q = vector of degrees of freedom
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ra k =
√
a rb k

rb k = k-th blade static moment to total inertia ratio (m−1)

rc k = k-th blade damping factor to total inertia ratio (s−1)

rcX , rc Y = fuselage damping factor to total mass ratios, (s−1)

rmk = k-th blade static moment to total mass ratio (m)

R = monodromy matrix

t = time (s)

T = period of the Linear-Time-Periodic (LTP) system (s)

V = permutation matrix

x,w,z = state, input and output vectors

x (t) , y (t) = fuselage longitudinal and lateral position (m)

xbk, ybk = k-th blade positions (m)

(x, y, z) = frame attached to the rotor hub

(X0, Y0, Z0) = inertial frame

∆ = uncertainty matrix

µ = structured singular value

ϕk (t) = k − th blade lead-lag angle (rad)

Ω = rotor angular velocity (rad s−1)

ζk = k-th blade azimuth angle (rad)

ωb k = k-th blade cantilevered frequency (rad s−1)

ωx, ωy = cantilevered fuselage frequencies (rad s−1)

Φ(t, t0) = transition matrix

Subscripts and exponents

a = approximated

c = continuous

d = discrete

p = perturbed

T = transposed
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Accents

ẋ = time-domain derivative of x

w̃ = w permuted

w = w augmented

I. Introduction

Helicopter ground resonance is a dynamical phenomenon that has attracted much attention of

from researchers over the last �ve decades, particularly for rotors with hinged blades and a shift

(o�set) between the hinge axis and the main rotor axis. The prediction of critical rotor velocities

at which the phenomenon occurs was �rst studied by Coleman and Feingold [1] for helicopters with

rotors with identical blade properties. The equations of motions were simpli�ed [2] by eliminating

their periodical characteristic and Linear Time Invariant (LTI) stability analysis was performed

easily.

Major contributions to understanding this phenomenon in hingeless and bearingless rotors have

been made since[3, 4]. Criteria for determining the dimension of viscous dampers have been estab-

lished and the design of passive control systems has been studied in order to dissipate energies and

avoid unstable motions [5�7]. Semi-active and active control solutions using the pitch angle of each

blade have also been proposed to reduce vibrations [8, 9].

However, the e�ects of aging on various mechanical elements can induce unbalanced parametric

variations from one blade to another and compromise the rotor's nominal behavior, leading to

dangerous conditions in extreme cases. In the �eld of aeronautics such situations must be mastered

to reduce not only human risk but also maintenance costs. Therefore analysis tools for rotors with

dissimilar blades are required to assess ground resonance instability.

When considering blades with di�erent mechanical properties, the simpli�cations made by Cole-

man are no longer valid and Floquet theory has been used to study the stability of time-periodic

equations of motion [10, 11]. Predicting the ground resonance phenomenon for a wide range of dis-

similar blade con�gurations means analyzing each point individually on a grid of parametric space,
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generating high computational costs. Furthermore, there is no guarantee that parametric gridding

includes the worst-case parametric con�guration.

On the other hand, the stability and performance robustness of linear time-invariant (LTI)

systems under structural uncertainties have been analyzed by using the standard µ-analysis method

and e�cient tools are now available [12][1] [2]. In [13], the parametric robustness analysis of LTP

systems is considered using a truncated point mapping technique and µ-analysis. The continuous-

time LTP model is transformed into a discrete-time LTI model and the size of the uncertainty block

is increased according to the truncation order. Additional uncertainties are taken into account to

handle this truncation error but introduce conservatism. In [14�18], symbolic methods (e.g., the

multiple scale and harmonic balance methods) are used to analyze helicopter ground resonance by

considering mechanical nonlinearities. However, the in�uence of dissimilarities from one blade to

the other in such systems was not studied. The robustness of uncertain polytopic discrete-time

periodic systems was considered in [19] from the standpoint of periodic state-feedback design. The

robustness analysis of ground resonance stability has been addressed more recently in [20]. The

authors considered complex uncertainties embedding uncertainties on the sti�ness and damping

ratio of lead-lag dampers, but under the assumption that these dampers are identical from one

blade to the other. However, the direct analysis of ground resonance stability for asymmetric rotor

properties was dealt with unsatisfactorily.

Recently, the problem of robustness analysis of linear time periodic (LTP) dynamical systems

[21] under structured LTI uncertainties was solved [22, 23], by combining Floquet theory with the

lifting technique [24�26]. The original uncertain LTP system was cast in the form of a Linear

Fractional Transformation (LFT) using discretization on an oversampling of the system period in

order to use µ-analysis methods. The time-lifted LFT model involves an uncertainty structure

with highly-repeated parameters which can raise problems for performing µ-analyses. In order to

reduce the size of the uncertainty block and the associated computational burden of µ-analyses,

[1] Ferreres, G. and Biannic, J.-M., �The Skew Mu Toolbox", http://www.onera.fr/staff-en/jean-marc-biannic/.
[2] Peaucelle, D., �RoMulOC: Robust Multi-Objective Control Toolbox",http://spiderman-2.laas.fr/OLOCEP/

romuloc/index.html.
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the representativeness of the (lifted) LFT model for various oversampling period values and three

discretization methods (zero-order hold (zoh), �rst-order hold (foh) and Tustin method [27, 28])

is discussed in comparison with Floquet analysis for several parametric con�gurations. A general

MATLAB R© function was developed to implement this lifting procedure to any LTP model.

The contributions of this paper are:

• to provide practical and low CPU time-consuming tools allowing the application of µ-analysis

to LTP systems and

• to analyze helicopter ground resonance stability under parametric uncertainties using these

tools and µ-analysis.

The example studied corresponds to independent uncertainties on (lead-lag) blade hinge sti�nesses

and damping factors. The method proposed can be applied to any kind of parametric uncertainty

but the result of analysis on the sensitivity to blade hinge sti�nesses (damping) is worth mentioning.

It is shown that the worst case parametric con�guration corresponds to an identical variation of

each sti�ness (damping), i.e. a rotor with identical blade dynamic properties.

Section 2 describes the lifting procedure for an uncertain LTP system with particular emphasis

given to the discretization method. In section 3, the dynamic model used to study the ground

resonance phenomenon is derived, the lifting procedure is validated and the results of stability

analysis using the method proposed and µ-analysis are presented. Section 4 presents the conclusions.

II. Robustness Analysis of LTP Systems

A. General background

Consider the uncertain LTP system S(∆) de�ned by an LFT representationM(s, t)−∆:

M(s, t) :


ẋ(t) = A(t) x(t) + B(t) w(t)

z(t) = C(t) x(t) + D(t) w(t)
(1)

with: w(t) = ∆ z(t)

where x(t) ∈ Rn is the state vector, w(t) and z(t) are input and output vectors of the LFT. The

structured uncertainty matrix ∆ is a p×p diagonal matrix of unknown but bounded real parameters:

∆ = diag [δ1, δ2, . . . , δp] (2)
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Matrices A(t), B(t), C(t) and D(t) are real, piecewise continuous and periodic with a period T ,

A(t+ T ) = A(t), B(t+ T ) = B(t), C(t+ T ) = C(t), D(t+ T ) = D(t) . (3)

The closed-loop LFT representation is

ẋ(t) =
(
A(t) + B(t)∆(In −D(t)∆)−1C(t)

)
x(t) = Ap(t,∆) x(t) (4)

where the matrix Ap(t,∆) is also T -periodic.

The nominal system (∆ = 0) is assumed to be stable. The parametric robustness analysis

consists in �nding the smallest uncertainty ∆worst matrix which makes the closed-loop system (4)

unstable.

Floquet theory [29, 30] can be used to analyze the stability for a particular value of ∆. Con-

sidering the transition matrix Φ(t, t0,∆) associated with the closed-loop system (4), the stability

analysis is then characterized by themonodromy matrix R(t0,∆) de�ned as the transition matrix

over one period:

R(t0,∆) = Φ(t0 + T, t0,∆) . (5)

Without loss of generality, it can be assumed that t0 = 0.

Then, the system (4) is exponentially stable if and only if R(∆) = R(t0 = 0,∆) is Schur, i.e.,

all the eigenvalues of R(∆), also called characteristic multipliers: λi(∆) i = 1, 2, . . . , n, have

a magnitude less than one.

In most practical cases matrix R(∆) cannot be determined analytically. Nevertheless, R(∆)

can be approximated by assuming that the system in Eq.(4) can be represented in the form of a

periodic linear switched system de�ned by [29]:

ẋ(t) = Ap(kh,∆)x(t) (6)

∀ t ∈ [lT + kh, lT + (k + 1)h[, l = 0, 1, 2, . . . , k = 0, 1, 2, . . . nh − 1

where h = T
nh

is the oversampling period and nh is a positive integer. That is to say the system is

assumed to be LTI during the oversampling period h.
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The LFT representation of the switched system (6) is:

M(s, kh) :


ẋ(t) = A(kh) x(t) + B(kh) w(t)

z(t) = C(kh) x(t) + D(kh) w(t)
(7)

with: w(t) = ∆ z(t)

∀t ∈ [kh+ lT, (k + 1) + lT [, l = 0, 1, 2, . . . , k = 0, 1, . . . , nh − 1

and can be represented by the augmentedM(s)−∆ interconnection shown in Figure 1. This LFT

involves nh blocks ∆ �packed� in a p nh × p nh augmented uncertainty block ∆.

...

switch

...

C(0)

A(0)

A(h)

A((nh − 1)h)

...

∆

∆

. . .

∆

ẋ(t) x(t)∫
. dt

B(0)

C((nh − 1)h)B((nh − 1)h)

B(h) C(h)
...

tr = remainder(t,T)
t

tr

+
+

tr ∈ [(nh − 1)h, T [

tr ∈ [0, h[

tr ∈ [h, 2h[
...

+
+

+
+

∆

M(s)

Figure 1: Sketch of the nh LTI models switched over one period T in positive feedback with the

augmented uncertainty block ∆ (direct feed-through matrices are omitted for legibility).

The integration over one period of the nh switched LTI systems allows approximating the

monodromy matrix R(∆) by Ra(∆):

R(∆) ≈ Ra(∆) =
nh−1∏
k=0

eAp(kh,∆)h = eAp((nh−1)h,∆)h . . . eAp(h,∆)heAp(0,∆)h . (8)

Thus computation of the monodromy matrix on a p-dimension parametric space gridding would

be too CPU time-consuming to characterize the stability in the whole parameter space. Eq.(8)

will be used to validate the lifting procedure proposed in the next section for several representative
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parametric con�gurations and for the worst-case parametric con�guration provided by the µ-analysis

on the lifted model (section III).

B. The lifting procedure

The lifting method is performed as follows [22]. Initially, the nh continuous-time LTI systems

M(s, kh) (k = 0, 1, · · · , nh− 1) de�ned by Eq. (7) and represented in Figure 1 are discretized with

a sampling period h, as discussed in section IIC. The resulting discrete-time periodic system is:

Md(z, k) :


xd(k + 1) = Ad(k) xd(k) + Bd(k) wd(k)

zd(k) = Cd(k) xd(k) + Dd(k) wd(k)
(9)

with: wd(k) = ∆ zd(k) .

Matrices Ad(k), Bd(k), Cd(k) and Dd(k) depend on the discretization method and are nh-

periodic:

Ad(k + nh) = Ad(k), Bd(k + nh) = Bd(k), Cd(k + nh) = Cd(k), Dd(k + nh) = Dd(k) . (10)

In the second step, the system (9) is integrated over one period nh. The �nal discrete-time-invariant

LFT model M̃d(z)− ∆̃ (�lifted� model) is:

M̃d(z) :


xd(k + nh) = Ad xd(k) + BdVT w̃d(k)

z̃d(k) = VCd xd(k) + VDdVT w̃d(k)
(11)

with: w̃d(k) = ∆̃ z̃d(k)

where: ∆̃ = diag [δ1Inh
, δ2Inh

, . . . δpInh
]. Matrices (Ad, Bd, Cd, Dd), the re-ordering matrix V,

augmented input and output vectors w̃d(k) and z̃d(k) are detailed in Appendix A.

The third step uses an inverse Tustin transform to convert the system M̃d(z) (Eq. 11) back

to the continuous-time domain in order to apply µ-analysis tools available only in continuous-time.

Since the µ-analysis is performed in the frequency domain, the Tustin transform (with a sampling

period equal to T ) is selected here for its property of preserving the input-output frequency-domain

response [27]. The �nal continuous-time-invariant LFT model M̃c(s)− ∆̃ is

M̃c(s) :


ẋc(t) = Ac xc(t) + Bc w̃c(t)

z̃c(t) = Cc xc(t) + Dc w̃c(t)
(12)

with: w̃c(t) = ∆̃ z̃c(t)
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where:

• Ac = 2
T (In + Ad)−1(Ad − In)

• Bc = 2
T (In + Ad)−1BdVT

• Cc = 2VCd(In + Ad)−1

• Dc = VDdVT −VCd(In + Ad)−1BdVT

The original LTP system S(∆) in Eq.(1) is now in the standard continuous-time LFT form

M̃c(s) − ∆̃, as given in Eq.(12). In the next section, the lifting procedure[3]. is applied to the

parametric robustness analysis of the ground resonance phenomenon.

C. Discretization methods

From the stability analysis accuracy point of view, errors in the evaluation of the perturbed

monodromy matrix Ra(∆) and its characteristic multipliers can only be introduced in the �rst step

(discretization). The approach was to re-use the discretization methods commonly used in the �eld

of automatic control [27]: (i) impulse invariance, (ii) zero-order hold, (iii) �rst-order hold, (iv) Tustin

transformation, (v) matched pole-zero. The impulse invariance and matched pole-zero methods are

not considered since the impulse invariance method cannot handle systems with direct feed-through

and the matched pole-zero method works only for single-input single-output systems. The three

remaining methods are compared here from the angle of monodromy matrix Ra(∆) approximation.

For k = 0, · · · , nh the closed-loop LFT representation (9) is:

xd(k + 1) =
(
Ad(k) + Bd(k)∆(In −Dd(k)∆)−1Cd(k)

)
xd(k) (13)

= Ad p(k,∆) xd(k)

and by integration over one period nh, the closed-loop lifted LFT (11) can be expressed as:

xd(k + nh) =
nh−1∏
k=0

Ad p(k,∆) xd(k) . (14)

[3] The whole procedure for converting an LTP system into a continuous-time lifted system is embedded in a
MATLAB R© function ltp2lti.m which can be downloaded from http://personnel.isae.fr/daniel-alazard/

matlab-packages/lifting-procedure-for-linear-time.html. The package also contains a tutorial on the Math-
ieu equation.
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The objective is to approximate the uncertain monodromy matrix for any value of ∆:

Ra(∆) =
nh−1∏
k=0

eAp(kh,∆)h ≈
nh−1∏
k=0

Ad p(k,∆) . (15)

Therefore, for all k, matrices eAp(kh,∆)h and Ad p(k,∆) must be compared for the various dis-

cretization methods. This problem of continuous-time LFT discretization was �rst addressed in

[31]. The discretization error according to various methods is also discussed in-depth [32, 33] in the

more general framework of the Linear Parameter-Varying (LPV) system where the bounds on the

discretization error are proposed in terms of approximating the state or output evolution. Here, we

focus on the approximation error on the uncertain transition matrix eAp(kh,∆)h.

A third order Taylor expansion in h of eAp(kh,∆)h leads to (kh is omitted for brevity)

eAp(∆)h ≈ In + (A + ∆A)h+ (A + ∆A)2h
2

2
+ (A + ∆A)3h

3

6
. (16)

with ∆A = B∆(In −D∆)−1C.

The expressions of Ad(k), Bd(k), Cd(k), Dd(k) from A(kh), B(kh), C(kh), D(kh) and h, the

mapping between discrete-time state xd(k) and continuous-time state x(kh) and input w(kh), and

the third order expansion of Ad(k,∆) are described below for the three discretization methods (k

and kh are omitted for brevity):

• Zero order hold (zoh) method [28]: the input w(t) of systemM(s, kh) is assumed to be

constant over the oversampling period h:

w(t) = wd(k), ∀ t ∈ [kh, (k + 1)h[.

Then

Ad =eAh (17a)

Bd =A−1
(
eAh − In

)
B (17b)

Cd =C (17c)

Dd =D (17d)

associated with the state xd(k) = x(kh) and

Ad p(∆) ≈ In + (A + ∆A)h+ A(A + ∆A)
h2

2
+ A2(A + ∆A)

h3

6
. (18)
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• First order hold (foh) method: the input w(t) of systemM(s, kh) is assumed to be linear

between two consecutive over-samples:

w(t) = wd(k) +
t− kh
h

(wd(k + 1)−wd(k)), ∀ t ∈ [kh, (k + 1)h[.

Thus

Ad =eAh (19a)

Bd =
1
h

A−1
(
eAh − In

)
B (19b)

Cd =CA−1
(
eAh − In

)
(19c)

Dd =D +
1
h

CA−1
(
eAh − In −Ah

)
A−1B (19d)

associated with state xd(k) = (eAh − In)−1(Ax(kh) + Bw(kh))− 1
hA−1Bw(kh) and

Ad p(∆) ≈ In+(A+∆A)h+(A+∆A)2h
2

2
+(A+∆A)3h

3

6
+(A+∆A)∆A(A+∆A)

h3

12
. (20)

• Tustin method [27]: the continuous-time integration presented in Figure 1 is approximated

by a numerical integration using the trapezoidal rule:

x((k + 1)h) = x(kh) +
h

2
(ẋ((k + 1)h) + ẋ(kh)) .

Then, with wd(k) = w(kh),

Ad =(In +
h

2
A)(In − h

2
A)−1 (21a)

Bd =h(In − h

2
A)−1B(kh) (21b)

Cd =C(In − h

2
A)−1 (21c)

Dd =D +
h

2
C(In − h

2
A)−1B (21d)

associated with state xd(k) =
(
In − h

2 A(kh)
)
x(kh)− h

2 B(kh)w(kh) and

Ad p(∆) ≈ In + (A + ∆A)h+ (A + ∆A)
h2

2
+ (A + ∆A)3h

3

4
. (22)

Thus the approximation of eA(∆)h by Ad p(∆) is only a �rst order approximation if the zoh method

is used, whereas it is a second order approximation with the foh and Tustin methods. Note that for

the zoh and foh methods, Ad, as de�ned in Eq.(A3a), is equal to the nominal monodromy matrix
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(Ra(∆ = 0)) obtained from Eq.(8) while approximations are made when the Tustin method is

used. Therefore if ∆A is assumed to be small, a better approximation with the foh method than

the Tustin method can be expected. Indeed, the Taylor expansion (20) is equal to (16) except for

a fourth order term in ∆Ah
3/12. It is also important to underline the crucial in�uence of nh on

the accuracy of the result. High values of nh tend to minimize errors with all the methods, but also

substantially increase robustness analysis computation time since the number of inputs and outputs

of the initial LFT model is multiplied by nh in the new uncertainty block ∆̃.

This Taylor expansion based analysis allows us to recommend the foh method for the dis-

cretization of the LFT representation of uncertain systems instead of the more commonly used zoh

method. This will be con�rmed through the numerical results on the study of the ground resonance

phenomenon in section III B.

III. Ground Resonance Parametric Analysis

A. Ground resonance modeling

Figure 2 provides a general diagram of the dynamical system. It represents a simpli�ed he-

licopter model similar to that used in the earliest research of the ground resonance phenomenon

[1].

The fuselage is modeled as a rigid body with mass mf . xf (t) and yf (t) represent the fuselage

positions along the longitudinal and lateral directions, respectively. The mechanical impedance

between the fuselage and the ground (landing gear) is modeled by two sti�nesses Kf X and Kf Y

and two damping factors CX and CY acting in the longitudinal and lateral directions. At equilib-

rium, the fuselage center of mass (point O) coincides with the origin of the inertial reference frame

(X0, Y0, Z0).

The rotor head system is comprised of one rigid rotor hub and an assembly of Nb blades. The

k-th blade has a mass mb k, a moment of inertia Izb k around the z - axis located at its center of

mass and an in-plane lead-lag motion de�ned by ϕk(t). The radius of gyration is de�ned by the

length b. Angular spring and viscous damping are considered on each blade hinge (point B). Spring

sti�ness and viscous damping coe�cients are denoted Kb k and Cb k, respectively.
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The origin of the fuselage frame (x, y, z), parallel to the inertial frame, is located at the geo-

metric center of the rotor hub (coincident at point O). The rotor angular velocity is denoted Ω.

The fuselage and rotor head are joined by a rigid shaft while aerodynamic forces on the blades

are not taken into account. This assumption is quite realistic since the helicopter is on the ground.

Also note that aerodynamic e�ects can be embedded in the uncertainties on blade hinge damping

and sti�ness. In the present work, the rotor is composed of Nb = 4 blades.

a) b)

Figure 2: Diagram of the Mechanical System

The position of the k-th blade center of mass, written in the inertial reference frame, is given

as:

xb k = a cos (ψk) + b cos (ψk + ϕk(t)) + xf (t) (23a)

yb k = a sin (ψk) + bsin (ψk + ϕk(t)) + yf (t) (23b)

where a is the hinge o�set and ψk = Ωt+ 2π(k−1)
Nb

, k = 1, · · · , Nb.

The expressions of the kinetic energy, the potential energy and the work of dissipative forces are

presented separately in Appendix B. By applying Lagrange equations and a �rst order expansion

of trigonometric terms, the linear dynamic model can be derived:

M q̈ + G q̇ + K q = Fext (24)

where q (t) = [ xf (t) yf (t) ϕ1(t) ϕ2(t) ϕ3(t) ϕ4(t) ]T is the generalized coordinates vector. M,
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G and K correspond to the mass, damping and sti�ness matrices respectively and are described in

Eq.25. These matrices are not symmetric due to the presence of periodic terms. Fext is equal to

zero if all the blades have the same inertial and geometrical properties.

M(t) =


1 0 −rm1 sin(ψ1) −rm2 sin(ψ2) −rm3 sin(ψ3) −rm4 sin(ψ4)
0 1 rm1 cos(ψ1) rm2 cos(ψ2) rm3 cos(ψ3) rm4 cos(ψ4)

−rb1 sin(ψ1) rb1 cos(ψ1) 1 0 0 0
−rb2 sin(ψ2) rb2 cos(ψ2) 0 1 0 0
−rb3 sin(ψ3) rb3 cos(ψ3) 0 0 1 0
−rb4 sin(ψ4) rb4 cos(ψ4) 0 0 0 1

 (25a)

G(t) =


rcX 0 −2Ωrm1cos(ψ1) −2Ωrm2 cos(ψ2) −2Ωrm3 cos(ψ3) −2Ωrm4 cos(ψ4)

0 rcY −2Ωrm1sin(ψ1) −2Ωrm2 sin(ψ2) −2Ωrm3 sin(ψ3) −2Ωrm4 sin(ψ4)
0 0 rc1 0 0 0
0 0 0 rc2 0 0
0 0 0 0 rc3 0
0 0 0 0 0 rc4

 (25b)

K(t) =


ω2

x 0 Ω2rm1 sin(ψ1) Ω2rm2 sin(ψ2) Ω2rm3 sin(ψ3) Ω2rm4 sin(ψ4)

0 ω2
y −Ω2rm1 cos(ψ1) −Ω2rm2 cos(ψ2) −Ω2rm3 cos(ψ3) −Ω2rm4 cos(ψ4)

0 0 ω2
b 1+Ω2r2a 1 0 0 0

0 0 0 ω2
b 2+Ω2r2a 2 0 0

0 0 0 0 ω2
b 3+Ω2r2a 3 0

0 0 0 0 0 ω2
b 4+Ω2r2a 4

 (25c)

Fext(t) =


NbP

k=1
Ω2rm k( a+b

a ) cos(ψk)

NbP
k=1

Ω2rm k( a+b
a ) sin(ψk)

0
0
0
0

 (25d)

where: rmk = bmb k

mf +
PNb

k=1mb k

, rb k = bmb k

b2mb k+Izb k
, r2

a k = a rb k, rcX..Y = CX..Y

mf +
PNb

k=1mb k

,

ω2
x = Kf X

mf +
PNb

k=1mb k

, ω2
y = Kf Y

mf +
PNb

k=1mb k

, rc k = Cb k

b2mb k+Izb k
, ω2

b k = Kb k

b2mb k+Izb k
, k = 1, · · · , Nb

The aging or failure of mechanical elements comprising the helicopter rotor head, e.g., springs or

dampers, has a direct in�uence on the dynamical behavior of the whole system. Depending on the

degradation of these elements, new critical rotating velocities may be reached at which the ground

resonance phenomenon will occur. Thus the robustness analysis of helicopters under structured

uncertainties is required to predict the smallest perturbation leading the system to instability. The

uncertainties introduced on the mechanical model are related to blade hinge sti�nesses Kb k and

damping factors Cb k. The 4 blade hinge sti�nesses are normalized with respect to the in-plane

lead-lag cantilevered frequency squared:

ω2
b k = (1 + δk)ω2

b k (k = 1, 2, 3, 4) (26)

where δk corresponds to the relative uncertainties related to ω2
b k (i.e.: square of the nominal

blade resonance frequency).
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According to Eq.(1), the LTP model S(∆) of the ground resonance phenomenon taking into

account uncertainties on the 4 blade hinge sti�nesses takes to form:

A(t) =
[

O6×6 I6
−M−1(t)K(t) −M−1(t)G(t)

]
, B(t) =


O6×4

−M−1(t)

2666664
O2×4

I4

3777775

 (27)

C(t) =
[[

O4×2 diag[ω2
b 1, ω

2
b 2, ω

2
b 3, ω

2
b 4]
]

O4×6

]
, D(t) = O4×4 (28)

∆ = diag[δ1, δ2, δ3, δ4] (29)

associated with the state vector x = [qT q̇T ]T .

The model relative to the 4 blade hinge damping factors is described in section III C, equation

(31). The numerical data are summarized in Table 1.

Table 1: Nominal parameters of a helicopter with identical blades

Fuselage

mf = 2902.9 [kg]

ωx = 6.0π [rad/s] ωy = 8.0π [rad/s]

CX = 5.71 103 [Ns/m] CY = 7.62 103[Ns/m]

Rotor

a = 0.2 [m] b = 2.5 [m]

mb k = 31.9 [kg] ωb k = 3.0π [rad/s]

Izb 1..4 = 259 [kg m2] Cb 1..4 = 432 [Nms/rad]

B. Validation of the lifting procedure

The objectives of this section are: (i) to validate the lifting procedure presented in section

II B by comparison with Floquet analyses for various con�gurations of the uncertain parameters,

and (ii) to select the best discretization method while minimizing the over-sample number nh in

order to obtain a good trade-o� between analysis accuracy and CPU-time reduction. The following

assumptions are made:

• only the 4-th blade hinge sti�ness is considered to be uncertain (i.e.,∆ = diag[0, 0, 0, δ4]),
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• the rotor angular velocity is constant: Ω = 10π rad/s.

The discrete-time lifted model M̃d(z) in Eq.(11) is constructed for three di�erent values of nh

(10, 30 and 100) and the three discretization methods (zoh, foh, Tustin). Then, for each value of

the uncertainty δ4 (from -100% to 100% by steps of 10%), the LFT M̃d(z) − ∆̃ is resolved and

compared with the Floquet monodromy matrix Ra(diag[0, 0, 0, δ4]) computed with nh = 100 (Eq.

8). The comparison index is the highest eigenvalue (or characteristic multiplier) magnitude denoted

|λl|(δ4) and |λRa |(δ4) for the lifted model and the monodromy matrix, respectively. Note that the

nominal angular velocity (Ω = 10π rad/) leads to a weak stability margin (in terms of characteristic

multiplier magnitude), which is quite sensitive to parametric uncertainties. Indeed, the maximal

characteristic multiplier magnitude of Ra(O4×4) is |λRa |(0) = 0.982. The results for the three

discretization methods are presented in Figures 3 to 5 and summarized in Table 2. From these

results, it can be concluded that:

• for high values of nh (nh = 100), the stability analyses obtained with the three methods

converge with the Floquet-based prediction,

• for low values of nh, the stability analysis based on the zoh method is poor,

• the best trade-o� between stability-analysis accuracy and the reduction of nh is obtained with

the foh method and nh = 30. This value will be adopted in the next section.

Table 2: Maximal relative error (%) on the highest characteristic multiplier magnitude

with respect to the nominal stability margin: maxδ4
(∣∣∣|λl|(δ4)− |λRa |(δ4)

∣∣∣) /(1− |λRa |(0)).

nh 10 30 100

zoh 323 115 35

foh 14.5 1.43 0.49

Tustin 125 14.5 1.49

It can also be concluded that rotor stability is quite robust with respect to variations of single

blade sti�ness. Instability occurs (i.e. highest characteristic multiplier magnitude greater than 1)

only for very low values of δ4 (δ4 < −90%).
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Remark III.1 The CPU-time for computing the lifted model (11) on a standard desk-top computer

is 0.39 s, 1.98 s and 17.7 s, respectively for nh = 10, 30 and 100 (the e�ect of the discretization

method on CPU-time is negligible). The CPU-time for computing the monodromy matrix (15) with

nh = 100 is 1.26 s.
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Figure 3: Evolution of the magnitude of the highest characteristic multiplier with respect to δ4:

|λl|(δ4), for di�erent values of nh using zoh method in the lifting procedure, and |λRa |(δ4).
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Figure 4: Evolution of the highest magnitude of the characteristic multiplier with respect to δ4:

|λl|(δ4), for di�erent values of nh using foh method in the lifting procedure, and |λRa |(δ4).
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Figure 5: Evolution of the highest characteristic multiplier magnitude with respect to δ4: |λl|(δ4),

for di�erent values of nh using the Tustin method in the lifting procedure, and |λRa |(δ4).

C. µ-analysis of ground resonance stability

In this section, all blade hinge sti�nesses are considered to be uncertain and independent. The

µ-analysis toolbox [2] can be directly applied to the continuous-time lifted model M̃c(s) in Eq.(12).

The structure of the uncertainty block ∆̃120×120 is therefore 4 real independent parameters repeated

30 times each. At each frequency ω, the µ-analysis computes an upper bound µ̄(ω) and a lower

bound µ(ω) of the structured singular value µ. The µ-upper bound provides a guarantee of robust

stability, i.e.

S(∆) is stable ∀ δi / |δi| ≤ 1
maxω µ̄(ω)

, i = 1, 2, 3, 4

while the µ-lower bound provides the worst parametric con�guration ∆worst(ω) [34].

For the nominal rotor angular velocity Ω = 10π rad/s, the µ-upper and lower bounds provided

by the Skew Mu Toolbox are plotted in Figure 6. It can be concluded that maxω µ̄(ω) = 12 (i.e.

the parametric robustness margin is 8.3 %) and maxω µ(ω) ≈ maxω µ̄(ω) (i.e. this margin is not at

all conservative). The µ-analysis tools also provide the critical frequency ωcworst = 23.7 rad/s, the

frequency of the instability that occurs when ∆ = ∆worst. The parametric con�guration at ωcworst

[2] Ferreres, G. and Biannic, J.-M., �The Skew Mu Toolbox", http://www.onera.fr/staff-en/jean-marc-biannic/.
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is

∆worst = diag[0.085, 0.085, 0.085, 0.085] .

It is now possible to compute the monodromy matrix Ra(∆worst) (Eq.15) to validate the µ-analysis

result and the representativeness of the lifted model. The 12 eigenvalues (characteristic multipliers)

of Ra(∆worst) associated with the 6 �monodromic modes� are given in Table 3. Mode # 2 is

unstable with a magnitude very close to one.

Table 3: Characteristic multipliers of matrix Ra(∆worst).

Mode Characteristic multipliers Magnitude

# 1 0.1836± 0.7602 j 0.7821

# 2 −0.6981± 0.7164 j 1.0003

# 3 −0.5907± 0.4742 j 0.7575

# 4 −0.7088± 0.5466 j 0.8951

# 5 −0.5962± 0.6876 j 0.9101

# 6 −0.5962± 0.6876 j 0.9101

Although rotor stability is quite robust regarding uncertainty on a single blade hinge sti�ness

(see section III B), robustness to uncertainties on all four blades is quite poor. Our analysis showed

that the worst case con�guration corresponds to a rotor with identical blades. An interesting

observation regarding this analysis is that no dissimilar blades con�gurations are worse than ∆worst

from a stability point of view. This point is con�rmed by further analysis considering uncertainties on

2 adjacent blades, 2 opposing blades and 3 blades (see Table 4 for a summary of µ-analysis results).

Once again, considering Figure 4, the best stability margin in term of the highest characteristic

multiplier magnitude is obtained for δ4 = 0.5. The stability robustness analysis for an asymmetric

rotor where ω2
b 4 ← 1.5ω2

b 4 leads to the following results:

max
ω

µ̄(ω) = 8.11, ∆worst = diag[0.1312, 0.1312, 0.1312, −0.1312] . (30)

This analysis con�rms that the parametric robustness margin is better for a rotor with dissimilar

blade hinges. Thus to improve ground resonance stability it is possible to imagine a mechanism
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mounted on a single blade hinge and only operated on the ground in order to create asymmetry in

the rotor's properties. Of course, this analyze concerns only the ground resonance phenomenon and

any conclusion regarding the advantages of a rotor with dissimilar blade hinges cannot be extended

to behavior during �ight.

Other analyses were performed for various rotor angular rates Ω (from 1 to 10 Hz). In all cases,

the worst case con�guration corresponds to a symmetric con�guration (i.e.: δ1 = δ2 = δ3 = δ4 = δ).

Assuming that δ is repeated for the 4 blades, the stability analysis can be simpli�ed (1 uncertain

parameter repeated 120 times) and it is possible to plot the stability domain according to δ for

various rotor angular rates Ω. This stability domain in the Ω − δ plane is shown in Figure 7 and

con�rms that the stability margin of the nominal con�guration (Ω = 10π (rad/s), δ = 0) is very

weak. It is also noteworthy that if the stability analysis is restricted to symmetric uncertainties,

the discrete-time lifted model M̃d(z) can be used directly to plot the evolution of characteristic

multipliers as a function of δ in the z-plane using a basic root locus [27]. This plot is presented in

Figure 8 in the case Ω = 10π (rad/s). Instability occurs for δ = 0.085 at frequency

ωdworst = 0.74× (half sampling frequency) = 0.74× 5π rad/s = 11.5 rad/s .

ωdworst is linked to ωcworst by the well-known discrete-time to continuous-time frequency warping of

the Tustin transform [27]:

ωdworst =
2
T
atan

(
T

2
ωcworst

)
with T = 2π/Ω .

A possible physical justi�cation of the worst-case con�guration can be formulated: for a rotor

with identical blade hinges, it is easy to check in Table 3 that modes # 5 and 6 are identical. This

multiple-�monodromic� mode may be more signi�cant in the kinematic energy exchange between

the rotor and the fuselage than single modes. In other words, the dissymmetry in the rotor breaks

this multiple mode and leads to 6 single modes associated with 6 di�erent frequencies and lower

modal participation factors. This result must be con�rmed by further analyses and confronted with

an arbitrary number Nb of blades (an odd number for instance).

Remark III.2 The CPU-time to compute the lifted model (with nh = 30) and µ-upper bound is
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Table 4: µ-analysis results for uncertainties on 1 blade, 2 adjacent blades, 2 opposite

blades, 3 blades or 4 blades at Ω = 5Hz.

Case maxω µ̄(ω) ∆worst

1 blade 1.1 −0.9

2 adjacent blades 1.41 diag[−0.71, −0.71]

2 opposite blades 1.31 diag[−0.78, −0.78]

3 blades 6.2 diag[0.17, 0.17, 0.17]

4 blades 12 diag[0.085, 0.085, 0.085, 0.085]
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Figure 6: µ upper bound (line) and lower bound (• marks) - robustness stability analysis with

respect to uncertainties on the 4 blade hinge sti�nesses at Ω = 5Hz.

equal to 8.3 s. The CPU-time to compute the µ-lower bound on a gridding with 51 frequencies

around ωcworst is equal to 35 s. Thus it is possible to use such tools interactively in the MATLAB R©

environment, which is quite convenient during the design stage. By way of comparison, the CPU-

time to compute the monodromy matrix on a parametric space gridding with 20 points per parameter

is 2× 105 s.

Analyses were also performed to evaluate robustness with respect to the hinge damping factors

(parameters rc k, k = 1, · · · , Nb in Eq. (25a)) which are certainly also very sensitive to aging e�ects.
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(black) or δ < 0 (grey) on the 4 blade hinge sti�nesses at Ω = 5Hz.

The procedure is exactly the same, the main di�erence is the output matrix Eq. (28) of the initial

LTP model which becomes:

C(t) = [O4×6 [O4×2 diag [rc 1, rc 2, rc 3, rc 4]]] (31)
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where rc k are the parameter nominal values. The µ-analyses provides the following results:

max
ω

µ̄(ω) = 5.28, ∆worst = diag[−0.198, −0.198, −0.198, −0.198] . (32)

Once again, the worst case corresponds to a symmetric reduction of all damping factors.

IV. Conclusions

A procedure that combines Floquet theory and the Lifting technique to convert the uncertain

linear time periodic (LTP) system into an uncertain linear time-invariant (LTI) lifted system makes

it possible to use µ-analysis to determine the smallest perturbation in helicopter blade properties

having the worst case e�ect on rotor stability.

Three discretization methods were compared in order to reduce the complexity (and hence the

CPU time) of the lifted model and minimize discretization errors. The conclusion is that the �rst

order hold method gives signi�cantly better results than the more commonly used zero-order hold

method.

By taking into account uncertainties on the four blade hinge sti�nesses and damping factors,

the µ-analysis shows that the worst case parametric con�guration corresponds to a symmetric per-

turbation for all blade hinges. Thus stability analysis methods restricted to symmetric rotors like

the Coleman method are still relevant. Nevertheless, tools are now available to perform further

analyses and verify whether this result can be extended to other rotor con�gurations (for example

a rotor system with an odd number of blades). Such tools save signi�cant CPU-time in comparison

with a pure Floquet analysis combined with a parametric space exploration.
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Appendix

Appendix A: LIFTING PROCEDURE

The lifting procedure, as described in [22, 35], is summarized here for the reader's convenience.

The state-space matrices of the discrete-time lifted model are expressed directly from the state-space

matrices provided by the selected discretization method (Eqs.(17) to (21)) and do not involve the

transition matrix.

From Eq.(9), let us de�ne the �packed� output and input vectors

wd(k) =
[
wT

d (k) wT
d (k + 1) . . . wT

d (k + nh − 1)
]T

(A1a)

zd(k) =
[
zT

d (k) zT
d (k + 1) . . . zT

d (k + nh − 1)
]T

(A1b)

Then, the integration over one period of system in Eq.(9) leads to the discrete-time lifted system
xd(k + nh) = Ad xd(k) + Bd wd(k)

zd(k) = Cd xd(k) + Dd wd(k)
(A2)

with wd(k) = ∆ zd(k)
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where

Ad =Φnh−1
0 (A3a)

Φu
l =

u∏
q=l

Ad(k + q) = Ad(k + u)Ad(k + u− 1) . . .Ad(k + l) if u ≥ l, (A3b)

Φu
l =In otherwise. (A3c)

Bd =
[
Φnh−1

1 Bd(k) Φnh−1
2 Bd(k + 1) . . . Φnh−1

nh−1Bd(k + nh − 2) Bd(k + nh − 1)
]

(A3d)

Cd =



Cd(k)

Cd(k + 1)Φ0
0

...

Cd(k + nh − 1)Φnh−2
0


(A3e)

Dd =



Dd(k) 0

Cd(k + 1)Bd(k) Dd(k + 1)

Cd(k + 2)Φ1
1Bd(k) Cd(k + 2)Bd(k + 1)

...
...

Cd(k + nh − 1)Φnh−2
1 Bd(k) Cd(k + nh − 1)Φnh−2

2 Bd(k + 1)

0 · · · 0

0 · · · 0

Dd(k + 2) 0

...
. . .

...

Cd(k + nh − 1)Φnh−2
3 Bd(k + 2) · · · Dd(k + nh − 1)


(A3f)

The general expression for the lower triangular terms of matrix Dd is

Dd(i, j) = Cd(k + i− 1)Φi−2
j Bd(k + j − 1) ∀ i = 1, . . . , nh, j < i .

The diagonal matrix ∆ is composed of ∆ = diag[δ1, · · · , δp] repeated nh times

∆ =diag [∆, ∆, . . . ∆] (A4)

Finally, since each δi for i = 1, 2, . . . , p appears in each ∆ block, the row re-ordering matrix

can be de�ned as V so that

V∆ = ∆̃V (A5)
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with ∆̃ = diag [δ1Inh
, δ2Inh

, . . . δpInh
] and VTV = In.

Let us de�ne the re-ordered �packed� input and output vectors

w̃d(k) = Vwd(k) and z̃d(k) = Vzd(k) ,

then the LFT representation (A2) is transformed into the LFT representation (11).

Appendix B: KINETIC AND POTENTIAL ENERGY AND WORK OF DISSIPATIVE

FORCE

The kinetic and potential energy expressions and the work expression of dissipative forces of

the dynamical system are presented here for the reader's convenience [1, 10]. They are all written

in the inertial reference frame.

• The kinetic energy of the whole dynamical system consists of the sum of kinetic energy

expression of the fuselage TFus and rotor head TRH systems:

TFus =
mf

2
(
ẋ2(t) + ẏ2(t)

)
(B1a)

TRH =
1
2

Nb∑
k=1

[
Izb k

ϕ̇2
k +mb k

(
ẋ2
b k + ẏ2

b k

)]
(B1b)

=
1
2

Nb∑
k=1

Izb k
ϕ̇2
k +

1
2
mb k

Nb∑
k=1

{
(ẋ+ẏ)+b2ϕ̇2

k+2b2Ωϕ̇k+b2Ω2(a2+b2)
2 a b cos(ϕk)[Ω2+Ωϕ̇k]+2aΩ[−ẋsin(ψk)+ẏcos(ψk)]

2b(Ωẏ+ẏϕ̇k)cos(ψk+ϕk)−2b(Ωẋ+ẋϕ̇k)sin(ψk+ϕk)

}

• The potential energy of the whole dynamical system consists of the sum of the potential

energy of the fuselage, UFus, and rotor head, URH , systems:

UFus =
1
2
(
Kf X x

2 +Kf Y y
2
)

(B2a)

URH =
1
2

Nb∑
k=1

Kb k ϕ
2
k (B2b)

• The work of dissipative forces of the whole dynamical system consists of the sum of the

work done by dissipative forces acting on the fuselage δFFus and the rotor head δFRH systems:

UFus =
1
2
(
Cf X ẋ

2 + Cf Y ẏ
2
)

(B3a)

URH =
1
2

Nb∑
k=1

Cb k ϕ̇
2
k (B3b)
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